# METHODS IN EPIDEMIOLOGIC RESEARCH

# *A comprehensive text for the discipline*

www.upei.ca/mer

# **METHODS IN EPIDEMIOLOGIC** RESEARCH

#### Ian Dohoo

Professor Emeritus of Epidemiology Department of Health Management University of Prince Edward Island Charlottetown PEI Canada

#### Wayne Martin

Professor Emeritus of Epidemiology Department of Population Medicine University of Guelph Guelph Ontario Canada

Henrik Stryhn Professor of Biostatistics Department of Health Management University of Prince Edward Island Charlottetown PEI Canada



VER inc. Published by VER Inc. · Charlottetown · Prince Edward Island · Canada

This book was prepared using the open source office software-OpenOffice (http://www.openoffice.org/)

Editor/Proofreader/Compositor/Publication Coordinator: S Margaret McPike Cover designer: Gregory Mercier

© 2012, by VER Inc. All rights reserved. This book is protected by copyright. No part of this book may be reproduced, stored in a retrieval system or transmitted, in any form or by any means—electronic, mechanical, photocopy, recording or otherwise—without the written permission of the publisher. For information write:

#### VER Inc, PO Box 491, Charlottetown, Prince Edward Island, Canada, C1A 7L1

Printed in Canada

10987654321

#### National Library of Canada Cataloguing in Publication

Methods in epidemiologic research / Ian Dohoo ... [*et al*]. Includes index. ISBN 978-0-919013-73-5 1. Human Epidemiology – Research – Textbooks I. Dohoo, Ian Robert

Library catalogue information available from www.upei.ca/mer

Care has been taken to confirm the accuracy of the information presented. Nevertheless, the authors, editor and publisher are not responsible for errors or omissions or for any consequences from application of the information in this book and make no warranty, express or implied, with respect to the content of the publication.

# Dedication

This text is dedicated to all of the graduate students who have challenged and inspired us throughout our careers, and to our families who have supported us, especially during the writing of this text.

| Forewords<br>Preface<br>Acknowledgements |                                                            | xv/xvii<br>xviii<br>xx |
|------------------------------------------|------------------------------------------------------------|------------------------|
| 1                                        | INTRODUCTION AND CAUSAL CONCEPTS                           | 1                      |
| 1.1                                      | Introduction And CAUSAL CONCEPTS                           | 1                      |
| 1.1                                      | A brief history of multiple causation concepts             | 2                      |
| 1.2                                      | A brief history of scientific inference                    | 2<br>6                 |
| 1.4                                      | Key components of epidemiologic research                   | 9                      |
| 1.4                                      | Seeking causes                                             | 10                     |
| 1.6                                      | Models of causation                                        | 10                     |
| 1.7                                      | Counterfactual concepts of causation for a single exposure | 18                     |
| 1.8                                      | Experimental versus observational evidence of causation    | 22                     |
| 1.9                                      | Constructing a causal diagram                              | 23                     |
| 1.10                                     | Causal criteria                                            | 25                     |
| 2                                        | SAMPLING                                                   | 35                     |
| 2.1                                      | Introduction                                               | 36                     |
| 2.2                                      | Non-probability sampling                                   | 39                     |
| 2.3                                      | Probability sampling                                       | 39                     |
| 2.4                                      | Simple random sample                                       | 40                     |
| 2.5                                      | Systematic random sample                                   | 40                     |
| 2.6                                      | Stratified random sample                                   | 40                     |
| 2.7                                      | Cluster sampling                                           | 41                     |
| 2.8                                      | Multistage sampling                                        | 42                     |
| 2.9                                      | Targeted (risk-based) sampling                             | 43                     |
| 2.10                                     | Analysis of survey data                                    | 44                     |
| 2.11                                     | Sample-size determination                                  | 48                     |
| 2.12                                     | Sampling to detect disease                                 | 55                     |
| 3                                        | QUESTIONNAIRE DESIGN                                       | 61                     |
| 3.1                                      | Introduction                                               | 62                     |
| 3.2                                      | Designing the question                                     | 64                     |
| 3.3                                      | Open question                                              | 65                     |
| 3.4                                      | Closed question                                            | 65                     |
| 3.5                                      | Wording the question                                       | 69                     |
| 3.6                                      | Structure of questionnaires                                | 69<br>70               |
| 3.7                                      | Pre-testing questionnaires<br>Validation                   | 70                     |
| 3.8                                      |                                                            | 71                     |
| 3.9<br>3.10                              | Response rate                                              | 71<br>72               |
| 5.10                                     | Data-coding and editing                                    | 12                     |
| 4                                        | MEASURES OF DISEASE FREQUENCY                              | 77                     |
| 4.1                                      | Introduction                                               | 78                     |
| 4.2                                      | Counts, proportions, odds, and rates                       | 78                     |
| 4.3<br>4.4                               | Incidence<br>Calculating risk                              | 79<br>80               |
| 4.4                                      |                                                            | 80                     |

| 4.5  | Calculating incidence rates                                       | 81  |
|------|-------------------------------------------------------------------|-----|
| 4.6  | Relationship between risk and rate                                | 83  |
| 4.7  | Prevalence                                                        | 84  |
| 4.8  | Mortality statistics                                              | 85  |
| 4.9  | Other measures of disease frequency                               | 85  |
| 4.10 | Standard errors and confidence intervals                          | 87  |
| 4.11 | Standardisation of risks and rates                                | 89  |
| 5    | SCREENING AND DIAGNOSTIC TESTS                                    | 95  |
| 5.1  | Introduction                                                      | 96  |
| 5.2  | Attributes of the test <i>per se</i>                              | 96  |
| 5.3  | The ability of a test to detect disease or health                 | 104 |
| 5.4  | Predictive values                                                 | 107 |
| 5.5  | Interpreting test results that are measured on a continuous scale | 109 |
| 5.6  | Using multiple tests                                              | 115 |
| 5.7  | Evaluation of diagnostic tests                                    | 117 |
| 5.8  | Evaluation when there is no gold standard                         | 121 |
| 5.9  | Other considerations in test evaluation                           | 125 |
| 5.10 | Sample size requirements                                          | 127 |
| 5.11 | Group-level testing                                               | 128 |
| 5.12 | Use of pooled samples                                             | 130 |
| 6    | MEASURES OF ASSOCIATION                                           | 139 |
| 6.1  | Introduction                                                      | 140 |
| 6.2  | Measures of association                                           | 141 |
| 6.3  | Measures of effect                                                | 144 |
| 6.4  | Study design and measures of association                          | 147 |
| 6.5  | Hypothesis testing and confidence intervals                       | 147 |
| 6.6  | Multivariable estimation of measures of association               | 152 |
| 7    | INTRODUCTION TO OBSERVATIONAL STUDIES                             | 155 |
| 7.1  | Introduction                                                      | 156 |
| 7.2  | A unified approach to study design                                | 159 |
| 7.3  | Descriptive studies                                               | 161 |
| 7.4  | Observational studies                                             | 162 |
| 7.5  | Cross-sectional studies                                           | 164 |
| 7.6  | Estimating incidence from one or more cross-sectional studies     | 168 |
| 7.7  | Inferential limitations of cross-sectional studies                | 169 |
| 7.8  | Repeated cross-sectional versus cohort studies                    | 170 |
| 7.9  | Reporting of observational studies                                | 171 |
| 8    | COHORT STUDIES                                                    | 179 |
| 8.1  | Introduction                                                      | 180 |
| 8.2  | Selecting the study group                                         | 182 |
| 8.3  | The exposure                                                      | 186 |
| 8.4  | Disease as exposure                                               | 190 |
| 8.5  | Ensuring exposed and non-exposed groups are comparable            | 190 |
| 8.6  | Follow-up period                                                  | 191 |

| 8.7   | Measuring the outcome                                            | 191 |
|-------|------------------------------------------------------------------|-----|
| 8.8   | Analysis                                                         | 192 |
| 8.9   | Reporting of cohort studies                                      | 194 |
| 9     | CASE-CONTROL STUDIES                                             | 201 |
| 9.1   | Introduction                                                     | 202 |
| 9.2   | The study base                                                   | 202 |
| 9.3   | The case series                                                  | 205 |
| 9.4   | Principles of control selection                                  | 207 |
| 9.5   | Selecting controls and data layout in risk-based designs         | 207 |
| 9.6   | Sampling controls and data layout in rate-based designs          | 209 |
| 9.7   | Other sources of controls                                        | 214 |
| 9.8   | The number of controls per case                                  | 215 |
| 9.9   | The number of control groups                                     | 215 |
| 9.10  | Exposure and covariate assessment                                | 216 |
| 9.11  | Keeping the cases and controls comparable                        | 216 |
| 9.12  | Analysis of case-control data                                    | 217 |
| 9.13  | Reporting guidelines for case-control studies                    | 218 |
| 10    | HYBRID STUDY DESIGNS                                             | 223 |
| 10.1  | Introduction                                                     | 224 |
| 10.2  | Case-crossover studies                                           | 224 |
| 10.3  | Case-case studies                                                | 228 |
| 10.4  | Case-case-control studies                                        | 229 |
| 10.5  | Case-series studies                                              | 231 |
| 10.6  | Case-cohort studies                                              | 233 |
| 10.7  | Case-only studies                                                | 235 |
| 10.8  | Two-stage sampling designs                                       | 237 |
| 11    | CONTROLLED STUDIES                                               | 243 |
| 11.1  | Introduction                                                     | 244 |
| 11.2  | Background, objectives, and summary trial design                 | 246 |
| 11.3  | Participants: the study group                                    | 247 |
| 11.4  | Specifying the intervention                                      | 250 |
| 11.5  | Measuring the outcome                                            | 251 |
| 11.6  | Sample size                                                      | 252 |
| 11.7  | Allocation of study subjects                                     | 254 |
| 11.8  | Follow-up/compliance                                             | 258 |
| 11.9  | Statistical methods and analysis                                 | 259 |
|       | Conclusions                                                      | 262 |
|       | Clinical trial designs for prophylaxis of communicable organisms | 262 |
| 11.12 | Reporting of clinical trials                                     | 265 |
| 12    | VALIDITY IN OBSERVATIONAL STUDIES                                | 275 |
| 12.1  | Introduction                                                     | 276 |
| 12.2  | Selection bias                                                   | 277 |
| 12.3  | Examples of selection bias                                       | 281 |
| 12.4  | Reducing selection bias                                          | 287 |

| 12.5  | Information bias                                                        | 288 |
|-------|-------------------------------------------------------------------------|-----|
| 12.6  | Bias from misclassification                                             | 290 |
| 12.7  | Validation studies to correct misclassification                         | 297 |
| 12.8  | Measurement error                                                       | 297 |
| 12.9  | Errors in surrogate measures of exposure                                | 299 |
| 12.10 | The impact of information bias on sample size                           | 299 |
| 13    | CONFOUNDING: DETECTION AND CONTROL                                      | 307 |
| 13.1  | Introduction                                                            | 308 |
| 13.2  | Control of confounding prior to data analysis                           | 311 |
| 13.3  | Matching on confounders                                                 | 311 |
| 13.4  | Detection of confounding                                                | 316 |
| 13.5  | Analytic control of confounding                                         | 322 |
| 13.6  | Multivariable modelling to control confounding                          | 328 |
| 13.7  | Other approaches to control confounding and estimate causal effects     | 328 |
| 13.8  | Propensity scores for controlling confounding                           | 335 |
| 13.9  | External adjustment and sensitivity analysis for unmeasured confounders | 340 |
|       | Understanding causal relationships                                      | 342 |
| 13.11 | Summary of effects of extraneous variables                              | 351 |
| 14    | LINEAR REGRESSION                                                       | 359 |
| 14.1  | Introduction                                                            | 360 |
| 14.2  | Regression analysis                                                     | 360 |
| 14.3  | Hypothesis testing and effect estimation                                | 362 |
| 14.4  | Nature of the X-variables                                               | 368 |
| 14.5  | Detecting highly correlated (collinear) variables                       | 374 |
| 14.6  | Detecting and modelling interaction                                     | 376 |
| 14.7  | Causal interpretation of a multivariable linear model                   | 377 |
| 14.8  | Evaluating the least squares model                                      | 379 |
| 14.9  | Evaluating the major assumptions                                        | 385 |
|       | Assessment of individual observations                                   | 390 |
| 14.11 | Time-series data                                                        | 396 |
| 15    | MODEL-BUILDING STRATEGIES                                               | 401 |
| 15.1  | Introduction                                                            | 402 |
| 15.2  | Steps in building a model                                               | 403 |
| 15.3  | Building a causal model                                                 | 403 |
| 15.4  | Reducing the number of predictors                                       | 404 |
| 15.5  | The problem of missing values                                           | 408 |
| 15.6  | Effects of continuous predictors                                        | 411 |
| 15.7  | Identifying interaction terms of interest                               | 418 |
| 15.8  | Building the model                                                      | 418 |
| 15.9  | Evaluate the reliability of the model                                   | 423 |
| 15.10 | Presenting the results                                                  | 424 |
| 16    | LOGISTIC REGRESSION                                                     | 429 |
| 16.1  | Introduction                                                            | 430 |
| 16.2  | The logistic model                                                      | 430 |

| 16.3  | Odds and odds ratios                                         | 431 |
|-------|--------------------------------------------------------------|-----|
| 16.4  | Fitting a logistic regression model                          | 432 |
| 16.5  | Assumptions in logistic regression                           | 433 |
| 16.6  | Likelihood ratio statistics                                  | 434 |
| 16.7  | Wald tests                                                   | 436 |
| 16.8  | Interpretation of coefficients                               | 436 |
|       | Assessing interaction and confounding                        | 439 |
| 16.10 | Model-building                                               | 441 |
| 16.11 | Generalised linear models                                    | 444 |
| 16.12 | Evaluating logistic regression models                        | 445 |
| 16.13 | Sample size considerations                                   | 455 |
| 16.14 | Exact logistic regression                                    | 456 |
| 16.15 | Conditional logistic regression for matched studies          | 456 |
| 17    | MODELLING ORDINAL AND MULTINOMIAL DATA                       | 461 |
| 17.1  | Introduction                                                 | 462 |
| 17.2  | Overview of models                                           | 462 |
| 17.3  | Multinomial logistic regression                              | 466 |
| 17.4  | Modelling ordinal data                                       | 470 |
| 17.5  | Proportional odds model (constrained cumulative logit model) | 471 |
| 17.6  | Adjacent-category model                                      | 475 |
| 17.7  | Continuation-ratio model                                     | 476 |
| 18    | MODELLING COUNT AND RATE DATA                                | 479 |
| 18.1  | Introduction                                                 | 480 |
| 18.2  | The Poisson distribution                                     | 481 |
| 18.3  | Poisson regression model                                     | 482 |
| 18.4  | Interpretation of coefficients                               | 483 |
| 18.5  | Evaluating Poisson regression models                         | 485 |
| 18.6  | Negative binomial regression                                 | 488 |
| 18.7  | Problems with zero counts                                    | 496 |
| 19    | MODELLING SURVIVAL DATA                                      | 501 |
| 19.1  | Introduction                                                 | 502 |
| 19.2  | Non-parametric analyses                                      | 507 |
| 19.3  | Actuarial life tables                                        | 507 |
| 19.4  | Kaplan-Meier estimate of survivor function                   | 510 |
| 19.5  | Nelson-Aalen estimate of cumulative hazard                   | 512 |
| 19.6  | Statistical inference in non-parametric analyses             | 512 |
| 19.7  | Survivor, failure, and hazard functions                      | 514 |
| 19.8  | Semi-parametric analyses                                     | 519 |
| 19.9  | Parametric models                                            | 536 |
|       | Accelerated failure time models                              | 541 |
|       | Frailty models and clustering                                | 545 |
|       | Multiple outcome event data                                  | 551 |
|       | Discrete-time survival analysis                              | 552 |
| 19.14 | Sample sizes for survival analyses                           | 557 |

| <b>20</b> | INTRODUCTION TO CLUSTERED DATA                                   | <b>563</b> |
|-----------|------------------------------------------------------------------|------------|
| 20.1      | Introduction                                                     | 564        |
| 20.2      | Clustering arising from the data structure                       | 564        |
| 20.3      | Effects of clustering                                            | 570        |
| 20.4      | Simulation studies on the impact of clustering                   | 574        |
| 20.5      | Introduction to methods for dealing with clustering              | 576        |
| <b>21</b> | MIXED MODELS FOR CONTINUOUS DATA                                 | <b>587</b> |
| 21.1      | Introduction                                                     | 588        |
| 21.2      | Linear mixed model                                               | 588        |
| 21.3      | Random slopes                                                    | 594        |
| 21.4      | Contextual effects                                               | 598        |
| 21.5      | Statistical analysis of linear mixed models                      | 601        |
| <b>22</b> | MIXED MODELS FOR DISCRETE DATA                                   | <b>615</b> |
| 22.1      | Introduction                                                     | 616        |
| 22.2      | Logistic regression with random effects                          | 617        |
| 22.3      | Poisson regression with random effects                           | 621        |
| 22.4      | Generalised linear mixed model                                   | 623        |
| 22.5      | Statistical analysis of GLMMs                                    | 630        |
| 22.6      | Summary remarks on analysis of discrete clustered data           | 639        |
| <b>23</b> | <b>REPEATED MEASURES DATA</b>                                    | <b>645</b> |
| 23.1      | Introduction to repeated measures data                           | 646        |
| 23.2      | Univariate and multivariate approaches to repeated measures data | 648        |
| 23.3      | Linear mixed models with correlation structure                   | 654        |
| 23.4      | Mixed models for discrete repeated measures data                 | 662        |
| 23.5      | Generalised estimating equations                                 | 665        |
| <b>24</b> | INTRODUCTION TO BAYESIAN ANALYSIS                                | 675        |
| 24.1      | Introduction                                                     | 676        |
| 24.2      | Bayesian analysis                                                | 676        |
| 24.3      | Markov chain Monte Carlo estimation                              | 680        |
| 24.4      | Statistical analysis based on MCMC estimation                    | 685        |
| 24.5      | Extensions of Bayesian and MCMC modelling                        | 689        |
| <b>25</b> | ANALYSIS OF SPATIAL DATA: INTRODUCTION AND VISUALISATION         | <b>701</b> |
| 25.1      | Introduction                                                     | 702        |
| 25.2      | Spatial data                                                     | 702        |
| 25.3      | Spatial data analysis                                            | 705        |
| 25.4      | Additional topics                                                | 711        |
| <b>26</b> | ANALYSIS OF SPATIAL DATA                                         | <b>717</b> |
| 26.1      | Introduction                                                     | 718        |
| 26.2      | Issues specific to statistical analysis of spatial data          | 718        |
| 26.3      | Exploratory spatial analysis                                     | 720        |
| 26.4      | Global spatial clustering                                        | 728        |

| 26.5<br>26.6<br>26.7 | Localised spatial cluster detection<br>Space-time association<br>Modelling | 735<br>738<br>742 |
|----------------------|----------------------------------------------------------------------------|-------------------|
| 27                   | CONCEPTS OF INFECTIOUS DISEASE EPIDEMIOLOGY                                | 753               |
| 27.1                 | Introduction                                                               | 754               |
| 27.2                 | Infection vs disease                                                       | 756               |
| 27.3                 | Transmission                                                               | 758               |
| 27.4                 | Mathematical modelling of infectious disease transmission                  | 760               |
| 27.5                 | Methods of control of infectious disease                                   | 763               |
| 27.6                 | Estimating R <sub>0</sub> and other parameters                             | 766               |
| 27.7                 | Developing more complex models                                             | 771               |
| 27.8                 | Using models                                                               | 773               |
| 27.9                 | Summary                                                                    | 775               |
| 28                   | SYSTEMATIC REVIEWS AND META-ANALYSIS                                       | 779               |
| 28.1                 | Introduction                                                               | 780               |
| 28.2                 | Narrative reviews                                                          | 780               |
| 28.3                 | Systematic reviews                                                         | 781               |
| 28.4                 | Meta-analysis – introduction                                               | 785               |
| 28.5                 | Fixed- and random-effects models                                           | 786               |
| 28.6                 | Presentation of results                                                    | 789               |
| 28.7                 |                                                                            | 791               |
|                      | Publication bias                                                           | 798               |
|                      | Influential studies                                                        | 801               |
|                      | Outcome scales and data issues                                             | 801               |
|                      | Meta-analysis of observational studies                                     | 804               |
|                      | Meta-analysis of diagnostic tests                                          | 806               |
| 28.13                | Use of meta-analysis                                                       | 807               |
| 29                   | ECOLOGICAL AND GROUP-LEVEL STUDIES                                         | 813               |
| 29.1                 | Introduction                                                               | 814               |
| 29.2                 | Rationale for group level studies                                          | 815               |
| 29.3                 | Types of ecologic variable                                                 | 816               |
| 29.4                 | Issues related to modelling approaches in ecologic studies                 | 817               |
| 29.5                 | The linear model in the context of ecologic studies                        | 818               |
| 29.6                 | Issues related to inferences                                               | 819               |
| 29.7                 | Sources of ecologic bias                                                   | 820               |
| 29.8                 | Analysis of ecologic data                                                  | 825               |
| 29.9                 | Non-ecologic group-level studies                                           | 826               |
| 30                   | A STRUCTURED APPROACH TO DATA ANALYSIS                                     | 833               |
| 30.1                 | Introduction                                                               | 834               |
| 30.2                 | Data-collection sheets                                                     | 834               |
| 30.3                 | Data coding                                                                | 835               |
| 30.4                 | Data entry                                                                 | 835               |
| 30.5                 | Keeping track of files                                                     | 836               |
| 30.6                 | Keeping track of variables                                                 | 836               |

|       | Program mode versus interactive processing<br>Data-editing | 837<br>838 |
|-------|------------------------------------------------------------|------------|
|       | Data verification                                          | 839        |
| 30.10 | Data processing—outcome variables                          | 839        |
| 30.11 | Data processing—predictor variables                        | 840        |
| 30.12 | Data processing—multilevel data                            | 840        |
| 30.13 | Unconditional associations                                 | 841        |
| 30.14 | Keeping track of your analyses                             | 841        |
| 31    | DESCRIPTION OF DATASETS                                    | 843        |

## FOREWORD - DR. JOSEPH HILBE

*Methods in Epidemiologic Research* is a revision of the authors' very well-received 2009 volume, *Veterinary Epidemiologic Research*, 2nd edition; rather than examples from veterinary epidemiology, this new text now employs examples from across the spectrum of human epidemiology. References have also been updated.

The authors of this text have produced what comes close to being called an encyclopedia of applied epidemiologic analysis. In fact, the text is best characterized as a well-written comprehensive presentation of all foremost areas of epidemiological research. Of the some 850 pages of text, nearly 350 are devoted to descriptive statistics, varieties of study design, questionnaire and screening techniques, sampling, measures of association, and confounding. Epidemiologists are presented with clear guidelines for nearly everything they need to know about gathering data and study design for their individual research projects. Four hundred plus pages are then devoted to nearly all areas of epidemiologic modeling. Major chapters are given for linear modeling, all of the major categorical response models, random and mixed effects modeling, longitudinal and clustered models, survival models, meta-analysis, and spatial analysis, chapters are also provided on infectious disease epidemiology and Bayesian methodology. Bayesian methods are increasing in popularity due to ever-faster and more powerful personal computers, as well as enhanced Monte Carlo algorithms. The authors have presented a fine overview of the subject, and have given readers several excellent worked-out examples to help clarify the basics of the methodology.

Numerous examples are given throughout the text, accompanied by modeling results and thorough interpretation. Guidelines are presented together with caveats which the researcher should keep in mind when modeling. It is a text that researchers from most disciplines will find to be useful and informative.

The earlier version of this text sold extremely well to veterinarians as well as to those in biostatistics and human epidemiology. The enthusiasm with which the earlier text was accepted motivated the creation of this volume, which promises to be widely used as the standard single-volume resource on epidemiologic research throughout the world.

Joseph M. Hilbe, J.D., Ph.D.

Emeritus Professor, University of Hawaii,

Adjunct Professor of Statistics, Arizona State University,

Solar System Ambassador, Jet Propulsion Laboratory, California Institute of Technology

## FOREWORD - DR. JAMES ANTHONY

This brief note is not enough praise for what the authors have accomplished in a revision of their excellent text on *Veterinary Epidemiologic Research* (VER) for a human medicine audience. The generally superior coverage of epidemiological research at an intermediate level, coupled with exercises and problem sets with Stata software code, prompted us to make VER the required textbook for the third course in our epidemiology graduate sequence, which draws enrollees both from the College of Veterinary Medicine and the College of Human Medicine. The strengths of VER and its examples and exercises drawn from veterinary medicine have served us well at this intermediate stage in the course sequence. It was a delight to learn that the textbook was to be converted into one more accessible to people working in 'human epidemiology'—*Methods in Epidemiologic Research*. The result will be an increase in the breadth of appreciation for what the authors have accomplished.

James C. Anthony, M.Sc., Ph.D.

Professor of Epidemiology & Biostatistics, College of Human Medicine, Michigan State University East Lansing, Michigan

Adjunct Professor, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, and

Profesor Honorario, Universidad Peruana Cayetano Heredia, Lima, Peru

### PREFACE

This book started its life as a veterinary text: *Veterinary Epidemiologic Research*. The first edition of that text was published in 2003 and the  $2^{nd}$  edition in late 2009. Our goal in the publication of this veterinary text was to produce a text that was comprehensive, but accessible to both researchers and graduate students. Since its initial publication, *Veterinary Epidemiologic Research* has become the standard textbook used in most graduate programs in veterinary epidemiology around the world; we are most appreciative of the strong support for the text that we have received from the veterinary epidemiological community.

There has been considerable convergence of veterinary and human health worlds with the development of the 'One Medicine/One Health' movement (discussed in Chapter 1). In the population health arena, this is facilitated by the fact that methods used in veterinary epidemiology are virtually identical to those used in 'human' (medical) epidemiology. However, given the title and focus of our original book (veterinary epidemiology), it is not surprising that only a few people in the medical epidemiology community were aware of the text, or had a chance to review it. Fortunately, a number of those that did encounter the book were complimentary and encouraged us to consider preparation of a version suitable for use by medical epidemiologists and public health practitioners. Most notable was the encouragement we received from Drs. Joseph Hilbe and James Anthony who kindly agreed to write forewords for this text.

Methods in Epidemiologic Research is based heavily on the material covered in Veterinary Epidemiologic Research, with 2 major changes. Firstly, all of the veterinary examples have been replaced with human medical examples. We are indebted to those in the medical epidemiology and public health communities who have kindly shared datasets with us for the examples used in the text (please see the Acknowledgements section for details). Secondly, nearly all references have been switched from veterinary to human examples and references have been updated (particularly for the chapters dealing with study design). It is our sincere hope that we have produced a text that will serve the medical epidemiological community as well as our previous text has served the veterinary community.

While the text has been fully converted to be understandable by medical epidemiologists and public health practitioners, it retains a few characteristics from its veterinary roots. For example, the chapters on the handling and modelling of spatial data (Chapters 26 and 27) have remained unchanged from the veterinary text, because they dealt with an issue relevant to both veterinary and human health (avian influenza in both poultry and human populations). In a few select instances, methods which have been more widely adopted in veterinary medicine, but which have relevance in human epidemiology (*eg* targeted surveillance in Section 2.9) have been retained. The problem of 'clustered data' is of particular importance in animal health research (because animals are frequently kept in clusters (*eg* herds)), but this problem is also encountered in medical epidemiology, so we have retained our very thorough coverage of this topic.

Before reviewing the content of the text we thought we should address the two most common questions we received about the veterinary version of this text.

• Why are the 2X2 tables oriented the way they are (disease in rows, exposure in columns)? The answer to this is that we feel that the text *Modern Epidemiology* (Rothman *et al*, 2008) is a key reference text in the field of epidemiology and have

chosen to be consistent with their format.

• Why does the title use the word 'epidemiologic' instead of 'epidemiological?' According to "Scientific Style and Format—The CSE Manual for Authors, Editors and Publishers" (Council of Science Editors—Style Manual Committee, 2006), either is acceptable. Once again, we deferred to a text which we felt was seminal in the development of epidemiologic methods *Epidemiologic Research: Principles and Quantitative Methods* (Kleinbaum *et al*, 1982).

This text focuses on both design and analytic issues. Chapters 1 through 6 focus on basic epidemiologic principles. Chapters 7–11 focus on study design issues for observational studies and controlled trials. There has been much discussion over the past decade about the need for epidemiologists to thoroughly report their research findings (and by doing so this will help ensure high-quality study designs in the future) and we have cited the summary recommendations in these chapters.

Chapters 14–19 cover a range of multivariable models. Chapter 19 (Modelling Survival Data) attempts to provide a comprehensive coverage of the most commonly used methods in the analysis of time-to-event data.

Chapters 20–23 deal with the issue of clustered data, including a thorough description of methods for analysing repeated measures data. Chapters 24–30 cover a range of specialised topics including: Bayesian methods (Chapter 24—contributed by Henrik Stryhn in collaboration with William Browne), two chapters on presenting and analysing spatial data (Chapter 25 and 26—contributed by Javier Sanchez and Dirk Pfeiffer), an introduction to infectious disease epidemiology (Chapter 27—contributed by Graham Medley in collaboration with Ian Dohoo), and meta-analysis (Chapter 28).

Supplementary materials for this text will all be made available at <u>upei.ca/mer</u>. These will include datasets, computer programs for all examples presented (initially Stata "do files" with the expectation that programs for other statistical packages will be added later).

All of the datasets used in these examples are described in the text (Chapter 31) and are available through <u>upei.ca/mer</u>. Virtually all of the examples have been analysed using the statistical program Stata<sup>TM</sup>—a program which provides a unique combination of statistical and epidemiological tools and which we use extensively in our teaching. Version 12 of Stata was used throughout. In the future, we hope to add additional sets of sample problems, program code in other languages and additional supplemental material to the website.

I.R. Mayne Martin Heide Style

We hope that you find *Methods in Epidemiologic Research* useful in your studies and your research.

#### References

- Council of Science Editors Style Manual Committee. Scientific style and format: The CSE manual for authors, editors and publishers. 7th ed. Reston (VA): The Council; 2006.
- Kleinbaum D, Kupper L, Morgenstern H. Epidemiologic Research: Principles and Quantitative Methods. London: Lifetime Learning Publications; 1982.
- Rothman K, Greenland S, Lash T. Modern Epidemiology, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins; 2008.

#### Acknowledgements

We are indebted to the many people who have provided useful feedback on *Veterinary Epidemiologic Research*. Their input has been appreciated and incorporated into the writing of *Methods in Epidemiologic Research*. However, we would like to highlight and acknowledge the contribution of 3 particular individuals.

- Dr. Garry Anderson, University of Melbourne, provided extensive constructive feedback on *Veterinary Epidemiologic Research* and was a primary reviewer of the 2<sup>nd</sup> edition of that text.
- Carolyn Dohoo read many of the chapters of *Methods in Epidemiologic Research* and provided much useful feedback on the clarity and validity of the material presented.
- Craig Jones contributed greatly to the clarity of presentation of material in a number of chapters in *Methods in Epidemiolgic Research*.

We would like to express our sincere appreciation to all of these individuals.

We believe the value of this book has been greatly enhanced by the provision of a substantial number of 'real-life' datasets. The details of these datasets (and who contributed them) is described in Chapter 31, but at this point we would like to highlight the major contributors.

- · Pasha Marcynuk study on rainwater cisterns and acute gastrointestinal illness
- · Dr. Kate Thomas Canadian survey data on acute gastrointestinal illness
- Dr. Robert Goldberg and Darlene Lessard myocardial infarction data from the Worcester Heart Attack Study database
- Dr. David Fisman norovirus diagnostic test data
- Dr. Oliver Bucher meta-analysis data for Salmonella control in poultry products
- Dr. Dirk Pfeiffer spatial data on human and poultry cases of avian influenza in Thailand.

Other datasets were obtained from public domain sources and we appreciate the effort that the creators of those datasets went to to make them publicly available.

As we did with *Veterinary Epidemiologic Research*, we prepared this book using open source software (OpenOffice—<u>www.openoffice.org</u>). We are deeply indebted to Margaret McPike who has done all of the editing, proofreading, and formatting of this text. As with *Veterinary Epidemiologic Research*, we published this book ourselves, which entailed taking complete responsibility for these activities. Margaret dedicated herself to this task. All of the credit for layout of the book, and the clarity of the format, goes to Margaret.

We would like to thank Gregory Mercier, who did the graphic design work for the cover. We would also like to thank Bill Rising of Stata Corp. who reviewed all of the analytical methods chapters and provided some very constructive feedback, particularly in terms of the program files (Stata -do- files) which are available on the book's website.