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LOGISTIC REGRESSION

OBJECTIVES

After reading this chapter, you should be able to:

 1. Understand logistic regression.
a. Understand  log  odds  as  a  measure  of  disease,  and  how  it  relates  to  a  linear  

combination of predictors.

 2. Build and interpret logistic regression models.
a. Compute and interpret odds ratios derived from a logistic regression model.
b. Evaluate the effects of predictors on the outcome of interest on a probability scale.
c. Statistically compare logistic models using both Wald tests and likelihood ratio tests.

 3. Understand how logistic regression fits in the family of generalised linear models.

 4. Evaluate logistic regression models.
a. Understand covariate patterns, and how they impact the computation of residuals for 

logistic regression models.
b. Understand overdispersion, and how it relates to goodness-of-fit tests.
c. Compute residuals on the basis of one per covariate pattern, and one per observation.
d. Select  and  use  the  appropriate  test(s)  to  evaluate  the goodness  of  fit  of  a  logistic  

model.
e. Determine  the  effect  of  changing  the  threshold  (‘cutpoint’)  on  the  sensitivity  and 

specificity of the model.
f. Generate ROC curves as a method of evaluating the goodness of fit.
g. Identify and determine the impact of influential observations on a logistic model.

 5. Fit a model to a small dataset using exact logistic regression.

 6. Fit conditional logistic regression models for matched data.
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16.1 INTRODUCTION

As epidemiologists, we often find ourselves in a situation in which the outcome in our study is 
dichotomous (ie  Y=0 or  1).  Most  commonly,  this  variable  represents  either  the absence  or 
presence of disease or mortality. We can’t use linear regression techniques to analyse these data 
as a function of a set of linear predictors X=(Xj) for the following reasons.

(a) The error terms (ε) are not normally (Gaussian) distributed. In fact, they can only take on 
2 values.

if Y =1then =1−0∑  j X j

if Y=0 then =−0∑  j X j Eq 16.1

(b) The probability  of  the  outcome occurring  (ie p(Y=1))  depends  on the  values  of  the 
predictor variables (ie X). Since the variance of a binomial distribution is a function of 
the probability (p), the error variance will also vary with the level of X, and consequently 
the assumption of homoscedasticity will be violated.

(c) The mean responses should be constrained as:
0≤E Y = p≤1

However, with a linear regression model, the predicted values might fall outside of these 
constraints.

In this chapter, we will explore the use of logistic regression to avoid the problems identified 
above. The birth weight data used extensively in the previous two chapters will be the primary 
dataset used in this chapter, but the outcome will be ‘low birth weight’. Babies born weighing 
less than 2,500 gm will be classified as having low birth weight, and factors which influence the 
probability of this occurring will be investigated. Of the 5,000 observations in this dataset, 371 
were classified as low birth weight. Details of the dataset can be found in Chapter 31.

Table 16.1 Selected variables from the low birth weight dataset used in this chapter
Variable Description

low_bw birth weight  (1=birth weight <2500 gm, 0=weight ≥2500 gm)

smk smoking  (1=smoked during 2nd trimester, 0=non-smoker)

white mother's race (1=white, 0=all other races)

frace_c3 father's race (1=hispanic, 2=white, 3=black)

previs number of prenatal visits

16.2 THE LOGISTIC MODEL

One way of getting around the problems described in Section 16.1 is to use a logit transform of  
the probability of the outcome and model this as a linear function of a set of predictor variables,

1n[ p
1− p ] = 0∑  j X j

Eq 16.2
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where  ln(p/(1-p))  is  the  logit transform.  This  value  is  the  log  of  the  odds  of  the outcome 
(because odds=p/(1-p)), so a logistic regression model is sometimes referred to as a  log odds 
model.

Fig. 16.1 shows that, while the logit of p might become very large or very small, p does not go 
beyond the bounds of 0 and 1. In fact, logit values tend to remain between -7 and +7 as these 
are associated with very small (<0.001) and very large (>0.999) probabilities, respectively.

This transformation leads to the logistic model in which the probability of the outcome can be 
expressed in 1 of the 2 following ways (they are equivalent).

p = 1
1e− 0∑  j X j

= e0∑  j X j

1e0∑  j X j Eq 16.3

16.3 ODDS AND ODDS RATIOS

Let’s look at the simple situation in which the occurrence of disease is the event of interest (Y=0 
or 1) and we have a single dichotomous predictor variable (ie X=0 or 1). The logistic model is:

1n[ p
1− p ] = 01 X 1

Eq 16.4

so the odds of disease is:

odds = p
1− p

= e01 X

Eq 16.5

From this it is a relatively simple process to determine the odds ratio (OR) for disease that is 
associated with the presence of factor ‘X’.

Fig. 16.1 Logit and inverse logit functions
Note Dashed lines are at + 4.595 which is the logit of 1% and 99%
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if X =1 odds = e01

if X =0 odds = e0

The odds ratio is then:

OR = e01

e0
= e0 e1

e0
= e1

Eq 16.6

This can be extended to the situation in which there are multiple predictors and the OR for the 
kth variable will be eβk.

16.4 FITTING A LOGISTIC REGRESSION MODEL

In linear regression, we used least squares techniques to estimate the regression coefficients (or 
at least the computer did this for us). Because the error term has a Gaussian distribution, this 
approach produces maximum likelihood estimates of the coefficients. In a logistic model, we 
use a different maximum likelihood estimation procedure to estimate the coefficients. 

The key feature of maximum likelihood estimation is that it estimates values for parameters (the 
βs)  which are  most  likely to  have  produced the data that  have been observed.  Rather  than 
starting  with  the  observed  data  and  computing  parameter  estimates  (as  is  done  with  least  
squares estimates), one determines the likelihood (probability) of the observed data for various 
combinations of parameter values. The set of parameter values that was most likely to have 
produced the observed data is that of the maximum likelihood (ML) estimates. 

The  following  simple  example  demonstrates  the  maximum  likelihood  estimation  process. 
Assume that you have a set of serologic results from a sample of 10 students in a high school  
class and the parameter you want to estimate is the prevalence of the disease. Three of the 10 
samples are positive (these are the observed data).

The likelihood (L) of getting 3 positive results from 10 students if the true prevalence is P is: 

L P = 10
3 P31−P7

The log likelihood (lnL) is:

1nLP = 1n{10
3 }31n P 71n 1−P

In this situation, the maximum value of the lnL can be determined directly, but in many cases 
an iterative approach is required. If such a procedure was being followed, the steps would be:

(a) Pick  a  value  for  the  prevalence  (perhaps  your  first  guess  is  0.2).  The likelihood of 
observing 3 positive students out of 10, if the true prevalence (P) is 0.2, is:

L 0.2 = n
xP x 1−P n−x = 10

3 0.231−0.210−3 = 0.201
Eq 16.7

The lnL is -1.60.

(b) Pick another prevalence (perhaps your next guess is 0.35) and recompute the likelihood. 
This turns out to be 0.252 (lnL=-1.38).
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(c) Keep repeating this process until you have the estimate of the parameter that gives you 
the highest  likelihood (ie maximum likelihood). This would occur at  P=0.3 (but you 
already knew that, didn’t you?).

A graph of the relationship between lnL and prevalence (Fig. 16.2) shows the maximum value 
at P=0.3.

Of course, the computer doesn’t just 
pick values of parameters at random; 
there are ways of estimating what the 
parameter  is  likely  to  be  and  then 
refining  that  estimate.  Since  it  is 
possible  to  keep  refining  the 
estimates to more and more decimal 
places,  you  have  to  specify  the 
convergence  criterion.  Once  the 
estimates  change  by  less  than  the 
convergence criterion, the process of 
refining  the  estimates  is  stopped (ie 
convergence has been achieved).

16.5 ASSUMPTIONS IN LOGISTIC REGRESSION

As with linear regression, there are a number of assumptions inherent in fitting a logistic model. 
In a logistic model, the outcome Y is dichotomous:

Y i{10 p Y i=1= pi=1− p Y i=0
Eq 16.8

and 2 important assumptions are independence and linearity.

Independence It is assumed that the observations are independent from each other (the same 
assumption was made in linear regression). If the data come from people who are in some way 
clustered, or if multiple measurements are being made on the same individual, this assumption 
has  probably  been  violated.  For  example,  if  data  come  from  patients  in  multiple  clinics, 
variation between patients in the study population results  from the usual  variation between 
patients plus the variation that is due to differences between clinics. This often results in ‘over-
dispersion’ or ‘extra-binomial variation’ in the data. Some methods of checking this assumption 
will be presented in Section 16.12.4, and methods of dealing with the problem are discussed in 
Chapters 20–23.

Linearity As with linear regression, any predictor that is measured on a continuous scale is 
assumed  to  have  a  linear  (straight-line)  relationship  with  the  outcome.  Techniques  for 
evaluating this assumption are presented in Section 15.6.

Fig. 16.2 Log likelihood versus prevalence
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Note Because the logistic model models the expected probability of disease on the logit scale 
but the original data are binary (0/1 or no/yes), the logistic model does not have an error term. 
Consequently,  there  is  no  assumption  about  the  distribution  of  errors.  It  also  means  that  
coefficients in a logistic model represent the effect of a predictor on the logit of the outcome.  
Presenting effects on the original probability scale is discussed in Section 16.8.5.

16.6 LIKELIHOOD RATIO STATISTICS

Although  the  maximum  likelihood  estimation  process  produces  the  largest  possible  (ie  
maximum)  likelihood  value,  these  values  are  always  very,  very  small,  because  they  are 
describing  the  probability  of  an  exact  set  of  observations  given  the  parameter  estimates 
selected.  Because  of  this  (and  the  fact  that  the  estimation  process  is  simpler),  computer 
programs  usually work  with  the  log  likelihood which  will  be  a  moderately  sized  negative 
number. Most computer programs print out the log likelihood of the model that has been fit to  
the data. It is a key component in testing logistic regression models.

16.6.1 Significance of the full model

The test used to determine the overall significance of a logistic model is called the likelihood 
ratio test (LRT), as it compares the likelihood of the ‘full’ model (ie with all the predictors 
included) with the likelihood of the ‘null’ model (ie a model which contains only the intercept). 
Consequently,  it  is  analogous  to  the  overall  F-test  of  the model  in  linear  regressions.  The 
formula for the likelihood ratio test statistic (G2

0) is:

G0
2 = 21n L

L0
= 2 1nL−1nL0

Eq 16.9

where L is the likelihood of the full model and L0 is the likelihood of the null model. The 
statistic (G2

0) has an approximate χ2 distribution with k degrees of freedom (df) (k=number of 
predictors  in  the  full  model).  If  significant,  it  suggests  that,  taken  together,  the  predictors 
contribute significantly to the prediction of the outcome. 

Note When computing an LRT statistic, 2 conditions must be met.

 1. Both models must be fit using exactly the same observations. If a dataset contains missing 
values for some predictors in the full  model,  then these would be omitted from the full 
model but included when the null model is computed. This must be avoided.

 2. The models must be nested. This means that the predictors in the simpler model must be a 
subset of those in the full model. This will not be a problem when the smaller model is the  
null model, but might be a problem in other situations.

In Example 16.1, a logistic regression model for low birth weight has been fit with 3 predictor  
variables (-smk-, -white-, -frace_c3-). The likelihood ratio test evaluating the 3 predictors as a 
group is highly statistically significant G0

2=26.47,df=4, P0.001.

16.6.2 Comparing full and reduced models

In the preceding section, the LRT was used to compare the full and null models, but an LRT can 
also be used to test the contribution of any subset of parameters in much the same way as a  
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multiple partial F-test is used in linear regression. The formula is:

G0
2 = 21n

L full

L red
= 2 1nLfull−1nL red

Eq 16.10

where Lfull and Lred refer to the likelihood of the full and reduced models, respectively. As can  
be  seen  in  Example  16.1,  the  2  race  predictors  (-white-,  -frace_c3-)  are  highly  significant 
predictors of low birth weight. This test is sometimes referred to as the ‘improvement χ2’.

16.6.3 Comparing full and saturated models (deviance)

A special case of the likelihood ratio test is the comparison of the likelihood of the model under 
investigation to the likelihood of a fully saturated model (1 in which there would be 1 parameter 
fit  for each data point). Since a fully saturated model should perfectly predict  the data, the 
likelihood of the observed data, given this model, should be 1 (or 1nL sat=0). This comparison 
yields a statistic called the deviance which is analogous to the error sum of squares (SSE) in 
linear regression. The deviance is a measure of the unexplained variation in the data.

Example 16.1 Comparing logistic regression models 
data = bw5k

The log likelihoods from 4 different models were:

Model Predictors # of predictors Log likelihood

null intercept
β

0

1 -1321.85

full intercept, smk, white, 
frace_c3

β
0
, β

1
, β

2
, β

3
, β

4

5 -1308.61

reduced intercept, smk
β

0
, β

1

2 -1318.03

saturated 5000 ‘hypothetical’ 
predictors
β

0
, β

1
…β

n-1

5000 0

Overall likelihood ratio test of the full model:
G0

2 = 2(-1308.61 - (-1321.85)) = 26.47 with 4 df (P <0.001)
    Taken together, the 3 predictors are highly significant predictors of low birth weight.

Likelihood ratio test comparing the full and reduced models:
G0

2 = 2(-1308.61 - (-1318.03)) = 18.83 with 3 df (P <0.001) 
    The 2 race predictors (-white- and -frace_c3-) are highly significant predictors.

Likelihood ratio test comparing the saturated and full models:
G0

2 = 2(0 - (-1308.61)) = 2617.22 with 5000 df.
    Note This does not have a χ2 distribution.
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D=2 1n
Lsat

L full
=2 1n L sat−1n L full=−21nLfull

Eq 16.11

Note  The deviance  computed  in  this  manner  does not  have  a  χ2 distribution.  (See  Section 
16.12.2 for more discussion of deviance.)

16.7 WALD TESTS

An alternative approach to evaluating the significance of a single coefficient is to use a test that  
relates the coefficient to its SE. A Wald test is the ratio of the coefficient to its SE and it follows 
(asymptotically)  a  standard  normal  (Z)  distribution.  This  tests  whether  the  coefficient  is 
significantly different from zero. It is routinely computed by most computer programs and is the 
most  widely  used  test  of  the  significance  of  coefficients.  However,  the  estimates  of  the 
coefficient  and its SE are only estimates,  and consequently the normal approximation of its 
distribution  might  not  be  reliable  particularly  if  the  sample  size  is  small.  To  evaluate  the  
significance  of  variables  with  a  P-value  close  to  the  rejection  region,  it  is  best  to  use  a  
likelihood ratio test.

Just as with multiple partial F-tests in linear regression, multiple parameters in a logistic model 
can be tested with a multiple Wald test. For example, comparing the full and reduced models in  
Example 16.1 would be equivalent to testing the null hypothesis: 

H 0 :2=3=0

In this case, the test statistic is compared with a χ2 distribution, with the df equal to the number 
of predictors being tested. In Example 16.1, the Wald χ2 for comparing the full and reduced 
models has a value of 20.1 and 3 df. This is a slightly larger test statistic (although this is not 
always the case) than the likelihood ratio test ( χ2 =18.83), but it is still highly significant. 

16.8 INTERPRETATION OF COEFFICIENTS

The coefficients in a logistic regression model represent the amount the logit of the probability 
of the outcome changes with a unit  increase in the predictor.  Unfortunately,  this is  hard to  
interpret  so we usually convert  the coefficients  into odds ratios.  The following sections are 
based on the model shown in Example 16.2.

1n[ p
1− p ] = 01smk 2white3frace=hisp 4frace=black5previs 

16.8.1 Dichotomous predictor

Coefficients  for  a  dichotomous predictor  represent  the amount that  the log odds of disease 
increase (or decrease) when the factor is present. These can be easily converted into  OR by 
exponentiating the coefficient. For example, the OR for -smk- in Example 16.2 is:

OR = e1 = e0.527 = 1.695

If the outcome of interest is relatively rare, the OR provides a good approximation of the risk 
ratio (RR). If the data come from a case-control study that used  incidence density sampling, the 
OR is a good estimate of the incidence rate ratio (IR) in the original population (see Chapter 6).
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16.8.2 Continuous predictor

For a continuous predictor,  the coefficient  (eg β5) represents  the change in the log odds of 
disease for a 1-unit change in the predictor. Similarly, the computed OR represents the factor by 

Example 16.2 Interpreting logistic regression coefficients
data = bw5k

The tables below present results from a logistic regression of -low_bw- on -smk-, -white-, -previs-, and 
2 levels of -frace_c3-. The first table presents the effects of the predictors on the logit of the outcome  
(low birth weight), while the second shows the same results expressed as odds ratios.

Number of obs = 5000
LR chi2 (5) = 42.65
Prob > chi2 = 0.000

Log likelihood = -1300.5253

Predictor Coef SE Z P 95% CI

smk 0.527 0.183 2.88 0.004 0.169 0.886

white -0.321 0.180 -1.78 0.075 -0.673 0.032

frace = hisp -0.433 0.201 -2.15 0.031 -0.827 -0.039

frace = black 0.196 0.193 1.02 0.308 -0.181 0.574

previs -0.059 0.015 -4.01 0.000 -0.088 -0.030

constant -1.673 0.235 -7.11 0.000 -2.134 -1.212

Predictor OR SE 95% CI

smk 1.695 0.310 1.184 2.426

white 0.726 0.131 0.510 1.032

frace = hisp 0.648 0.130 0.437 0.962

frace = black 1.217 0.235 0.834 1.776

previs 0.943 0.014 0.916 0.970

Effect of  -smk- Smoking  increased the log odds of  low birth  weight  by 0.527,  or  alternatively,  it 
increased  the  odds  of  having  a  low birth  weight  baby  by 1.7  times.  Since  low birth  weight  is  a 
relatively rare condition, it would be reasonable to interpret the odds ratio as a risk ratio and state that  
smoking increased the risk of having a low birth weight baby by approximately 1.7 times (equivalent to 
a 70% increase).
Effect of -previs- Increasing the number of prenatal visits from 5 to 15 reduced the log odds of disease 
by: (15-5)*0.059=0.59 units. Alternatively, it reduces the odds of disease by the factor: (0.943) (15-5)=0.556. 
An increase of 10 in the number of prenatal visits reduces the risk of low birth weight by a factor of  
approximately 0.56 (equivalent to a 44% reduction).
Effect  of  -frace_c3- Compared  with  whites  (baseline  group),  babies  from  Hispanic  fathers  had 
decreased odds of being low birth weight (OR=0.65) while those with black fathers had increased odds 
(OR=1.22), although this latter difference was not statistically significant (P=0.308). Collectively, there  
were significant differences among the father’s race groups (P=0.0006, data not shown) and individually, 
Hispanics had significantly lower odds than whites (P=0.031) and blacks (P<0.001, data not shown).
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which the odds of disease are multiplied for each 1-unit change in the predictor. However, we 
are often interested in changes of multiple units of the exposure variable(s), such as from x1 to 
x2. For example, for a change from 5 to 15 in the number of prenatal visits, the log odds of 
disease changes by:

log odds x1 , x2= x2−x1∗5=15−5 ∗−0.059=−0.59 Eq 16.12

For this 10-unit change in -previs-, the odds of disease change by:

e−0.59=0.554, or OR(x1 , x2)=OR( x2−x1)=0.943( 15−5)=0.556 Eq 16.13

Note This effect of -previs- is based on the assumption that the relationship between -previs- 
and the log odds of low birth weight is linear. Methods for evaluating this assumption were 
discussed in Section 15.6.

16.8.3 Categorical predictor 

As in linear regression, predictors with multiple categories (eg ‘j’ categories) must be converted 
to a series of indicator variables (also called ‘dummy’ variables) with j-1 variables put into the 
model. The coefficient for each indicator variable represents the effect of that level compared 
with the category (ie the ‘baseline’) not included in the model. The coefficients are interpreted 
in the same manner as for any other dichotomous predictor. 

Note There  are  other  ways  of  coding  categorical  variables,  such  as  hierarchical  indicator  
variables, and these are used in the same way as described in Chapter 14.

When creating indicator variables, the choice of the baseline might be important. In general, we 
choose one that makes biological sense (ie makes some sense as a reference level) and one that 
has a reasonable number of observations so we are not comparing everything with a category  
for which the effect  can only be estimated very imprecisely.  When evaluating the statistical 
significance of coefficients for categorical variables, it is important NOT to pay much attention 
to the P-values of individual coefficients. This P-value indicates whether or not the chosen level 
is statistically different from the baseline level. However, because the choice of the baseline is  
arbitrary, any category has a range of possible P-values that could be computed. Instead, you  
should evaluate the statistical significance of all of the categories together with a multiple Wald  
test or a likelihood ratio test. 

In Example 16.2, the variable -frace_c3- was converted to a series of 3 dummy variables and 2 
of these (-frace_c3_1-, -frace_c3_3-) were included in the model. These represented Hispanics 
and blacks, respectively. Consequently, the coefficients represent the effects of these races on 
the log odds of low birth weight compared with whites (the category that was omitted).

16.8.4 Interpretation of the intercept 

Interpretation of the intercept (constant) in the regression model depends on how the data were 
collected.  The intercept  represents  the  logit  of  the probability of  disease  if  all  of  the  ‘risk 
factors’ are absent (ie equal to zero). This can be expressed as:

1n p0

1− p0  = 0
Eq 16.14


