To control for or not to control for?

Concepts of Mediation Analysis in Epidemiology

Javier Sanchez – Ian Dohoo Centre for Veterinary Epidemiological Research

Outline

- Why mediation analysis?
- Example Reproductive diseases in cattle
- Approaches and biases
- Software
- Remarks

Why mediation analysis?

- Need to understand different pathways that could explain <u>Exposure->Outcome</u> (<u>Y</u>) relationship
- Typically interest is in total effect Ex->Y
 - do not control for intervening variables!??

- We could also estimate an indirect effect
 - mediating (intervening) variable
- ...or the direct effect
 - effect not explained by the mediator (intervening)
 variable

Reproductive Diseases in Dairy Cattle

Mediation analysis – Example

 Effect of Twin ("T") on 1st Service Conception Risk ("CR")

 Role of Vaginal Discharge ("VD") as potential mediator (indirect/direct effects)

Mediation analysis – Traditional approach

- Baron and Kenny (1986) paper
- Model for outcome
 - $-E[Y|ex] = \beta_0 + \beta_1 * Ex$ (without mediator)
 - Total effect = β_1
 - $-E[Y|ex,m] = \beta_0 + \beta_2 * Ex + \beta_3 * M$ (with mediator)
 - Direct effect = β_2
 - Indirect effect = $\beta_1 \beta_2$
- Model for mediator
 - $E[M | ex] = \beta_0 + \beta_4 * E$
 - Indirect effect = $\beta_4 * \beta_3$

Mediation analysis – Traditional approach

- Non linear models (eg. logistic) mediation effects doesn't correspond with causal effects
 - Eg. Total Effect ≠ Direct Effect + Indirect Effect
 - Causal interpretation?
 - counterfactual model

- Biases
 - Incorrect statistical design
 - Three main type of biases

Counterfactual framework

Cow	Т	VD	CR
Daisy	Yes	No	Yes
Betsy	No	Yes	Yes

Counterfactual framework

Cow	Herd	Parity	Т	VD	CR
Daisy	2	4	Yes	No	Yes
Betsy	3	6	No	Yes	Yes

Counterfactual framework

a	0.4		
Ħ	A	W	
	3	77	
	3	1	

Cow	Herd	Parity	Twin	Vag. Disch	CR	
Daisy	2	4	Yes	No	Yes	
Daisy	2	4	No	No	?	counterfactual
Betsy	3	6	No	Yes	Yes	
Betsy	3	6	Yes	Yes	?	counterfactual

Counterfactual framework – No Mediator

- Compare: Y_{Ex=1} {Y(1)} to Y_{Ex=0} {Y(0)}
 - For any individual only Y(1) or Y(0) is observed
 - $-E(Y_i(1) Y_i(0)) = E(Y_i | Ex=1) E(Y_i | Ex=0)$
 - "difference in means estimator"
 - Unbiased estimate of Average Causal Effect (ACE)

Counterfactual framework - Mediator

Mediation

- Potential outcome Y_i(ex, m)
- Many possible only one observed for each individual

- Natural indirect effect (NIE)
 - -NIE=E[Y(1,M(1))]-E[Y(1,M(0))]
 - compares Y under M = M(Ex=0) vs M(Ex=1)
 - changes in Y if Ex is fixed at (ex) but M changes by amount expected from changing Ex from 0 to 1

Counterfactual framework - Mediator

- Natural direct effect (NDE)
 - NDE=E[Y(1,M(ex))]-E[Y(0,M(ex))]
 - compares Y under Ex=1 vs Ex=0, fixing M=M(Ex=ex)
 - changes in Y if M is fixed at level corresponding to (ex)
 but Ex changes from 1 to 0

- Total causal effect decomposed as:
 - -TCE=E[Y(1)]-E[Y(0)] = NDE + NIE

Mediation analysis – Biases

- Three main sources of bias
 - 1) Mediator-Outcome Confounding

– 3) Mediator-Outcome Confounding affected by Exposure

RP

CR

Mediator-Outcome Confounding

 Conditioning on VD (mediator) creates spurious association between RP (confounder) and T (exposure)

- M-bias
- VD collider variable
 - Assume no other confounders are present

Commands – Stata / R

- Stata
 - medeff command simulation based
 - The Stata Journal 11, 605-619. Causal mediation analysis.

- R
 - medflex and mediation packages

Commands – Stata / R

- Effects binary outcome
 - natural indirect effect

$$OR_1^{NIE} = \frac{P(Y_{1M_1} = 1)/P(Y_{1M_1} = 0)}{P(Y_{1M_0} = 1)/P(Y_{1M_0} = 0)}$$

Natural direct effect

$$OR_0^{NDE} = \frac{P(Y_{1M_0} = 1)/P(Y_{1M_0} = 0)}{P(Y_{0M_0} = 1)/P(Y_{0M_0} = 0)}$$

Total effect

$$OR^{TE} = OR^{NIE} \times OR^{NDE}$$

Mediation – Outcome confounder - medeff

Stata

Mediation – Outcome confounder

- ACME: Average Causal Mediated Effect
 - Natural Indirect effect
 - The increase in Y brought on by increasing M by the amount that would result from changing Ex from 0 to 1, while holding Ex constant
- ADE: Average Direct Effect
 - The increase in Y brought about by changing Ex from 0 to 1 while holding M constant
- ACME + ADE: Total causal effect
 - Increase in Y brought about by changing Ex from 0 to 1, and allowing M to change correspondingly

Commands – Stata / R

Model types

	Outcome Type						
	Contin	Continuous		Binary		Counts	
Mediator type	Stata	R	Stata	R	Stata	R*	
Continuous	Υ	Υ	Υ	Υ	N	Υ	
Binary	Υ	Υ	Υ	Υ	N	Υ	
Count	N	Υ	N	Υ	Ν	Υ	
Ordinal/Nominal	N	Υ	N	Υ	N	Υ	

^{*} Poisson and Negative Binomial

Commands – Stata / R

Biases

	S	Stata	R
Bias	medeff	G-formula*	medflex
1) M-Y confounder	Υ	Υ	Υ
2) Ex-M interaction	Υ	Υ	Υ
3) M-Y affected by Ex	N	Υ	N

^{*}see references

Summary

- Control for or not to control for?
 - depend on the question!
 - control quantify ("unbiased") causal direct and indirect pathways
 - implement/target interventions
- Rely on a biological plausible causal model
 - emphasize the use of a causal diagram!!
- Fast growing area of research
 - underused methods
 - complexity of the problem
 - understanding counterfactual framework

References

- Baron, R.M., Kenny, D.A., 1986. The moderator—mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology 51, 1173-1182.
- Richiardi, L., Bellocco, R., Zugna, D., 2013. Mediation analysis in epidemiology: methods, interpretation and bias. International Journal of Epidemiology 42, 1511–1519. doi:10.1093/ije/dyt127
- Petersen, M.L., Sinisi, S.E., van der Laan, M.J., 2006. Estimation of Direct Causal Effects:
 Epidemiology 17, 276–284. doi:10.1097/01.ede.0000208475.99429.2d
- Lange, T., Vansteelandt, S., Bekaert, M., 2012. A Simple Unified Approach for Estimating Natural Direct and Indirect Effects. American Journal of Epidemiology 176, 190–195. doi:10.1093/aje/kwr525
- Hicks, R. and Tingley, D., 2011. Causal mediation analysis. The Stata Journal 11, 605-619.
- Rhian, D., De Stavola, B.L., Cousens, S.N., 2011. gformula: Estimating causal effects in the presence of time-varying confounding or mediation using the g-computation formula.
- Steen, J., Loeys, T., Moerkerke, B., Vansteelandt, S., n.d. Medflex: An R Package for Flexible Mediation Analysis using Natural Effect Models.

