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SAMPLING

OBJECTIVES 

After reading this chapter, you should be able to:

 1. Select a random, simple, systematic, stratified, cluster,  multistage sample, or targeted (risk
based) sample—given the necessary elements.

 2. Recognise the advantages and disadvantages of each sampling method.

 3. Select the appropriate sampling strategy for a particular situation, taking into account the
requirements, advantages, and disadvantages of each method.

 4. List the elements that determine the sample size required to achieve a particular objective,
and explain the effect of each upon the sample-size determination.

 5. Compute required sample sizes for common analytic objectives. 

 6. Understand the implications of complex sampling plans on analytic procedures.

 7. Select a sample appropriately to detect or rule out the presence of disease in a group of
individuals. 
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2.1 INTRODUCTION

2.1.1 Census vs sample

For the purposes of this chapter, we will assume that data are required for all individuals, or a
subset  thereof,  in  a  population.  The  process  of  obtaining  the  data  will  be  referred  to  as
measurement. 

In a census, every individual in the population is evaluated. In a sample, data are collected from
only a subset of the population. Taking measurements or collecting data on a sample of the
population is more convenient than collecting data on the entire population. In a census, the
only source of error is the measurement itself. However,  even a census can be viewed as a
sample, because it represents the state of the population at one point in time, and hence is a
sample  of  possible  states  of  the  population  over  time.  With  a  sample,  you  have  both
measurement  and  sampling  error  to  contend  with.  A  well-planned  sample,  however,  can
provide virtually the same information as a census, at a fraction of the cost. 

Note The outcome in any study (eg disease status) is often determined by the use of diagnostic
tests (see Chapter 5). For the sake of simplicity, in this chapter we will assume that the outcome
is measured without error.

2.1.2 Descriptive versus analytic studies

Samples  are  drawn  to  support  both  descriptive  studies  (often  called  surveys)  and  analytic
studies (often called observational studies).

A  descriptive  study (survey) aims  to  describe  population  attributes  (frequency of  disease,
prevalence of an exposure). Surveys answer questions such as, ‘What proportion of people in a
defined population had diarrhea over a 1-month period?’ or ‘What is the average body mass
index (BMI) of students in Grade 12?’

An analytic study is done to estimate the magnitude of an association between outcomes and
exposure factors in the population. Analytic studies contrast groups and seek explanations for
the differences between them. An analytic study might ask a question such as, ‘Is water source
associated with the incidence of diarrhea?’ or, ‘How does time spent playing video games affect
the  BMI  of  Grade  12  students?’  Establishing  an  association  is  the  first  step  to  inferring
causation, as was discussed in Chapter 1.

The distinction between descriptive and analytic studies is discussed further in Chapter 7.

2.1.3 Hierarchy of populations

There is considerable variation in the terminology used to describe various populations in a
study.  In this text,  we will  adopt terminology consistent  with that  used in the text  Modern
Epidemiology (Rothman et al, 2008) with 3 populations of interest:  the target population, the
source population, and the study sample or group. These will be discussed with reference to the
dataset used for examples in this chapter—a study designed to evaluate the impact of water
cisterns on the incidence of diarrhea in the semi-arid region of Pernambuco State in Brazil.
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The  target population is the population to which it might be possible to extrapolate results
from a study. It is often not clearly defined and might vary depending on the perspective of the
individual interpreting the results of the study. For example, the investigators conducting the
study referred to above might be interested in the impact of rainwater cisterns in Pernambuco
State, while someone from outside the state might want to extrapolate the findings to all semi-
arid regions of Brazil. 

The  source  population is  the  population  from  which  the  study  subjects  are  drawn.
Conceptually,  all  units  in  the  source  population  should  be  ‘listable’ and  have  a  non-zero
probability of being included in the study. For example, in the Brazil diarrhea study, families
included in the study were drawn from the list of households participating in the One Million
Cisterns Project  (OMCP). An alternative strategy would be to randomly select  communities
within the study region, and then sample households within selected communities (assuming a
list of households exists).

The study sample (or group) consists of the individuals (or groups of individuals) that end up
in the study.  Usually this group is some form of sample from the source population. Prior to
conducting  the  study,  the  researchers  would  determine  the  necessary  sample  size  (perhaps
planning to  sample  only some of  the  households  and  some of  the  individuals  within each
household). Data would be collected from eligible study subjects and the study sample would
consist  of  the households  and individuals  who agreed  to  participate  (and  whose data were
adequate for inclusion in the study).  These individuals are referred to as a sample or group of
individuals rather than a population because they do not constitute an easily defined population.

The concept of validity is discussed at length in Chapters 12 and 13, but validity relates to the
populations in the following ways. The internal validity of a study relates to whether or not the
study results (obtained from the study sample) are valid for members of the source population.
Essentially,  this indicates whether or not the study has obtained the  ‘correct’ answer for the
source population. Much of this book is dedicated to methods used to ensure the correct answer
is obtained. 

The  external  validity relates  to  how  well  those  results  can  be  generalised  to  the  target
population. Evaluation of external validity involves a subjective assessment of whether or not
the source population is broadly representative of the target population. Given that the target
population may be defined differently by different readers, assessment of external validity is
much more difficult. However, it is easier to generalise the results from an analytical study (one
which evaluates associations) than results from a descriptive study (which describes the level of
a  disease  or  other  characteristics  in  a  population).  For  example,  the  monthly  incidence  of
diarrhea (a descriptive result) may be different  in Pernambuco State than in other states  in
Brazil. However, an observed association between water source and the risk of diarrhea (an
analytic result) is more likely to be generalisable. 

2.1.4 Sampling frame

The sampling frame is defined as the list of all the sampling units in the source population.
Sampling  units  are  the  basic  elements  of  the  population  that  is  sampled  (eg households,
individuals). A complete list of all sampling units is required in order to draw a simple random
sample, but it might not be necessary for some other sampling strategies. The sampling frame is
the information about the source population that enables you to draw a sample. In our example,
a suitable sampling frame would be the list of all households eligible for participation in the
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OMCP. Once households were selected, we would devise a strategy for selecting individuals
within those households (if we decided to sub-sample within households).

2.1.5 Objectives of the study

The objectives of a study will influence the sampling strategy employed. Descriptive studies are
usually  aimed  at  determining  the  prevalence  (or  incidence)  of  disease  in  a  population  or
demonstrating that a population is free of disease. Analytical studies are focused on establishing
associations between factors (eg risk factors) and an outcome (eg disease). Unless otherwise
specified, this chapter will focus on sampling to support prevalence estimation or analytical
objectives. The issue of sampling to detect the presence of disease (or alternatively to declare a
population free of disease) will be discussed in Section 2.12. 

2.1.6 Types of error

In a study based on a sample of observations, the variability of the outcome being measured,
measurement error,  and sample-to-sample variability all affect  the results we obtain. Hence,
when we make inferences  based  on the  sample  data,  they  are  subject  to  error.  Within  the
context of hypothesis testing in an analytical study, there are 2 types of error:

Type I (α) error: You conclude that the outcomes in the groups being compared are different
(ie an association exists), when in fact they are not.
Type  II  (β)  error:  You conclude  that  the  outcomes  are  not  different  (ie no  association
between the exposure and outcome exists), when in fact they are.

A study was carried out to determine if an exposure had an effect on the probability of  disease
occurrence or not. Table 2.1 presents the possible decisions that can be made based on the study
and their relationship to the ‘truth.’

Table 2.1 Types of error

True state of nature

Effect present Effect absent

Conclusion of 
statistical analysis

Effect present 
(reject null hypothesis)

Correct Type I (α) error

No effect 
(accept null hypothesis)

Type II (β) error Correct 

Statistical  test  results  reported  in  the  medical  literature  are  aimed  at  disproving  the  null
hypothesis (which is that there is no difference between groups). If differences are found, they
are reported with a P-value which expresses the probability that a difference as large (or larger)
than the one observed could be due to chance, if the null hypothesis is true. P is the probability
of making a Type I (α) error. When P≤0.05, we are ‘reasonably’ sure that any effect detected is
not due to chance.

Power is the probability that you will find a statistically significant difference when it exists
and is of a certain magnitude (ie power=1-β). The probability of making a Type II (β) error, or
failing to detect  a difference,  is  sometimes not stated because of the general  preference for
reporting  positive  results  in  the  literature.  So-called  negative  findings (failure  to  find  a
difference) are less likely to be reported. There are a number of reasons why a study might find
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no effect of the factor being investigated.
• There truly was no effect of exposure on the outcome.
• The study design was inappropriate.
• The sample size was too small (low power).
• Bad luck.

An evaluation of the power of the study will at least determine how likely you are to commit a
Type II error for a given alternative hypothesis.

2.2 NON-PROBABILITY SAMPLING

Samples that are drawn without an explicit method for determining an individual’s probability
of selection are known as  non-probability samples. Whenever a sample is drawn without a
formal process for random selection, it should be considered a non-probability sample, of which
there  are  3  types:  judgement,  convenience,  and  purposive.  Non-probability  samples  are
inappropriate for descriptive studies except in the instance of initial pilot studies (even then, use
of  non-probability  samples  might  be  misleading).  However,  non-probability  sampling
procedures are often used in analytical studies.

2.2.1 Judgement sample 

This  type  of  sample  is  chosen  because,  in  the  judgement  of  the  investigator,  it  is
‘representative’  of  the  source  population.  This  is  almost  impossible  to  justify  because  the
criteria for inclusion and for the process of selection are largely implicit, not explicit.

2.2.2 Convenience sample 

A convenience sample is chosen because it is easy to obtain. For instance, households in close
proximity to a research centre might be selected for study. Convenience sampling often is used in
analytical  studies  where  the  need  to  have  a  study  group  that  is  representative  of  the  source
population can be relaxed. Convenience sampling was used partially in the Brazil diarrhea study
to overcome some limitations with the sampling frame. Once households with a rainwater cistern
had been selected in a community, households without a cistern were selected by choosing the
closest household that was eligible for the OMCP but which did not yet have a cistern installed.

2.2.3 Purposive sample 

The selection of this type of sample is based on the study subjects possessing one or more
attributes such as known exposure to a risk factor or a specific disease status. This approach is
often used in observational analytical studies. If a random sample is drawn from all sampling
units meeting the study criteria, then it becomes a probability sample from the subset of the
source population.

2.3 PROBABILITY SAMPLING

A probability sample is one in which  every  element in the population has a known non-zero
probability  of  being included in the sample.  This  approach  implies  that  a  formal  process  of
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random selection has been applied to the sampling frame. The following sections will describe
how to draw different types of probability sample. Procedures for analysing data derived from the
samples  will  be  discussed  in  Section  2.10.  A much  more  complete  description  of  sampling
procedures  can be found in general  sampling texts such as  Levy and Lemeshow  (1999) and
Heeringa et al (2010).

2.4 SIMPLE RANDOM SAMPLE

In  a  simple  random  sample,  every  study  subject  in  the  source  population  has  an  equal
probability of being included. A complete list of the source population is required and a formal
random process is used (random is not the same as haphazard). Random sampling can be based
on drawing numbers from a hat, using computer-generated random numbers, using a random-
numbers table, flipping a coin, or throwing dice.

For example, suppose you are investigating the influence of season on the length of wait times
in a hospital emergency room and you estimate that you need to review 1,000 records to obtain
the data you need. If all of the data already exist in hospital records (eg time of arrival, time of
examination), then you can randomly select 1,000 records from the past year’s admissions for
detailed review. If there have been 13,000 admissions over the past year, you would randomly
generate 1,000 numbers between 1 and 13,000. These numbers would identify the records that
you would pull for review.

2.5 SYSTEMATIC RANDOM SAMPLE 

In a systematic random sample, a complete list of the population to be sampled is not required
provided an estimate of the total number of individuals is available and all of the individuals (or
their records) are sequentially available (eg people entering a hospital emergency room). The
sampling interval (j) is computed as the study population size divided by the required sample
size. The first study subject is chosen randomly from among the first  j study subjects, then
every  jth study subject  after  that is  included in the sample.  It  is  a practical  way to select  a
probability sample if the population is accessible in some order, but bias might be introduced if
the factor you are studying is related to the sampling interval. Consequently, a simple random
sample would be preferable, but might not be feasible if the logistics of the data collection (eg
time required  by nursing staff  for  additional  data  collection) precludes the use of  a  simple
random sample which might generate a series of consecutive numbers.

Assume once again that you want a sample of 1,000 patients attending a hospital emergency
room. Given that you know there will be approximately 13,000 patients over a 1-year period,
you need to sample every 13th patient to achieve the desired sample size. To start, randomly
pick a number between 1 and 13 to choose your first patient, and then have the required data
collected on every 13th patient after that. Data from a systematic random sample are analysed as
though they were derived from a simple random sample.

2.6 STRATIFIED RANDOM SAMPLE

In this approach,  prior to sampling, the population is divided into mutually exclusive strata
based on factors likely to affect the outcome. Then, within each stratum, a simple or systematic
random  sample  is  chosen.  The  simplest  form  of  stratified  random  sampling  is  called
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proportional (the number sampled within each stratum is proportional to the total number in
the stratum). There are 3 advantages of stratified random sampling.

1. It ensures that all strata are represented in the sample.
2. The precision of overall estimates might be greater than those derived from a simple

random sample.  The gain in precision results from the fact  that  the between-strata
variation is explicitly removed from the overall estimate of variance.

3. It  produces  estimates  of  stratum-specific  outcomes,  although  the  precision  of  these
estimates will be lower than the precision of the overall estimate.

For example, assume you believe that wait times are different for males and females. You could
stratify the existing records on the basis of sex, and then randomly sample within each sex
(either equal numbers of males and females or proportional to the distribution of the sexes in
the whole set of records).

2.7 CLUSTER SAMPLING 

A cluster is a natural or convenient collection of study subjects with one or more characteristics
in common. For example:

• a household is a cluster of people
• a city block is a cluster of households
• a clinic is a cluster of patients
• a day is a cluster of emergency room visits
• a classroom is a cluster of students.

In a cluster sample, the primary sampling unit (PSU) is larger than the unit of concern. For
example, if you wanted to estimate the proportion of Grade 12 students who smoke (in a small
city), you could use a cluster sample in which you randomly selected Grade 12 classes, even
though the unit of concern is the student. In a cluster sample, every study subject within the
cluster is included in the sample (ie all students in the selected classes).

Cluster sampling is done because it might be easier to get a list of clusters (Grade 12 classes)
than it would be to get a list of individuals (students), and it is often less expensive to sample a
smaller number of clusters than to collect information from selected individuals within many
different clusters.

In this example of cluster sampling, a survey to determine the proportion of students smoking
was conducted.  Of 47 Grade 12 classes  in the city,  10 were randomly selected from a list
provided by the school board and every student in each of the 10 classes was asked to complete
the  questionnaire.  A  cluster  sample  is  convenient  because  it  may  be  impossible  to  get  a
complete list of all Grade 12 students, but it is relatively easy to get  a list of the Grade 12
classes. It is also more practical to sample all students in 10 classes than it is to visit all 47
classes and sample a few individuals in each class. Of course, students within a given class are
probably more alike than students from different classes, so the sampling variation for a given
number of individuals is greater than if they had been chosen by simple random sampling. The
impact of sampling at the cluster level is discussed further in Sections 2.10.3 and 2.11.6.

When a group is not a cluster In  cluster  sampling,  a group is a cluster  of individuals. A
sample is a cluster sample if the group is the sampling unit and the study subjects within the
group are the unit of concern. When the group is both the sampling unit and the unit of concern,
then by definition the sample is not a cluster sample. For example, the following is not a cluster
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sample: a sample of households to determine whether or not anyone in the household smokes
indoors (in this case, the household is the unit of concern, not the individual residents).

2.8 MULTISTAGE SAMPLING 

A cluster might contain too many study subjects to obtain a measurement on each, or it might
contain study subjects so nearly alike that measurement of only a few study subjects provides
information on the entire cluster.  Multistage sampling is similar to cluster sampling except
that, after the PSUs (eg households) have been chosen, then a sample of secondary sampling
units (eg individuals) is selected. Once again, assume that you are interested in the smoking
habits of Grade 12 students, but you would like to use urine cotinine as a measure of smoking
(or exposure to tobacco smoke). Given the difficulty of collecting the samples, and the cost of
testing, you might only sample a small number of individuals in each class. 

If you want to ensure that all individuals in the population have the same probability of being
selected, 2 approaches are possible. First, the PSUs chosen might be selected with a probability
proportional to their size. In other words, if the class size is known ahead of time, large classes
should have a higher probability of being chosen than small ones. After the number of classes
to be sampled is chosen, you select a fixed number of students in each class from which to get
urine samples. If class size is not known ahead of time, take a simple random sample of the
PSUs (classes)  and then sample a constant  proportion of  the students in  each class.  Either
approach will ensure each individual has the same probability of selection. If this is not the
case, the probability of selection needs to be accounted for in the analysis (see Section 2.10.2).

How many classes and how many students to sample within each class depend upon the relative
variation (in the factor(s) being measured) between classes, compared with within classes, and
the relative cost of sampling classes compared with the cost of sampling individuals within
classes. In other words, when the between-class variation is large relative to the within-class
variation, you  will  have to sample many more classes to get  a precise estimate.  Multistage
sampling is very flexible where cost of sampling is concerned. If you are like most researchers,
you are working on a limited budget and, when it is expensive to visit and sample classes, you
will want to sample as few as possible. On the other hand, if the cost of processing samples
from an individual is high relative to the cost of visiting the class, you will want to sample
fewer individuals per class. Usually researchers desire to have the most precise estimate of the
outcome for  the  lowest  possible  cost. These  2  desires  can  be  balanced  by  minimising  the
product of the variance and the cost. Regardless of the total sample size for the study (n), the
variance*cost product can be minimised by selecting ni individuals per group according to the
following formula:

ni= i
2

 g
2 ∗

cg

ci Eq 2.1

where ni is the number of individuals to be sampled per group, and σ2
g and σ2

i are the between-
and  within-group  variance  estimates,  and  cg  and  ci are  the  costs  of  sampling  groups  and
individuals, respectively. The value for ni needs to be rounded to an integer value and cannot be
less than 1. Once the number of individuals per group has been determined, the number of
households to be sampled is then ng=n/ni.
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Keep in mind that cluster and multistage sampling almost always require more subjects for the
same precision than simple random sampling. Example 2.1 describes a stratified,  multistage
sampling approach. Multistage sampling, as the name suggests, can be extended to more than
the 2 levels discussed above.

2.9 TARGETED (RISK-BASED) SAMPLING

Although disease surveillance programs based on targeted sampling plans are more common in
veterinary medicine (and much of the literature on target sampling relates to veterinary disease
surveillance),  they have  applications in  human medicine as  well  (Robinson et  al,  2006).  It
involves  the  stratification  of  the  source  population  into  strata  based  on  one,  or  more,
characteristic(s) which are thought to be associated with the probability of disease occurrence.
However, unlike stratified sampling, targeted sampling may involve sampling only from strata
in which the probability of finding cases of disease is highest (Salman, 2003; Stärk et al, 2006),
or  at  least  weighting the  sample  heavily in  favour  of  high  risk strata.  Consequently,  some
individuals may have a zero probability of being included in the sample. Methods for targeted
sampling have recently been developed and are an active area of research.

In targeted sampling, individuals are assigned point values based on the probability of them
having the disease of interest, and sampling is proportional to that estimate of risk (Thurmond,
2003). Sampling proceeds until individuals with the predetermined number of points have been
sampled.  Population  inference  from  a  targeted  sample  requires  2  key  epidemiological
parameters:  an  estimate  of  how  the  characteristic  used  to  create  the  strata  relates  to  the
probability of disease (ie an estimate of the risk ratio (see Chapter 4) for the characteristic), and

Example 2.1 Multistage sampling
data = brazil_smpl

A study of the impact of rainwater cisterns on the incidence of diarrhea was conducted in a semi-arid
region of the Agreste Central Region of Pernambuco State in Brazil. These data are a subset of the full
dataset which is described in Chapter 31. The study had the following characteristics:

• The target population was all households in the region.
• The source population was households participating in (or eligible for participation in) the

One Million Cisterns Project.
• The  sampling frame  consisted of a list of all households within each community with an

installed  cistern.  (Non-cistern  households  were  selected by field  investigators  identifying
non-cistern households that met the eligibility criteria and which were in close proximity to
cistern households.)

• Sampling was stratified by municipality, with cistern households within a municipality being
identified first. (In fact, stratification often took place at the community level although it was
not always possible to obtain the required sample within a community,  so the data will be
analysed with stratification at the municipality level.)

• In general, sampling was carried out as cluster sampling with the households being selected
first and then all residents of the household being surveyed. In a small subset of households,
not all individuals were surveyed and this was taken into consideration in the computation of
sampling weights.

• The  study sample consisted of the individuals  selected for  participation in the study for
which data were recorded.

These data will be used in Examples 2.2 through 2.4.
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an  estimate  of  the  distribution  (frequency)  of  the  characteristic  in  the  source  population
(Williams et  al,  2009a).  The advantage  of  targeted  sampling is  that  it  will  require  a much
smaller sample size than other forms of sampling if the outcome of interest (disease) is rare and
characteristics that strongly influence the probability of an individual having the outcome can
be identified.  A disadvantage  is  that  key  epidemiological  parameters  might  not  be  known.
Specifically, the effect of the characteristic of interest (ie the risk ratio) is often not known for
the  population  being  studied  and  must  be  derived  from  evidence  in  other  populations.  In
addition,  the  proportion  of  individuals  with the  characteristic  of  interest  also might  not  be
known. Uncertainty in these 2 estimates should be taken into account when planning a targeted
sampling program (Williams et al, 2009a). Poisson sampling is an unequal probability sampling
strategy that can be used for targeted sampling programs (Williams et al, 2009b). 

In  veterinary  medicine,  targeted  sampling  has  been  used  extensively  in  bovine  spongiform
encephalopathy (BSE) surveillance programs  (Prattley et al, 2007a; 2007b). In this instance,
sampling is focused on the following strata (also called ‘streams’):  cattle with clinical signs
compatible with BSE, dead stock (cattle that die on the farm), and casualty slaughter (unhealthy
cattle slaughtered at the slaughter house). A simulation study used to evaluate the performance
of  targeted sampling  for  disease  prevalence  estimation concluded that  targeted  sampling  is
appropriate provided justifiable estimates of the key epidemiological parameters are available
(Wells et al, 2009).

2.10 ANALYSIS OF SURVEY DATA

The sampling plan  needs to  be taken  into account  when analysing  data  from any research
project involving a complex sampling plan. (Note Although referred to as ‘survey’ data, the
concepts discussed in this chapter apply equally to the analysis of data from analytic studies
based on complex sampling plans.) There are 3 important concepts that have been raised in the
above discussion of various sampling plans: stratification, sampling weights, and clustering. In
addition to these, the possibility of adjusting estimates derived from finite populations must be
considered.

2.10.1 Stratification

If  the  population  sampled  is  divided  into  strata  prior  to  sampling,  then  this  needs  to  be
accounted for in the analysis.  For example, in the Brazil diarrhea study, the population was
initially stratified into municipalities with approximately equal numbers of cistern and non-
cistern households being selected in each municipality. The advantage of such stratification is
that it provides separate stratum-specific estimates of the outcome of interest. If the factor upon
which the population is stratified is  related to the outcome (eg incidence of diarrhea in the
strata), then the standard error (SE) of the overall prevalence estimate might also be lower than
if a non-stratified sample was taken. Correctly accounting for the stratified nature of the sample
requires  that  the  total  population  size  in  each  stratum be  known in  order  to  compute  the
appropriate sampling weights (Section 2.10.2).

In  Example  2.2,  the  Brazil  diarrhea  data  have  been  analysed  ignoring  the  stratification  by
municipality, and then by taking it into account.
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2.10.2 Sampling weights

Although  probability  sampling  requires  a  formal  random  process  to  be  used  to  select  the
sample, it does not imply that all units sampled have the same probability of selection. If  a
sample of households  is  selected  from a source  population, and a sample of  individuals is
selected  within  each  of  those  households,  then  the  probability  of  selection  for  any  given
individual can be computed as: 

p(selection)= n
N

∗
m
M Eq 2.2

where n is the number of households in the sample, N is the number of households in the source
population, m is the number of individuals that were selected from the sampled household, and
M  is  the number of people in that household. For example, assume that  10 households are
selected out of 300 in a municipality, and that in each household 2 individuals are sampled. If
household A is  a  5-person  household,  the  probability  that  a  person  in  that  household  will
ultimately end up in the sample is: 

10/300∗2 /5=0.0131.3%

Example 2.2 Analysis of stratified survey data
data = brazil_smpl

Data on diarrhea were obtained from 3,399 individuals in 21 municipalities. A simple estimate (treating
the sample as a simple random sample) of the overall monthly incidence risk was 0.1462 (14.62%) and
the SE of that estimate was 0.0061 (0.61%).

If the data are stratified by municipality, some of the incidence estimates are as follows.

Monthly incidence risk

Municipality Number of 
samples

Incidence SE (incidence)

1 137 0.1314 0.0290

2 145 0.2276 0.0349

3 231 0.2987 0.0302

... some estimates omitted

19 160 0.2375 0.0337

20 188 0.1277 0.0244

21 19 0.5263 0.1177

Overall 3399 0.1462 0.0059

There are considerable differences across the municipalities in terms of the incidence of diarrhea (the
range of estimates was from 0.0152 to 0.5263).  The SE of the overall  estimate from the stratified
sample  is  slightly  smaller  than  when  the  data  were  treated  as  a  simple  random  sample,  but  the
difference is minimal. Stratification alone does not change the overall point estimate of the prevalence.
Note This analysis is provided for pedagogical purposes only. It would not be correct to assume equal
sampling weights (Section 2.10.2) given that non-proportional sampling was carried out across strata.
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Similarly, if household B is an 8-person household, the probability that an individual in that
household will be in the sample is: 

10/300∗2 /8=0.00830.83 %

These different probabilities of selection need to be taken into account in order to obtain the
correct point estimate of the parameter of interest.

The most common way of forming sampling weights is to make them equal to the inverse of the
probability of being sampled. This value reflects the number of individuals that each of the
sampled individuals represents. For example, a person in household A would actually represent
1/0.013=77  people  in  total.  A  person  in  household  B  would  have  a  sampling  weight  of
1/0.0083=120 because s/he had a smaller probability of selection.

In  Example 2.3,  the overall  incidence  risk of  diarrhea has been  computed taking sampling
weights into consideration.

Example 2.3 Analysis of stratified and weighted survey data
data = brazil_smpl

Individuals within the study population had different probabilities of being selected for the sample.
Two factors influenced this:

1) the probability that the entire household would be selected.

2)  the probability that an individual within the household would be selected. (Although, in general,
although the probability was 1) (ie all individuals sampled), this was not always the case.)

Household  selection  probability Within  each  municipality,  the  selection  probability  of  a  cistern
household being selected was computed as the number of cistern households sampled divided by the
number installed according to the OMCP. Similarly, the selection probability of non-cistern households
was computed. For example, in municipality 1, there were 73 households sampled out of a total of 242
that  had  cisterns  installed.  Consequently,  the  probability  of  this  household  being  selected  was
73/242=0.3017 (30.17%).

Individual selection probability Within each household, the probability of a person being included in
the analysis was the total number of people sampled within the household divided by the total number
of residents of the household. For example, in household (-family-) 195 (municipality 1, community 1),
there were 6 residents of the household but the investigators were only able to obtain data for 3 of
them. Consequently, the probability of selection for these individuals was 0.5 (50%).

Overall selection probability The overall selection probability for an individual in household 195 in
community 1 was the product of the above 2 probabilities: 0.3017*0.5=0.1508 (15.08%).

Sampling weights The sampling weight applied to the individual above was the inverse of the overall
selection probability:  1/0.1508=6.63. Effectively,  the results from this individual were considered to
represent almost 7 people in the source population.

Taking the sampling weights into consideration, the overall estimate of the incidence of diarrhea was
0.1751 (17.51%), with an SE of .0091 (0.91%). Incorporating weights into the analysis changed the
point estimate of the prevalence and also increased the SE.
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2.10.3 Clustering

Cluster sampling and multistage sampling involve the sampling of individuals within groups.
Individuals within groups are usually more alike (with regard to the outcome being measured)
than  individuals  chosen  randomly from  the  population.  From a  statistical  perspective,  this
means that these observations are no longer independent and this lack of independence must be
taken into account in the analysis. Failure to do so will almost always result in estimated SEs
that are smaller than they should be.

Clustering  may  occur  at  multiple  levels.  For  example,  people  may  be  clustered  within  a
household which in turn may be clustered within a neighbourhood.  In Chapters 20–22, we
discuss  techniques  for  evaluating  the  degree  of  clustering  at  each  of  the  possible  levels.
However, when analysing survey data, one often wants to simply deal with the clustering as a
nuisance  factor  in  order  to  obtain  correct  estimates  of  the  SEs  of  the  parameters  being
estimated. The simplest and most common approach is to identify the PSU (eg household) and
use this to adjust the estimates for all clustering effects at levels at, or below, this level ( eg
clustering of individuals within households).

Computation of the appropriate variance estimates in the presence of clustering and other elements
of the survey design is not straightforward and requires specialised software. While the details of
the  procedure  are  beyond  this  text,  the  most  common  technique  is  variance  linearisation
(Dargartz and Hill, 1996; Kreuter and Vallian, 2007). It has the advantage that analytical solutions
for  SEs for  most  statistics  computed  from survey  data (eg proportions,  means)  are  available.
However, the procedure requires a large number of PSUs to be reliable. Variance linearisation is
the approach used in Example 2.4, in which the overall incidence of diarrhea has been estimated
taking the within-household clustering into account (households were the PSUs and individuals
were  sampled  within households).  Note Survey  design can  be incorporated not  only into the
estimation of descriptive characteristics (eg incidence in Example 2.4), but also into many of the
regression models described in later chapters of the book. Example 20.2 gives an example of the
use of these procedures to account for clustering in a regression analysis.

2.10.4 Design effect

The overall  effect  of  the  sampling  plan  on  the  precision  of  the  estimates  obtained  can  be
expressed as the design effect (referred to as  deff). The deff is the ratio of variance obtained
from taking the sampling plan (eg stratification and clustering) into account to the variance that
would have been obtained if a comparable-sized, simple random sample had been drawn from
the population. A deff >1 reflects  the fact  that  the sampling plan is producing less precise
(larger  variance)  estimates  than a simple random sample would have.  (Of course,  a  simple
random sample is often impossible to obtain.) The deff of the sampling plan computed in Brazil
diarrhea  study is  also presented  in  Example  2.4.  If  an  independent  estimate  of  the  deff  is
available, it can be incorporated into methods to account for clustering in the analysis of survey
data (see Section 20.5.5).

2.10.5 Finite population correction

In most surveys, sampling is carried out without replacement. That is, once a study subject has
been  sampled,  it  is  not  put  back  into the  population and  potentially  sampled again.  If  the
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proportion of the population sampled is relatively high (eg >10%), then this could substantially
increase the precision of the estimate over what would be expected from an ‘infinite-sized’
population.  Consequently,  the  estimated  variance  of  the  parameter  being  estimated  can  be
adjusted downward by a finite population correction (FPC) factor of:

FPC=
N −n
N −1 Eq 2.3

where N is the size of the population and n is the size of the sample. (Note An FPC should not
be applied in cases  where  multistage  sampling is  carried  out,  even  if  the number  of  PSUs
sampled is >10% of the population.) A finite population correction can also be used when
estimating a sample size (see Section 2.11.5).

2.11 SAMPLE-SIZE DETERMINATION

The choice  of  sample  size involves  both  statistical  and  non-statistical  considerations.  Non-
statistical considerations include the availability of resources such as time, money, sampling
frames, and some consideration of the objectives of the study. Interestingly, cost can be factored
into sample-size calculations, and the greater the cost per sampled study subject, the smaller the
sample size when the budget is fixed.

Statistical considerations include the required precision of the estimate, the variance expected in
the  outcome  of  interest,  the  desired  level  of  confidence  that  the  estimate  obtained  from

Example 2.4 Analysis of clustered survey data
data = brazil_smpl

The Brazil  diarrhea data  were  derived  from a  cluster sample  with  households being the  primary
sampling  unit.  If  the  clustered  nature  of  the  sample  was  taken  into  account  (in  addition  to  the
stratification and sampling weights), the overall incidence estimate remains at 0.1751 (17.51%) but the
SE increases to 0.0128 (1.28%). (Clustering was accounted for using a variance linearisation approach
to computing the SE.)

A summary of the estimates of the overall incidence taking various features of the sampling plan into
account is shown below.

Incidence

Type of analysis Estimate SE

Assuming it was a simple random sample 0.1462 0.0061

Taking stratification into account 0.1462 0.0059

Taking stratification and sampling weights into account 0.1751 0.0091

Taking clustering into account 0.1462 0.0088

Taking stratification, sampling weights and clustering into account 0.1751 0.0128

The last row contains the most appropriate estimates for the incidence (and SE) of diarrhea. The design
effect from this analysis  was 16.265*10-5/3.674*10-5=4.43 which indicates that taking the sampling
plan into consideration produces an estimate of the variance of the incidence which is 4.43 times larger
than the estimate would have been if a simple random sample of the same size (n=3,399) had been
drawn.
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sampling is close to the true population value (l-α), and in analytic studies, the power (l-β) of
the study to detect real effects. 

2.11.1 Precision of the estimate

Whether you want to determine the monthly incidence risk of diarrhea or to estimate the body
mass index of Grade 12 students, you must determine how precise an estimate you want. The
more precise you wish to be, the larger the sample size you will require. If you want to know
how many people had diarrhea within ±5%, you will have to sample more people than if you
were  only  interested  in  obtaining  an  estimate  within  ±10%.  Likewise,  if  you  wanted  your
estimate of the BMI of Grade 12 males to be within 1 unit, you would need to collect data from
more people than if you only needed to be within 3 units of the true population mean.

2.11.2 Expected variation in the data

The natural variation inherent in the data must be taken into account when calculating sample
size. The variance of a simple proportion is p*q, where p is the proportion of interest and q is
(1-p).  Consequently,  to  estimate the sample  size necessary to  determine  a  proportion,  then
(paradoxical  as  it  might  seem)  you  must  have  a  general  idea  of  the  proportion  (with  the
outcome of interest) that you expect to find. 

The measure of variation used for the estimation of the required sample size of a continuous
variable such as BMI is the population variance (σ2). We often don’t know what the standard
deviation (σ) is, but we can estimate it. One way to do this is to estimate the range that would
encompass 95% of the values, and then assume that range is equal to 4σ. For example, if you
think that 95% of people have a BMI between 18 and 42, then a rough estimate of the σ would
be (42-18)/4=6 units, and the variance would be 36 units2. (This is based on an assumption that
the data are normally distributed, which may not be true, but this approach still  provides a
rough estimate of σ.)

2.11.3 Level of confidence

In descriptive studies, we must decide how sure we want to be that the confidence interval (CI)
for your estimate will include the true population value. Similarly, in analytical studies, we must
decide on the certainty we want that any difference we observe between 2 sampled groups is real
and not due to chance. This is referred to as  confidence  and it is most commonly set to 95%
(assume a Type I (α) error rate of 5%).

2.11.4 Power

The power of a study is its ability to detect an effect (eg a difference between 2 groups) when a
real  difference  of  a  defined  magnitude  exists.  For  example,  if  the  real  difference  in  BMI
between people who play video games more than 10 hours a week (compared with <10 hours)
is 3 units, then a study with a power of 80% would detect a difference of this magnitude (and
declare it statistically significant) 80% of the time. To increase the power, it is necessary to
increase the sample size. The Type II (β) error rate is 1-power.
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Precision and power have been presented as 2 separate issues even though they arise from the
same conceptual basis. Sample sizes can be computed using either approach, although they will
produce different estimates. (See Section 2.11.8 for an expansion of this topic.)

2.11.5 Sample-size formulae

The formulae for sample size required to estimate a single parameter (proportion or mean), or to
compare 2 proportions or means, are shown below the following definitions:

Zα  The value of Zα required for confidence=1-α    Z0.05=1.96
Zα is the (1- α/2) percentile of a standard normal distribution
Note This is the value for a 2-tailed test or 2-sided confidence interval

Zβ The value of Zβ required for power=1-β; for power 1- β, Z0.2 =-0.84
Zβ is the (1-β) percentile of a standard normal distribution

L The precision of the estimate (also called the ‘allowable error’ or ‘margin of error’)
equal to half the desired length of a confidence interval

p a priori estimate of the proportion 
(p1, p2—estimates in the 2 groups in an analytic study)

q 1-p

σ2 a priori estimate of the population variance

μ a priori estimate of the population mean 
(μ1, μ2—if estimates are required for 2 groups)

n sample size

Estimating proportions or means (n=total sample size)
To estimate a sample proportion with a desired precision:

n=
Z 

2 pq

L2
Eq 2.4

To estimate a sample mean with a desired precision:

n=
Z 

2


2

L2
Eq 2.5

Comparing proportions or means (n=sample size per group)
To compare 2 proportions:

n=
[Z  2 pq−Z  p1q1 p 2q 2]

2

 p1− p2
2

Eq 2.6

where p=(p1+p2)/2 and q=1-p
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To compare 2 means:

n=2[ Z−Z 
2


2

1−2
2 ]

Eq 2.7

Note The formulae shown above are approximations and most software will compute sample
sizes using more exact formulae. Particular caution should be exercised with these formulae if
the  resulting  n is  small.  Example  2.5  shows  the  calculation  of  a  sample  size  for  a  study
comparing 2 proportions.

Sampling from a finite population 
If you are sampling from a relatively small population, then the required sample size (n' ) can
be adjusted downward using the following FPC formula:

n' =
1

1 /n1 /N Eq 2.8

where n=the original estimate of the required sample size in an infinite population and N=the
size of the population.

It  is useful to make this finite population adjustment when computing the sample size for a
simple or stratified random sample if the sampling fraction exceeds 10%. It is only applied to
descriptive studies, not to analytic studies or controlled trial sample size calculations.

2.11.6 Adjustment of sample size for clustering

In epidemiologic research, we often deal with clustered data (eg individuals clustered within
households) with observations within the same cluster being more similar to each other with
respect to the outcome than observations drawn randomly from the population. If our study is

Example 2.5 Sample size for comparing proportions
data = hypothetical

Assume that you want  to determine if provision of a rainwater cistern reduces the monthly risk of
diarrhea. For the rainwater cisterns to be worth the cost of installing, you would want it to reduce the
risk from the current level  of 15% to 10% of individuals  in the population.  You want  to be 95%
confident in your result and the study should have a power of 80% to detect the 5% reduction in risk. 

p1=0.15 p2=0.10 p=0.125

q1=0.85 q2=0.90 q=0.875

Z =Z 0.05=1.96 Z =Z 0.80=– 0.84

n=
[1.96 2∗0.125∗0.875−−0.840.15∗0.850.10∗0.90]

2

0.15−0.10
2

=685

Consequently,  you  would  require  1,370  (685*2)  individuals  with  685  being  in  households  with
rainwater cisterns and 685 without. A sample size derived incorporating a continuity correction (see
Fleiss et al (2003) for details) is 726 individuals per group.
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taking place exclusively at the lower (individual) level, with the factor of interest distributed at
the individual level independent of the household, and the outcome (eg diarrhea) is measured at
the individual level, this clustering does not present a problem when computing the necessary
sample size. Such a situation arises when conducting a controlled trial of a treatment that is
randomly  assigned  to  individuals  within  households  (ensuring  that  treatment  allocation  is
independent of household). (See Chapter 20 for a more complete discussion of this situation.)

However,  if  the  factor  of  interest  is  something  that  occurs  at  the  household  level  (eg
presence/absence of rainwater cistern), then the number of households in the study becomes a
more critical concern than the number of individuals (even though the outcome is measured at
the person level). The total sample size will need to be increased with the magnitude of the
increase depending on: 

1. the  degree  to  which  observations  within  a  household  are  similar  (measured  by  a
parameter  called  the  intra-cluster  (or  intra-class)  correlation  coefficient)  (Section
20.3.3) and, 

2. the number of people sampled per household (having many people sampled within a
household is of little value if the individuals within a household are very similar). The
formula for adjusting the sample size is:

n' =n 1m−1 Eq 2.9

where  n' is the new sample size,  n  is the original sample size estimate,  ρ is the intra-cluster
correlation  coefficient  and  m is  the average  number  of  people  sampled per  household.  See
Chapter 20 for further discussion of this issue. In Example 2.6, the sample size estimate from
Example 2.5 is adjusted for a group-level study. An alternative approach applicable to studies
with a dichotomous outcome is to base the sample size on a beta-binomial  model with the
prevalence of disease within each cluster having a binomial distribution and the prevalences
between clusters following a beta distribution (Fosgate, 2007).

If the factor of interest is measured at the individual level (eg age),  but also clusters within
households (ie some households have older residents than other households), then the required

Example 2.6 Sample size with clustering
data = hypothetical

Presence/absence of a rainwater  cistern is a household-level  variable.  Risk of diarrhea tends to be
highly clustered within households and, in the Brazil diarrhea data the intra-class correlation (ρ) for
diarrhea in households is about 0.45.

Assuming that there are, on average, 6 people in each household, the revised sample size that you will
need will be:

n '=n1m−1

=68510.456−1

=2230

Consequently,  you will  need 2,230 people per group or 2230/6=372 households within each group.
This  very  large  increase  in  sample  size  results  from the  fact  that  the  intra-cluster  correlation  for
diarrhea is quite high (ρ=0.45) and that we are using a moderate number of observations (6) in each
household.
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sample size can be expected to lie somewhere between the simple estimate (ignoring clustering)
and the much more conservative estimate required for household-level variables. In such cases,
a simulation approach (Section 2.11.8) may be the best way to estimate a required sample size
or assess power. 

2.11.7 Adjustment of sample size in multivariable studies

If you want to consider confounding and interaction (Chapter 13) in your study, you generally
need to increase your sample size  (Smith and Day, 1984). If  the confounder is not a strong
confounder (odds ratio (OR) with disease and exposure between 0.5 and 2), then about a 15%
increase is needed. If it is a stronger confounder, then a greater increase in study size should be
used. For continuous-scaled confounders, estimate the correlation of the confounder with the
exposure  variable  ρce,  and  then  multiply  the  unadjusted  sample  size  by  the  factor  
(1-ρ2

ce)-1. For k covariates, the corresponding formula is,

n' =n1k −1 ce
2

1−ce
2 

Eq 2.10

where  ρce is  an  average  correlation  between  the  confounders  and  the  exposure  variable  of
interest. Thus, for 5 covariates with a ρce approximately equal to 0.3, the increase in study size
is 50%.

A similar approach is to start with a simple approach to estimating sample size for the key
predictor (exposure) of interest and then modify this for the multivariable situation using the
variance inflation factor (VIF) (Hsieh et al, 1998). 

n' =n∗VIF Eq 2.11

where VIF = 1/(1-ρ2
1,2,3,...,k).

Note that ρ2
1,2,3,...,k is the squared multiple correlation coefficient (between the key predictor and

the remaining k-1 variables) or the proportion of variance of the key predictor that is explained
when it is regressed on the other  k-1 variables. In general,  as  k  increases,  then the multiple
correlation increases, as does the VIF. The approach to estimating the VIF is the same for both
continuous and binary covariates.

2.11.8 General approaches to sample-size estimation

As indicated in Section 2.11.4, computing sample size for analytical studies (eg comparing 2
means) can be done either by specifying the desired power of the study to detect a difference of
a defined magnitude,  or  by specifying the desired width of the CI for  the difference  being
estimated (ie a precision-based approach). In simple situations, these calculations are relatively
straightforward.  Two approaches  to  generalising these calculations for  more complex study
designs are described below.

Precision-based sample-size computations
The general formula for the width of a confidence interval of a parameter is:

par ± Z∗SE  par  Eq 2.12
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where  par  is  the  parameter  being  estimated,  Z  is  the  desired  percentile  of  the  normal
distribution and SE(par) is the SE of the parameter estimate.

Note For  simplicity,  the  standard  normal  distribution  will  be  used  as  a  large  sample
approximation for the t-distribution throughout these examples. 

For linear regression models, the SE of any parameter can take the general form of:

SE  par =∗c Eq 2.13

where σ is the residual standard deviation from the model and c is a value which will depend on
the design of the study. For example, for estimating a mean in a single sample:

c=1 /n=1/n Eq 2.14

where n is the sample size. 

For a comparison of means from 2 samples:

c=2 /n

where n is the sample size in each of the 2 groups.

The formulae for the CI can be inverted to solve for n. For example, to estimate the difference
between 2 means with the CI of the estimate being 2L units long (ie ±L), then:

L=Z ∗∗2/ n Eq 2.15

Based on this, the sample size required is:

n=
2Z

2


2

L2
Eq 2.16

Eq 2.16 is the 2-sample analogue of Eq 2.5.

Note  Unlike in Eq 2.7, we have not specified a  Zβ nor have we specified hypothesised ‘true’
values for the 2 means. The sample size estimated is the one required to provide a confidence
interval (for the difference) with a desired width (2L), regardless of what the actual difference
is. 

This  approach  can  be  generalised  to  any sort  of  sample-size  estimation,  provided  that  the
structure  of  c can  be  determined.  This  is  based  on  the  design  of  the  study.  For  example,
computing the sample size required to evaluate a 2-way interaction between 2 dichotomous
variables is equivalent to evaluating mean values in each of 4 possible groups (formed by the
possible combinations of the 2 variables). Consequently: 

c=4 /n

and the sample size required in each of the 4 groups will be:

n=
4Z

2


2

L2
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This leads to the useful guideline that a study in which you want to evaluate interactions among
dichotomous variables needs to be 4 times as large as is required to estimate main effects.

Power calculation by simulation
An approach to power calculation that is applicable to almost any analytical situation is one that
is based on simulation  (Feivesen, 2002). In general, you simulate a large number of datasets
that  are  representative  of  the  type  that  you  are  going  to  analyse,  and  then  compute  the
proportion of times that the main factor you are interested in has a P-value less than, or equal to,
the level you have set for significance (eg 0.05). This approach can be applied to multivariable
regression-type models as well as simpler unconditional analyses.

There are 2 scenarios for generating the simulated datasets. In the first (and simplest) approach,
you  might  want  to  evaluate  the  power  of  a  study which  you  have  already conducted.  For
example, let’s assume that you evaluated the impact of rainwater cistern on the number of days
with diarrhea (log transformed) for people in the Brazil study. A regression with family size
(dichotomised) and cistern as the predictors (but ignoring the clustering of observations within
households) provides an estimate of effect of β=0.054 (P=0.358) for large families (compared
with <6 members). You would like to know what the power of this size study was to detect a
difference of 0.054 units in log(diarrhea days).

The steps involved in determining the power by simulation are:
1. For  each  observation  in  the  dataset,  compute  the  predicted  value  based  on  the

coefficients from the model and the particular  X values (large family and rainwater
cistern) for the observation.

2. Generate a random value for the outcome with a mean at the predicted value and a
standard deviation equal to that observed in the data.

3. Reanalyse the data and note the P-value for the coefficient for the rainwater cistern (β2)
effect.

4. Repeat steps 1–3 many times (eg 1,000) and determine the proportion of datasets in
which the P-value for the rainwater cistern effect is  <0.05. This is an estimate of the
power of the study to detect a true effect corresponding to β2 =0.054.

Note This post-hoc power calculation has been presented because it is the simplest example of
the  use  of  simulation  methods  for  sample-size  calculation.  In  general,  post-hoc  power
calculations are not useful (Hoenig and Heisey, 2001; Smith and Bates, 1992).

The second scenario arises if you want to compute sample sizes prior to conducting a study, the
process is similar except that you start by creating a hypothetical dataset based on an expected
final model. This means that you will need to specify the distributions of the X variables, the
size of the dataset,  the hierarchical  structure  of the data (if  it  is  hierarchical  in nature;  see
Chapters 20–22) and all of the relevant variance estimates. An example of the determination of
the power of a future study, but based on some existing data (for covariate effects), is shown in
Example 2.7.

2.12 SAMPLING TO DETECT DISEASE

Sampling to detect the presence (or confirm the absence) of disease is a much more common
event  in  veterinary  medicine  (where  documenting  freedom  from  a  disease  is  a  common
requirement for trade of livestock) than human medicine, but still warrants some attention. It is
fundamentally  different  than  sampling  to  estimate  a  parameter  such  as  the  prevalence  of
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disease. If you want to be absolutely certain that a disease is not present in a population, then
the only option is to test the entire population (and even this only works if the test you have is
perfect).  As  this  is  rarely  feasible,  we rely  on  the  fact  that  most  diseases,  if  present  in  a
population, will exist at or above some minimal prevalence. For example, we might think that if
a contagious disease was present in a population, it would be very unlikely that less than 1% of
the population would be infected. Based on this, you can compute a sample size required to be
reasonably confident that you would detect the disease if the prevalence was 1% or higher.

If  you  are  sampling  from a  finite  population  (eg <1,000 individuals),  then  the  formula  to
determine the required sample size is (Cannon, 2001):

n=1−
1/ DN −

D−1
2 

Eq 2.17

where:
• n=required sample size
• α=1–confidence level (usually=0.05)
• D=estimated  minimum  number  of  diseased  individuals  in  the  group  (population

Example 2.7 Power calculation by simulation
data = brazil_smpl

You have carried out a study to evaluate the effects of rainwater cistern and a dichotomised version of
family size (<6 vs 6+) on the number of days with diarrhea in a month (log transformed). You carry out
a regression analysis on these data to evaluate the effects of the two predictors. The important results
from that regression analysis are:

§ the coefficient for large family was 0.054 suggesting that people in large families have more
diarrhea days,  but the P-value was 0.358, so you have relatively little confidence that the
estimate was really different from 0.

§ the standard error of prediction for days with diarrhea was 0.605 (this represents the standard
deviation of predicted results—see Chapter 14).

Assume that you would like to know the power of a comparable study (same size, same distribution of
covariates) to detect a 0.07 unit increase in log(diarrhea days). The simulation process to answer this
question is as follows.

You generate 1,000 datasets with randomly generated log(diarrhea days) values. For each person in
each dataset,  the  log(diarrhea  days)  value  is  drawn  from a normal  distribution with  the following
characteristics:

§ it has a mean value that corresponds to the predicted value from the real data that you started
with (ie based on the rainwater cistern and family size variables) except that the effect of
family size is now set to 0.07 

§ it has a standard deviation of 0.605

You analyse each of these new datasets and determine the proportion that gave a P-value for the family
size coefficient that was >0.05. It turns out that the power would be 0.230 (23.0%).  Consequently, if
the true effect of family size is to increase log(diarrhea days) by 0.07 units, a study based on 337 small
families and 159 large families will have a 23% chance of finding a significant effect of family size if
the effect of rainwater cistern is controlled for. This estimate is very close to the estimate of 22.5%
based on a simple comparison of 2 groups which ignores rainwater cistern status (computations not
shown).
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size*minimum expected prevalence)
• N=population size.

If you are sampling from a large (infinite) population, then the following approximate formula
can be used:

n=1n /1n q Eq 2.18

where  n=the required sample size,  α is usually set to 0.05 or 0.01,  q=(1–minimum expected
prevalence).

If you take the required sample and get no positive results (assuming that you set  α to 0.05),
then you can say that you are 95% confident that the prevalence of the disease in the population
is below the minimal threshold which you specified for the disease in question. Thus, you
accept  this  as  sufficient  evidence  of  the  absence  of  the  disease.  Example  2.8  shows  the
calculation of the required  sample size to determine freedom from norovirus  infection in a
nursing home.

A much more complete discussion of issues related to sampling to determine freedom from
disease has been published by Cameron and Baldock (1998a; 1998b). Bayesian procedures for
sample size calculations for determination of freedom from disease which take into account the
fact that the disease tends to cluster (in households or in regions) have been developed, but are
beyond the scope of this text (Branscum et al, 2006).

Example 2.8 Sample size for freedom from disease
data = hypothetical

Assume that you want to demonstrate the elimination of norovirus from a 100-person nursing home
following an outbreak with confirmed cases. You believe that if norovirus is present, a minimum of
10% of residents would still be positive (based on PCR testing) because of the highly contagious nature
of the disease.

                                               N =100 =0.05 D=10

n = 1−1/ DN −
D−1

2 
                                           

=1−0.05
1/10100−

10−1
2 

                                                     =0.25995.5

                                                    =24.7≃25

If you test 25 randomly selected residents and all test results are negative, you can state that you are
95% confident that the prevalence of norovirus infection in the home is <10%. As you don’t believe
that the disease would exist at a prevalence <10%, you are confident that it is not present.  Note This
assumes the test is 100% sensitive and specific. See Chapter 5 for a discussion of test characteristics.
(If you use the large population formula (Eq 2.18), you get a sample size estimate of 28.4.)
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