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INTRODUCTION AND CAUSAL CONCEPTS 

OBJECTIVES 

After reading this chapter, you should be able to: 

 1. Explain  the  history  of  causal  thinking  about  disease  and  scientific  inference  from  an
epidemiologic perspective. 

 2. Explain component-cause models and how they can be used to measure disease association
and the proportion of disease attributable to a causal factor. 

 3. Explain the basis of causal-web models.

 4. Describe the counterfactual concept and its utility in understanding disease causation and
the estimation of causal effects. 

 5. Explain how observational studies and field experiments seek to estimate causal effects and
how these relate to counterfactual and component-cause models. 

 6. Construct a logical causal diagram based on your area of research interest as a guide for
your study design and analysis. 

 7. Apply a  set  of  causal  criteria  to  your  own research  as  an  aid to  interpreting published
literature and planning future research. 
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1.1 INTRODUCTION 

What is epidemiology? Historically,  MacMahon and Pugh (1970) saw epidemiology as being
largely concerned with disease prevention, and therefore with the “succession of events which
result in the exposure of specific types of individual to specific types of environment” (ie causal
factors,  or exposures).  More recently,  Parodi  et al (2006) noted that “modern epidemiology
aims to improve the health of populations by integrating data from different disciplines and
proposing interventions on the basis of scientific evidence”. More specifically, epidemiologists
seek to identify exposures, be they demographic factors, infectious or toxic agents, nutritional
factors,  or  elements  of  lifestyle,  and  evaluate  their  associations  with  various  outcomes  of
interest (eg health, disease, quality of life). 

Hence this book is about associations which are likely to be causal in nature and which, once
identified, can be manipulated to improve the health and life quality of people. Epidemiologists
see these associations as part of a complex web of relationships involving organisms and all
aspects of their environment (Martin, 2008). Thus, epidemiologists strive to improve their study
designs and data analysis with the aim of identifying valid associations between the exposure(s)
and outcome(s) and at least some components of this complex web. As it is only by studying
exposure-disease associations under real-world conditions that we can begin to understand this
web of causal  relationships,  we also come to understand that  epidemiology is a field-based
discipline. 

As a starting place, for describing epidemiologic research methods, we will review the history
of the concept(s) of multiple interrelated causes.  This will provide a sense of how we have
arrived at our  current  concepts of disease causation, and where we might need to go in the
future (Ness et al, 2009). Because we want to identify associations which are likely to be causal
(or at the very least useful for disease control (Olsen, 2003)), it also is appropriate to review the
relevant areas of the philosophy of science that relate to causal inference. We will then proceed
with overviews  of  the  key components  of  epidemiologic  studies,  and  discuss  some current
concepts of disease causation. Our objective here is to provide a foundation on which a deeper
understanding of epidemiologic principles and methods can be built. 

1.2 A BRIEF HISTORY OF MULTIPLE CAUSATION CONCEPTS 

Parodi  et al (2006) observed that, throughout the history of epidemiology,  there has been a
struggle between two major points of view about disease causation and control: one oriented
toward  biology  and  mechanisms  of  causation,  the  other  toward  populations  and  their
interactions with the environment (social, biotic, and abiotic). This tension is essential for the
success of epidemiology. Epidemiologic research is based on the idea that ‘causes’ (exposures)
and  ‘outcomes’  (health  events)  are  part  of  a  complex  web  of  relationships.  Consequently,
epidemiologists accept that there are multiple causes for almost every outcome and that a single
cause can have multiple effects. This perspective is not shared by all health researchers. In the
current era of great advances in understanding the genetic components of illnesses, a significant
proportion of medical research is focused on identifying genes that are associated with disease,
and on the characteristics of direct causal agents and how they interact with the genetic makeup
of the host of interest. However, as Diez-Roux (1998a) points out, while it is true that genetic
abnormalities are important precursors of many diseases, in terms of maintaining health, the
real questions relate to the extent to which our current environmental exposures (Kanarek and
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Anderson, 2007) and lifestyles lead to genetic  defects,  as well as the extent to which these
exposures  and  lifestyles  allow  specific  genetic  patterns  to  complete  a  sufficient  cause  of
disease.  (The  concept  of  ‘sufficient  cause’  is  discussed  in  Section  1.6.1)  Kaprio  (2000)
describes the current and future states of genetic epidemiology, whereas Weed (2006) discusses
what epidemiologists need to do to improve their ability to meet their objectives. 

The acceptance of the concept(s) of multiple interacting causes varied with the dominant causal
paradigm of the era. However, the roots of this concept can be traced back to at least 400 BC,
when  Hippocrates wrote  Air,  Waters  and  Places,  in  which  he  outlined  the  environmental
features that should be noted in order to understand the health of populations. Based on this
aspect  of  his  writings,  it  is  clear  that  Hippocrates  had  a  strong multicausal  concept  about
exposure factors in the environment being important ‘causes’ of disease occurrence. He also
discussed  the  importance  of  the  inhabitant’s  lifestyle  (now  often  referred  to  as  social
epidemiology) as a key determinant of health status, further expanding the ‘web of causation’.
Nonetheless, his concepts linking the state of the environment and lifestyle to the occurrence of
disease  seem to  have  been  short-lived;  between  5  AD and  1750 AD,  humoral  imbalances
(events  within  the  individual)  became  the  major  paradigm  of  disease  causation  (Schwabe,
1982). 

Between 1750 and 1885, the multifactorial nature of disease causation regained its credence as
man-made environmental degradation came to be accepted as a central cause of disease. During
this era, the prevalent causal paradigm was that disease was due to the effects of ‘miasmas’ ( ie
bad air). However, during the same era, medical statistics became well-established in France
and Britain  (Parodi et al, 2006). In France, physician Pierre Louis disproved the efficacy of
blood-letting as a treatment for pneumonia, and Simon Poisson stressed the need to study large
numbers  of  cases.  In  England,  William  Farr  used  demographic  and  health-related  data  to
demonstrate  the association of  disease  with urban  poverty.  During  the mid-1800s,  William
Budd and John  Snow conducted studies seeking to link contaminated water as the cause of
cholera (Frerichs, 2001). Using a combination of astute observations about the lack of spread of
the disease among health workers,  the geographical  distribution of  cholera,  the results of a
series of observational studies, and their use of natural as well as contrived (removal of the
Broad  Street  pump handle)  experiments,  Snow correctly  concluded that  cholera  was  being
spread by water  contaminated with sewage effluent.  It  is noteworthy that  he arrived at this
conclusion  almost  30  years  before  the  organism  (Vibrio  cholera)  was  discovered,  thus
demonstrating an important principle: disease can be prevented without knowing the proximal
(ie direct)  causal  agent.  During this  same period,  German pathologist  Friedrich  Henle  was
debunking miasma and demonstrating the role of ‘microscopic  living beings’  (Parodi et  al,
2006). Nonetheless, German pharmacologist  Max Pettenkofer developed sound principles of
public health based on preventing the untoward effects of miasma. 

A few years later (ie in the 1880s–1890s), Theobald Smith (a physician) and Frederick Kilborne
(a veterinarian) determined that an insect vector (a tick:  Boophilus annulatus) was associated
with a cattle disease called ‘Texas Fever’, even though the direct causal agent of the disease (a
parasite: Babesia bigemina) was not discovered until many years later (Schwabe, 1984). Their
initial associations were based on the similar geographical distributions between the disease and
the extent of the tick’s natural range; theirs was the first demonstration of a parasite requiring
development within a vector before transmission. Their work also provided the basis for disease
control before knowing the actual agent of the disease. At about the same time, malaria, caused
by infection with protozoans of the genus  Plasmodium and  transmitted by female  Anopheles
species mosquitoes, was being studied. According to Cox (2010), Alphonse Laveran discovered
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parasites in the blood of malaria patients in 1880, while William MacCallum discovered the
sexual  stages  in  the  blood  in  birds  infected  with  a  related  haematozoan—Haemoproteus
columbae—in  1897.  The transmission cycle  in  culicine mosquitoes  and birds  infected  with
Plasmodium relictum  (the epidemiological  component of the natural history of malaria) was
elucidated by Ronald Ross in 1897.

The multifactorial  causal  concept  lost  adherents  during the late 1800s to mid-1900s, as the
search for specific etiological agents (usually microbiological or toxicological, as in the work of
Robert Koch) gained predominance in medical research. The ‘golden era’ of microbiology led
to a number of successes including mass-testing, immunisation, specific treatment, and vector
control  (eg the mosquito vector of malaria was now known) as methods of disease control.
Nonetheless, Rudolph Virchow, the German cellular pathologist, believed that medicine was a
social science and backed the earlier population-oriented work of Max von Pettenkofer from the
perspective of disease control (Kottke, 2011). 

Control of many specific infectious diseases meant that by the early-to-mid 1900s, chronic,
non-infectious diseases were becoming relatively more important as causes of morbidity and
mortality in humans in developed countries. For example, pellagra was originally thought to
result  from  food  poisoning  from  an  unknown  agent  associated  with  poor  quality  maize.
However, Joseph Goldberger observed the natural disease in cotton workers in the southern US
and found nothing to suggest an infectious origin. Rather, he was concerned about the potential
for a nutritional etiology.  A key observation was that patients in mental institutions had the
disease,  but  not  the  staff,  nurses,  or  doctors.  This  convinced  Goldberger  about  the lack  of
person-to-person spread, and he downplayed an infectious etiology. Subsequently, Goldberger
chose 3 institutions, 2 orphanages and 1 mental institution in which to conduct his early studies.
Both were heavily pellagra endemic before their diets were improved and virtually no new
cases of pellagra occurred after the new diets had been put in place  (Rajakumar, 2000). This
work and Goldberger’s later demonstration of the role of niacin as the direct cause of pellagra
was based on a mechanistic view of causation. Yet, his proposal to prevent the disease through
the  use  of  land  reform  emerged  from his  population  perspective  of  disease  causation  and
control. 

By the mid 1900s, it  was recognised  that  single  agents  were  not  likely responsible for  the
increase in prevalence of chronic diseases. Consequently, large-scale, population-based studies
examining  the  potential  multiple  causes  of  these  diseases  were  initiated.  For  example,  the
Framingham  Heart  Study pioneered  long-term surveillance  and  study of  causes  of  disease
beginning in 1949. Shortly thereafter, a series of observational studies on smoking and lung
cancer  were  published,  and  this  spurred  much  discussion  about  causal  inference  from
observational data (Berlivet, 2005). This included debate over specificity of effect as the studies
had indicated numerous health impacts of smoking. Thus, by the early 1960s, there was once
again a growing awareness of the complex web of causation. 

A decade later, multiple interacting causes of diseases returned as a major paradigm of disease
causation. Building on the knowledge from the microbiological revolution, the concept of the
agent-host-environment  causal  triad  appeared  in  an  early  epidemiology text  (Hogue,  2008;
MacMahon, 1970). In this conceptual model, a number of component causes were required to
come together  (either sequentially or simultaneously)  in order  to produce disease;  later,  the
complex of factors that would produce disease became known as a sufficient cause, and it was
assumed that most diseases had a number of sufficient causes. In addition to multiple causes,
the component cause model was not constrained to have all causal factors at the same level of
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organisation. A traditional veterinary example used to portray some of these concepts is yellow
shanks  in  poultry  (Martin et  al,  1987).  When  poultry  with  the  specific  genetic  defect  (an
individual-level factor) are fed corn (ration is usually a herd/flock level factor), they develop a
discolouration of the skin and legs. If  all poultry are fed corn, then the cause of the disease
would be a genetic defect; however, if all the birds had the genetic defect, then the cause of the
disease would be deemed to be the feed. In reality, both factors are required, and the disease can
be prevented either by removing the genetic defect, or changing the feed, or both, depending on
the specific context. 

The 1970s appeared to be a period of peak interest in causation  (Kaufman and Poole, 2000).
Susser’s  text  (1973) on causal  thinking appeared  in  1973 (unfortunately,  it  has  never been
reprinted) and, 3 years later, the concepts of necessary and sufficient causes were published by
Rothman (1976), followed in 1977 by a set of criteria to help assess causation by Susser (1995).
Large-scale monitoring of diseases also began in this period.

No major new causal concepts were brought forward in the 1980s. Hence it was asserted that
the aforementioned web of causation had become restricted to studying individual-level, direct-
causal  factors  which focussed  on biological  malfunctioning  (Krieger,  1994).  However,  it  is
instructive to read the story of the discovery of folic acid deficiency as the cause of neural tube
disease (Oakley, 2009), the linking of delinquent behaviour and bone lead levels (Needleman,
2009) and  of  the  descriptive  and  observational  studies  in  the  early  1990s  that  led  to  the
discovery of prone sleeping as a major cause of SIDs (Dwyer and Ponsonby, 2009). These were
indeed triumphs of epidemiology (Ness, 2009).

In 1990, epigenesis was proposed as a formal model of multivariable causation that attempted
to link, explicitly, causal structures to observed risks of disease  (Koopman and Weed, 1990).
While this proved to be an interesting and exciting proposal, the limitations of this approach
were soon realised (Thompson, 1991) and the approach remained only a concept. 

Since the mid 1990s, there has been a lot of introspective writing by epidemiologists with much
concern over an excess focus on individuals as the units of study and analysis. Others decried
the apparently large number of false positive and false negative findings in epidemiological
research  (Taubes (1995); see  Willett et al,  (1995) for rejoinder).  We shall not review these
debates in detail because excellent discussions on these topics are available elsewhere  (Diez-
Roux,  1998a;  Diez-Roux,  1998b;  McMichael,  1999).  What  is  apparent  is  that,  whenever
possible,  elements  of  the social,  physical,  and biological  features  of  the defined ecosystem
should be included in each study. This feature was clearly evident in a noteworthy book entitled
Why Are Some People Healthy and Others Not?: The Determinants of Health of Populations
(Evans et al, 1994). The impact of social and economic factors on population disease was, and
is, striking. As we explain later in this text, the unit of concern can range from the individual to
groups  (families),  villages  or  communities,  watersheds  or  larger  ecosystems.  Today,
epidemiologic research remains rooted in the concept of multiple interrelated causal factors for
disease occurrence, and hence for disease prevention. This conceptual basis has been supported
by substantial progress in the development of epidemiologic research methodologies and these
are the subject of this book. 

In the first decade of the twenty-first century,  perhaps the most visible shift in the focus of
veterinary  and  medical  epidemiology was  to  reassert  the  ‘One  Health’  or  ‘One  Medicine’
approach to world health.  Historically, a number of people, including Canadian physician Dr
William Osler and German pathologist Rudolf Virchow, had stressed and contributed to the
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One Medicine approach. Dr Calvin Schwabe was an early (1960s)  veterinary leader in this
regard  and his classic  text  Veterinary Medicine and Human Health (1984) is  a unique and
valuable  resource  in  this  regard  (Kahn et  al,  2008).  The  One  Health  initiative  in  medical
epidemiology  (www.onehealthinitiative.com)  was  led  by  two  physicians  (Drs  Kahn  and
Monath)  and  a  veterinarian  (Dr  Kaplan)  beginning  in  2006,  and  the  movement,  in  both
medicines, has continued to expand (Fisman and Laupland, 2010; Steele, 2008). 

For example, the One Medicine/One Health movement appeared to gain momentum following
the occurrence of a number of serious disease outbreaks around the world including the bovine
spongiform encephalopathy (BSE) epidemic, severe acute respiratory syndrome (SARS), and
H5N1 avian influenza.  In  November 2005,  The Veterinary Record and the  British Medical
Journal published simultaneous issues exploring how the veterinary and medical professions
could  collaborate  for  mutual  benefit.  In  2006,  The  American  Medical  Association  and  the
American Veterinary Medical Association approved resolutions supporting One Medicine or
One  Health  approaches  that  bridge  the  2  professions. The  importance  of  epidemiology  in
supporting this movement seems obvious, and the potential benefits from collaboration between
the two medical professions have been discussed by Fisman and Laupland (2010) and Sargeant
(2008).

1.3 A BRIEF HISTORY OF SCIENTIFIC INFERENCE 

Epidemiology  relies  primarily  on  observational  studies  to  identify  associations  between
exposures  and  outcomes.  The  reasons  are  entirely  pragmatic.  First,  many  health-related
problems cannot be studied under controlled laboratory conditions. The major reasons include
our limited ability to create suitable models of human ‘disease’ in experimental animals, ethical
concerns about causing disease and suffering in humans, and the cost of studying diseases in
their natural hosts (humans and other animals) under laboratory conditions.  Most importantly,
though, if we want to understand the complex web of relationships that affects humans, then we
must study them in their  ‘natural’ state  (ie where  and how we live on a daily basis).  This
requires the use of observational studies, and drawing inferences from these studies uses both
inductive and deductive reasoning. 

Philosophical  discussion  of  causal  inferences  appears  to  be  limited  mainly to  fields  where
observation (in which we attempt to discern the cause) rather than experimentation (in which
we try to discern or demonstrate the effect) is the chief approach to research. While the latter
approach is powerful, one cannot assume that the results of even the best-designed experiments
are infallible. Recent discussions have included approaches to identifying and understanding
causal  factors  in  complex  systems  (De  Vreese,  2009;  Rickles,  2009;  Ward,  2009a).
Nonetheless,  because  epidemiologists  rely  heavily  on  observational  studies  and  field
experiments for the majority of our research, a brief review of the basis for scientific inference
is in order. We pursue this review in the context that epidemiology is a pragmatic discipline,
that  our activities are tied to health promotion and disease prevention,  and that  the key for
disease prevention is to identify causal factors that we can manipulate, regardless of the level of
organisation at which they act (Susser, 1991). We will briefly present the concepts and history of
inductive and deductive reasoning in this process. More complete reviews on the philosophy of
causal inference are available elsewhere (Aiello and Larson, 2002; Weed, 2002; White, 2001). 

Inductive reasoning is the process of making generalised inferences about (in our context)
‘causation’ based on repeated observations. Simply put, it is the process of drawing conclusions
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about the state of nature from carefully recorded and analysed  observations.  Francis  Bacon
(1620)  first  presented  inductive  reasoning  as  a  method  of  making  generalisations  from
observations to general laws of nature. As 2 examples, John Snow’s observations during the
cholera outbreaks of the mid 1800s led to a correct inference about the mechanism of the spread
of the disease. Edward Jenner’s observations that milkmaids who developed cowpox didn’t get
smallpox led to his conclusion that cowpox might prevent smallpox. This, in turn, led to the
development of a crude vaccine which was found to be effective when tested in humans in
1796. These were both dramatic examples of the application of inductive reasoning to important
health  problems.  In  1843,  John Stuart  Mill  proposed  a  set  of  canons  (rules)  for  inductive
inference. Indeed, Mill’s canons might have been the origin of our concepts about the set of
component causes that are necessary or sufficient to cause disease (White, 2000). 

While  it  is  easy  to  identify  important  advances  in  human health  that  have  been  based  on
inductive reasoning, proponents of deductive reasoning have been critical of the philosophical
basis (or lack thereof) of inductive logic. David  Hume (1740) stated that “there is no logical
force to inductive reasoning”. He stated further that “we cannot perceive a causal connection,
only a series of events”.  The fact  that the sun comes up every day after  the rooster crows,
should not result  in a  conclusion that  the rooster  crowing causes  the sun to rise.  He noted
further  that  many  repetitions  of  the  2  events  might  be  consistent  with  a  hypothesis  about
causation but do not prove it true. Bertrand Russell (1872-1970) continued the discussion of the
limitations  of  inductive  reasoning  and  referred  to  it  as  “the  fallacy  of  affirming  the
consequence” (eg we might imply that if A is present, then B occurs; so if B occurs, A must
have been present). 

Deductive reasoning is the process of inferring that a general ‘law of nature’ exists and has
application in a specific, or local, instance. The process starts with a hypothesis about a ‘law of
nature’, and observations are then made in an attempt to either prove or refute that assumption.
The  greatest  change  in  our  thinking  about  causal  inferences  in  the  past  century  has  been
attributed  to  Karl  Popper,  who  stated  that  scientific  hypotheses  can  never  be  proved  or
evaluated  as  true,  but  additional  evidence  might  suggest  they are  false.  This  philosophy is
referred to as refutationism. Based on Popper’s philosophy, a scientist should not collect data
to try and prove a hypothesis (which Popper states is impossible, anyway), but that scientists
should try to disprove their  theory;  this can be accomplished with only one study.  Once a
hypothesis  has  been  disproven,  the  information  gained  can  be  used  to  develop  a  revised
hypothesis, which should once again be subjected to rigorous attempts to disprove it. Popper
argues that, only by disproving hypotheses can we make scientific progress. It is partially for
this reason that, when conducting statistical analyses, we usually form our hypothesis in the null
(ie that a factor is not associated with an outcome) and, if our data are inconsistent with that
hypothesis,  we can  accept  the  alternative  hypothesis,  that  the  factor  is  associated  with  the
outcome. Thus, the current paradigm in deductive reasoning is to conjecture and then attempt to
refute that conjecture. A major benefit of using Popper’s approach is that it helps narrow the
scope of epidemiologic studies. It suggests that we carefully review what is already known and
then formulate a few specific hypotheses that are testable with a reasonable amount of data.
This  contrasts  with the data-mining  approach,  in  which  we often  generate  long,  multipage
questionnaires and end up with dozens if not hundreds of variables to test (most without any
pre-specified  hypothesis).  In  general,  epidemiologic  investigations  which  start  with  a  clear
hypothesis are inevitably more focused and more likely to result in valid conclusions than those
based on unfocused recording and analysis of observations. 
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Two other  important  concepts  that  relate  to  scientific  inference  are  worth  noting.  Thomas
Bayes, a Presbyterian minister and mathematician, stated in 1764 that “all forms of inference
are  based  on  the  validity  of  their  premises”  and  that  “no  inference  can  be  known  with
certainty”.  He  noted  that  scientific  observations  do  not  exist  in  a  vacuum,  and  that  the
information we have prior to making a series of observations will influence our interpretation of
those  observations.  His  work  has  given  rise  to  a  branch  of  statistics  known  as  Bayesian
analysis, some of which appear in Chapter 24. 

More  recently,  Thomas  Kuhn reminds  us  that,  although  one  observation  can  disprove  a
hypothesis, the particular observation might have been anomalous and that the hypothesis could
remain true in many situations. Thus, often the scientific community will come to a decision
about the usefulness, if not the truth, of a particular theory. This is the role of  consensus in
scientific thinking. Schwabe (1993) refers to this as a paradigm shift. While hard to justify on a
philosophical basis, it plays a large role in shaping our current thinking about causes of disease. 

Philosophical  debates  on causal  inference  will  undoubtedly continue  (Robins,  2001;  White,
2001). As a summary of this section, we note that “... all of the fruits of scientific work, in
epidemiology or other disciplines, are at best only tentative formulations of a description of
nature  ...  the tentativeness  of  our  knowledge does  not  prevent  practical  applications,  but  it
should keep us sceptical and critical”  (Rothman and Greenland, 2005). While keeping these
historical  and  philosophical  bases  in  mind,  we  will  now proceed  to  an  outline  of  the  key
components of epidemiologic research. 

Fig. 1.1 Key components of epidemiologic research
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1.4 KEY COMPONENTS OF EPIDEMIOLOGIC RESEARCH 

Fig. 1.1 (previous page) summarises the key components of epidemiologic research. It might be
risky to simplify a complex discipline such as epidemiology and present it in a single diagram,
but we believe it is beneficial to have an overview of the process of evaluating associations
between exposure and outcome as a guide to the rest of the book. 

Our rationale for doing research is to identify potential causal associations between exposures
and outcomes (the centre of the diagram). In many instances, the exposures are potential risk
factors and the outcome is a disease of interest. However,  this is not the only scenario;  for
example, our outcome of interest might be a measure of quality of life, and the exposures might
include certain diseases (eg the impact of diabetes on future health).  Ultimately,  we aim to
make  causal inferences (bottom right of diagram) about relationships between exposure and
disease in the source population as a preliminary step toward developing policy and programs
to maintain health and prevent disease in the target population. 

An overview of the contents of this text is shown below:
• Chapter  1  gives  a  brief  history  of  epidemiology  and  the  scientific  process,  and

discusses  some  important  concepts  of  causation as  they  relate  to  epidemiologic
research. 

• Field research starts with an overall  study design and the main observational study
types are discussed in Chapters 7–10, with controlled trial designs being presented in
Chapter 11. In all studies, it is important to identify the target population and obtain
our  study  group from the  source  population in  a  manner  that  does  not  lead  to
selection bias. Sampling is discussed in Chapter 2, and selection bias in Chapter 12. 

• Once we have identified our study subjects, it is necessary to obtain data on exposure
variables,  extraneous variables,  and the outcome in a manner that does not lead to
information bias (Chapter 12). Two important tools that are used in that process are
questionnaires (Chapter 3) and diagnostic and screening tests (Chapter 5). 

• In  order  to  start  the  process  of  establishing  an  association  between  exposure  and
outcome, we need to settle on a measure of disease frequency (Chapter 4) and select
a  measure of association (Chapter 6) that fits the context. In many cases, the study
design will determine the measures that are appropriate.

• Confounding bias is a major concern in observational studies, and the identification
of factors that should be controlled as confounders is featured in Chapter 13, along
with a variety of techniques to prevent this bias. 

• With our data in hand, we are now able to begin to model relationships with the intent
of  estimating  causal  effects  of  exposure  (Chapter  13).  Individual  chapters  are
dedicated to the analyses appropriate for outcomes that are continuous (Chapter 14),
dichotomous (Chapter 16),  nominal/ordinal (Chapter 17),  count (Chapter 18) and
time-to-event  data (Chapter  19).  Chapter  15 presents  some general  guidelines  on
model-building techniques that are applicable to all types of model. 

• In epidemiologic research, we often encounter clustered or correlated data, and these
present major challenges in their analyses. Chapter 20 introduces these, while Chapters
21  and  22  focus  on  mixed  (random  effects)  models  for  continuous  and  discrete
outcomes. Chapter 23 focuses on the specific issue of analysing repeated measures
data.

• In  Chapter  24,  we  introduce  Bayesian  analysis. The  Bayesian  approach  formally
incorporates  the  degree  of  certainty  we  hold  about  a  hypothesis before  we  see
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additional  data  (prior  probability).  It  then  modifies  this  based  on  the  information
gained from new data to update the prior and obtain new (posterior) estimates about
the certainty of that hypothesis. 

• Chapters  25  and  26  present  the  basics  of  geographical  information  systems and
spatial statistics that we use in epidemiology. These fields have developed a number
of unique approaches that are useful in the study of diseases in populations. 

• Chapter  27  describes  infectious  disease  epidemiology. The  ability  of  the  living
agent(s)  to spread from subject  to subject  creates  ‘dependencies’  (correlations)  and
other phenomenon such as herd immunity that must be accounted for in our research
efforts.

• Systematic reviews and assessments of the literature in the form of meta-analyses are
becoming increasingly important and are introduced in Chapter 28. 

• Not all studies allow us to collect data on exposures and outcomes at the individual
level,  and  yet  there  is  much that  we  can  learn  by studying  disease  in  groups  (eg
families, villages, cities). Thus, ecologic studies are introduced in Chapter 29. 

• Finally,  we  complete  the  text  with  Chapter  30,  which  provides  a  ‘road  map’  for
investigators starting into the analysis of a complex epidemiologic dataset. 

With this background, it is time to delve deeper into this discipline called epidemiology. And at
the outset it is important to stress that epidemiology is a biological discipline that incorporates
social science theory and methods, and relies heavily on quantitative (statistical) methods for its
research  methodology.  Epidemiologists  focus  on  the  relationships  (eg between  micro-
organisms,  toxic agents,  lifestyle,  nutrition,  environment,  physiological  factors,  and health),
rather than the entities themselves which are the remit of other disciplines. The integration of
these  facets,  with  a  clear  understanding  of  epidemiologic  principles  makes  for  successful
epidemiologic  research.  To help  meet  this  goal,  this  book  is  divided  roughly  equally  into
chapters  dealing with epidemiologic  principles and study design,  and chapters  dealing with
quantitative methods.

1.5 SEEKING CAUSES 

De Vreese (2009) noted: “The true subject matter of epidemiologic practice and of textbooks of
epidemiology is research design and methods for disentangling causes and effects”. In other
words, we need to identify causes of health and disease in populations. That might seem like a
simple enough task, but it is, in fact, complex. Here we want to focus on what a cause is and
how we might best determine whether a factor is a cause. For practical purposes, a cause is any
factor that produces a change in the severity or frequency of the outcome. Some prefer to
separate biological causes (those operating within individuals) from population causes (those
operating  at  or  beyond  the  level  of  the  individual).  For  example,  infection  with  a  specific
microorganism could be viewed as a biological cause of disease within individuals, whereas
lifestyle, nutrition, or other factors that act at the group level—or beyond (eg weather)—and
affect whether or not an individual is exposed to the microorganism, or affect the individual’s
susceptibility to the effects of exposure, would be deemed as population causes. We recognise
that  whereas  disease  occurs  in  individuals,  “epidemiology deals  with groups  of  individuals
because  the  methods  for  determining  causality  require  it”  (De  Vreese,  2009).  Vineis  and
Kriebel  (2006) review concepts of causality “from Koch to Rothman”. Further, as noted, it is
vital that  we include social  as well  as biological  factors  in our study of health and disease
(Berkman, 2009; Kaplan, 2004).
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In searching for causes, we stress a holistic approach to health. The term holistic might suggest
that we try to identify and measure every suspected causal factor for the outcome of interest.
Yet, clearly we cannot consider every factor in a single study. Rather, we place limits on the
portion of the ‘real world’ we study and, within this, we constrain the list of factors we identify
for  investigation,  using  the  current  state  of  knowledge  plus  our  specific  objectives  and
hypotheses. Being pragmatists, we prefer to identify causal factors that we can manipulate in
order to help prevent disease, while recognising that some non-manipulatable factors also may
be crucial  to our understanding of disease patterns in populations. As noted, usually extant
knowledge and current  belief  are the bases  for  selecting factors  for  study.  Because  of this,
having a concept of causation and a causal model in mind can help clarify the data needed, the
key measures of disease frequency and the interpretation of associations between exposure and
disease. We also need to differentiate between a conceptual or metaphysical view of causation
which we develop at the individual level (eg counterfactual states) and the techniques we use to
achieve our objectives at the population level (Hernan, 2004; Hernan and Robins, 2006a). We
begin with an overview of 2 important models of causation.

1.6 MODELS OF CAUSATION 

Given  our  belief  in  multiple  causes  of  an  effect  and  multiple  effects  of  a  specific  cause,
epidemiologists have sought to develop conceptual models of causation. Usually, however, the
actual causal model is unknown and the statistical measures of association we use reflect, but
do not explain, the number of ways in which the exposure might cause disease. Furthermore,
although our main interest in a particular study might focus on one exposure factor, we need to
take into account the effects of other causes of the outcome that are related to the exposure (this
process is usually referred to as control of confounding) if we are to learn the ‘truth’ about the
potential causal effect of our exposure of interest. 

Because  our  inferences  about  causation  are  based,  at  least  in  the  main,  on  the  observed
difference in outcome frequency, or severity, between exposed and unexposed subjects, we will
continue our discussion by examining the relationship between a postulated causal model and
the resultant, observed, outcome frequencies. We begin with a description of the component-
cause model followed by the causal-web model of causation. 

1.6.1 Component-cause model 

The  component-cause  model is  based  on  the  concepts  of  necessary  and  sufficient  causes
(Rothman, 1976). In this model, a  necessary cause is one without which the disease cannot
occur (ie the factor will always be present if the disease occurs). In contrast, a sufficient cause
always produces the disease (ie  if the factor is present, the disease invariably follows). Both
experience and formal research have indicated that very few exposures (factors) are sufficient
in and of themselves, rather different groupings of factors combine and become a sufficient
cause. Thus, a component-cause is one of a number of factors that, in combination, constitute a
sufficient cause. The factors might be present concomitantly, or they might follow one another
in a temporal chain of events. In turn, when there are a number of chains with one or more
factors  in common, we can conceptualise the web of  causal  chains  (ie a  causal-web).  This
concept will be explained further under the causal-web model (Section 1.6.2).
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As an example of component causes, in Table 1.1 we portray the causal relationships of 4 risk
factors for childhood respiratory disease (CRD) (Chibuk et al, 2010; Korppi et al, 2003). These
include: 

• a bacterium, Streptococcus pneumoniae (STREP)
• a virus, the respiratory syncytial virus (RSV) 
• fluctuating damp cool/cold weather (called Stressors), and
• other bacteria such as Mycoplasma pneumoniae (MP). 

Table 1.1 Four hypothetical sufficient causes of childhood respiratory disease (CRD) 

Sufficient causes

Component causes I II III IV

STREP + +

RSV + +

Stressors + + +

Other organism (eg MP) +

In  this deterministic portrayal,  there are  4 sufficient  causes,  each one containing 2 specific
components; we assume that the 4 different, 2-factor combinations each form a sufficient cause.
Hence, whenever these combinations occur in the same child, respiratory disease will occur (as
mentioned, one can conceive that these factors might not need to be present concomitantly, they
could be sequential exposures in a given child). Some children could have more than 2 causal
factors (eg STREP, RSV, Stressors), but the dual exposure to any 2 of the 3 factors would be
sufficient to produce CRD. Note that, in our model, we have indicated that only some specific
2-factor combinations act as sufficient causes; STREP is a component of 2 of the sufficient
causes, as is RSV, MP is present only in one sufficient cause. Because no factor is included in
all sufficient causes, there is no necessary cause in our model of CRD. Obviously, if you have
not  guessed  by  now,  you  should  be  aware  that  the  number  of  causal  factors  and  their
arrangement into sufficient causes, as presented here, are purely for the pedagogical purposes of
this example. 

Now, against this backdrop of causal factors, we will assume that we plan to measure only the
STREP and RSV components  (ie obtain  nasal  swabs  for  culture  and/or  blood samples  for
antibody titres) in our research. Nonetheless, we are aware that, although unmeasured, the other
components  (Stressors  and/or  MP)  might  operate  as  components  of  one  or  more  of  the
sufficient causes. In terms of the 2 measured factors, we observe that some children with CRD
will  have both factors,  some will  have only STREP, and some only the RSV components.
Because of the causal effects of the other unmeasured factors (eg Stressors and MP forming
sufficient cause IV), there will be some children with CRD that have neither of the 2 measured
factors. 

The effect of risk factor prevalence on disease risk 
Two benefits of thinking about causation in this manner are that it helps us understand how the
prevalence and distribution of causal factors drives the observed frequency of disease and the
strength of association between an exposure and the disease. In addition, it demonstrates how
the prevalence of a co-factor can impact the strength of association that epidemiologists might
find between the exposure factor and the outcome of interest. For example, assume that we are
interested  principally  in  the  strength  of  association between  infection  with STREP and the
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occurrence of CRD (the various measures of association are explained in Chapter 6). According
to our model of causation in Table 1.1, STREP produces disease when present with RSV, but
also without RSV when combined with Stressors. What might not be apparent, however, is that
changes in the prevalence of the virus or of the  Stressors (since they are components of the
same sufficient cause) can change the strength of association between STREP and CRD. 

To demonstrate these points, note that the 2 populations shown in Examples 1.1 and 1.2 are
based on the component-cause model shown in Table 1.1. We include only 3 of the 4 causal
factors—STREP, RSV, and  Stressors—for simplicity. The frequency of each factor indicated
above  the  body  of  the  tables  in  Examples  1.1  and  1.2  is  the  same  {p(Stressors)=0.4  and
p(STREP)=0.6}, except that the frequency of RSV is increased from 30% in Example 1.1 to
70% in Example 1.2. In our examples, all 3 factors are distributed independently of each other;
this is not likely true in the field, but it allows us to examine the effect of single factors without
concerning  ourselves  with  the  biasing  (ie confounding)  effects  of  the  other  factors.
Furthermore, to keep the example simple, we have not shown cases of CRD arising from the
Stressors-MP pathway. 

If infection with STREP is our exposure factor of interest, it would be apparent that some but
not all children with STREP develop CRD, and that some children without STREP also develop

Example 1.1 Causal complement prevalence and disease risk—Part I

The number and risk of CRD cases produced by 2 measured and 1 unknown exposure factors assuming
joint  exposure  to  any 2 factors  is  sufficient  to  cause the disease are  shown  below.  Streptococcus
pneumoniae  (STREP) is the exposure of interest (total population size is 10,000;  p(Stressors)=0.4;
p(STREP)=0.6; p(RSV)=0.3).

Measured factors

Unmeasured
Stressors RSV STREP

Population
number

Number
diseased

1 1 1 720 720

1 1 0 480 480

1 0 1 1680 1680

1 0 0 1120 0

0 1 1 1080 1080

0 1 0 720 0

0 0 1 2520 0

0 0 0 1680 0

Risk of disease among the STREP+ 3480/6000 = 0.58

Risk of disease among the STREP- 480/4000 = 0.12

Risk difference in STREP+ 0.58 - 0.12 = 0.46

Risk ratio if STREP+ 0.58/0.12 = 4.83
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CRD. Thus, STREP infection by itself  is  neither  a necessary nor sufficient  cause of  CRD.
Similarly for  RSV, only some RSV-infected  children develop CRD, while some RSV-non-
infected children also develop CRD. In order to ascertain if the occurrence of CRD is associated
with STREP exposure, we need to measure and contrast the risk of CRD among the exposed
(STREP+) versus the non-exposed (STREP-). In Example 1.1, these frequencies are 58% and
12%, respectively, and we can express the proportions relative to one another using a statistic
called the risk ratio, which is 58/12=4.83. This means that the frequency of CRD is 4.83 times
higher in STREP+ children than in STREP- children. We could also measure the association
between  STREP and CRD using  a  risk  difference  (RD);  in  this  instance,  the  RD is  0.58-
0.12=0.46 or 46%. These measures are consistent with STREP being a cause of CRD, but do
not prove the association to be causal.

In Example 1.2, the frequency of RSV is increased, and the risk ratio for STREP+ children
becomes smaller (2.93) and the RD larger (0.54 or 54%). Thus, we might be tempted to think
that  exposure  to  STREP+ in  some sense  acts  differently  from a  causal  perspective  in  one
example to another, yet the underlying causal relationship of STREP exposure to the occurrence
of CRD has not changed. The difference in the measure of association is due to a change in the
frequency of the other components of the sufficient causes, namely RSV in this example. The
additional  factors  that  can combine with the factor  of interest  to form sufficient  causes  are

Example 1.2 Causal complement prevalence and disease risk—Part II

The number  and  risk  of  CRD cases  produced by 2 measured  and  one  unknown  exposure  factors
assuming  joint  exposure  to  any  2  factors  is  sufficient  to  cause  the  disease  are  shown  below.
Streptococcus  pneumoniae (STREP)  is  the  exposure  of  interest  (total  population  size  is  10,000;
p(Stressors)=0.4; p(STREP)=0.6; p(RSV)=0.7).

Measured factors

Unmeasured
Stressors RSV STREP

Population
number

Number
diseased

1 0 1 720 720

1 0 0 480 0

1 1 1 1680 1680

1 1 0 1120 1120

0 0 1 1080 0

0 0 0 720 0

0 1 1 2520 2520

0 1 0 1680 0

Risk of disease among the STREP+ 4920/6000 = 0.82

Risk of disease among the STREP- 1120/4000 = 0.28

Risk difference in STREP+ 0.82 - 0.28 = 0.54

Risk ratio if STREP+ 0.82/0.28 = 2.93
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called  the  causal  complement to  the  exposure  factor.  Here,  with  sets  of  2  factors  being
sufficient causes, the causal complements of STREP are RSV or  Stressors, but not both (the
latter  children  would  have  developed  CRD from  being  stressed  and  having  RSV,  even  if
STREP was absent). Although some children have all 3 component causes, our theory says that
once a child is infected with any two of them, CRD will occur.

In  general,  we  note  that  when the  prevalence  of  causal  complements  is  high,  measures  of
association between the factor of interest and the outcome that are based on risk differences will
be increased (especially when the prevalence of exposure is low) (Pearce, 1989). Some, but not
all,  ratio  or  relative  measures  of  association  could  have  the  opposite  relationship  with  the
prevalence  of  causal  complements.  In  any  event,  although  the  causal  mechanism  remains
constant, the strength of association will vary depending on the distribution of the co-factors,
many of which we do not know about, or remain unmeasured, for practical reasons. As will be
discussed, strength of association is one criterion of causation, but it is not a fixed measure and
we need to bear the phenomenon just discussed in mind when making causal inferences.  In
addition  to  the  above  observations,  you  might  verify  that  the  impact  of  RSV on CRD as
measured by the risk ratio would be the same (RR=3.2) in both Examples 1.1 and 1.2, even
though its (ie RSV) prevalence has changed. Although this is only one example, we could state
the general rule that the strength of association for a given factor depends on the frequency of
the causal  complements  but,  providing the  distribution of  the other  causal  factors  is  fixed,
changes in the prevalence of the factor of interest do not alter its strength of association with the
outcome. In the unlikely event that we could measure all the co-factors including Stressors and
the other causal component factors, the picture would change considerably. For example, if the
Stressors were the only other causes of CRD, it  would be obvious that,  in the non-stressed
children, CRD occurred only when both STREP and RSV were present together. This would be
clear  evidence  of  biological  synergism,  a  feature  that  is  detected  numerically  as  statistical
interaction (ie the joint effect of the 2 factors would be different than the sum of their individual
effects—in  this  instance,  they  would  have  no  ‘individual’  effect,  only  a  joint  effect)  (see
Chapter 13 for a discussion of interaction and for more advanced reading see VanderWeele and
Robins (2007c)). In weather-stressed children, all children exposed to STREP or RSV would
get CRD, but there would be no evidence of interaction because 100% of singly as well as
jointly exposed stressed children would develop CRD. 

Because changes in the prevalence of the ‘unknown’ or ‘unmeasured’ factor(s) (eg MP) will
alter the magnitude of effect for the measured exposure, we accept that we need to think of
measures of association as ‘population specific’. Only after several studies have found a similar
magnitude of effect in different populations should we begin to think of the effect as in some
sense a biological constant. Further, as shown in our examples, even if the cases have arisen
from an assumed model that incorporates biological synergism, because of the distribution of
the unknown causal  factors,  interaction  (indicating  synergism)  might  not  be  evident  in  the
observed  data  (VanderWeele  and  Robins,  2007c). Flanders  (2006) and  VanderWeele  and
Hernan  (2006) discuss the  component-cause model and its relationship to the counterfactual
model in a more complex multifactorial setting than we describe here. 

So far,  we have pursued the component-cause  model  as deterministic.  However,  in reality,
because  we  virtually  never  know all  of  the  component  causes  of  a  disease,  there  will  be
circumstances where it appears that a factor is causal and other circumstances where it appears
to have no effect. The statistical models we use to identify possible component-causes average
these effects across individuals. Indeed, it is possible that a factor which appears to elevate the
risk of disease in a population can have no effect,  or a sparing effect,  on some individuals
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within their population (Rothman and Greenland, 2005). Because of this, we need to stress that
epidemiological measures of association are for groups rather than for individuals (this was also
stressed  in  early  writings  on  epidemiological  methods  by  McMahon  and  Pugh  in  1970).
Koopman and Lynch  (1999) indicated the need to broaden the scope of the sufficient cause
model in individuals to include the effects of interactions between individuals and a population-
based approach, particularly when studying infectious diseases. Diez-Roux (2007) extends this
approach  to  integrate  social  and  biological  risk  factors  in  a  systems  approach  to  disease
prevention  in  populations. Traditionally,  social  risk  factors  are  deemed  to  be  very  indirect
causes of disease through their impact on more proximate biological  causes.  In  her view, a
systems approach would not investigate individual risk factors (or individuals) one at a time,
but  would  investigate  the  behaviour  and  relationships  of  multiple  elements  in  a  particular
population system while it is functioning. In this regard, Reiber (2009) discusses the advantages
of combining epidemiology and evolutionary theory.

Although the component-cause model is somewhat simplistic, we believe it has great merit in
determining which factors to include in the study of a specific disease. As noted, clues about the
potential  influence  of  a  factor  from  studies  in  basic  biological  sciences,  or  from  other
epidemiologic studies identifying potential causal factors, are more useful than an unfocused
data-mining approach in which factors are studied merely because we already have data on
them, or because the data are easily available. Nonetheless, by “studying disease causation in
large groups makes us ... able to answer the question of what causes diseases without knowing
much about the precise biological and chemical mechanisms involved” (De Vreese, 2009).

Proportion of disease explained by risk factors
Using the concepts of necessary and sufficient causes, we also gain a better understanding of
how  much  disease  in  the  population  is  attributable  to  that  exposure  (or  alternatively  the
proportion of disease that we could prevent by completely removing the exposure factor). 

As explained in Chapter 6, this is called the population attributable fraction (AFp). For example,
if we assume that the prevalence of each of the 4 sufficient causes from Table 1.1 is as shown in
Table 1.2,  then, if  we examine the amount of disease that  can be attributed to each of  the
component causes, it appears that we can explain more than 100% of the disease. Of course, we
really can’t; it is simply because the components are involved in more than one sufficient cause
and we are double-counting the role that each component cause plays as a cause of the disease. 

Table 1.2 Hypothetical sufficient causes of childhood respiratory disease and relationship
to population attributable fraction 

Sufficient causes

Component causes I II III IV AFp (%)

STREP + + 75

RSV + + 60

Stressors + + + 55

Other organism (eg MP) + 10

Prevalence of sufficient cause (%) 45 30 15 10
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Another important observation is that when 2 or more factors are both essential for disease
occurrence,  it  is difficult  to attribute a specific proportion of the disease occurrence to any
single causal factor. For example, in children that had all 3 factors—STREP, RSV and Stressors
—it would be impossible to decide the unique importance of each factor. Our model indicates
that once any 2 of the  3 were present, then CRD would occur and the presence of the third
factor  is  of  no  importance  causally;  thus  ‘timing  is  everything’.  Certainly,  because  the
frequency of co-factors can vary from subgroup to subgroup, as with relative risk measures, one
should not think of AFp as being a ‘universal’ measure of importance.

Whereas the AFp is an extremely useful measure of importance, we also need to be aware of the
prevention paradox (De Vreese, 2009). As an example, suppose that the AFp for a factor (eg a
vaccine)  is  50%. This  would suggest  that  if  the prevalence  of  the disease  in  unvaccinated
children was 6%, and if we fully vaccinated the population, only 3% of the subjects would
develop the disease. Indeed, this is an important reduction for the population. However, 94% of
the subjects we vaccinated would not have developed the disease if left unvaccinated, and half
of those who would have developed the disease in the absence of vaccination developed it
anyway despite being vaccinated. Thus, when proposing to implement our findings, we need to
be aware of the costs and the possible side-effects of the proposed policy or program. The
average person in the target population might not perceive the same benefits as we do.

1.6.2 Causal-web model

A second way of conceptualising how multiple factors can combine to cause disease is through
a causal web (Example 1.3) consisting of multiple indirect and direct causes  (Krieger, 1994).
This concept is based on a series of interconnected causal chains or web structures; in a sense, it
takes the factors portrayed in the sufficient-cause approach and links them temporally. In this
model, a  direct cause has no known intervening variable between that factor and the disease
(diagrammatically,  the  exposure  is  adjacent  to  the  outcome).  Direct  causes often  are  the
proximal causes emphasised in therapy, such as specific microorganisms or toxins. In contrast,
an  indirect cause is one in which the effects of the exposure on the outcome are mediated
through one or more intervening variables. It is important to recognise that, in terms of disease
control, direct causes may be no more valuable than indirect causes. In fact, many large-scale
control efforts are based on manipulating indirect rather than direct causes. Historically,  this
was also true: whether it was John Snow’s work on cholera control through improved water
supply,  or  preventing  SIDs  by  not  placing  babies  in  the  prone  position  to  sleep. In  both
instances, disease control was possible before the actual direct causes (Vibrio cholerae and  a
yet-to-be-discovered pathophysiological event) were known, and the control programme was
not focused directly on the proximal cause (as in Goldberger’s suggestions to prevent pellagra). 

One possible web of causation of respiratory disease (CRD) based on the 3 factors in Examples
1.1  and  1.2  might  have  the  structure  shown  in  Example  1.3.  The  causal-web  model
complements the component-cause model, but there is no direct equivalence between them. As
we show in Chapter  13,  formal  causal-web diagrams are  useful  to  guide  our analyses  and
interpretation of data  (VanderWeele et al, 2008), and can be related to the component cause
model (VanderWeele and Robins, 2007a). Our example model indicates that Stressors make the
child  susceptible  to  STREP,  RSV,  and  MP;  that  RSV increases  the  susceptibility  to  both
STREP and MP, and that RSV can ‘cause’ CRD directly (this might be known to be true, or it
might reflect the lack of knowledge about the existence of an intervening factor such as MP
which is missing from the causal model). The diagram also indicates that STREP is an indirect
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cause of CRD via MP, as well as being a direct cause of CRD. If this causal model is true, it
suggests that we could reduce CRD occurrence by removing an indirect cause such as stress,
even though it has no direct effect  on CRD. We could also control CRD by preventing the
action of the direct causes STREP, RSV, and MP (eg by vaccination). All things being equal, an
RSV vaccine would be particularly effective, because of its direct and indirect effects on CRD.
As mentioned, this model claims that Stressors do not cause CRD without STREP, RSV, or MP
infection and thus suggests a number of 2- or  3-factor groupings of component causes into
sufficient causes. However, it does not explicitly indicate whether some of the proximal causes
can produce disease in and of themselves (ie it is not apparent, from our diagram whether RSV
can cause CRD by itself or if it needs an additional unmeasured factor).  From the previous
examples, the outcome frequencies in RSV-infected and non-infected children will depend on
the distribution of the other component causes and whether, in reality,  it can be a sufficient
cause by itself. In Section 1.8, we will discuss the relationship of the causal structure to the
design of our studies and as a guide to the correct approach in our analyses and interpretation of
the study data. 

1.7 COUNTERFACTUAL CONCEPTS OF CAUSATION FOR A SINGLE EXPOSURE

Currently,  the  most  widely  accepted  conceptual  basis  for  determining  causation  in
epidemiology  is  called  the  counterfactual or  potential  outcomes  model  (Greenland,  2005;
Hofler, 2005a). In a sense, it reflects the way many of us would make causal inferences and can
be the basis for forming clearly defined questions for future research. Both Greenland (2005)
and  Hernan  (2004) give  examples  (through  hypothetical  interventions)  of  the  specificity
required in counterfactual  questions if we are to make progress in resolving complex health
problems. 

The following discussion closely follows that of Hernan (2004). Suppose we are interested in
whether  or  not  a  vaccine  would  protect  against  a  disease  (eg CRD),  while  having  some
concerns that the side-effects of the vaccine might be harmful. If we saw a vaccinated subject
who developed the disease, we might begin to think that the exposure (or its side-effects) either
failed to prevent, or even caused, the disease in that subject. If we imagined the same subject in
the  same  period  except  he/she  was  not  vaccinated,  this  would  be  referred  to  as  the
counterfactual state. Obviously, this individual does not exist, but it is what we would ideally
like to observe in order to make valid causal inferences about the effect of vaccination.  If the
disease did not occur in this hypothetical counterfactual individual, we would surely conclude
that the exposure (vaccination) had caused the observed disease in that individual. Conversely,
if the disease occurred in this non-exposed counterfactual individual, we likely would conclude
that the vaccination was not a cause of the disease in that subject (since the disease occurred

Example 1.3 A causal-web model of CRD based on component causes from Example 1.1

MP
Stressors

RSV

CRD

STREP
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regardless of exposure). Vaccination did not alter the outcome in that person. We can make this
thought process more formal by denoting the potential outcome in exposed subjects as DE+, and
the potential outcome in the same subjects if they were unexposed as DE-. Our thought process
concludes that there is a causal effect in that subject if DE+ ≠ DE-. Note that a causal exposure
need not be causal in all individuals, principally because the other factors needed to complete a
sufficient  cause  are  absent.  Further,  in  reality,  we  cannot  determine  a  causal  effect  at  the
individual level because only one exposure level is observed and the data relating to what might
have happened at the other exposure level (ie the counterfactual state) are missing.

In Table 1.3, we summarise the observed exposure, actual disease outcome and counterfactual
outcomes  in  20  subjects  based  on  Hernan  (2004).  Here,  ‘i’  is  the  subject  counter, C a
confounder,  E the  exposure,  and  D the  outcome.  (See  Chapter  13  for  a  discussion  of
confounding.) A 1 indicates the presence, and 0 the absence of the factor or the outcome. In the
2 columns on the right side of Table 1.3 are the counterfactual outcomes for the counterfactual
exposed  and  unexposed  populations.  We have set  this  example  up  such  that  the  exposure
(vaccination) causes (or would have caused) the disease in 3 individuals (subjects 7, 9, and 11)
and prevents (or would have prevented) it in 3 others (subjects 1, 12, and 18). It had no effect in
the remaining 14 individuals (their outcome did not change under the counterfactual  state).
Recall from our discussion of component causes that these effects (if real) could be due to the
presence or absence of other component causes. 

If  we expand our  thought  process  to  the population level,  we could compare  the  potential
frequency  of  disease  in  the  population  if  all  of  its  members  were  exposed,  p(DE+),  to  the
potential  frequency of disease in that same population if none of its members was exposed
p(DE-) (recall  again that  because  the subject  might  be missing a key component cause,  not
everyone would get the disease if exposed, and that because of other unknown sufficient cause
complexes,  not  everyone  would  be  disease-free  if  unexposed  to  a  specific  factor  such  as
vaccination).  We  would  infer  that  there  is  a  causal  effect  in  the  population  if  there  is  a
difference  in counterfactual  means  p(DE+)-p(DE-)≠0. An equivalent  measure of  causal  effect
based on relative frequencies  is  p(DE+)/p(DE-)≠1. In  our example, since both ΣDE+ and ΣDE-

equal 10, there is no causal effect in the population. We should note that in the counterfactual
(or potential outcome) setting, our inference about cause is made by comparing the potential
outcomes  in  the  exact  same  subjects  under  different  exposure  scenarios.  Although these
population measures are not directly observable, unlike at the individual level, we can estimate
them under specific conditions; ie through the use of randomisation in the perfect experiment.

In a perfect experiment in which we randomly assign subjects to receive vaccination or not,
both the vaccinated and unvaccinated groups exist in the same population at the same time so
we can assume that all things are equal except for the fact of vaccination (this might not be the
best design for a vaccination study but bear with us for this example). Furthermore, whatever
the disease frequency is in each group, we can assume that these would not change if the groups
were switched (ie assignment  to vaccination was reversed—either  deliberately or by error).
This  creates  the  condition of  exchangeability  and is  the closest  estimate  we have  of  the
counterfactual  outcomes.  Thus,  in  our  perfect  trial  we  can  calculate  a  causal  effect  by
contrasting the disease frequency in 2 similar (exchangeable) but different groups of subjects,
one of which is exposed and one of which is not.  The observed probability (or risk) of the
outcome in the  exposed is  defined as  p(D+|E+) and  p(D+|E-)  in  the  non-exposed.  In  our
perfect trial, we would observe p(D+|E+)=p(D+|E-)=0.5 and conclude that there is no causal
effect  of  vaccination.  Although  the  perfect  trial  mimics  the  counterfactual,  the  observed
risks/rates in a real trial would depend on data  from two different subsets  (the exposed  and 
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Table 1.3 Observed and counterfactual results of an exposure (E) and disease (D)

Subject Confounder
Actual

Exposure (E)
Actual

Outcome (D)
Counterfactual 

Results

(i) (C) DE=1 DE=0

1 1 0 1 0 1

2 0 0 1 1 1

3 1 1 1 1 1

4 1 1 0 0 0

5 1 1 1 1 1

6 1 1 1 1 1

7 0 0 0 1 0

8 0 1 1 1 1

9 0 0 0 1 0

10 0 1 0 0 0

11 1 1 1 1 0

12 1 0 1 0 1

13 1 1 1 1 1

14 0 1 0 0 0

15 1 1 1 1 1

16 0 0 0 0 0

17 1 0 0 0 0

18 1 1 0 0 1

19 0 1 0 0 0

20 1 1 0 0 0

Totals 12 13 10 10 10

p(DE=1=1)=0.5 p(DE=0=1)=0.5

Observed p(D+|E+)=7/13=0.54

Observed p(D+|E-)=3/7=0.43

E=1 E=0

p(D+|C+) 6/9=0.67 2/3=0.67

p(D+|C-) 1/4=0.25 1/4=0.25
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unexposed subjects) of the target population. Given a lack of compliance, measurement errors,
and other biases, our observed disease frequencies in a real trial reflect ‘associations’ and not
necessarily causal effects. 

Now, in the absence of a perfect trial, our practical approach to estimating the causal effect is to
use  an  observational  study and,  in  this  instance,  p(D+|E+)=7/13  (0.54)  subjects  who were
actually exposed developed the disease, but  p(D+|E-)=3/7 (0.43) actually unexposed subjects
developed the disease. Thus, the association measure from our observational  study does not
equal the causal effect in this instance (and in general we will try and remind ourselves that
association does not necessarily imply causation throughout this text). 

So, what accounts for the fact that the observed risks do not equal the counterfactual risks?
And, given this, how do we design studies to obtain data suitable for causal inferences?  The
problem is that our comparison group (E-) is not a good counterfactual group, in that it differs
systematically from the E+ group in a manner that alters the risk of the outcome. In Table 1.3,
we note that in the E+ group 9/13=0.69 of the individuals were C+, but in the E- group, only
3/7=0.43 were  C+. Consequently, the groups were not exchangeable. Recall that in a perfect
trial  with  complete  randomisation,  the  confounding  factor  C would  have  been  distributed
equally  in  the  vaccinated  and  unvaccinated  groups,  and  hence  would  not  bias  the  disease
frequency. 

Thus, as shown in this example, a major issue in our use of observational studies is that the
exposed and unexposed groups of subjects are rarely exchangeable. The most likely reason for
this difference is the presence of other factors that are related to the exposure and the disease (in
our example, the C+ and C- subjects might have different exposure levels to infection and this
impacts on disease occurrence). These factors are called confounders and the phenomenon of
confounding  will  be  explored  in  detail  in  Chapter  13.  The  presence  or  absence  of  this
confounding factor is shown in the second column of Table 1.3. Given these data, we note that
among those possessing the confounding factor (eg being exposed to a high risk of infection),
75% were exposed (ie vaccinated) whereas among those not exposed to a high risk of infection,
only 50% were exposed (vaccinated). 

We will delay the discussion of techniques to control confounding until Chapter 13, and at this
point  only introduce  the  fact  that  there  are  a  number  of  ways  of  trying  to  ensure  that  the
observed risks would equal the counterfactual risks. One way is to view the problem as trying
to uncover the mechanism behind the allocation of exposure, as stated by  Rubin  (1991). For
example,  the  observed  data  could  have  resulted  from  a  controlled  experiment  where  the
researchers decided to vaccinate a higher percentage of high risk than low risk study subjects.

This approach leads to the development of propensity scores and proportional  weighting of
stratum-specific  outcome  frequencies  to  obtain  unbiased  estimates  of  causal  parameters
(Hernan and Robins, 2006a). Related to this is the use of standardised risks/rates  to adjust for
the distribution of exposure in the different levels of the confounder(s) (Sato and Matsuyama,
2003). Other researchers have developed methods to prevent confounding based on ‘instrument
variables’  (Hernan  and  Robins,  2006b). The  traditional  analytic  approach  has  involved
stratifying the data based on the levels of the confounder(s) and using adjusted measures of
association (risk ratios and odds ratios) initially developed by Mantel and Haenszel (1959) (see
Chapter 13 for details). Here, we note that the risks of disease are the same in the exposed and
unexposed subjects once the subjects are divided into those with a high risk of infection and
those  with  a  lower  risk  of  infection. In  order  to  make  valid  causal  inferences,  a  major
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underlying assumption of all of these methods is that there is no residual confounding given the
control of (adjustment for) measured confounders—this produces ‘exchangeability’ within the
strata formed by the combinations of measured confounders.

1.8 EXPERIMENTAL VERSUS OBSERVATIONAL EVIDENCE OF CAUSATION

Experimental evidence 
Traditionally,  the  gold  standard  approach  to  identifying  causal  factors  is  to  perform  an
experiment. In most 2-arm experiments (see Chapter 11), we randomise some people (or other
units of concern) to receive the factor and some to receive nothing, a placebo, or a standard
intervention (treatment). After a suitable time period, we then assess the outcome in the study
subjects and proceed to assess if there are differences in the outcome between the 2 groups.  As
an alternative design, we might more nearly approach the counterfactual state by using a cross-
over design in which subjects are randomly assigned to receive the treatment of interest, or
serve as controls, in the first period of the experiment. After a suitable ‘wash-out period’, the
subjects then receive the other level of the treatment (ie if they received the treatment in the first
period they would receive the placebo in the second and vice-versa). This allows the subject to
serve  as  their  own  control,  as  in  the  counterfactual  setting. In  both  of  these  experimental
designs,  the  exposure  (now denoted  as  X)  explicitly  precedes  the  outcome (denoted  as  Y)
temporally, and all other variables (known and unknown) that do not intervene between X and
Y are made independent of X through the process of randomisation (this means that extraneous
variables do not confound or bias the results we attribute to the exposure X). This independence
of all factors from the treatment X produces exchangeability in the treatment groups; that is, the
same outcome would be observed (except for sampling error) if the assignments of treatment to
study subjects had been reversed (ie if the treated group had been assigned to be untreated). In
an experiment, the formal application of randomisation provides the probabilistic basis for the
validity of this assumption. Factors that are positioned temporally or causally between X and Y
are not measured and are of no concern with respect to answering the causal objective of the
trial. In these experimental contexts, exposure X would be a proven cause of outcome Y if the
value or state of Y changed following the manipulation of X. 

The measure of causation in this ideal trial is called the causal-effect coefficient, and indicates
the difference in the outcome between the ‘treated’  and ‘non-treated’ groups (ie those with
different levels of factor X). For example, if the risk of the outcome in the group receiving the
treatment is denoted  R1 and the risk in the group not receiving the treatment is  R0,  then we
might  choose  to  measure  the  effect  of  treatment  using  either  an  absolute  measure  (ie risk
difference—RD)  or  a  relative  measure  (ie risk  ratio—RR)  as  shown  in  Chapter  6.  If  this
difference is greater than what could be attributed to chance, then we could say that we have
proved that the factor is a cause of the outcome event.  A key point is that all causal-effect
statements are based on contrasts of outcomes in the different treatment groups; the outcome in
the treated group cannot be interpreted without knowing the outcome in the untreated group. 

Observational evidence 
In observational studies, we estimate the difference in values of Y between subjects that happen
to have different values of X. In contrast to the experimental setting, we do not control whether
a subject is, or is not, exposed. As we have seen in Table 1.3 measures of association do not
necessarily reflect  causation. Variables related to both  X and  Y,  and which do not intervene
between X and Y, must be controlled to prevent confounding bias and support the estimation of
causal effects. The major differences between observational studies and field experiments lie in
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the ability to prevent selection, misclassification and confounding bias, and dealing with the
impact of unknown or unmeasured factors. Thus, by themselves, observational studies produce
measures  of  association  but  cannot  ‘prove’  causation.  However,  in  the  ideal  observational
study,  with total  control  of  bias,  the  measure  of  association will  estimate  the causal-effect
coefficient. Nonetheless, in a given setting, experimental evidence is deemed to provide more
solid evidence of causality than observational  studies because,  in reality,  “To find out what
happens to a system when you interfere with it, you have to interfere with it (not just passively
observe it).” (Attributed to Box (1966) in Snedecor and Cochran (1980)). 

Limits of experimental study evidence 
Despite their advantages, performing ‘ideal’ experiments is not easy even at the best of times
(see Chapter 11) and, furthermore, many potential causal factors of interest to epidemiologists
would be difficult to study using a controlled-trial format. For example, it would be impossible
to perform the perfect experiment to answer the question of whether or not respiratory syncytial
virus causes  pneumonia in children. Laboratory studies are  useful  to demonstrate  what  can
happen when animals,  which serve as  models for  pneumonia in children,  are  exposed to  a
specific agent (eg can agent A cause outcome B), but if the circumstances are too contrived
(very large dose, challenge by an unnatural route, limited range of co-factors), laboratory results
might not be much help in deciding the issue of causation under normal, everyday conditions
for humans. 

In addition, in field trials that have an element of non-compliance, we often have to decide how
to manage  the  non-compliance  in  assessing the  role  of  the  treatment  on the  outcome and,
although any given field trial might provide more valid evidence for or against causation than
any given observational  study, it  is not uncommon for differences in results to exist among
apparently  similar  field  trials.  Hence,  despite  their  advantages,  the  ability  to  make  perfect
inferences based on field trials is illusionary. In addition, in many instances, it is impossible to
carry out experiments under conditions that even remotely resemble ‘real-world’ conditions.
Rickles (2009) has discussed the particular limitations of interpreting causal effects when using
experimental designs to intervene in complex systems. 

1.9 CONSTRUCTING A CAUSAL DIAGRAM 

Causal diagrams are helpful for displaying relationships among a number of possible causal
variables  (age,  sex,  vaccination  status  etc)  that  we wish  to  study)  as  well  as  for  deducing
statistical associations that might arise from a given set of underlying causal relationships. The
cause-and-effect relationships and correlations are best shown in a causal diagram (also called
directed acyclic graphs, or modified path models). To construct a causal diagram, we begin by
imposing a plausible biological causal structure on the set of variables we plan to investigate,
and  translate  this  structure  into  graphical  form that  explains  our  hypothesised  and  known
relationships among the variables. The causal-ordering assumption is usually based on known
time sequence  and/or  plausibility considerations.  For  example,  it  might  be  known that  one
variable  precedes  another  temporally,  or  current  knowledge  and/or  common  sense  might
suggest that it is possible for one factor to cause another (ie alter the risk of another factor), but
not vice-versa. We explain the process in Example 1.4, in which we  build on our model of
pneumonia from Examples 1.1 and 1.2. Causal diagrams are discussed further in Section 13.5.1.
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The easiest way to construct the causal diagram is to begin at the left with variables that are pre-
determined and progress to the right, listing the variables in their causal order. The variation of
these variables (those to the extreme left such as Age in Example 1.4) is considered to be due to
factors  outside  of  the  model.  The  remaining  variables  are  placed  in  the  diagram  in  their
presumed causal order; variables to the left could ‘cause’ the state of variables to their right to
change (so our diagram suggests that age could alter the risk of infection with various micro-
organisms and hence the risk of CRD. It also suggests that Age can have a direct impact on
CRD—now this seems far-fetched, but if there is an additional, but unknown, organism on the
pathway between Age and CRD, we might draw the causal arrow directly between the two. (As
an aside, this is no different than knowing that citrus fruits prevent scurvy; today we would
place vitamin C on the pathway but that would not negate the prior former direct path between
citrus fruit and scurvy.)  If it  is known or strongly believed that a variable does not cause a
change in one or more variables to its right, then no causal arrow should be drawn between
them. Once completed, if the proposed model is correct, the analyses will not only be more
informative about which variables we need to include in our study, it will also provide more
powerful analyses than approaches that ignore the underlying structure. The only causal models
to be described here are called recursive; that is, there are no causal feedback loops (if these are
believed to exist, they can be formulated as a series of causal structures). 

Suppose  the  model  is  postulated  to  assess  if  infectious  agents  impact  on  the  outcome,
specifically pneumonia. In our model, Age is assumed to be a direct cause of CRD, RSV and
MP but not STREP. (This means that the risk of RSV and MP change with the age of the child,
as does the risk of CRD.) Note that STREP and MP are intervening variables between RSV and
the outcome CRD. We will assume that our objective is to estimate the causal effect of RSV on
CRD based on the association between these 2 variables. 

The model  indicates  that  Age  can  cause  changes  in  CRD directly  and  also  by a  series  of
pathways involving one or more of the 3 infectious agents. It also indicates that Age is not a
direct cause of STREP. In terms of understanding relationships implied by the causal diagram,
the easiest  way to explain them is  to  think of getting (perhaps  walking)  from an exposure
variable (eg RSV) to a subsequent variable (eg CRD). As we pass through variables in the
direction of the arrows, we trace out a causal path. The rule for tracing the causal pathways is
that you can start backwards from any variable but once you start forward on the arrows you
cannot back up. Paths which start backwards from a variable are  spurious causal paths and
reflect the impact of confounders. In displaying the relationships, if there are variables that we
believe are correlated because of an unknown or unmeasured common cause, we use a non-
headed line to indicate this, and you can travel in either direction between these variables. If 2

Example 1.4 A causal diagram of factors affecting childhood respiratory disease (CRD)

MP

Age

RSV

CRD

STREP
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variables are adjacent (connected by a single direct arrow), their causal relationship is deemed
to be directly causal. Paths which start forward from one variable and pass through intervening
variables to reach the outcome are deemed to be  indirect causal paths (eg  RSV can cause
CRD through its effect on MP, or on STREP, but not directly). The combined effects through
indirect and direct paths represent the total causal effect of the variable. 

Okay, so, how does this help us? Well, in order to estimate the causal effect, we must prevent
any spurious (confounded) effects,  so the variables preceding an exposure factor  of interest
(RSV)  that  have  arrows  pointing  toward  it  (ie from  Age)  and  through  which  CRD  (the
outcome) can be reached on a path must be controlled. In this instance, that variable is Age. The
model also asserts that we do not control  intervening variables,  so STREP and MP are not
placed in the statistical model when estimating the causal effect  of RSV. If  we assume that
there are no other confounders that are missing from the model, our analyses will estimate the
causal effect of RSV on CRD. (This also assumes the statistical model is correct, but that is
another story.) 

We should note that if we did control for STREP and MP in this model, we would not obtain
the correct estimate of causal effect. Rather, we would only obtain the direct effect of RSV on
CRD if that direct effect existed (and in our example no direct effect exists). This feature will
be discussed again when regression models (eg Chapter 14) are described as this is a major
reason why we can inadvertently break down a causal web. In the causal diagram used here, we
explicitly assume there is no direct causal relationship between RSV and CRD (so this would
be an inappropriate analysis for this reason also). However, RSV can impact on CRD indirectly
through  the  agents  STREP  and/or  MP,  and  controlling  these  variables  would  block  these
indirect pathways. Thus, only by excluding STREP and MP from our model, and controlling for
Stressors, can we obtain the correct causal-effect estimate for RSV. 

Greenland  and  Brumback  (2002) discuss  relations  among  causal  diagrams,  counterfactual
models,  component-cause  models  and  structural  equation  (ie path)  models. Howards  et  al
(2007) provide a good discussion on the use of causal diagrams with linkages to appropriate
regression models for estimating the associations and examples of causal diagrams based on
potential causes of perinatal disease. For more advanced reading, see VanderWeele and Robins
(2007a; 2007b). Hernan and Cole (2009) discuss how to describe 4 types of measurement error,
as well as confounding and selection bias using causal diagrams.

1.10 CAUSAL CRITERIA 

Given that researchers seek to make advances in identifying potential causes of disease using
observational study techniques, a number of workers have proposed a set of causal guidelines
(these  seek  to  bring  uniformity  to  decisions  about  causation  (Evans,  1995;  Susser,  1995).
Because these depend on value judgements, we should accept that different individuals might
view the same facts differently (Poole, 2001). The recent origin of these guidelines is attributed
to  Hill (1965) who proposed a list of criteria for making valid causal  inferences (not all of
which had to be fully met in every instance). These guidelines include: time sequence, strength
of association, dose-response, plausibility,  consistency,  specificity,  analogy and experimental
evidence. Today, we might add evidence from meta-analysis to this list. Over the years, the first
4 of these have dominated our inference-making efforts (Weed, 2002) and recently, researchers
have investigated how we use these and other criteria for making inferences  (Waldmann and
Hagmayer, 2001). In one study, a group of 135 epidemiologists were given a variety of realistic



26 INTRODUCTION AND CAUSAL CONCEPTS

but contrived examples and varying amounts of information about each scenario. At the end of
the exercise, they had agreed on causal inferences in only 66% of the examples. This stresses
the individuality of interpreting the same evidence. Nonetheless, since we think that reference
to a set of criteria for causal inferences is a useful aid to decision-making (they provide “a road
map through complicated territory”  (Rothman et al, 2008),  we will briefly comment on Hill’s
list of items and give our view of their role in causal inference. 

Doll (2002) describes the application of Hill’s guidelines of causation when deducing causation
from epidemiological  observations.  Franco  et al (2004) provide a good discussion of causal
criteria  in  cancer  epidemiology  and  examples  of  the  collaborative  impact  between
epidemiologists  and laboratory scientists. Rothman and Greenland  (2005) comment  that  we
should “avoid the temptation to use causal criteria simply to buttress pet theories at hand, and
instead .... focus on evaluating competing causal theories using crucial observations”.  Phillips
and  Goodman  (2006) debate  the value  of  causal  criteria,  but  appear  to  accept  their  utility
provided  they do not  degenerate  into black-box algorithms which  might  replace  ‘scientific
common sense’. Hofler (2005a) chooses to interpret Hill’s criteria in a counterfactual setting; a
setting he had elaborated upon in an earlier paper (2005b). Lipton and Odegaard (2005) suggest
that causal expressions are not required for the development of policy to prevent disease and are
not  as  defendable  as  just  stating  clearly  the  methods  used  to  arrive  at  the  statistical
association(s)  between  an  exposure  and  disease. Lash  (2007) accepts  the  utility  of  causal
criteria, but warns that in many instances researchers underestimate the magnitude of systematic
errors  and  uncertainties  in  their  data  and  fail  to  fully  recognise  ‘countervailing  external
information’. Shapiro  (2008a;  2008b;  2008c) provide  a  recent  summary  of  the  utility  of
guidelines for inferring causation. Ward (2009a; 2009b) published an extensive review of the
use of causal criteria. He claims that their application does not fully satisfy either deductive or
inductive reasoning, but that their application does provide a consistent basis for arriving at the
best explanation for the statistical association. 

At the outset, we must be clear about the context for inferring causation. As Rose (2001) stated,
it is important to ask whether we are trying to identify causes of disease in individuals or causes
of disease in populations. Indeed, with the expansion of molecular studies, the appropriate level
at  which to make causal  inferences,  and whether  such inferences  are  valid across  different
levels of organisation remains open to debate. However, clear decisions about the appropriate
level to use (think back to the objectives when choosing this) will guide the study design as
well as inferences about causation. The following set of criteria for causation can be applied at
any level  of  organisation,  and  the  criteria  are  based  on  individual  judgement,  not  a  set  of
defined rules. 

1.10.1 Study design and statistical issues 

As will be evident after delving into study design (Chapters 7–10), some designs are less open
to bias than others. For example, case-control studies are often assumed to be subject to more
bias than cohort studies. However, much of this criticism is based on case-control studies using
hospital or registry databases. We think it important that every study be assessed on its own
merits and we need to be aware of selection, misclassification, and confounding bias in all study
designs. 

Most often we do not make inferences about causation unless there is a statistically significant
association between the exposure and the outcome (and one that is not likely to be explained by
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one or more of the previous biases). Certainly, if the differences observed in a well-designed
study have P-values above 0.4, this would not provide any support for a causal relationship.
However, outside of extremely large P-values, statistical significance should not play a pivotal
role in assessing causal relationships. Like other researchers, we suggest an effect-estimation
approach based on confidence limits as opposed to a hypothesis-testing approach. Despite this,
recent  research  indicates  that  P-values  continue  to  be  used  frequently  to  guide  causal
inferences: P-values of 0.04 are assumed to be consistent with causal associations and P-values
of  0.06  inconsistent.  At  the  very  least,  we  believe  this  is  an  overemphasis  of  the  role  of
assessing sampling variability vis-a-vis a causal association and is not a recommended practice. 

1.10.2 Time sequence 

While a cause must precede its effect, demonstrating this fact provides only weak support for
causation. Further, the same factor could occur after disease in some individuals, and this would
not disprove causation except in these specific instances. Many times it is not clear which came
first; for example, did the viral infection precede or follow respiratory disease? This becomes a
greater problem when we must use surrogate measures of exposure (eg antibody titre to indicate
recent exposure). Nonetheless, for inferring causation we would like to be able to demonstrate
that an exposure preceded the effect, or at least develop a rational argument for believing that it
did—sometimes these arguments are based largely on plausibility (ie which time sequence is
more plausible) rather than on demonstrable facts. 

1.10.3 Strength of association 

This is usually measured by ratio measures such as risk ratio or odds ratio, but could also be
measured by risk or rate differences. The belief in larger (stronger) associations being causal
appears to relate to the likelihood that unknown or residual confounding might have produced
this effect. However, because the strength of the association also depends on the distribution of
other components of a sufficient cause, an association should not be discounted merely because
it  is  weak.  Also,  when studying  diseases  with very high  frequency,  risk ratio  measures  of
association will tend to be weaker than with less common diseases. White (2004) studied the
influence of relative prevalence of the agents when making causal inferences about the roles of
2 potential  causal  factors.  It  appeared that the agent  with the higher prevalence (and in his
studies the larger the etiologic fraction (see Section 6.3.1)) was deemed to be more important
causally. Hence,  some  could  posit  that  we  should  base  our  judgement  more  on  etiologic
fractions than on risk ratios. In further work (White, 2005) it was shown that whereas people do
put  a  lot  of  weight  on  what  we  would  call  etiologic  fractions,  they  often  modify  their
judgements based on the impact of the second cause when the first is not  present,  and the
judgements appeared to differ when the apparent effect was sparing instead of harmful. 

1.10.4 Dose-response relationship 

If we had a continuous, or ordinal, exposure variable and the risk of disease increased directly
with the  level  of  exposure,  then  this  evidence  supports  causation  as  it  tends to  reduce  the
likelihood of confounding and is consistent  with biological  expectations.  However,  in some
instances, there might be a cutpoint of exposure such that nothing happens until a threshold
exposure is reached and there is no further increase in frequency at higher levels of exposure.
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These  circumstances  require  considerable  knowledge  about  the  causal  structures  for  valid
inferences.  Because  certain  physiological  factors  can  function  to  stimulate  production  of
hormones or enzymes at low doses and yet act to reduce production of these at higher levels,
one should not be too dogmatic in demanding monotonic relationships. 

1.10.5 Coherence or plausibility 

The essence of this criterion is that if an association is biologically sensible, it is more likely
causal  than  one  that  isn’t.  However,  be  careful  with  this  line  of  reasoning.  A  number  of
fundamentally important causal inferences have proved to be valid although initially they were
dismissed because they did not fit with the current paradigm of disease causation. For example,
John Snow’s initial suggestion that cholera was  ‘caused’ by bad water was initially met with
great scepticism because the prevailing belief was that miasma was the cause of ill-health.

Coherence requires that the observed association is explicable in terms of what we know about
disease mechanisms. However, our knowledge is a dynamic state and ranges all the way from
the  observed  association  being  assessed  as  ‘reasonable’  (without  any  biological  supporting
evidence) to requiring that ‘all  the facts be known’ (a virtually nonexistent  state currently).
Postulating a biological  mechanism to explain an association after the fact  is deemed to be
insufficient  for  causal  inferences  unless  there  is  some  additional  evidence  supporting  the
existence of that mechanism. 

1.10.6 Consistency 

If the same association is found in different studies by different workers, this gives support to
causality. Lack of consistency doesn’t mean that we should ignore the results of the first study
on a topic, but we should temper our interpretation of the results until they are repeated. This
would prevent a lot of false positive scares in both human and veterinary medicine. The same
approach might be applied to the results of field trials and, because there is less concern over
confounding, we might not need to be as strict. Research has indicated that once 12 studies have
reached the same essential conclusion, further studies reaching the same conclusion are given
little additional weight in making causal inferences (Holman et al, 2001). 

Meta-analysis is used to combine results from a number of studies on a specific exposure factor
in a rigorous, well-defined manner (Weed, 2000) and consequently helps with the evaluation of
consistency. Evidence for or against a hypothesis can be obtained as opposed to dichotomising
study results into those that support a hypothesis and those that do not. In addition, explanation
of the methods used in meta-analysis tends to provide a clearer picture of the reviewer’s criteria
for causation than many qualitative reviews (see Chapter 28). 

1.10.7 Specificity of association 

Based on rigid criteria for causation such as Henle-Koch’s postulates (Hill, 1965), it used to be
thought that, if a factor was associated with only one disease, it was more likely causal than a
factor  that  was associated with numerous disease outcomes. We no longer  believe this and
specificity, or the lack thereof, has no valid role in assessing causation—the numerous effects
of smoking (heart, lungs, infant birth weight, infant intelligence) and the numerous causes for
each of these outcomes should be proof enough on this point. 
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1.10.8 Analogy 

This is not a very important criterion for assessing causation, although there are examples of its
being used to good purpose. This approach tends to be used to infer relationships in cases of
human  diseases  based  on  experimental  results  in  other  species.  Today,  many  of  us  have
inventive minds and explanations can be developed for almost any observation, so this criterion
is not particularly useful to help differentiate between causal and non-causal associations. 

1.10.9 Experimental evidence 

This criterion perhaps relates partly to biological plausibility and partly to the additional control
that  is  exerted  in  well-designed  experiments.  We  tend  to  place  more  importance  on
experimental evidence if the same target species is used and the routes of challenge, or nature
of the treatment, are in line with what one might expect under field conditions. Experimental
evidence from other species in more contrived settings is given less weight in our assessment of
causation. Indeed, the experimental approach is just another way to test the hypothesis, so this
is not really a distinct criterion for causation in its own right. 

Swaen and van Amelsvoort (2009) developed a process for formalising the application of these
causal criteria, for assessing the extent to which each criterion was true, and the application of a
formal weighting of the criteria using discriminant analysis to estimate the probability that the
observed associations between an exposure and an outcome were causal. However, details of
this procedure are beyond the scope of this text.
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