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Sample Size Estimation in Veterinary
Epidemiologic Research
Mark A. Stevenson*

Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia

In the design of intervention and observational epidemiological studies sample size

calculations are used to provide estimates of the minimum number of observations that

need to be made to ensure that the stated objectives of a study are met. Justification

of the number of subjects enrolled into a study and details of the assumptions and

methodologies used to derive sample size estimates are now a mandatory component

of grant application processes by funding agencies. Studies with insufficient numbers

of study subjects run the risk of failing to identify differences among treatment or

exposure groups when differences do, in fact, exist. Selection of a number of study

subjects greater than that actually required results in a wastage of time and resources.

In contrast to human epidemiological research, individual study subjects in a veterinary

setting are almost always aggregated into hierarchical groups and, for this reason,

sample size estimates calculated using formulae that assume data independence are not

appropriate. This paper provides an overview of the reasons researchers might need to

calculate an appropriate sample size in veterinary epidemiology and a summary of sample

size calculation methods. Two approaches are presented for dealing with lack of data

independence when calculating sample sizes: (1) inflation of crude sample size estimates

using a design effect; and (2) simulation-based methods. The advantage of simulation

methods is that appropriate sample sizes can be estimated for complex study designs

for which formula-based methods are not available. A description of the methodological

approach for simulation is described and a worked example provided.

Keywords: sampling, epidemiiology, multilevel—hierarchical clustering, veterinary science, biostatistics

INTRODUCTION

In the design of intervention and observational epidemiological studies sample size calculations are
used to provide estimates of the minimum number of observations that need to be made to ensure
that the stated objectives of a study are met (1, 2). Peer reviewed journals require investigators to
provide justification of the number of subjects enrolled into a study and details of the assumptions
and methodologies used to derive sample size estimates are now a mandatory component of grant
application processes (3). Studies lacking in justification of sample size run the risk of failing to
identify differences among treatment or exposure groups if a difference in those groups actually
exist (4). Selection of a number of study subjects greater than that actually required results in a
wastage of time and resources (2).

Methods for sample size estimation vary depending on the type of study being carried
out i.e., observational (non-experimental) or interventional (experimental). Formula-based
approaches for sample size estimation are often preferred by investigators because: (1) they
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are relatively quick and simple to implement; (2) their
widespread use makes peer review challenge less likely; and (3)
the ability to use standard formulae goes hand in hand with
“standard” study designs (i.e., randomized clinical trials, cross-
sectional studies, case-control studies or cohort studies). Use of a
standard study design implies the use of established approaches
for data collection and analysis, again reducing the likelihood
of challenge during peer review. In veterinary epidemiology the
aggregation of animals into often several levels of hierarchy
(e.g., cows within pens, pens within herds, herds within farms,
and farms within regions) complicates sample size calculations
due to lack of data independence arising from study subjects
being aggregated into groups (e.g., pens, herds, farms, and
regions). While modifications to standard sample size formulae
are available, their flexibility to handle the range of real-world
data situations is often limited.

The aim of this paper is to provide an overview of sample
size estimation methods and their usage in applied veterinary
epidemiological research. The structure of the paper is as follows.
In the first section an overview of formula-based approaches for
sample size estimation in epidemiological research is provided.
In the second section, formula-based approaches for calculation
of appropriate samples sizes for clustered data are presented.
In the third and final section simulation-based approaches are
presented as a means for estimating an appropriate sample size
for hierarchical study designs for which formula-based methods
are not available. Examples are provided throughout the paper to

TABLE 1 | Information required to estimate a sample size for each of the common sampling designs, binary or continuous population parameters.

Outcome

variable

Sampling design Arguments References

Continuous Simple random Total number of individual listing units in the population, the relative variance of the continuous

variable to be estimated (i.e., the variance divided by the mean squared).

(7) pp. 74,

Equation 3.14

Continuous Stratified random Total number of individual listing units in each strata, the expected means of the continuous

variable to be estimated for each strata, the expected variances of the continuous variable to

be estimated for each strata.

(7) pp. 176,

Equation 6.25

Continuous One stage cluster Total number of clusters in the population, the population mean of the continuous variable to

be estimated, the population variance of the continuous variable to be estimated.

(7) pp. 255, Box

9.4

Continuous Two stage cluster Number of individual listing units to be sampled from each cluster, the total number of clusters

in the population and the number of individual listing units in each cluster, the mean of the

continuous variable to be estimated at the first and second stage of sampling, the variance of

the continuous variable to be estimated at the first and second stage of sampling.

(7) pp. 289,

Equation 10.6

Binary Simple random sampling Total number of individual listing units in the population, the expected proportion of individual

listing units with the outcome of interest.

(7) pp. 74,

Equation 3.16

Binary Stratified random Total number of individual listing units in each strata, the expected proportion of individual

listing units with the outcome of interest for each strata.

(7) pp. 176,

Equation 6.23

Binary One stage cluster Total number of clusters in the population, the mean of the proportion of individual listing units

in each cluster with the outcome of interest, the variance of the proportion of individual listing

units in each cluster with the outcome of interest.

(7) pp. 255 Box

9.4

Binary Two stage cluster Number of individual listing units to be sampled from each cluster, the total number of clusters

in the population and the number of individual listing units within each cluster, the mean of the

denominator variable used to calculate the unknown population proportion at the first and

second stage of sampling, the variance of the denominator variable used to calculate the

unknown population proportion at the first and second stage of sampling, the variance of the

numerator variable used to calculate the unknown population proportion at the first and

second stage of sampling, the covariance of the unknown population proportion at the first and

second stage of sampling.

(7) pp. 289,

Equation 10.7

illustrate and support the concepts discussed. The supplementary
material contains code allowing readers to reproduce the results
presented in each of the examples using functions available in the
contributed epiR package (5) in R (6).

FORMULA-BASED APPROACHES FOR
SAMPLE SIZE ESTIMATION

In veterinary epidemiology sample size calculations are used
during the design phase of a study to allow investigators to:
(1) estimate a population parameter (e.g., the prevalence of
disease); (2) test a hypothesis in an observational setting (using,
for example, one of the three main observational study designs:
cross-sectional, cohort or case-control); (3) test a hypothesis in
an intervention setting (using a randomized clinical trial); and
(4) achieve a specified level of confidence that an event will be
detected if it is present at a specified design prevalence.

Sample Size Calculations to Estimate a
Population Parameter
A summary of formula-based methods for estimation of a
population parameter, all assuming data independence, is
provided in Tables 1, 2. Methods are defined for continuous and
binary outcomes with different calculation methods dependent
on the proposed sampling design: simple random, stratified
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TABLE 2 | Formulae to estimate a sample size for each of the common sampling designs, binary or continuous population parameters.

Outcome

variable

Sampling design Formula Arguments

Continuous Simple random n ≥
z1−(α/2)

2 N V2
x

z1−(α/2)
2 V2

x + (N − 1) ǫ2r
n = the number of subjects in the sample.

z1−(α/2) = value from the standard normal curve corresponding to the desired level

of confidence. Use z1−(α/2) = 1.96 for 95% (two-sided) confidence.

N = the population size.

Vx = the relative variance (the variance divided by the mean squared).

ǫr = the relative error.

Continuous Stratified random n ≥
z1−(α/2)

2 ×
N

1+ γ
× V2

x

Nǫ2r + z1−(α/2)
2 ×

V2
x

1+ γ

n = the number of subjects in the sample.

z1−(α/2) = value from the standard normal curve corresponding to the desired level

of confidence. Use z1−(α/2) = 1.96 for 95% (two-sided) confidence.

N = the population size.

γ = between strata variance σ 2
bx divided by the within strata variance. σ 2

wx .

V2
x = the relative variance (the variance divided by the mean squared).

ǫr = the relative error.

Continuous One stage cluster m =
z1−(α/2)

2MV2
1x

z1−(α/2)
2V2

1x + (M− 1)ǫ2r

V2
1x =

σ 2
1x

X̄2

σ1x =
∑M

i=1

(

Xi − X̄
) (

Yi − Ȳ
)

M

m = the number of clusters in the sample

z1−(α/2) = value from the standard normal curve corresponding to the desired level

of confidence. Use z1−(α/2) = 1.96 for 95% (two-sided) confidence.

M = the number of clusters in the population.

ǫr = the relative error.

σ 2
1x = the first stage variance components.

X̄ = mean level of X per cluster.

Xi = level of the ith value of characteristic X.

Continuous Two stage cluster m =
(

σ 2
1x

X̄2

)

×
(

M

M− 1

)

+
(

1

n̄

)

×

(

σ 2
2x

X̄2

)

×

(

N̄ − n̄

N̄− 1

)

ε2r

z1−(α/2)
2
+

σ 2
1x

X̄2 (M− 1)

m = the number of clusters in the sample.

σ 2
1x = the first stage variance components.

X̄ = mean level of X per cluster.

M = the number of clusters in the population.

n̄ = the number of listing units to be sampled from each cluster.

σ 2
2x = the second stage variance components.

N̄ = the number of listing units in each cluster.

ǫr = the relative error.

z1−(α/2) = value from the standard normal curve corresponding to the desired level

of confidence.

Use z1−(α/2) = 1.96 for 95% (two-sided) confidence.

Binary Simple random

sampling

n ≥
z1−(α/2)

2 N Py (1− Py )
[

(N − 1) ǫ2r P2
y

]

+ z1−(α/2)
2 Py (1− Py )

n = the number of subjects in the sample.

N = the population size

Py = the estimated population prevalence.

ǫr = the relative error.

z1−(α/2) = value from the standard normal curve corresponding to the desired level

of confidence. Use z1−(α/2) = 1.96 for 95% (two-sided) confidence.

Binary Stratified random n ≥

(

z1−(α/2)
2

N2

)

∑L
h=1

N2
h Phy (1− Phy )

πhP
2
y

ǫ2r +

(

z1−(α/2)
2

N2

)(

∑L
h=1

NhPhy (1− Phy )

P2
y

)

πh =
nh

n

n = the number of subjects in the sample

z1−(α/2) = value from the standard normal curve corresponding to the desired level

of confidence. Use z1−(α/2) = 1.96 for 95% (two-sided) confidence.

N = the population size.

L = the number of strata.

Nh = the population size in the hth strata.

Phy = the estimated population prevalence in the hth strata.

Py = the estimated population prevalence.

ǫr = the relative error.

πh = the fraction of samples allocated to strata h (decided in advance).

Binary One stage cluster When the number of listing units to be sampled per cluster is

the same:

D = 1+ (b− 1)ρ

When the number of listing units to be sampled per cluster

varies:

D = 1+
{(

CV2 + 1
)

b̄− 1
}

ρ

nc ≥
z1−(α/2)

2 Py
(

1− Py
)

D
(

Py ǫr
)2
b̄

D = the design effect.

b = the number of listing units to be sampled from each cluster.

ρ = the intracluster correlation coefficient.

CV = the coefficient of variation of the number of listing units to be sampled from

each cluster.

b̄ = the average number of listing units to be sampled from each cluster.

nc = the number of primary sampling units (clusters) to be sampled.

z1−(α/2) = value from the standard normal curve corresponding to the desired level

of confidence. Use z1−(α/2) = 1.96 for 95% (two-sided) confidence.

Py = the estimated population prevalence

ǫr = the relative error.

Binary Two stage cluster m =
(

σ 2
1R

X
2

)

×
(

M

M− 1

)

+
(

1

n

)

×

(

σ 2
2R

X
2

)

×

(

N − n

N − 1

)

ε2r

z1−(α/2)
2
+

σ 2
1R

X
2
(M− 1)

m = the number of clusters in the sample.

σ 2
1R = the first stage variance components.

X̄ = the mean level of characteristic X per listing unit.

M = the number of clusters in the population.

n̄ = the number of listing units to be sampled from each cluster.

σ 2
2R = the first stage variance components.

X̄ = the mean level of characteristic X per cluster.

N̄ = the average number of listing units per cluster in the population.

ǫr = the relative error.

z1−(α/2) = value from the standard normal curve corresponding to the desired level

of confidence. Use z1−(α/2) = 1.96 for 95% (two-sided) confidence.
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BOX 1 | The expected seroprevalence of brucellosis in a population of cattle is thought to be in the order of 15%. How many cattle need to be sampled and

tested to be 95% certain that our seroprevalence estimate is within 20% (i.e., 0.20 × 0.15 = 0.03, 3%) of the true population value, assuming use of a test

with perfect sensitivity and speci�city? This formula requires the population size to be speci�ed so we set N to a large number, 1,000,000:

n ≥
z1−(α/2)

2 N Py (1− Py )
[

(N − 1) ǫ2r P
2
y

]

+ z1−(α/2)
2
Py
(

1− Py
)

n ≥
1.962 × 1, 000, 000 × 0.15 (1− 0.15)

[

(1, 000, 000− 1)0.202 0.152
]

+ 1.96
2
× 0.15 × (1− 0.15)

n ≥
489, 804

900.489

n ≥ 545

To be 95% confident that our estimate of brucellosis seroprevalence is within 20%of the true population value (i.e., a relative error of 0.20) 545 cattle should be sampled.

TABLE 3 | Information required to estimate a sample size for each of the common observational epidemiological study designs.

Study design Arguments References

Cross-sectional The expected prevalence of the outcome among the exposed, the expected prevalence of the outcome among in the

unexposed, the required study power, the ratio of the number of exposed subjects to the number of unexposed subjects, sided

test.

(9) pp. 313,

Equation 8.14

Case-control The expected odds ratio, the prevalence of exposure among controls, the required study power, the ratio of the number of

control subjects to the number of case subjects, sided test.

(10)

Cohort, count data The expected outcome incidence risk among the exposed, the expected outcome incidence risk among the unexposed, the

required study power, the ratio of the number of exposed subjects to the number of unexposed subjects, sided test.

(9) pp. 313,

Equation 8.14

Cohort, time at risk The expected outcome incidence rate among the exposed, the expected outcome incidence rate among the unexposed, the

required study power, the ratio of the number of exposed subjects to the number of unexposed subjects, sided test.

(11)

random, one-stage cluster and two-stage cluster designs. For
continuous outcomes the analyst needs to provide an estimate of
the mean of the outcome of interest and its expected variability.
For binary outcomes only an estimate of the expected population
proportion is required, given the variance of a proportion P
equals P × [1− P] (8). In addition to specifying the required
level of confidence in the population parameter estimate (usually
95%) one needs to specify the desired maximum tolerable
error. The maximum tolerable error is the difference between
the true population parameter and the estimate of the true
population parameter derived from sampling. In each of the
formula-based approaches listed in Tables 1, 2 tolerable error
is expressed in relative (as opposed to absolute) terms. If one
assumes that the true population prevalence of disease is 0.40
and a desired relative tolerable error of 0.10 with 95% confidence
is required, this means the calculation will return the required
number of subjects to be 95% certain that the prevalence estimate
from the study will be anywhere between 0.40 ± (0.10 ×
0.40) that is, from 0.36 to 0.44. Some sample size formulae
and/or software packages require maximum tolerable error to
be expressed in absolute terms (that is, 0.04 for the example
cited above). Analysts should take care to ensure that there is no
ambiguity around the input format for tolerable error when using
a published formula or software package since the distinction
between absolute and relative error is often not clear in either
the formula documentation or the graphic user interface, in the
case of computer software. Similarly, when making a statement

of the criteria used for sample size calculations when reporting
the results of a study, care should be taken to ensure that
the “relative” or “absolute” qualifier is used when referring to
tolerable error.

In the absence of prior knowledge of the event prevalence
in a population a conservative sample size estimate can be
made assuming event prevalence is 0.5, since the variance of a
prevalence (that is, P × [P − 1]) is greatest when P= 0.5 and the
absolute tolerable error and level of confidence remains fixed (8).

A worked example of a sample size calculation to estimate a
prevalence using simple random sampling is shown in Box 1.

With stratified sampling the sampling frame is divided
into groups (strata) and a random sample is taken from
each stratum. When the variation of the outcome of interest
within each stratum is small relative to the variation between
strata, stratified random sampling returns a more precise
estimate of the population parameter compared with simple
random sampling.

Sample Size Calculations to Test a
Hypothesis Using an Observational Study
Design
Details of the formula-based methods to estimate a sample size
for each of the main observational study (i.e., cross-sectional,
case-control, and cohort studies) are provided in Tables 3, 4.
Again, these formulae all assume that data are independent.
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TABLE 4 | Formulae to estimate a sample size for each of the common observational epidemiological study designs.

Study design Formula Arguments

Cross-sectional n ≥
r + 1

r (λ − 1)2 π2

[

z1−(α/2)

√
(r + 1)pc (1− pc) + z1−β

√
λπ (1− λπ) + rπ (1− π)

]2
n = the number of subjects in the sample.

r = the anticipated number of subjects in the exposed group divided by the anticipated number

of subjects in the unexposed group.

λ = the expected prevalence ratio.

π = the expected prevalence of the outcome among the non-exposed.

z1−(α/2) = value from the standard normal curve corresponding to the desired level of

confidence. Use z1−(α/2) = 1.96 for 95% (two-sided) confidence.

pc = the common prevalence over exposed and unexposed groups.

z1−β = value from the standard normal curve corresponding to the desired study power. Use

z1−β = −0.84 for 80% power.

Case-control pc* =
p0

r + 1

(

rλ

1+ (λ − 1)p0
+ 1

)

n ≥
(r + 1)(1+ (λ − 1)p0)

2

rp20 (p0 − 1)2 (λ − 1)2

[

z1−(α/2)

√

(r + 1)pc*(1− pc*)+ z1−β

√

λp0(1− p0)

[1+ (λ − 1)p0]
2
+ rp0(1− p0)

]2

n = the number of subjects in the sample.

p0 = the expected prevalence of exposure among the controls.

r = anticipated number of subjects in the control group divided by the anticipated number of

subjects in the case group.

λ = the expected odds ratio.

z1−(α/2) = value from the standard normal curve corresponding to the desired level of

confidence. Use z1−(α/2) = 1.96 for 95% (two-sided) confidence.

z1−β = value from the standard normal curve corresponding to the desired study power.

Use z1−β = 0.84 for 80% power.

Cohort, count data n ≥
r + 1

r (λ − 1)2 π2

[

z1−(α/2)

√
(r + 1)pc (1− pc) + z1−β

√
λπ (1− λπ) + rπ (1− π)

]2
n = the number of subjects in the sample.

r = the anticipated number of subjects in the exposed group divided by the anticipated number

of subjects in the unexposed group.

λ = the expected incidence risk ratio.

π = the expected prevalence of the outcome among the non-exposed.

z1−(α/2) = value from the standard normal curve corresponding to the desired level of

confidence. Use z1−(α/2) = 1.96 for 95% (two-sided) confidence.

pc = the common prevalence over exposed and unexposed groups.

z1−β = value from the standard normal curve corresponding to the desired study power.

Use z1−β = 0.84 for 80% power.

Cohort, time at risk λ
′
0 =

λ3
0FT

λ0 FT − 1+ exp(−λ0FT )
λ
′
1 =

λ3
10FT

λ1 FT − 1+ exp(−λ1FT )
λ
′
=

λ
3
FT

λ FT − 1+ exp(−λFT )

nA = rnB nA ≥

(

z1−(α/2)

√

(1+ r) λ
′
+ z1− β

√

(r × λ
′
1 + λ

′
0)

) 2

r(λ
′
1 − λ

′
0)
2

nA = the number of subjects in the sample.

λ0 = the expected incidence rate among the unexposed.

λ1 = the expected incidence rate among the exposed.

λ = (λ0 + λ1) / 2

FT = the expected follow-up period for the study.

r = anticipated number of subjects in the exposed group divided by the anticipated number

of subjects in the unexposed group.

z1−(α/2) = value from the standard normal curve corresponding to the desired level of

confidence. Use z1−(α/2) = 1.96 for 95% (two-sided) confidence.

z1−β = value from the standard normal curve corresponding to the desired study power.

Use z1−β = 0.84 for 80% power.
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BOX 2 | A prospective cohort study of dry food diets and feline lower urinary tract disease (FLUTD) in mature male cats is planned. A sample of cats will be

selected at random from the population and owners who agree to participate in the study will be asked to complete a questionnaire at the time of enrolment.

Cats enrolled into the study will be followed for at least 5 years to identify incident cases of FLUTD. The investigators would like to be 0.80 certain of being

able to detect when the risk ratio of FLUTD is 1.4 for cats habitually fed a dry food diet, using a 0.05 signi�cance test. Previous evidence suggests that the

incidence risk of FLUTD in cats not on a dry food (i.e., “other”) diet is around 50 per 1000 per year. Assuming equal numbers of cats on dry food and other

diets are sampled, how many cats should be enrolled into the study?

λ
′
0 =

λ3
0 FT

λ0 FT − 1+ exp(−λ0FT )
λ
′
1 =

λ3
1 FT

λ1 FT − 1+ exp(−λ1FT )
λ
′
=

λ
3
FT

λ FT − 1+ exp(−λFT )

nA ≥

(

z1−(α/2)

√

(1+ r) λ
′
+ z1−β

√

(r × λ
′
1 + λ

′
0)

) 2

r(λ
′
1 − λ

′
0)
2

nA ≥

(

1.96

√

(1+ 1)0.02642 + 0.84
√

(1 × 0.313+ 0.0217)

) 2

1(0.07− 0.05)2

nA ≥
(0.4509+ 0.1935)2

0.0004

nA ≥ 1040

A total of 2,080male cats need to be sampled to meet the requirements of the study (1,040 cats habitually fed dry food and 1,040 cats habitually fed “other” diet types).

BOX 3 | A case-control study of the association between white pigmentation around the eyes and ocular squamous cell carcinoma in Hereford cattle is planned.

A sample of cattle with newly diagnosed squamous cell carcinomawill be compared for white pigmentation around the eyes with a sample of controls. Assuming

an equal number of cases and controls, how many study subjects are required to detect an odds ratio of 2.0 with 0.80 power using a two-sided 0.05 test?

Previous surveys have shown that around 0.30 of Hereford cattle without squamous cell carcinoma have white pigmentation around the eyes.

n ≥
(r + 1)(1+ (λ − 1)p0)

2

rp20 (p0 − 1)2 (λ − 1)2

[

z1−(α/2)

√

(r + 1)p∗c(1− p∗c)+ zβ

√

λp0(1− p0)

[1+ (λ − 1)p0]
2
+ rp0(1− p0)

]2

n ≥
(1+ 1)(1+ (2− 1)0.3)2

1 × 0.32 (0.3− 1)2 (2− 1)2

[

1.96
√

(1+ 1)0.38(1− 0.38)+ 0.84

√

2 × 0.3(1− 0.3)

[1+ (2− 1)0.3]2
+ 1 × 0.3(1− 0.3)

]2

n ≥
3.38

0.0441
[1.346+ 0.569]2

n ≥ 282

If the true odds for squamous cell carcinoma in exposed subjects relative to unexposed subjects is 2.0, we will need to enrol 141 cases and 141 controls (282

cattle in total) to reject the null hypothesis that the odds ratio equals one with probability (power) 0.80. The Type I error probability associated with this test of this

null hypothesis is 0.05.

Note that the sample size formulae for cross-sectional studies,
cohort studies using count data and cohort studies using
time at risk require the analyst to provide an estimate of
prevalence, incidence risk and incidence rate (respectively) for
both risk factor exposed and unexposed groups. Box 2 provides
a worked example for a prospective cohort study, with a fixed
follow-up time.

In contrast to sample size formulae for cross-sectional and
cohort studies, the sample size formula for case-control studies
requires provision of an estimate of the prevalence of exposure
amongst controls (Box 3). An additional consideration when
estimating an appropriate sample size for a case-control study is
specification of the design – either matched or unmatched (12).
The process of matching provides a means for controlling for

the effect of a known confounder with the added benefit of an
increase in statistical efficiency (12, 13).

Sample Size Calculations to Test a
Hypothesis Using a Randomized Clinical
Trial
A superiority trial is a study in which the aim is to show that
a treatment intervention provides a better therapeutic outcome
than a known reference (often a placebo) and the statistical
procedure to provide this evidence is called a superiority
test (14).

In situations where an established treatment already exists
a study comparing a new treatment to a placebo (effectively,
no treatment) will be unethical. In this situation interest lies
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TABLE 5 | Information required to estimate a sample size for equivalence, superiority and non-inferiority trials.

Outcome

variable

Study design Arguments References

Continuous Equivalence trial The expected mean of the outcome variable in the treatment and control groups, the expected population standard

deviation of the outcome variable, the equivalence limit (expressed as a proportion), the required study power, the ratio of

the number of exposed subjects to the number of unexposed subjects.

(15–17).

Binary Equivalence trial The expected proportion of successes in the treatment and control groups, the equivalence limit (expressed as a

proportion), the required study power, the ratio of the number of exposed subjects to the number of unexposed subjects.

(15–17).

Continuous Superiority trial The expected mean of the outcome variable in the treatment and control groups, the expected population standard

deviation of the outcome variable, the equivalence limit (expressed as a proportion), the required study power, the ratio of

the number of exposed subjects to the number of unexposed subjects.

(15).

Binary Superiority trial The expected proportion of successes in the treatment and control groups, the equivalence limit (expressed as a

proportion), the required study power, the ratio of the number of exposed subjects to the number of unexposed subjects.

(15)

Continuous Non-inferiority

trial

The expected mean of the outcome variable in the treatment and control groups, the expected population standard

deviation of the outcome variable, the equivalence limit (expressed as a proportion), the required study power, the ratio of

the number of exposed subjects to the number of unexposed subjects.

(15–17)

Binary Non-inferiority

trial

The expected proportion of successes in the treatment and control groups, the equivalence limit (expressed as a

proportion), the required study power, the ratio of the number of exposed subjects to the number of unexposed subjects.

(16, 17)

TABLE 6 | Formulae to estimate a sample size for equivalence, superiority and non-inferiority trials, binary or continuous population parameters.

Outcome

variable

Study

design

Formula Arguments

Continuous Equivalence

trial

nA = rnB

nB =
(

1+
1

r

) (

σ
z1−(α/2) + z1−β/2

|µA − µB| − δ

)2

1− β = 2
[

8
(

z − z1−(α/2)

)

+ 8
(

−z − z1−(α/2)

)]

− 1

z =
|µA − µB| − δ

σ

√

1

nA
+

1

nB

µA = the expected mean of the outcome in the treatment group.

µB = the expected mean of the outcome in the control group.

σ = the expected standard deviation of the outcome across

treatment and control groups.

r = anticipated number of subjects in the treatment group divided

by the anticipated number of subjects in the control group.

8 = the standard Normal distribution function.

8−1 = the standard Normal quantile function.

α = the Type I error, e.g. α = 0.05.

β = the Type II error, e.g. β = 0.20.

δ = the equivalence margin.

Binary Equivalence

trial

nA = rnB

nB =
(

pA (1− pA) + pB(1− pB)

r

) (

σ
z1−(α/2) + z1−β/2

|pA − pB| − δ

)2

1− β = 2
[

8
(

z − z1−(α/2)

)

+ 8
(

−z − z1−(α/2)

)]

− 1

z =
|pA − pB| − δ

σ

√

pA (1− pA)

nA
+

pB (1− pB)

nB

pA = the expected probability of success in the treatment group.

pB = the expected probability of success in the control group.

r = anticipated number of subjects in the treatment group divided

by the anticipated number of subjects in the control group.

8 = the standard Normal distribution function.

8−1 = the standard Normal quantile function.

α = the Type I error, e.g. α = 0.05.

β = the Type II error, e.g. β = 0.20.

δ = the equivalence margin.

Continuous Superiority

trial or

non-inferiority

trial

nA = rnB

nB =
(

1+
1

r

) (

σ
z1−(α/2) + z1−β

µA − µB − δ

)2

1− β = 8(z − z1−α) + 8(−z − z1−α)

z =
µA − µB − δ

σ

√

1

nA
+

1

nB

µA = the expected mean of the outcome in the treatment group.

µB = the expected mean of the outcome in the control group.

σ = the expected standard deviation of the outcome across

treatment and control groups.

r = anticipated number of subjects in the treatment group divided

by the anticipated number of subjects in the control group.

8 = the standard Normal distribution function.

8−1 = the standard Normal quantile function.

α = the Type I error, e.g. α = 0.05.

β = the Type II error, e.g. β = 0.20.

δ = the equivalence margin.

Binary Superiority

trial or

non-inferiority

trial

nA = rnB

nB =
(

pA (1− pA) + pB(1− pB)

r

) (

z1−(α/2) + z1−β

pA − pB − δ

)2

1− β = 8
(

z − z1−(α/2)

)

+ 8
(

−z − z1−(α/2)

)

z =
pA − pB − δ

√

pA (1− pA)

nA
+

pB (1− pB)

nB

pA = the expected probability of success in the treatment group.

pB = the expected probability of success in the control group.

r = anticipated number of subjects in the treatment group divided

by the anticipated number of subjects in the control group.

8 = the standard Normal distribution function.

8−1 = the standard Normal quantile function.

α = the Type I error, e.g. α = 0.05.

β = the Type II error, e.g. β = 0.20.

δ = the equivalence margin.

z1−(α/2) = values from the standard normal curve corresponding to

the desired level of confidence. Use z1−(α/2) = 1.96 for 95% (two

side) confidence.

z1−β = value from the standard normal curve corresponding to the

desired study power. Use z1−β = 0.84 for 80% power.
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FIGURE 1 | Error bar plot showing the possible conclusions to be drawn from a non-inferiority trial. Adapted from Head et al. (18).

BOX 4 | Suppose a pharmaceutical company would like to conduct a clinical trial to compare the ef�cacy of two antimicrobial agents when administered orally

to patients with skin infections. Assume the true mean cure rate of the treatment is 0.85 and the true mean cure rate of the control is 0.65. We consider a

difference of <0.10 in cure rate to be of no clinical importance (i.e., delta = −0.10). Assuming a one-sided test size of 5% and a power of 80% how many

subjects should be included in the trial?

nB =
(

pA (1− pA) + pB(1− pB)

r

) (

z1−(α/2) + z1− β

pA − pB − δ

)2

nB =
(

0.85 (1− 0.85) + 0.65(1− 0.65)

1

) (

1.96+ 0.84

0.85− 0.65− −0.10

)2

nB =
(

0.355

1

) (

2.48

0.30

)2

nB = 25

A total of 50 subjects need to be enrolled in the trial, 25 in the treatment group and 25 in the control group.

in determining if the new treatment is: (1) either the same
as, or better than, an established treatment using a non-
inferiority trial; or (2) equivalent to an existing treatment
within a specified range, using an equivalence trial (Tables 5,
6 and Figure 1). Equivalence trails are not to be confused
with bioequivalence trials where generic drug preparations are
compared to currently marketed formulations with respect to
their pharmacokinetic parameters.

Superiority, non-inferiority and equivalence trials require the
analyst to specify an equivalence margin. The equivalence
margin is the range of values for which the treatment
efficacies are close enough to be considered the same
(19). Expressed in another way, the equivalence margin
is the maximum clinically acceptable difference one is

willing to accept in return for the secondary benefits of the
new treatment.

Equivalence margins can be set on the basis of a clinical
estimation of a minimally important effect. This approach is
subjective and, as a result, it is possible to set the equivalence
margin to be greater than the effect of the established treatment,
which could lead to potentially harmful treatments classified
as non-inferior. A second approach is to select an equivalence
margin with reference to the effect of the established treatment
in trials where a placebo has been used. When the equivalence
margin is chosen in this way, there is some objective basis on
which to claim that a positive non-inferiority trial implies that
a new treatment is, in fact, superior to the established treatment
(assuming the effect of the established treatment in the current
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TABLE 7 | Summary of sample size formulae to estimate the probability of disease freedom or estimate surveillance system sensitivity.

Study design Outcome Arguments References

Representative

sampling

Probability of disease freedom

assuming imperfect test sensitivity

and perfect test specificity.

The assumed population size, an estimate of the prior probability that the population is

free of disease, an estimate of the probability of disease introduction, the population level

design prevalence, the desired probability that the population is free of disease, the

sensitivity of the diagnostic test used at the surveillance unit level.

(22, 23)

Representative

sampling

Surveillance system sensitivity

assuming a single risk factor and

varying test sensitivity.

The assumed population size, the population level design prevalence, the desired

surveillance system sensitivity, the sensitivity of the diagnostic test used at the surveillance

unit level.

(24, 25)

Representative

sampling

Surveillance system sensitivity

assuming two stage sampling,

imperfect test sensitivity and perfect

test specificity.

The number of clusters in the population, the number of surveillance units within each

cluster, the cluster level design prevalence, the desired cluster level sensitivity, the

population level design prevalence, the desired population level sensitivity, the sensitivity of

the diagnostic test used at the surveillance unit level.

(24–27)

Representative

sampling

Surveillance system sensitivity,

imperfect test sensitivity and

imperfect test specificity.

The assumed population size, the population level design prevalence, the desired

population level sensitivity, the desired population level specificity, the sensitivity of the

diagnostic test at the surveillance unit level, the specificity of the diagnostic test at the

surveillance unit level.

(26–28)

Representative

sampling

Surveillance system sensitivity

assuming pooled sampling giving rise

to imperfect test sensitivity and

imperfect test specificity.

The number of surveillance units that contribute to each pool, the population level design

prevalence, the sensitivity of the diagnostic test at the pooled level, the specificity of the

diagnostic test at the pooled level, the desired population level sensitivity.

(29)

Risk-based

sampling

Surveillance system sensitivity

assuming imperfect test sensitivity

and perfect test specificity.

The population level design prevalence, relative risk estimates for each strata, the

population proportions for each strata, the surveillance proportions for each strata, the

desired population level sensitivity, the sensitivity of the diagnostic test at the surveillance

unit level.

(5)

Risk-based

sampling

Surveillance system sensitivity

assuming risk-based 2-stage

sampling on one risk factor at the

cluster level assuming imperfect test

sensitivity and perfect test specificity.

Relative risk values for each strata in the population, the population proportions in each

strata, the planned number of units to be sampled from each strata, the cluster level

design prevalence, the desired cluster level sensitivity, the surveillance unit level design

prevalence, the sensitivity of the diagnostic test at the surveillance unit level, the desired

surveillance system (population-level) sensitivity.

(5)

Risk-based

sampling

Surveillance system sensitivity

assuming risk-based 2-stage

sampling on two risk factors at either

the cluster level, the unit level or both,

imperfect test sensitivity and perfect

test specificity.

The number of risk strata defining the relative risk values at the cluster level, the population

proportions at the cluster level, the planned surveillance proportions at the cluster level,

the cluster level design prevalence, the desired cluster level sensitivity, the number of risk

strata defining the relative risk values at the surveillance unit level, the population

proportions at the surveillance unit level, the planned surveillance proportions at the

surveillance unit level, the surveillance unit level design prevalence, the sensitivity of the

diagnostic test at the surveillance unit level, the desired surveillance system

(population-level) sensitivity.

(5)

trial is similar to its effect in the historical trials). An example
sample size calculation for a non-inferiority trial is presented
in Box 4.

Sample Size Calculations to Detect the
Presence of an Event
Sampling of individuals to either detect the presence of an event
(usually the presence of disease or the presence of infection) or
provide evidence that disease is absent from a jurisdiction are
frequent activities in veterinary epidemiology. Typical scenarios
include: (1) shipment of live animals from one country to another
where the country receiving the shipment might request that
testing is carried out on a sample of individuals, as opposed to
testing every animal; and (2) a country wishing to re-gain official
disease freedom status following an infectious disease outbreak.

Details of formula-based sample size estimation methods to
detect the presence of an event are provided in Table 7. Sample
size estimation methods can be categorized into two groups:
(1) to ensure sufficient units are sampled to return a desired
(posterior) probability of disease freedom; and (2) to ensure
sufficient units are sampled to ensure a surveillance system has a

desired system sensitivity. For the surveillance system sensitivity
methods sampling can be either representative or risk based. All
of the methods listed in Table 7 account for imperfect diagnostic
test sensitivity at the surveillance unit level.

When tests with both imperfect diagnostic sensitivity and
specificity are used, diseased individuals can be missed because
of imperfect diagnostic sensitivity but at the same time disease
negative individuals can be incorrectly identified as disease
positive because of imperfect specificity. Cameron and Baldock
(26) describe an approach to estimate the number of animals to
be sampled from a finite population using a test with imperfect
diagnostic sensitivity and specificity using the hypergeometric
distribution. This method returns the number of individuals to
be sampled and the estimated probability that the population is
diseased for 1 to n individuals that return a positive test result.
This allows an analyst to make a statement that they can be (for
example) 95% confident that the prevalence of disease in the
population of interest is less than the stated design prevalence if
the number of (surveillance) units with a positive test result is less
than or equal to a specified cut-point. A worked example of this
approach is provided in the Supplementary Material.
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BOX 5 | An aid project has distributed cook stoves in a single province in a resource-poor country. At the end of 3 years, the donors would like to know what

proportion of households are still using their donated stove. A cross-sectional study is planned where villages in a province will be sampled and all households

(∼75 per village) will be visited to determine if the donated stove is still in use. A pilot study of the prevalence of stove usage in �ve villages showed that 0.46

of householders were still using their stove and the ICC for stove use within villages is in the order of 0.20. If the donor wanted to be 95% con�dent that the

survey estimate of stove usage was within 10% of the true population value, how many villages (clusters) need to be sampled?

D = 1+ (b− 1)ρ

D = 1+ (75− 1) × 0.20

D = 15.8

nc ≥
z1−(α/2)

2 Py
(

1− Py
)

D
(

Py ǫr
)2
b

nc ≥
1.962 0.46 (1− 0.46)15.8

(0.46 × 0.10)2 × 75

nc ≥
15.077

0.1587
nc ≥ 96

A total of 96 villages need to be sampled to meet the requirements of the study.

BOX 6 | Continuing the example presented in Box 5, we are now told that the number of households per village varies. The average number of households per

village is 75 with a 0.025 quartile of 40 households and a 0.975 quartile of 180. Assuming the number of households per village follows a normal distribution

the expected standard deviation of the number of households per village is in the order of (180 – 40) ÷ 4 = 35. How many villages need to be sampled? In the

formula below, CV standards for coef�cient of variation de�ned as the standard deviation of the cluster sizes divided by the mean of the cluster sizes.

D = 1+
{

(

CV2 + 1
)

b− 1
}

ρ

D = 1+
{(

0.4672 + 1
)

75− 1
}

0.2

D = 19.1

nc ≥
z1−(α/2)

2 Py
(

1− Py
)

D
(

Py ǫr
)2
b

nc ≥
1.962 0.46 (1− 0.46)19.1

(0.46 × 0.10)2 × 75

nc ≥
18.194

0.1587

nc ≥ 115

A total of 115 villages need to be sampled to meet the requirements of the study.

BOX 7 | Continuing the example provided in Box 1, being seropositive to brucellosis is likely to cluster within herds. Otte and Gumm (20) cite the intracluster

correlation coef�cient for Brucella abortus in cattle to be in the order of 0.09. We now adjust our sample size estimate of 545 to account for clustering at the

herd level. Assume that, on average, b = 20 animals will be sampled per herd:

D = 1+ (b− 1)ρ

D = 1+ (20− 1) × 0.09

D = 2.71

After accounting for the presence of clustering at the herd level we estimate that a total of (545 × 2.71) = 1,477 cattle need to be sampled to meet the requirements

of the survey. If 20 cows are sampled per herd this means that a total of (1,477 ÷ 20) = 74 herds are required.
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BOX 8 | Dohoo et al. (21) provide details of an observational study of the reproductive performance of dairy cows on Reunion Island. If this study were to be

repeated, how many lactations would need to be sampled to be 95% con�dent that the estimated logarithm of calving to conception interval was within 5%

of the true population value?

From (21) the standard deviations of the random effect terms from a multilevel model of factors influencing log transformed calving to conception interval at the herd,

cow and lactation level were 0.1157, 0.1479, and 0.5116, respectively. The ICC for lactations within herds (Equation 3):

ρ2 =
σ2
3

σ2
3 +σ2

2 +σ2
1

ρ2 =
0.11572

0.11572 + 0.14792 + 0.51162

ρ2 = 0.0451

and the ICC for lactations within cows (Equation 4):

ρ1 =
σ2
3 +σ2

2

σ2
3 +σ2

2 +σ2
1

ρ1 =
0.11572 + 0.14792

0.11572 + 0.14792 + 0.51162

ρ1 = 0.1188

The mean and standard deviation of the logarithm of calving to conception interval was 4.59 and 0.54, respectively. What is the required sample size assuming the

data are independent?

m1 ≥
1.96 × 1, 000, 000 × (0.542 ÷ 4.592)

1.96 (0.542 ÷ 4.592)+ ([1, 000, 000− 1] 0.052)

m1 ≥
54057.4

2500.025

m1 ≥ 22

Assuming the data are independent a total of 22 lactations are required to be 95% confident that our estimate of the logarithm of calving to conception interval is

within 5% of the true population value.

We elect to sample two lactations per cow. How many lactations are required to account for clustering of lactations within cows?

n1 = 2

D1 = 1+ ρ1 (n1 − 1)

D1 = 1+ 0.1188 (2− 1)

D1 = 1.1188

m2 = D1 × m1

m2 = 1.1188 × 22

m2 = 25

A total of 25 lactations are required accounting for clustering of lactations within cows. How many cows are required?

n2 = m2 / n1

n2 = 25 / 2

n2 = 13

A total of 13 cows are required if we sample two lactations per cow (26 lactations in total).

We now consider clustering at the herd level. How many lactations are required to account for clustering of cows within herds?

D2 = 1+ (n1 × (n2 − 1) × ρ2) + ((n1 − 1) × ρ1)

D2 = 1+ (2× (13− 1) × 0.0451) + ((2− 1) × 0.1188)

D2 = 2.2016

m3 = D2 × m1

m3 = 2.2061 × 22

m3 = 49

Continued
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BOX 8 | Continued

Accounting for clustering of lactations within cow and cows within herds, a total of 39 lactations are required. How many herds are required?

n3 = m3 / (n1 × n2)

n3 = 49 / (2 × 13)

n3 = 2

A total of 2 herds are required if we sample 13 cows from each herd and 2 lactations from each cow. The total number of lactations required is therefore:

ntotal = (n1 × n2 × n3)

ntotal = (2 × 13 × 2)

ntotal = 52

To account for lack of independence in the data arising from clustering of lactations within cows and cows within herds 52 lactations (2 lactations from 13 cows

from 2 herds) are required to meet the requirements of the study.

The required sample size assuming the data were independent was 22. The required sample size accounting for lack of independence in the data was 52, a

2.5-fold difference.

SAMPLE SIZE CALCULATIONS FOR
CLUSTERED DATA

Aggregation of individual sampling units into groups (“clusters”)
for example farms, households or villages violates the assumption
of independence that is central to the sample size calculation
methods described so far. When individuals are aggregated into
clusters there are two sources of variation in the outcome of
interest. The first arises from the effect of the cluster; the second
from the effect of the individual. This means that individuals
selected from the same cluster are more likely to be similar
compared with those sampled from the general population (30).
For this reason, the effective sample size when observations
are made on randomly selected individuals from the same
cluster will be less than that when observations are made on
individuals selected completely at random from the general
population. For studies where the objective is to estimate a
population parameter (e.g., a prevalence) a reduction in effective
sample size increases the uncertainty around the estimate of
the population parameter. For studies where the objective is to
test a hypothesis a reduction in effective sample size results in
a reduction in statistical power, in effect the ability to detect a
statistically significant difference in event outcomes for exposure
positive and exposure negative individuals given a true difference
actually exists.

With one-stage cluster sampling a random sample of clusters
is selected first and then all individual listing units within each
cluster are selected for study. With two-stage cluster sampling
a random sample of clusters is selected first and then a random
sample of individual listing units within each cluster is selected.
The primary advantage of cluster sampling is logistics. In animal
health, where animals are typically managed within clusters (e.g.,
herds or flocks) it is easier to select clusters first and then, from
each selected cluster, take a sample of individual animals. This
contrasts with a simple random sampling approach which would
require an investigator to travel to a large number of herds-flocks,
sampling small numbers of animals from each. As explained

above, the main disadvantage of cluster sampling is a reduction
in the effective sample size due to animals from the same cluster
being more homogenous (similar) compared with those from
different clusters.

To compensate for this lack of precision Donner et al.
(31) proposed that a sample size estimate calculated assuming
complete independence (using the formulae presented in
Tables 1–7) can be inflated by a value known as the design
effect (D) to achieve the level of statistical power achieved using
independent sampling. For a single level of clustering (e.g., the
situation where cows are clustered within herds) the design effect
is calculated as:

D = 1+ (b− 1)ρ (1)

In Equation 1 b equals the number of animals to be sampled from
each cluster (not to be confused with the total number of animals
eligible for sampling within each cluster) and ρ is the intracluster
correlation coefficient (ICC). The value of ρ equals the between-
cluster variance σ 2

B divided by the between-cluster variance plus
the within-cluster variance (σ 2

B + σ 2
W) :

ρ =
σ 2
B

σ 2
B + σ 2

W

(2)

When there is little variation in an outcome within a cluster
(e.g., observations made on individual cows within herds are
“similar,” σ 2

W will be small) ρ will be close to 1 and the
design effect will therefore be large. When there is wide
variation within a cluster (e.g., observations made on individual
cows within herds showing a similar variability to the general
population, σ 2

W will be large) ρ will be close to 0 and,
therefore, the design effect will be close to unity. Using the
definition provided above (Equation 2), ρ ranges between 0
and +1 with typical values ranging from 0 to 0.05 for non-
communicable diseases and values >0.4 uncommon. Papers
providing ICC estimates for various outcomes in the human
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FIGURE 2 | Image plot showing the percentage of simulations where the sample estimate of the logarithm of calving to conception interval was within 5% of the true

population value as a function of the number of herds and number of cows from each herd sampled. The dashed line shows the herd-cow sample size combinations

where >95% of simulations returned an estimate of the logarithm of calving to conception interval that was within 5% of the true population value.

and veterinary literature have been published: see, for example,
(20, 32, 33). Researchers should be aware of the importance
of publishing estimates of ICC since high quality empirical
data are necessary to provide credible sample size estimates
for future studies. More importantly, for the same outcome
measure, ICC estimates will vary from one research setting
to another so access to a likely range of ICC measures
is desirable.

A number of methods are available to estimate ρ from
empirical data (34, 35) ranging from one-way analysis of variance
(36) to regression-based approaches using mixed effects models
(37). Eldridge and Kerry (38) provide a comprehensive review of
appropriate techniques.

An example of how the ICC can be used to estimate the
number of primary sampling units for a one-stage cluster design
is provided in Box 5.
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The example shown in Box 5 is somewhat unrealistic in that
it is assumed that the number of households in each village is
a constant value of 75. Eldridge, Ashby and Kerry (39) provide
an approach to estimate a sample size using a one-stage cluster
design when the number of individual listing units per cluster
varies (Box 6).

An example showing how a crude sample size estimate (i.e., a
sample size calculated assuming independence) can be adjusted
to account for clustering using the design effect is provided
in Box 7.

Three levels of clustering are relatively common in veterinary
epidemiological research (much more so than in human
epidemiology) where, for example, lactations (level 1 units) might
be sampled within cows (level 2 units) which are then sampled
within herds (level 3 units). The total variance in this situation is
made up of the variance associated with lactations within cows
within herds σ 2

1 , the variance between cows within herds σ 2
2 ,

and the variance between herds σ 2
3 . Two ICCs can be calculated:

lactations within herds:

ρ2 =
σ 2
3

σ 2
3 + σ 2

2 + σ 2
1

(3)

and lactations within cows:

ρ1 =
σ 2
3 + σ 2

2

σ 2
3 + σ 2

2 + σ 2
1

(4)

In a study comprised of three levels the required sample size,
accounting for clustering equals (40):

n3n2n1 = DE ×m (5)

In Equation 5, m is the number of lactations to be sampled
to meet the requirements of the study assuming the data
are completely independent and n3, n2, and n1 are the
number of units to be sampled at the herd, cow and lactation
level (respectively). The design effect for three levels of
clustering equals:

DE = 1+ n1 (n2 − 1) ρ2 + (n1 − 1) ρ1 (6)

Box 8 provides a worked example of a sample size calculation for
the three-level clustering scenario.

SIMULATION-BASED APPROACHES FOR
SAMPLE SIZE ESTIMATION

In applied veterinary epidemiological research it is common for
study designs not to conform to the standard study designs
for which sample size formulae are available. Typical examples
include situations where study subjects are organized into more
than three levels of aggregation and in clinical trials where a
treatment might be applied at the group level and a second
treatment applied at the individual level. Where there are
multiple levels of aggregation researchers may elect to apply a

more conservative design effect multiplier than that used when
study subjects are kept in simpler cluster groups. While this
approach is an attempt to address the problem, it can result in
the final sample size estimate being larger than the final sample
size required if the design effect was known more precisely.

For complex study designs simulation-based approaches
provide an alternative for sample size estimation that is relatively
easy to implement using modern statistical software (41). In
the text that follows a worked example is provided, where
simulation is used to estimate the number of lactations, cows
and herds to be sampled to provide an estimate of log
calving to conception interval, using the scenario presented in
Box 8.

The general approach when using simulation to estimate
a sample size to estimate a population parameter is to: (1)
simulate a population data set that respects clustering of the
outcome variable within the population of interest; (2) define a
series of candidate sample size estimates; (3) repeatedly sample
the simulated population using each of the candidate sample
size estimates to determine the proportion of occasions the
estimate of the population parameter is within the prescribed
relative error of the true population value. When estimating
a population prevalence and assuming the level of confidence
specified by the analyst has been set to 95%, the required sample
size is the combination of level 1, 2, 3, ... n units sampled that
returns an estimate of the outcome variable that is within the
prescribed relative error of the true population value on 95%
of occasions. Note that several different combinations of units
sampled at each level might achieve the stated objectives of
the study.

When the study aim is to test a hypothesis, an additional step
is to assign the exposure variable (e.g., a treatment) to members
of the population and then to estimate the effect of the exposure
on the outcome of interest using a regression approach. Arnold
et al. (41) provide a worked example of this approach using a
two-treatment factorial trial in rural Bangladesh as an example.
In this study children <6 months of age were randomly assigned
to one of four treatment groups: control, sanitation mobilization,
lipid-based nutrient supplementation, and sanitation plus lip-
based nutrient supplementation. The design of this study made
sample size and study power calculations difficult for two
reasons: (1) treatments were deployed at two levels (sanitation
mobilization at the community level and lipid supplementation at
the individual level); and (2) there were two sources of correlation
in the outcome: at the community level and the individual
child level.

Generation of the population data set involves: (1) defining
the mean and standard deviation of the outcome of interest (for
continuous outcomes) or the expected population prevalence (for
binary outcomes); (2) defining the number of level 1, 2, 3, ...
n units in the population; (3) defining the level 1, 2, 3, ... n
variance terms; (4) simulating a population of individuals eligible
for sampling based on the specified number of level 1, 2, 3, ... n
units; (5) assignment of a value for the outcome variable to each
member of the simulated population, and; (6) adjustment of the
value of the outcome variable for each individual to account for
clustering using the level 1, 2, 3, ... n variance terms.
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Code written in the R programming language (6) to generate
a population data set for the Reunion Island dairy cow
reproduction example (25) and estimate a sample size to meet
the requirements of the study is provided in the Supplementary
material accompanying this paper.

Figure 2 is an image plot showing the proportion of
simulations where the sample estimate of the logarithm of calving
to conception interval was within 5% of the true population
value as a function of the number of sampled herds and the
number of cows sampled from within each herd. In Figure 2

the superimposed contour line shows the herd-cow sample size
combinations where >95% of simulations returned an estimate
of the logarithm of calving to conception interval that was
within 5% of the true population value, in agreement with the
requirement for 2 lactations from 13 cows from 2 herds (n
= 52 lactations) calculated using the formula-based approach
presented inBox 8.When the results of simulations are presented
in this way one can appreciate that there is some flexibility in
the combinations of herd and cow numbers that need to be
sampled to meet the requirements of the study. For example,
Figure 2 shows that the estimate of mean logarithm of calving
to conception interval would be within 5% of the true population
value if a smaller number of cows (e.g., n= 6) were sampled from
a larger number of herds (e.g., n= 6).

In summary, the process of simulation replaces the time and
effort to derive a formula-based approach for a complex study
design with basic programming and computer simulation time.
An additional positive side effect is that the process of simulation
requires investigators to define the structure of their study
population, the expected value and variability of the outcome of
interest and how the results of the study will be analyzed once

the data are collected. This reduces the likelihood of investigators
exploring alternative analytical approaches in the presence of
negative findings, consistent with CONSORT guidelines (42).

CONCLUSIONS

This paper has provided an overview of the reasons researchers
might need to calculate an appropriate sample size in veterinary
epidemiology and a summary of different sample size calculation
methods. In contrast to human epidemiology individual study
subjects in veterinary epidemiology are almost always aggregated
into hierarchical groups (43) and, for this reason, sample
size estimates calculated using simple formulae that assume
independence are usually not appropriate in a veterinary setting.
This paper provides details of two approaches for dealing with
this problem: (1) inflation of a crude sample size estimate using a
design effect; and (2) use of a simulation-based approaches. The
key advantage of simulation-based approaches is that appropriate
sample sizes can be estimated for complex study designs for
which formula-based methods are not available.
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