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SCREENING AND DIAGNOSTIC TESTS

OBJECTIVES

After reading this chapter, you should be able to:

 1. Define accuracy and precision as they relate to test characteristics.

 2. Interpret measures of precision for quantitative test results, and calculate and interpret kappa 
for categorical test results.

 3. Define  epidemiologic  sensitivity  and  specificity,  and  calculate  their  estimates  and  their 
standard errors (or confidence intervals).

 4. Define predictive values and explain the factors that influence them.

 5. Choose appropriate cutpoints for declaring a test result positive (this includes using receiver 
operating characteristics curves and likelihood ratios).

 6. Use multiple tests and interpret results in series or parallel.

 7. Understand the impact of using multiple tests that are not conditionally independent.

 8. Describe  multiple  approaches  to  evaluating  (ie estimating  sensitivity  and  specificity) 
diagnostic tests.

 9. Understand  latent  class  models  for  estimating  sensitivity  and  specificity  when  no  gold 
standard exists.

 10. Understand  how  population  characteristics  might  affect  estimates  of  sensitivity  and
  specificity and be able to use logistic regression to evaluate these effects.

 11. Describe  the main features  influencing  group-level  sensitivity  and  specificity  based  on
  testing individuals.

 12. Describe the main features affecting the use of pooled specimens.
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5.1 INTRODUCTION

Most  of  us  think  of  tests  as  specific  laboratory  test  procedures  (eg liver  enzyme,  serum 
creatinine, or blood urea nitrogen). A test, more generally, is any device or process designed to 
detect or quantify a sign, substance, tissue change, or body response in an individual. Tests can 
also be  applied  at  the household  or  other  level  of  aggregation.  Thus,  for  our  purposes,  in 
addition to the above examples of tests, we can consider clinical signs (eg looking for a jugular 
pulse), questions posed in the history-taking of a case work-up (eg how long since previous 
migraine), questions in a questionnaire (eg about drinking water source), or findings at post-
mortem examination as tests. Indeed, tests are used in virtually all problem-solving activities, 
and therefore the understanding of the principles of test evaluation and interpretation are basic 
to many of our activities. Some general papers dealing with diagnostic tests and their evaluation 
are Banoo et al (2010), Bossuyt (2008), and Sox (1996). Standardised guidelines for reporting 
studies of diagnostic accuracy (STARD statement) have been published (Bossuyt et al, 2003).

If  tests are being considered for use in a decision-making context (eg clinic diagnosis),  the 
selection of an appropriate test should be based on the test result altering your assessment of the 
probability that a disease does or does not exist, and that guides what you will do next (further 
tests, surgery,  treat  with a specific  antimicrobial,  quarantine the household  etc)  (Sox, 1986; 
Vickers, 2008). In the research context, understanding the characteristics of tests is essential to 
knowing how they affect the quality of data gathered for research purposes. The evaluation of 
tests might be the stated goal of a research project, or this assessment might be an important 
precursor to a larger research programme.

5.1.1 Screening vs diagnostic tests

A test can be applied at various stages in the disease process. Generally, in clinical medicine, 
we assume that the earlier the intervention, the better the recovery or prognosis. Tests can be 
used  as  screening tests in  healthy people  (ie to  detect  seroprevalence  of  diseases,  disease 
agents, or preclinical disease). Usually the people or groups that test positive will be given a 
further  in-depth diagnostic  work-up,  but  in  other  cases,  such  as  in  regional  disease-control 
programmes, the initial test result is taken as the state of nature. For screening to be effective, 
early detection of disease must offer benefits to the individual, relative to letting the disease run 
its course and being detected when it becomes clinical. Diagnostic tests are used to confirm or 
classify disease, guide treatment or aid in the prognosis of clinical disease. In this setting, all 
individuals tested are ‘abnormal’, and the challenge is to identify the specific disease that the 
individual  in  question  has.  Despite  their  different  uses,  the  principles  of  evaluation  and 
interpretation are the same for both screening and diagnostic tests.

5.2 ATTRIBUTES OF THE TEST PER SE

Throughout  most  of  this chapter,  the focus will  be on assessing how well  tests are able to 
determine  correctly  whether  individuals  (or  groups  of  individuals)  are  diseased  or  not. 
However,  before starting the discussion of  the relationship between test  results  and disease 
status,  we will  address  some issues  related to  the ability of  a  test  to accurately reflect  the 
amount of the substance (eg liver enzyme or serum antibody level) being measured, and how 
consistent the results of the test are if the test is repeated. 
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The  terminology  used  in  the  literature  to  describe  the  evaluation  of  tests  is  not  entirely 
consistent (de Vet et al, 2006; Streiner and Norman, 2006). However, concepts that relate to the 
test per se include analytic sensitivity and specificity, accuracy, and precision. Our usage of the 
term precision is as a general term to reflect the variability among test results.

5.2.1 Analytic sensitivity and specificity

The  analytic sensitivity of an assay for detecting a certain chemical  compound refers to the 
lowest concentration the test can detect. In a laboratory setting, specificity refers to the capacity 
of  a  test  to  react  to  only  one  chemical  compound  (eg  the  analytical  sensitivity  of  rapid 
diagnostic tests for the detection of H1N1 influenza has been compared with that of seasonal 
influenza  (Chan et al,  2009), or the analytical  sensitivity of 3 different  tests for Chlamydia 
infection have been evaluated (Chernesky et al, 2006)). Diagnostic (epidemiologic) sensitivity 
and  specificity  depend  (in  part)  on  analytic  sensitivity  and  specificity,  but  are  distinctly 
different concepts (Saah and Hoover, 1997) and are discussed in Section 5.3.

5.2.2 Accuracy and precision

The laboratory  accuracy of a test relates to its ability to give a true measure of the substance of 
interest (eg blood glucose, serum antibody level). To be accurate, a test need not always be close 
to the true value, but if repeat tests are run, the resulting average should be close to the true value.

The precision of a test relates to how consistent the results from the test are. If a test always 
gives the same value for a sample (regardless of whether or not it is the correct value), it is said 
to be precise. Fig. 5.1 shows the various combinations of accuracy and precision.

Results from tests that are inaccurate can only be ‘corrected’ if a measure of the inaccuracy is 
available  and  used  to  adjust  the  test  results.  Imprecision  can  be  dealt  with  by  performing 
repeated tests and averaging the results.  Correct  calibration of  equipment and adherence to 
standard operating procedures are essential to good accuracy and precision; however, the details 
are beyond the scope of this book.

5.2.3 Measuring accuracy

Assessing  accuracy  involves  running  the  test  on  samples  with  a  known  quantity  of  the 
substance present. These can be clinical samples for which the quantity of the substance has 

Fig. 5.1 Laboratory accuracy and precision
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been determined by a generally accepted reference procedure. Alternatively, the accuracy of a 
test can be determined by testing samples to which a known quantity of a substance has been 
added.  The  possibility  of  background  levels  in  the  original  sample  and  concern  about  the 
representativeness of these ‘spiked’ samples make this approach less desirable for evaluating 
tests designed for  routine clinical  use.  A much more detailed description of  procedures  for 
evaluating laboratory-based tests (specifically serologic tests) can be found in Jacobson (1998).

5.2.4 Precision and agreement

As  indicated  above,  the  term  precision  is  used  to  denote  variability  among  test  results. 
Variability obtained from repeated testing of the same sample within the same laboratory is 
referred  to as  repeatability.  Variability obtained from testing the same sample in  different 
laboratories is called reproducibility and is, in part, a reflection of how easy it is to set up the 
test in different settings. A related concept is that of reliability, which refers to the ability of a 
test to distinguish between individuals and is not, strictly speaking, a measure of precision (see 
Section 5.2.5).

Agreement refers to how well 2 tests agree. It might refer to the level of agreement between 2 
different  tests  for  the  same  substance,  or  between  responses  of  2 different  raters  who  are 
estimating  a  value  (eg 2 individuals  evaluating  blood  pressure  on  an  individual).  General 
frameworks for evaluating agreement have recently been published (Barnhart et al, 2007; Haber 
and Barnhart, 2008).

Evaluating precision, or agreement, involves comparing multiple sets of test results which have 
measured the same quantity. Methods for quantifying the variability in test results are discussed 
in the following 2 sections. The same procedures that are used for measuring precision can be 
used to measure agreement between 2 (or more) different tests applied to the same sample.

5.2.5 Measuring precision and agreement for tests with quantitative outcomes

Some  commonly  used  techniques  for  quantifying  variability  or  for  expressing  results  of 
comparisons between pairs of test results are:

• coefficient of variation
• Pearson correlation coefficient
• concordance correlation coefficient (CCC)
• limits of agreement plots
• intra-class correlation coefficient (ICC) (see Section 20.3.3).

The coefficient of variation (CV) is computed as:

CV=
 Eq 5.1

where σ is the standard deviation among test results on the same sample and μ is the average of 
the test results. The CV for a given sample can be computed based on any number of repeat  
runs of the same test; then these values can be averaged over samples to compute an overall 
estimate of the CV (see Example 5.1). 

A  Pearson  correlation  coefficient measures  the  degree  to  which  one  set  of  test  results 
(measured on a continuous scale)  varies  (linearly)  with a second set.  However,  it  does  not 
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directly compare the values obtained (it ignores the scales of the 2 sets of results) and for this 
reason, it is much less useful than a concordance correlation coefficient for comparing 2 sets of 
test results (see Example 5.1) and we do not recommend its use. 

As with a Pearson correlation coefficient, a concordance correlation coefficient (CCC) (Lin, 
1989; 2000) can be used to compare 2 sets of test results (eg results from 2 laboratories), and it 
better reflects the level of agreement between the 2 sets of results than the Pearson correlation 
coefficient does. If  2 sets of continuous-scale test results agreed perfectly,  a plot of one set 
against the other would produce a straight line at a 45° angle (the equality line). The CCC is 
computed from 3 parameters. The first, the location-shift parameter, measures how far the data 
are (above or below) from the equality line. The second, the scale-shift parameter, measures the 
difference between the slope for the sample data and the equality line (slope=1). (The product 
of the location-shift and scale-shift parameters is referred to as the accuracy parameter.) The 
third, the usual Pearson correlation coefficient, measures how tightly clustered the sample data 
are around the line (slope). The CCC is the product of the accuracy parameter and the Pearson 
correlation coefficient.  A value of 1 for the  CCC indicates perfect  agreement.  Example 5.1 

Example 5.1 Measuring precision—quantitative test results
data = nv

A set of 34 individual fecal samples was tested for norovirus 3 times using a commercially available 
enzyme immunoassay (EIA). The results were used to evaluate the precision (repeatability) of the test.

The  CV  for  each  sample  was 
computed  based  on  the  3 
replicate  values  and  then 
averaged across the 34 samples. 
The mean CV value was 0.387, 
indicating  that  the  standard 
deviation among the 3 replicates 
was less than 40% of the mean of 
the samples.

Pearson  correlation  (not 
recommended)  was  used  to 
compare replicate values from 1 
and 2, 1 and 3, and 2 and 3. The 
correlations  were  approximately 
0.97 for all pairs.

Comparing  replicates  1  and  2, 
the  CCC was  0.97,  indicating 
very good agreement among the 
2  sets  of  values.  (Note In  this 

specific example, the Pearson correlation and the  CCC were very close, but this is not generally the 
case.) Fig. 5.2 shows a CCC plot for samples 1 and 2. 

Note Data must overlay the solid line for perfect concordance. The reduced major axis is the linear 
regression line through the observations.

There appears to be slightly greater disagreement between the 2 sets of values at high optical density 
(OD) readings compared with low OD readings, but the data are quite sparse above 1.0.

(continued on next page)

Fig. 5.2 Concordance correlation plot
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shows a concordance correlation plot for 2 sets of EIA results. The CCC has been generalised 
to deal with more than 2 sets of test results, to work with categorical data (Barnhart et al, 2002; 
King and Chinchilli, 2001), and to deal with the issue of repeated measurements  (King et al, 
2007). 

A limits of agreement plot (also called a Bland-Altman plot) (Bland and Altman, 1986) plots 
the differences between the pairs of test results against their mean value. The mean (μd) and 
standard  deviation  of  the  differences  (σd)  are  computed  and  lines  denoting  the  ‘limits  of 
agreement’ are added to the plot at μd + 1.96σd. These indicate the range of differences between 
the 2 sets of test results. This plot helps to determine if there is a systematic difference between 
the 2 sets of observations (ie mean difference < or > 0), and the range of errors (indicated by the 
spread  of  the  points  (de  Vet,  2007)).  The  plot  is  also  useful  to  determine  if  the  level  of 
disagreement between the 2 sets of results varies with the mean value of the substance being 
measured  and  can  be  used  to  identify  the  presence  of  outlying  observations.  A  limits  of 
agreement plot is presented in Fig. 5.3.

Reliability is not, strictly speaking, a measure of precision because it relates the variability of a 
test  result  to  the  amount  of  variation  among  individuals  (McDowell  and  Newell,  1996). 
Nevertheless, it is a term commonly encountered in clinical epidemiology literature. Reliability 
is  most  commonly  measured  using  the  intra-class  correlation  coefficient  (ICC),  which  is 
described in more detail in Section 20.3.3. In the context of diagnostic test evaluation, the ICC 
relates the amount of variability among individuals to the total variability,  which consists of 

Example 5.1 (continued)

The limits  of agreement  plot  for  the same data is shown in Fig.  5.3.  It  indicates that  most  of the 
differences between the replicates fell in the range of -0.4 and +0.4 units.

All points would lie along the line y=0 if there was perfect agreement between the 2 sets of results.

Fig. 5.3 Limits of agreement plot
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variability among individuals plus variability among measurements  within an individual  (de 
Vet et al, 2006). 

ICC= variability among individuals
variability among individuals + measurement error

Alternatively, it can be viewed as 1 minus the proportion of variance due to measurement error. 
If a test is imprecise (much measurement error), the reliability will be low. See  de Vet et al  
(2006) for a discussion on the use of agreement and reliability measures.

5.2.6 Measuring precision and agreement for tests with a qualitative outcome 

All of the above procedures are useful if the quantity of interest is measured on a continuous 
scale.  If  the test  results  are  categorical  (dichotomous or multiple  categories),  a  kappa (also 
called  Cohen’s kappa)  (Cohen, 1960) statistic can be used to measure the level of agreement 
between  2 (or  more)  sets  of  test  results.  Obviously,  the  assessments  must  be  carried  out 
independently of  each other using the same set  of  outcome categories.  The data layout  for 
assessing agreement is shown in Table 5.1 for a 2X2 table (larger ‘square’ tables are also used).

Table 5.1 Layout for comparing results from 2 qualitative (dichotomous) tests

Test 2 positive Test 2 negative Total

Test 1 positive n11 n12 n1.

Test 1 negative n21 n22 n2.

Total n.1 n.2 n

5.2.7 Kappa

In assessing how well the 2 tests agree, we are not seeking answers relative to a reference (gold) 
standard (Section 5.3.1) as this might not exist, but rather whether the results of 2 tests agree 
with each other. Obviously, there will always be some agreement due to chance, and this must 
be considered in the analysis. For example, if one test was positive in 30% of subjects and the 
other test was positive in 40%, both would be expected to be positive in 0.4*0.3=0.12 or 12% 
of subjects  by chance  alone.  So,  the important  question is:  what  is  the level,  or  extent,  of 
agreement beyond what would have been expected by chance? This question is answered by a 
statistic called Cohen’s kappa (κ). We can calculate the essential elements of κ as follows:

• observed agreement = (n11 + n22)/n
• expected agreement (chance) = [(n1.* n.1)/n + (n2.* n.2)/n]/n
• actual agreement beyond chance = observed - expected
• potential agreement beyond chance = (1 - expected)
• κ = actual agreement beyond chance/potential agreement beyond chance.

A formula for calculating κ directly is:

=2
n11 n22−n12 n21

n1. n2.n.2 n.1 Eq 5.2
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Procedures for computing the standard error, confidence intervals, and tests of significance for 
κ are available elsewhere (Reichenheim, 2004). 

Common interpretations of κ, when applied to a test that is subjective in nature (eg identifying 
lesions on an X-ray), are shown below (Landis and Koch, 1977). One would expect to apply a 
more stringent interpretation when comparing  2 reasonably objective tests (eg  virus isolation 
and PCR).

≤ 0 poor agreement
0.01 to 0.2 slight agreement
0.21 to 0.4 fair agreement
0.41 to 0.6 moderate agreement
0.61 to 0.8 substantial agreement
0.81 to 1.0 almost perfect agreement

Example 5.2 shows the computation of κ for assessing agreement between PCR and EIA results 
for norovirus when both tests were run on 188 stool samples. 

5.2.8 Factors affecting kappa

It has been well-established that bias (tendency of one rater to assign more positive test results 
than another rater) and the prevalence of the underlying condition both affect  κ (Cook, 2007; 
Nam, 2007; Sargeant and Martin, 1998). Alternative approaches to measuring agreement have 
been suggested and these include: maximum kappa (Feinstein and Cicchetti, 1990), Yule’s Y 
(Spitznagel  and  Helzer,  1985),  indices  of  positive  and  negative  agreement  (Cicchetti  and 
Feinstein, 1990), a prevalence and bias adjusted kappa (PABAK—also called the S coefficient) 

Example 5.2 Agreement among dichotomous test results
data = nv

Stool samples from 188 individuals were tested for norovirus using both a PCR assay and an EIA. Both 
tests generate continuous-scale results so these were dichotomised (for PCR positive=cycle threshold 
(ct)<34, for EIA positive=OD≥0.1) The data were:

EIA positive EIA negative Total

PCR positive 68 26 94

PCR negative 6 88 94

Total 74 114 188

McNemar’s  χ2 test had an exact P-value of 0.005, indicating that one of the tests (in this case PCR) 
produced significantly more positive results. Given this, it makes little sense to test agreement, but for 
pedagogical purposes:

observed agreement=0.83 expected agreement=0.5
κ=0.66 SE(κ)a=0.054
95% CI of κb=0.546 , 0.768

Thus,  the  level  of  agreement  appears  substantial.  However,  the  CI  is  quite  wide,  reflecting  some 
uncertainty about the estimate.
aThere are a number of formulae for the SE; the one used here does not assume independence of observations.
bThere are a number of ways of computing the confidence interval for kappa, the estimates shown are bias-corrected 
bootstrap confidence intervals.
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(Byrt et al, 1993; Thomsen and Baadsgaard, 2006), and conditional relative odds ratio (Suzuki, 
2006). However, in general, these have not been widely adopted so it is important to consider 
the role of bias and prevalence on κ.

Bias Before  quantifying  the  level  of  agreement,  we  need  to  determine  if  the  2 tests  are 
classifying approximately the same proportion of individuals as positive. (If one test produces 
more positive test  results  than the other,  there is  not  much point  in proceeding to evaluate 
agreement.)  We compare the proportion positive to each test (ie p1 and p2,  where  p1 and  p2 

represent the proportion positive to tests 1 and 2, respectively) using the McNemar’s χ2 test for 
paired  data  (Lachenbruch,  2007;  McNemar,  1947) or  an  exact  binomial  test  for  correlated 
proportions (formula not shown).

McNemar's2=n12−n21
2/ n12n 21 Eq 5.3

A non-significant  test  indicates  that  there  is  little  evidence  that  the  2 proportions  differ.  If 
significant, this test suggests a serious disagreement between the tests, and thus the detailed 
assessment of agreement could be of little value. 

Prevalence As noted, the prevalence of the condition being diagnosed affects κ. Two tests (or 2 
raters) will have a higher  κ value if the prevalence of the underlying condition is moderate 
(~0.5) than if it is very high or very low. The relationship between prevalence and κ is complex, 
and depends on the distribution of difficult-to-classify individuals in the population. However, 
in general,  the influence of prevalence is only substantial at very high (>0.8) and very low 
(<0.2) prevalence values. A much more detailed review of this issue, and the conclusion that we 
should not be concerned about the effect of prevalence on κ, has been published (Vach, 2005).

5.2.9 Multiple raters (tests)

Kappa can be extended to situations in which there are more than  2 raters (or tests). In this 
instance, there is no assumption about the uniqueness of the raters, so an individual may be 
evaluated by different numbers of raters or by the same number of raters but with different 
individuals doing the rating. (However, a balanced study in which the same raters evaluate all 
individuals will provide the most meaningful results.) This same approach can be used when 
there are only 2 raters, but the identity of those raters differs across subjects. Details of these 
methods are covered in Fleiss et al (2003).

When data from multiple raters are available, an alternative to computing  κ is to model the 
probability of a positive test result using a multilevel model (see Chapter 22) with the rater as a 
random effect (Woodard et al, 2007). This analysis focuses on factors that affect the probability 
of a positive test result, but the estimate of the between-rater variance provides some insight 
into the level of agreement.

5.2.10 Weighted kappa

For tests measured on an ordinal scale, computation of the usual κ assumes that any pair of test 
results which are not in perfect agreement are considered to be in disagreement. However, if a 
test result is scored on a 5-point scale, a pair of tests with scores of 5 and 4, respectively, should 
be considered in ‘less disagreement’ than a pair of scores of 5 and 1. Partial agreement can be 
taken into account using a weighted κ in which pairs of test results that are close are considered 
to  be  in  partial  agreement  (through  a weight  matrix  which  specifies  how much agreement 
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should  be  assigned  to  them).  A  weighted  κ is  sensitive  to  the  number  of  categories  used 
(Brenner  and  Kliebsch,  1996) and  to  the  choice  of  weights  (Graham  and  Jackson,  1993). 
Confidence intervals can be computed using bootstrap methods  (Reichenheim, 2004) and an 
exact test of statistical significance is available  (Brusco et al, 2007) (although we are usually 
more interested in the magnitude of κ than in its statistical significance).

Example  5.3  shows  the  data  layout  and  the  results  of  an  unweighted  and  weighted  κ for 
comparing PCR and EIA results that have each been categorised on a 3-point scale. It has been 
reported that computing an intra-class correlation coefficient may be superior to the use of a 
weighted kappa when dealing with ordinal response categories (Maclure and Willett, 1987).

5.3 THE ABILITY OF A TEST TO DETECT DISEASE OR HEALTH

The  2 key characteristics we estimate are the ability of a test to detect diseased individuals 
correctly (its  sensitivity), and to give the correct answer if the individual in question is not 
diseased  (its  specificity).  The  two previous  terms  are  sometimes  referred  to  as  diagnostic 
sensitivity and diagnostic specificity, but for simplicity we will use the single word terms. For 
pedagogical purposes, we will assume that individuals are the units of interest (the principles 
apply to other levels of aggregation). Further, we will assume that a specific ‘disease’ is the 
outcome, although other conditions such as pregnancy, determination of an exposure, having a 

Example 5.3 Agreement among ordinal test results
data = nv

The data described in Example 5.1 were used, except the original continuous data were categorised on 
3-point scales as follows: 

• PC: Neg (ct≥34), + (27≤ct<34), ++ (1≤ct<27)
• EIA: Neg (OD<0.1), +(0.1≤OD<0.11), ++ (0.11≤OD<4)

EIA

PCR Neg + ++

Neg 79 3 5

+ 4 1 2

++ 20 2 65

An  unweighted  kappa  (which  assumes  that  all  test  results  which  were  not  identical  were  in 
disagreement) and a weighted kappa in which test results were:

• identical: weighted as complete agreement
• 1 level apart: weighted as 50% agreement
• 2 levels apart: weighted as complete disagreement.

95% CI

Kappa SE Lower Upper

Unweighted 0.628 0.067 0.520 0.732

Weighted 0.663 0.071 0.547 0.762

The two values are close (partially because of the relatively small sample in the + category), but the 
weighted kappa is probably a better reflection of the agreement between the  2 sets of tests than the 
unweighted kappa.
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specified antibody titre,  or infection status could be substituted in a  particular  instance.  To 
initiate  this  discussion,  it  is  simplest  to  assume that  the  test  we are  evaluating  gives  only 
dichotomous answers—positive or  negative.  This might  be a  bacterial  culture in  which the 
organism is either present or absent, or a survey question about whether a household is attached 
to  a  municipal  water  supply  or  not.  In  reality,  many  test  results  provide  a  continuum of 
responses and a certain level of response (colour, test result relative to background signal, level 
of enzyme activity,  endpoint titre  etc) is selected such that, at or beyond that level, the test 
result is deemed to be positive.

5.3.1 The gold standard

A gold standard (GS) is a test or procedure that is absolutely accurate. It diagnoses all of the 
specific disease that exists and misdiagnoses none. For example, if we had a definitive test for 
human  immunodeficiency  virus  (HIV)  infection  that  correctly  identified  all  HIV-infected 
individuals as positive and gave negative results in all non-infected individuals, the test would 
be considered a gold standard. In reality, there are very few true gold standards. Partly this is 
related to imperfections in the test itself, but a good portion of the error is due to biological 
variability. People do not immediately become ‘diseased’, even subclinically, when exposed to 
an infectious, toxic, physical, or metabolic agent. Usually, a period of time will pass before the 
agent is present in sufficient numbers, or the individual responds in a manner that produces a 
detectable  or  meaningful  change.  The  timescale  for  an  individual’s  response  to  cross  the 
threshold and be considered positive varies from person to person.

Traditionally, in order to assess a new test, we required a gold standard. However, alternative 
approaches for evaluating diagnostic tests are discussed in Section 5.7

5.3.2 Sensitivity and specificity

The concepts of sensitivity and specificity are often easier to understand through the use of a 
2X2 contingency table, displaying disease and test results in a sample of individuals.

Table 5.2 Data layout for test evaluation
Test positive (T+) Test negative (T-) Total

Disease positive (D+) a (true positive) b (false negative) m1

Disease negative (D-) c (false positive) d (true negative) m0

Total n1 n0 n

The sensitivity of a test (Se) is the proportion of diseased (D+) individuals that test positive. It 
is  described  statistically  as  the  conditional  probability  of  testing  positive  given  that  the 
individual is diseased [p(T+|D+)], and is measured by:

Se= a
ab

= a
m1 Eq 5.4

The  specificity  of  a  test  (Sp)  is  the  proportion  of  non-diseased  (D-)  individuals  that  test 
negative. It is described statistically as the conditional probability of testing negative given that 
the individual does not have the disease of interest [p(T-|D-)] and is measured by:
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Sp= d
cd

= d
m0 Eq 5.5

For future purposes, we will denote the false positive fraction (FPF) as 1-Sp,  and the false 
negative fraction (FNF) as 1-Se. From a practical perspective, if you want to confirm a disease, 
you would use a test with a high Sp because there are few false positives. Conversely, if you 
want to rule out a disease, you would use a test with a high  Se because there are few false 
negatives.  Confidence intervals for  Se,  Sp,  FPF and  FNF can be obtained using procedures 
applicable for estimating the confidence interval of a proportion (see Section 4.10). Estimates of 
Se and Sp are specific for a given population and may vary across source populations. Methods 
for estimating Se and Sp are covered in Sections 5.7 and 5.8, and factors that might affect the Se 
and Sp are discussed in Section 5.9.

The estimation of Se and Sp of the EIA test in the norovirus data is shown in Example 5.4. The 
gold standard determination was based on a combination of test results (see Chapter 31).

5.3.3 True and apparent prevalence

Two other terms are important descriptors of the tested subgroup. One denotes the actual level 
of disease that is present. In screening-test jargon, this is called the  true prevalence (P). (In 

Example 5.4 Sensitivity, specificity, and predictive values
data = nv

The EIA results in the norovirus data were used for the following example. No true, independent gold 
standard (GS) existed for those data, so a GS was computed using results from several different tests 
and from repeated testing of selected samples. (See Chapter 31 for a complete description of the data 
and the determination of the gold standard.)

          T+     T-

GS + (D+) 71 11 82 

GS - (D-) 3 103 106 

74 114 188 

For purposes of description, the 71 individuals are called true positives, the 3 are false positives, the 11 
are false negatives, and the 103 are true negatives. 

In this example,
• Se = 71/82 = 86.6%      95% CI = (77.3% , 93.1%)
• Sp = 103/106 = 97.2%        95% CI = (92% , 99.4%)
• FNF = 1-0.866 = 13.4%
• FPF = 1-0.972 = 2.8%
• P = 82/188 = 43.6%
• AP = 74/188 = 39.4%
• PV+ = 71/74 = 95.9%      95% CI = (88.6% , 99.2%)
• PV- = 103/114 = 90.4%      95% CI = (83.4% , 95.1%).

Note The confidence intervals are exact, based on the binomial distribution.

The Sp is very high and the Se is reasonable. However, limitations in the Se mean that, in this particular 
population, a negative test result was only indicative of an uninfected individual 90% of the time (PV- ).
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clinical epidemiology, an estimate of this is referred to as pre-test prevalence.) P is a useful 
piece of information to include in our discussion of test evaluation, because it will affect the 
interpretation of the test result. In Example 5.4, P=p(D+)=m1/n=82/188=0.436 or 43.6%. 

In contrast to the ‘true’ state, unless our test is perfect, the test results will only provide an 
estimate  of  the  true  prevalence  and,  in  screening-test  jargon,  this  is  called  the  apparent 
prevalence (AP).  In  Example  5.4,  AP=p(T+)=n1/n=74/188=0.394  or  39.4%.  In  clinical 
epidemiology,  this  might  be  referred  to  as  a  post-test  prevalence.  In  general,  AP can  be 
computed as:

AP= p T + =P∗Se1−P1−Sp  Eq. 5.6

5.3.4 Estimating true prevalence from apparent prevalence

If the Se and Sp of a test are known, the true prevalence of disease in a population is estimated 
by Rogan and Gladen (1978):

P=pD + = AP−1−Sp
1−[1−Sp1−Se ]

= APSp−1
SeSp−1 Eq 5.7

For example,  if  AP=0.150 and  Se=0.363,  Sp=0.876, then our estimate of true prevalence is 
0.109 or 10.9%. It is possible that some combinations of Se,  Sp, and AP result in estimates of 
true prevalence outside its allowed range (0-1). This indicates that one or both of the Se and Sp 
estimates used are not applicable for the population being studied.

5.4 PREDICTIVE VALUES

The Se and Sp are characteristics of the test. However, these terms do not tell us directly how 
useful the test might be when applied to individuals of unknown disease status. Once we have 
decided to use a test, we want to know the probability that the individual has or does not have 
the disease in question, depending on whether it tests positive or negative. These probabilities 
are called predictive values, and change with different populations of individuals tested with 
the same test because they are driven by the true prevalence of disease in the target population 
as well as by the test characteristics. In this discussion, we assume the group of subjects being 
tested is homogeneous with respect to the prevalence of disease. If not, then the covariates that 
affect disease risk should be identified and separate estimates made for each subpopulation.

5.4.1 Predictive value positive

With data as shown in Table 5.2, the predictive value of a positive test (PV+) is the probability 
that given a positive test, the individual actually has the disease; this might be represented as
p(D+|T+) or  a/n1. The predictive value of a positive test can generally be estimated using the 
following formula:

PV += p D +∗Se
p D+ ∗Sep D -∗1−Sp Eq 5.8

which explicitly shows how the true prevalence of disease in the tested group affects the PV+.
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5.4.2 Predictive value negative

In a similar manner, the PV of a negative test (PV-) is the probability that given a negative test, 
the  individual  does  not  have  the  disease  (ie p(D-|T-)).  In  Table  5.2  this  is  PV-=d/n0.  The 
predictive value of a negative test result can be estimated using the following formula:

PV - = p D -∗Sp
p D-∗Spp D+ ∗1−Se  Eq 5.9

Estimates  of  PV+  and  PV-  are  shown  in  Example  5.4.  Note These  values  represent  the 
predictive values given the P observed in the study population.

Because we are more often interested in the ‘disease’ side of the question, there is a measure of 
the  probability  that  an  individual  that  tests  negatively  is  actually  diseased.  It  is  called  the 
positive predictive value of a negative test or PPV-=b/n0 or 1-(PV-). 

5.4.3 Effect of prevalence on predictive values

As noted above, the predictive values of the test depend on the sensitivity and specificity of the 
test, and the prevalence of the disease in the population in which it  is  used. Consequently, 
predictive  values  are  not  good  measures  of  a  test’s  performance  (because  they  vary  from 
population to population). Example 5.5 shows how dramatically predictive values can change 
as the prevalence of a disease varies from 50% down to 0.1%.

Computing confidence intervals (CI) for PVs is not straightforward. The CI at the observed P 
can  be  computed as  a  CI for  a  binomial  proportion (see  Section 4.10)  given  the observed 
sample size. In situations in which the PV+ or PV- approaches 1 (often the PV- approaches 1 
when P is small) exact methods of computing CI for binomial proportions (or other methods of 
dealing with the problem that the CI may extend below 0 or above 1) should be employed 
(Mercaldo et al, 2007). In order to estimate PVs for values of P other than that observed in the 
data, the uncertainty about the estimates of the Se and Sp, as well as the estimate of P, need to 
be taken into account (see  Zou (2004) for a discussion of the problem and one approach to 
computing these CIs).

5.4.4 Increasing the predictive value of a positive test

One way to increase the predictive value of a positive test is to use the test on people where the 
prevalence in the population being tested is relatively high. Thus, in a screening programme 
designed to ascertain if a disease is present, we often might slant our testing toward people that 
are more likely to have the disease in question. Hence, testing high-risk individuals is a useful 
way of increasing the pre-test (prior) probability of disease. 

A second way to increase  PV+ is to use a more specific test (with the same or higher  Se), or 
change  the  cutpoint  of  the  current  test  to  increase  the  Sp  (but  this  would  decrease  the  Se 
somewhat  also).  As  Sp increases,  PV+  increases,  because  the  number  of  false  positives 
approaches zero. A third and very common way to increase PV+ is to use more than one test. In 
this last situation, the result depends on the method of interpretation as well as the individual 
test characteristics (see Section 5.6).
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5.5 INTERPRETING TEST RESULTS THAT ARE MEASURED ON A CONTINUOUS SCALE

For  many tests,  the  substance  being  evaluated  (eg blood  urea  nitrogen  levels,  EIA  optical 
densities)  is  measured  on  a  continuous  scale  or  with  semi-quantitative  (ordinal)  results. 
Predictive probabilities associated with these test results can be used directly to estimate the 
prevalence of disease in a population (Choi et al, 2006). However, to interpret the result at an 
individual level, we need to select a  cutpoint (also called  cut-off or  threshold) to determine 
what level of result indicates a positive test result. This is true when interpreting serologic titres. 

In reality, there is often an overlap in the distribution of the substance being measured between 
healthy and diseased people, and we usually select a cutpoint that optimises the Se and Sp of the 
test. The dilemma is depicted in Fig. 5.4. As will be demonstrated (Section 5.5.3), it is often 
useful to use the actual result when assessing the health status of the tested subject(s).

5.5.1 Selecting a cutpoint

If  there is  any overlap in the test  values for  D+ and  D- individuals,  whatever  cutpoint  we 
choose will result in both false positive and false negative test results (eg Fig.  5.4). For the 
norovirus data, the distributions of optical density (OD) values in the GS+ and GS- individuals 

Example 5.5 Effect of prevalence on predictive values
data = nv

In order to examine the impact of a change in P on the outcome of a test, we will use the values of Se 
and Sp from Example 5.4 and specify 3 scenarios where the true prevalence varies from 50% to 5%, 
and then to 0.1%. For pedagogical purposes, we demonstrate the calculations for the 50% prevalence 
scenario in a 2X2 table. A simple way to proceed to obtain these results is to construct a fictitious 
population of 1000 individuals with 500 being ‘diseased’ (ie D+) and 500 being D- based on the true 
prevalence of 50%. Then, we calculate 86.6% (Se) of 500 and fill in the 433 true positives. Finally, we 
calculate 97.2% (Sp) of 500, fill in the 486 true negatives, and complete the table. 

Test + Test -

D+ 433 67 500

D- 14 486 500

447 553 1000

From these data:

PV+=433/447=96.9% The probability that an individual with a positive test result was truly 
infected is 96.9%

PV-=486/553=87.9% The probability that an individual with a negative test result was truly  
infected is 87.9%

Comparable values if the prevalence is 5% or 0.1% are:

Prevalence (%) PV+ (%) PV- (%)

5 61.9 99.3

0.1 3.0 100

As you can see, the PV+ drops off rapidly as P falls, but the PV- rises.
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overlap considerably.  Because of this overlap,  if we raise the cutpoint, the  Sp will  increase 
(false positives decrease) and the Se will decrease (more false negatives). Lowering the cutpoint 
has the opposite effect. Thus, the choice of cutpoint will depend on the relative seriousness of 
either a false negative or a false positive test result.

If  one  has  to  choose  among  multiple  cutpoints,  graphical  procedures  such  as  receiver 
operating  characteristic  curves (ROC—described  below)  or  a  sensitivity-specificity  plot 
(also  called  a  2-graph  ROC  plot)  might  be  used  to  help  choose  an  optimal  cutpoint. 
Alternatively, it is possible to use the actual test result value by computing likelihood ratios (see 
Section 5.5.3) and avoid having to select a specific cutpoint. 

A sensitivity-specificity plot (Reichenheim, 2002) shows how the Se and Sp of a test changes as 
the cutpoint is moved through the possible range of values (Fig. 5.5). It can be used to identify 
where the 2 values are equal, but this is not necessarily the best cutpoint. Depending on the cost 
of false positive and false negative test results, it may be important to choose a cutpoint which 
results in high Se (and consequently relatively low Sp) or vice versa. As can be seen in Fig. 5.5, 
obtaining a Sp much greater than 98% for the norovirus EIA test entails accepting quite a low Se. 
Possible approaches to choosing a cutpoint have recently been published (Caraguel et al, 2011).

5.5.2 Receiver operating characteristic curves 

A receiver operating characteristic curve is a plot of the Se of a test versus the false positive rate 
(1-Sp)  computed  at  a  number  of  different  cutpoints  to  select  the  optimum  cutpoint  for 

Fig. 5.4 Overlap between healthy and diseased individuals
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distinguishing between  D+ and  D- individuals  (Greiner et al, 2000). The 45° line in Fig. 5.6 
represents a test with discriminating ability that is no better than chance alone. The closer the 
ROC  curve  gets  to  the  top-left  corner  of  the  graph,  the  better  the  ability  of  the  test  to 
discriminate between D+ and D- individuals. (The top-left corner represents a test with a Se of 
100% and a Sp of 100%.)

Use of an ROC curve has the advantage over a ‘one cutpoint value’ for determining Se and Sp, 
in that it describes the overall ability of the test to discriminate D+ from D- individuals over a 
range of cutpoints. The area under the ROC curve (AUC) can be interpreted as the probability 
that  a  randomly selected  D+ individual  has a  greater  test  value (eg optical  density)  than a 
randomly selected  D- individual (again assuming the distribution of the test results in the D+ 
group is higher than that in the D- group). Multiple approaches to estimating the SE of the AUC 
have been reviewed (Faraggi and Reiser, 2002; Hajian-Tilaki and Hanley, 2002). ROC analysis 
can also be used to compare 2 (or more) tests based on the AUC, see Pepe (2003) for details.

Assuming equal costs of false negative and false positive test results, the optimal cutpoint is 
that with  Se+Sp at a maximum, and this occurs where the curve gets closest to the top left 
corner of the graph (or alternatively, the farthest away from the 45° line). Depending on the 
seriousness of false negative versus false positive results, one might want to emphasise test 
results in one particular region of the ROC curve such as an area that constrains  Se (or  Sp) 
within defined limits. This is referred to as the partial AUC (Walter, 2005b). 

Fig. 5.5 Sensitivity-specificity plot of the norovirus test data (dashed lines are 95% 
confidence intervals)
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Both parametric  and non-parametric ROC curves can be generated.  A non-parametric  curve 
simply plots the Se and (1-Sp) using each of the observed values of the test result as a cutpoint. 
A parametric ROC curve provides a smoothed estimate by assuming that the latent variables 
representing  the  Se and  (1-Sp)  at  various  cutpoints  follow a  specified  distribution  (usually 
binormal). Example 5.6 shows parametric and non-parametric ROC curves for the norovirus 
EIA data. Recently, a semi-parametric ROC curve has been proposed (Wan and Zhang, 2007).

5.5.3 Likelihood ratios

A likelihood ratio (LR) is the ratio of the probability of a given test result among D+ individuals 
to  the  probability of  that  test  result  among  D-  individuals.  Consequently,  for  a  test  with a 
dichotomous test result, there are  2 LRs: one for a positive test results (LR+) and one for a 
negative test result (LR-). Recall that, in general, an odds is P/(1-P) so an LR of a positive test 
result (LR+) is the odds of disease given a positive test result divided by the pre-test odds:

LR+=PV + /1−PV + 
P /1−P 

= Se
1−Sp Eq 5.10

where  P=prevalence or p(D+) in the group being tested. Consequently,  LRs reflect  how our 
view changes of how likely disease is when we get the test result. 

For tests with continuous outcomes, there are 3 possible LRs (Choi, 1998; Gardner and Greiner, 
2006): 

Example 5.6 ROC curves 
data = nv

Fig. 5.6 shows both non-parametric (points) and parametric (dashed line) ROC curves along with 95% 
CI curves for the parametric ROC. The proximity of the curve to the top left corner, and the high AUC 
value (0.955) confirm that the test performs well in classifying infected and non-infected individuals.

Fig. 5.6 Parametric and non-parametric ROC curves
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• test value specific
• cutpoint specific; and 
• category specific.

A test value-specific  LR is the ratio of the probabilities of an exact test result in  D+ and  D- 
individuals. Because of sample size limitations, it is not usually computed. However, it can be 
estimated by determining the tangent to the ROC curve at that test value (Choi, 1998).

5.5.4 Cutpoint-specific LR

A cutpoint-specific LR (LRcp) at a selected cutpoint is the ratio of the probabilities of test results 
above the cutpoint in D+ individuals to that in D- individuals. It can be written as:

LRcp +=
Se cp

1−Spcp Eq 5.11

where cp denotes the cutpoint at or above which the test is considered positive. In this context, 
the  LR+ can be viewed as the probability of a  D+ individual having a test result above the 
cutpoint  relative  to  the  probability  of  the  same  result  in  a  D-  subject.  The  LRcp+  can  be 
estimated as the slope of the line from the origin to the cutpoint on an ROC curve (Choi, 1998).

The LR for a negative test result (LR-) at a given cutpoint is the ratio (1-Se)/Sp. It denotes the 
probability of the negative result from a D+ subject relative to that of a D- subject. Examples of 
LRs at various cutpoints are shown in Example 5.7. 

The  LR  makes use of the actual  test  result  (as  opposed to just  being positive)  and gives  a 
quantitative  estimate  of  the  increased  probability  of  disease  given  the  observed  result.  For 
example, at the cutpoint 0.05 (Se=0.927, Sp=0.774), the LR+ is 4.10, meaning that an individual 
that tests positive at this cutpoint (ie a test result ≥0.05) is 4.1 times more likely to be infected 

Example 5.7 Likelihood ratios
data = nv

Cutpoint-specific and category-specific likelihood ratios for the norovirus data.
Optical 
density 
cutpoint

Cumulative
sensitivity

(%)

Cumulative
specificity

(%)
LRcp+ LRcp-

D+
category

(%)

D-
category

(%)
LRcat

0 100.0 0.0 1.0 1.22 29.25 0.04

0.01 100.0 20.8 1.3 0.00 6.1 48.11 0.13

0.05 92.7 77.4 4.1 0.09 6.1 19.81 0.31

0.1 86.6 97.2 30.6 0.14 21.95 1.89 11.61

0.3 64.6 99.1 68.5 0.36 24.39 0.94 25.95

0.7 40.2 100.0 0.60 23.17 0

1.5 17.1 100.0 0.83 17.07 0

Categories are computed with the cutpoint shown as the left-hand end of the category (eg the category 
for cutpoint 0.01 is from 0.01 to 0.04999). Results are based on 188 test results.
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than you thought they were prior to testing.  Note Technically, we should state that the odds, 
rather than the probability, of the disease has gone up 4.1 times, but if the disease is rare, then 
odds≈probability. This approach makes use of the fact that, in general, the LR increases as the 
strength of the response (test result) increases. 

5.5.5 Category-specific LR

Often researchers in a diagnostic setting prefer to calculate LRs based on the category-specific 
result (LRcat) as opposed to the cumulative distributions (Giard and Hermans, 1996). 

Here the LR is: 

LRcat=
P result category | D +
P result category | D - Eq 5.12

The  LRcat can be estimated as  the slope of  the line joining  2 points of  an ROC curve that 
represent the boundaries of the category. 

Regardless of how they are computed,  LRs are useful because they combine information on 
both sensitivity and specificity, and they allow the determination of post-test from pre-test odds 
of disease as shown:

post-test odds=LR∗pre-test odds Eq 5.13

When interpreting the post-test odds, we need to be aware of whether the LRcp or LRcat is being 
used. The former gives  the post-test  odds for  an individual  testing positive at  that  level  or 
higher, whereas the latter gives the post-test odds for individuals testing positive in that specific 
category  (or  level)  of  test  result.  The  process  of  computing  the  category-specific  post-test 
probability follows—assuming that, prior to testing, you thought there was a 2% probability of 
the individual being positive for norovirus, and that the test  OD was 0.43 (LRcat=25.95 (from 
Example 5.7)):

• convert the pre-test probability to pre-test odds
pre-test odds=0.02/0.98=0.0204

• multiply the pre-test odds by the likelihood ratio to get the post-test odds
post-test odds=0.0204*25.95=0.5294

• convert the post-test odds to a post-test probability
post-test probability=0.5294/(1+0.5294)=0.35

After  obtaining a test  result  of  0.43,  your  estimate of  the probability that  the individual  is 
infected is 35%.

The variance of the lnLRcat is:
var 1n LRcat =1− p result∣D +/ a1− p  result∣D -/b Eq 5.14

where a and b are the number of individuals with the result of interest in the D+ and D- groups, 
respectively. A (1-α)% CI is:

LRcat∗exp ±Z var 1n LRcat Eq 5.15
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5.6 USING MULTIPLE TESTS

As stated, the use of multiple tests is an often-used approach to improve the overall diagnostic 
ability of the screening (or diagnostic) process.

5.6.1 Parallel and series interpretation

Using  2 tests represents the simplest extension of more than one test although the principles 
discussed below hold true for multiple tests. Suppose we have 2 different tests for detecting a 
disease. In Example 5.8, we use the results from the EIA (Se=0.866,  Sp=0.972) and the PCR 
(Se=0.963,  Sp=0.858). If both tests are carried out, the results can be interpreted in one of  2 
ways. With series interpretation, only people that test positive to both tests are considered test 
positive. With parallel interpretation, people that test positive to one test, the other test, or both 
tests are considered test positive. Series interpretation increases  Sp but decreases  Se, whereas 
parallel testing increases Se and decreases Sp.

Tests are considered conditionally independent if the probability of getting a given result on 
one  test  does  not  depend on the  result  from the other  test,  given  the disease  status  of  the 
individual. For example, assume that you are dealing with a  D- individual. Two tests will be 
conditionally  independent  if  the  probability  of  a  false  positive  on  test  #2  is  the  same  in 
individuals that were T- on test #1 and in those that were T+ on test #1. If tests are conditionally 

Example 5.8 Multiple tests—series versus parallel interpretation
data = nv

The data in this example are from the norovirus test dataset. The tests we are using are the enzyme 
immunoassay  (EIA)  and  the  polymerase  chain  reaction  (PCR)  test,  with  the  gold  standard  as 
determined in Example 5.4 (see also dataset description Chapter 31). The observed joint distributions 
of test results are shown below along with the 4 possible test interpretation criteria. 

Number of individuals by test-result category Totals

EIA result + + - -

PCR result + - + -

D+ individuals 68 3 11 0 82

D- individuals 0 3 15 88 106

Series interpretation + - - -

Parallel interpretation + + + -

Se of EIA only=71/82=0.866 Sp of EIA only=103/106=0.972 

Se of PCR only=79/82=0.963 Sp of PCR only=91/106=0.858

Se of series interpretation=68/82=0.829

Se of parallel interpretation=(68+3+11)/82=1.000

Sp of series interpretation=(3+15+88)/106=1.000

Sp of parallel interpretation=88/106=0.830
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independent,  the  formulae  for  Se and  Sp under  parallel  (Sep,  Spp)  and  series  (Ses,  Sps) 
interpretation are:

Se p=Se1Se2−Se1∗Se 2 Eq. 5.16
Spp=Sp1∗Sp2 Eq. 5.17
Ses=Se 1∗Se2 Eq. 5.18

Sps=Sp1Sp2−Sp1∗Sp2 Eq. 5.19

Note If tests are going to be interpreted in series, it often makes sense to first test all individuals 
with the test that is less expensive and/or more rapid, and then test all test positives with the 
second  test.  This  is  referred  to  as  sequential  testing and  it  provides  the  same  results  as 
simultaneous testing, but at lower cost, because only those subjects/samples positive to the first 
test are followed-up with the second.

5.6.2 Correlated test results

Given  the  previous  discussion  on  parallel  and  series  interpretation,  one  might  think  that 
virtually 100% Se would be obtainable with 2 to 3 tests used in parallel, or 100% Sp with 3 to 4 
tests used in series. However, Example 5.8 uses observed values, not ones we might expect 
assuming conditional independence of tests. The expected distributions of results, if the tests 
were independent, are shown in Table 5.3.
Table 5.3 Expected Se and Sp levels with combined tests for norovirus assuming 
conditional independence (data from Example 5.8)

Sensitivity Specificity

Interpretation Expected Observed Expected Observed

Parallel 0.866+0.963-
0.866*0.963=0.995 1.000

0.972*0.858=0.834 0.830

Series 0.866*0.963=0.834 0.829 0.972+0.858-
0.972*0.858=0.996 1.000

For these 2 tests, the observed and expected  Se (and also  Sp) are very close, suggesting that 
there  is  little  or  no  conditional  dependence  between  the  two  tests.  Note  that  conditional 
independence assumes that, in D+ individuals, the probability of a positive test result to test #2 
is the same in samples that test negative to test #1 as it is in those that test positive to test #1. A 
similar assumption exists in D- individuals. More likely, and as observed (to a limited extent) 
with these data, especially if the tests are biologically related (eg both antibody tests), if test #1 
is negative, the result on test #2 is more likely to be negative than if test #1 was positive. In this 
instance, we would describe the test results as conditionally dependent, or correlated (Gardner 
et al, 2000), not conditionally independent. (Note If either the Se or Sp of a test equals 1 (ie is 
perfect), then it will always be conditionally independent (for that characteristic) of other tests.)

The extent of the dependence can be calculated as shown below and in Example 5.9.

 1. Denote the observed proportion of D+ individuals with a positive test result to both tests as 
p111 (more generally pijk;  i denoting test #1 result,  j denoting test #2 result, and  k  denoting 
disease status {1=D+, 0=D-}).
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 2. In the D+ group, and using the sample estimates of Se for tests #1 and #2, respectively, (Se1 

and Se2), the covariance is:

covar +=p111−Se1∗Se2 Eq 5.20

 3. Similarly, in the D- group and using the sample estimates of Sp1 and Sp2, the covariance is:

covar - =p000−Sp1∗Sp2 Eq 5.21

The  usual  circumstance  would  be  that  these  covariances  would  be  positive,  indicating 
dependence. In a more formal sense, if one calculates an OR on the data from the D+ group 
(OR+) and separately on the D- group (OR-), these ORs describe the above 2 covariances, 
respectively. If the tests were conditionally independent, the ORs would equal 1. Similarly, if 
the test results  are conditionally independent,  the kappa statistic in data from  D+ and  D- 
individuals would both equal 0.

 4. Given dependence, the Se and Sp resulting from parallel interpretation of 2 tests are:

Se p=1−p001=1−[1−Se1∗1−Se2covar (+)] Eq 5.22
Spp=p000=Sp1∗Sp2covar (-) Eq 5.23

From series interpretation of 2 tests these are:
Ses=p111=Se1∗Se2covar(+) Eq 5.24

Sps=1−[p110=1−1−Sp1∗1−Sp2covar (-)] Eq 5.25

Functionally, this means that the gains/losses from using either of these approaches are not as 
great as predicted under conditional independence. It can also affect the choice of tests to be 
used. For example, a more optimal outcome might arise from combining 2 independent tests 
with lower sensitivities than 2 dependent tests with higher sensitivities.

5.7 EVALUATION OF DIAGNOSTIC TESTS

There is a variety of approaches to estimating the Se and Sp of a diagnostic test. These include:
• the use of gold standard populations
• the use of a gold standard reference test
• the use of a pseudo-gold standard test (or combination of tests)

Example 5.9 Estimating covariance between test results 
data = nv

Using the Se and Sp estimates obtained in Example 5.8, the covariance in the D+ and D- groups are:

D+ group: covar(+) = p111 - Se1 * Se2 = 68 / 82 - (.866 * .963) = -.005

D- group: covar(-) = p000 - Sp1 * Sp2 = 88 / 106 - (.972 * .858) = -.004

We do not expect to find negative covariances, but these are extremely small values, confirming that 
there is negligible conditional dependence between these 2 tests.
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• reference test with known Se and Sp
• evaluation when there is no ‘gold standard’ (Section 5.8).

5.7.1 Gold standard populations

In some situations, a population which is assumed to be completely free of a disease may be 
available for estimating the Sp of a test. The main issue to be considered in this case is whether 
or not the characteristics of the population result in an estimate of Sp that is appropriate for the 
population of interest. It is not often possible to identify a population in which all individuals 
are assumed to be D+ for the estimation of Se.

Another approach to estimating Sp when disease is known to be infrequent (say, less than 2%) 
is  to  assume  that  all  of  the  test  positive  individuals  are  false  positives  (ie Sp=1-AP).  For 
example, if 4 individuals per 1000 test positive to some screening test; hence, the Sp of this test 
cannot be less than 1-0.004=0.996 (99.6%).  If  a portion of the test  positives are found (or 
known) to be true positives, then the AP can be adjusted accordingly and the estimate of the Sp 
raised.

5.7.2 Gold standard reference test

In some cases, a gold standard test (or combination of tests) is available. Studies using a gold 
standard reference test may be conducted in one of 2 ways. One approach (1-stage approach) 
is to test a sample of people from the population with both the gold standard test(s) and the test 
being evaluated. Se and Sp can then be computed directly and the binomial distribution can be 
used to calculate the standard errors and confidence limits (see Section 4.10). A drawback of 
this approach is that a very large sample size will be required to obtain a reasonable estimate of 
Se if the disease prevalence is low.

An alternative 2-stage approach is to screen a sample from the population with the test being 
evaluated and then a subsample of T+ and T- individuals is submitted to the gold standard test 
(to  determine  their  ‘true’ health  status).  It  is  vitally  important  that  selection  of  people  for 
verification  be  independent  of  their  true  health  status  (random  sampling  is  the  preferred 
method). If the fraction of T+ individuals that is selected for verification is different than that 
fraction of T- samples, this must be taken into account when estimating Se and Sp. If we denote 
the fraction (sf) of the test positives that are verified as sfT+, and that of the test negatives as sfT-, 
then the corrected estimate of Se is:

Se corr=
a / sf T+

a /sf T+b /sf T- Eq 5.26

and the corrected estimate of Sp is:

Spcorr=
d /sf T-

d /sf T-c/sf T+ Eq 5.27

See Example 5.10. If sfT+=sfT-, no adjustment for the sampling fractions is needed.

The variances of these ‘corrected’ proportions are calculated using only the number of verified 
individuals  in  the  variance  formulae  (ie the  a+b verified  individuals  for  Secorr and  the  c+d 
verified individuals for Spcorr (Table 5.2)) (Greiner and Gardner, 2000).
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Procedures for deciding the optimal balance between individuals tested with the new test (stage 
1) and individuals submitted to gold standard testing (stage 2) have been published (McNamee, 
2002). A procedure in which stage 2 is replaced with a sequential process of first evaluating the 
specificity of the test and then (if the specificity is acceptable) proceeding to evaluating the Se 
has been recommended (Wruck et al, 2006).

Regardless  of  whether  a  1-stage  or  2-stage  approach  is  used,  it  is  advantageous  to  have  a 
spectrum of host attributes and clustering units (if any) present (ie people from a number of 
different villages). The results should be assessed for differences in Se or Sp by host attributes 
using logistic regression (see Section 5.9.2). Blind assessment and complete work-ups of all 
individuals are useful aids to prevent bias in the estimates. When Se and Sp are estimated based 
on samples obtained from several people within a number of groups, adjustment of the SEs for 
the clustering effect should be made. This can be done using hierarchical multilevel procedures 
(Chapters 20 and 22) or survey statistics (Chapter 2) (Greiner, 2003).

5.7.3 Pseudo-gold standard procedures

Pseudo-gold standards involve the use of a combination of imperfect tests as a substitute for a 
gold standard.  Two approaches  have been described:  discrepant resolution and  composite 
reference  standard.  The  former  has  a  problem  in  that  disease  status  measurement  is 
conditional upon the test being evaluated, and hence produces biased results (Miller, 1998). It 
will not be considered further. 

Example 5.10 Estimating Se and Sp using a validation subsample
data = hypothetical

Suppose we screen 10,000 people for tuberculosis using an intradermal injection with purified protein 
derivative (PPD), and we get positive reactions in 242 people. A detailed follow-up (involving X-rays 
and evaluation of sputum samples) is done on 100 of the people with reactions and 200 of the ‘clear’ 
individuals. In the individuals with reactions, 83 are confirmed as having tuberculosis, whereas 2 of the 
200 clear individuals are found to have evidence of tuberculosis. The data are shown here. 

Reaction+ Reaction-

TB+ (D+) 83 2

TB- (D-) 17 198

100 200

and 
sf T +=100 /242=0.413

sf T -=200/9758=0.0205

From these we can calculate Secorr and Spcorr

Secorr=
83/0.413

83/0.4132 /0.0205
=201.0

298.6
=0.673

with approximate SE of √ [(0.673*(1-.673))/85]=0.051 and

Sp corr = 198 /0.0205
198 /0.020517 /0.413

= 9658.5
9699.7

= 0.996

with approximate SE of √ [(0.996*(1-.996))/215]=0.004
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A composite reference standard (CRS) is formed by first testing all samples with a reference 
test and then all reference test negative samples are tested with a resolver test. The results are 
interpreted in parallel, so that any specimen that was positive on either the reference or resolver 
test  is  considered  CRS positive,  while  specimens  that  are  negative  on  both  tests  are  CRS 
negative (Alonzo and Pepe, 1999). These results are then used to evaluate the test of interest in 
place of a gold standard test. Example 5.11 shows the use of a composite reference standard for 
evaluating the Se and Sp of a test.

Pseudo-gold standards can also be created using an ad-hoc, study-specific approach provided 
there is sufficient justification for the approach chosen. This was the approach used to generate 
the gold standard variable for the norovirus data (see Chapter 31 for specifics).

5.7.4 Reference test with known Se and Sp

If the Se and Sp of a reference test (Seref  and Spref, respectively) are known, then from the data in 
a 2X2 table based on the new test results (but with disease status determined by the reference 
test), we could estimate the  Senew and  Spnew of the new test using the syntax of Table 5.2 as 
follows (Enøe et al, 2000):

Se new=
n1 Spref−c
nSp ref−m0 Eq 5.28

Spnew=
n0 Se ref−b
nSeref−m1 Eq 5.29

Example 5.11 Use of pseudo-gold standard for evaluating Se and Sp of a diagnostic test
data = nv

In  order  to  evaluate  the  Se and  Sp of  EM, a  composite  reference  standard (CRS)  test  result  was 
computed for each person in the norovirus dataset using EIA as the reference and PCR as the resolver 
test. The data for this calculation are shown below. This was used to estimate the Se and Sp of the EIA.

Reference test Resolver test

EIA PCR CRS

EM 1 0 1 0 1 0

1 12 2 2 0 14=(12+2) 0

0 62 112 24 88 86=(62+24) 88

114 100 88

The 144 samples that were EIA- were evaluated using the resolver test (PCR); 2 of the EIA-/EM+ 
samples were positive on PCR and were added to the CRS+/EM+ group. 24 of the EIA-/EM- samples 
were also test positive so they were added to the CRS+/EM- group.

The Se of EM was estimated to be 14/100 = 0.14, while the Sp was 88/88 = 1.00.
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We could also estimate P using

P=
nSpref−1m1

n SerefSpref−1  Eq 5.30

Variance  formulae  are  available  (Gart  and  Buck,  1966).  This  procedure  assumes  that, 
conditional on the true disease state, the new test and the reference test are independent, which 
may not be a valid assumption. 

5.8 EVALUATION WHEN THERE IS NO GOLD STANDARD

In  situations in which there is neither a reasonable gold standard,  nor a test(s) with known 
characteristics (Se and  Sp), latent class models can be used to simultaneously estimate the  Se 
and  Sp of  2 or  more  tests  without  any  assumption  about  the  true  disease  status  of  each 
individual (Hui and Walter, 1980). There has been a large body of literature published in recent 
years on the use of latent class models for evaluating diagnostic tests. This section will provide 
only a brief introduction along with some selected references for further reading.

5.8.1 Latent class models—principles and assumptions

Latent class models (LCM) involve an unknown (latent) variable that takes categorical values. 
In  this case,  the unobserved variable  is  the true disease status of  each individual,  which is 
usually assumed to be binary (D+ or D-). Such models can be used to evaluate the accuracy of 
diagnostic tests when there is no gold standard. In its standard and most commonly used form, 
the  model  involves  3 assumptions:  (i)  the  target  population  should  consist  of  2 (or  more) 
subpopulations with different prevalences; (ii) the sensitivity (Se) and specificity (Sp) of the 
diagnostic  tests  should be  constant  across  subpopulations  (ie the ability  of  a  test  to  detect 
infected individuals should be the same regardless of whether the test is used in a population 
with a high prevalence of infection or one with a low prevalence); and (iii) the tests should be 
conditionally  independent  given  the  disease  status.  (For  a  discussion  of  conditional 
independence, see Section 5.6.2.)

If the data consisted of test results from 2 tests applied to individuals from 2 populations, they 
can be presented as shown in Table 5.4.

Table 5.4 Layout of data for evaluating Se and Sp using latent class models (2 
populations and 2 tests)

Population 1 Population 2

T2+           T2- Total T2+ T2- Total
T1+ nkij = n111 n112 n11. T1+ n211 n212 n21.

T1- n121 n122 n12. T1- n221 n222 n22.

Total n1.1 n1.2 n1 Total n2.1 n2.2 n2

The test results are distributed according to a multinomial model for the observed counts in 
each population:

(nkij) ~ multinomial (nk, pkij)
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where  nk is the sample size in population  k(k=1,2) and  pkij is the probability of an individual 
being in this cell (i and j represent the 2 tests; i,j=1,2 ~ +,-).

If θk is the true (unknown) prevalence in population k, then assumptions (ii) and (iii) lead to:
pk 11=k Se1 Se21−k1−Sp11−Sp2

pk 12=k Se11−Se21−k 1−Sp1Sp2

pk 21=k 1−Se1Se 21−k Sp11−Sp2

pk 22=k 1−Se11−Se21−kSp1 Sp2 Eq 5.31

Consequently, the LCM contains 6 parameters: the Se and Sp of each test and the prevalence (θ) 
in each population. Given that the population sample sizes are fixed (by the study design), these 
2 tables have a total of 6  df (each table contributes 3 df because once the value of  3 cells is 
known, the fourth can be computed by subtraction). Consequently, in this particular situation, 
estimation involves reparameterising the 6 observed values into 6 parameter estimates and there 
are no residual df which can be used to evaluate the model fit and validity. With more than 2 
tests and/or  2  populations,  the LCM involves  a  reduction in parameters  relative  to  the full 
multinomial model and the residual df can be used to assess the fit of the model.

5.8.2 Estimation procedures

Both maximum likelihood (ML) and Bayesian estimation procedures can be used to fit LCMs 
(see  Enøe et al (2000), and Hui and Zhou (1998) for reviews of the earlier literature).  ML 
estimates are a set of parameter estimates for which the observed data are most likely and are 
obtained by maximising the likelihood function. Software for obtaining ML estimates using the 
‘TAGS’ program  (Pouillot et  al,  2002),  along  with  software  for  many  other  approaches 
discussed in this section can be obtained through: http://www.epi.ucdavis.edu/diagnostictests. 
Example 5.12 shows the results from the use of a latent class model to estimate the Se and Sp of 
3 tests for norovirus. 

ML  estimation  is  usually  carried  out  using  an  Expectation-Maximisation (EM)  algorithm, 
which  is  a  general  estimation  procedure  for  problems  involving  incomplete  data  (in  this 
situation  it  is  the  latent  variable  which  is  missing).  Following  this,  a  Newton-Raphson 
estimation step is carried out to produce estimates of the SEs. There are several methods for 
obtaining confidence intervals, but the most commonly used is bootstrapping. ML estimation 
does not perform well in small sample situations, particularly if there are many data cells with 
small or zero frequencies (Walter, 2005a).

Alternatively,  the Bayesian approach  can be used to combine  a priori scientific  knowledge 
about  unknown  parameters  with  the  information  contained  in  the  likelihood  based  on  the 
observed  data.  (Bayesian  methods  are  discussed  in  general  in  Chapter  24.)  A  detailed 
discussion  about  Bayesian  procedures  for  fitting  LCMs  is  beyond  the  scope  of  this  text. 
However, the advantages offered by Bayesian procedures are as follows.

• Bayesian models are very flexible and it  is relatively easy to extend the models to 
account for factors such as dependence among test results.

• If prior information about any of the parameters (Se, Sp or prevalences) is available, it 
can be incorporated into the analysis. This effectively increases the  df available and 
facilitates:
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• model-building when the observed data are inadequate to provide good estimates 
of the required parameters, and

• evaluating the model (eg obtaining goodness-of-fit estimates when they would not 
otherwise  be  possible  by  providing  prior  information  about  some  of  the 
parameters).

Overviews  of  Bayesian  estimation  (Branscum et  al,  2005;  Joseph et  al,  1995) have  been 
published.

Although not always possible, it is important to evaluate the assumptions underlying the LCM. 
Approaches  for  assessing  the  overall  fit  of  the  model  and  for  dealing  with  each  of  the  3 
assumptions are considered here.

Example 5.12 Evaluation of Se and Sp using a latent class model
data = nv

Although the norovirus data came from multiple outbreaks, they have been treated as coming from a 
single population. For the purpose of this exercise, the data were artificially split into 2 populations 
with GS prevalences of 71% and 18%, respectively. Data from all 3 tests (EIA, PCR, and EM) were 
used, and maximum likelihood estimates of the  Se  and  Sp  of each test and  P of norovirus in each 
population obtained. The data were as follows:

Population

PCR EIA EM High P Low P

0 0 0 23 65

1 0 0 12 12

0 1 0 3 3

1 1 0 41 15

0 0 1 0 0

1 0 1 2 0

0 1 1 0 0

1 1 1 9 3

ML estimates (and 95% CI) of the parameters were obtained using the TAGS software.
Prevalence PCR EIA EM

Low High Se Sp Se Sp Se Sp

Estimate 0.210 0.688 0.976 0.871 0.838 0.953 0.170 1.000

Lower CI 0.123 0.548 0.901 0.769 0.727 0.899 0.088 1.000

Upper CI 0.305 0.804 1.000 0.969 1.000 1.000 0.268 1.000

The estimates of Se and Sp all agree reasonably well with those obtained from the evaluation based on 
the GS. (Bootstrap confidence intervals were obtained using the TAGS program implemented in R.) 
Because  the  number  of  df  available  from the  data  (2*(23-1)=14)  was  greater  than  the  number  of 
parameters estimated (8), there were residual df that could be used to evaluate how well this LCM fit 
the data. The deviance (2.31) on 6 df had a P value of 0.88 suggesting that there was no evidence that  
the estimates did not fit the data.
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5.8.3 Goodness-of-fit

If the number of degrees of freedom in the data exceeds the number in the LCM, it is possible 
to obtain an estimate of the goodness-of-fit of the model.

Pearson residuals can be computed for each cell in the data tables by comparing the predicted 
value from the LCM (nk  pkij, where pkij is the estimated cell probability) to the observed value 
(nk). These may then be normalised by division by the estimated SE of the predicted value to 
yield.

kij=nkij−nk pkij/n k p kij Eq 5.32

The squared sum of these residuals is assumed to follow a  χ2 distribution although the exact 
reference distribution is unknown. Although this test is assumed to have relatively little power 
for detecting lack of fit, numerically large individual residuals identify cells with an apparent 
lack of fit.

Alternatively, the deviance can be computed as twice the difference between the log likelihood 
of the full multinomial model and the latent class model. The deviance can be compared with a 
χ2 distribution (see Chapter 16 for a discussion of likelihood ratio tests). Our experience is that 
this test often produces evidence of a statistically significant lack of fit even when the estimates 
appear reasonable (although there was no such evidence in Example 5.12).

In some situations, models may not fit because there are really more than 2 distinct disease 
classes  (eg negative,  positive  but  not  actively  infected,  actively  infected).  Procedures  for 
extending LCM evaluations to 3 (or  more)  levels of outcome have recently been published 
(Caraguel et al, 2012; Dendukuri et al, 2009), but are beyond the scope of this text.

5.8.4 Prevalence of the 2 populations differs

The greater the difference in the prevalences among the populations studied, the more precise 
the estimates of Se and Sp will be. Consequently, it is desirable to identify populations in which 
radically different prevalences are expected. In cases where samples are only available from a 
single  population,  it  may  be  possible  to  stratify  the  population  on  the  basis  of  some 
characteristic which is expected to influence disease prevalence. However, care must be taken 
to ensure that the prevalences are truly different. In Example 5.12, the data were artificially split 
for pedagogical purposes, but this is not generally recommended.

5.8.5 Se and Sp constant across populations

If the Se and/or Sp of a test varies across populations in a study, the overall estimate provided 
by the LCM will be some mixture of population specific estimates, and will be weighted toward 
the population which provides the most information about the parameter. For example, if the Se 
of a test varies across populations, the overall estimate of the Se will be weighted toward the 
estimate in the high prevalence population because it contains the most  D+ individuals, and 
hence provides the most information about the Se of the test (Toft et al, 2005). 

If a pseudo-gold standard test result can be obtained, then the data can be divided into D+ and 
D- datasets, and regression procedures (described in Section 5.9.2) can be fit with individual 
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test  results  as  the  outcome.  Inclusion  of  population  identifiers  in  the  model  will  provide 
evidence as to whether or not the population affects the estimates of Se and Sp.

Alternatively,  Bayesian  procedures  with  informative  priors  can  be  used  to  fit  LCMs 
individually for each population. Informative priors are required because, assuming 2 tests are 
being  evaluated,  a  single  population  only  provides  3 df but  5 are  required  for  the  LCM. 
Consequently, at least 2 informative priors will have to be included in the model.

5.8.6 Dependence among test results

Tests are more likely to be independent if they have very different biological bases (eg a culture 
procedure such as virus isolation and a molecular technique such as PCR). However, this is not 
necessarily sufficient to guarantee independence. 

Once again, if 3 or more tests have been applied, pseudo-gold standards can be used to evaluate 
dependence among test results by dividing the data into  D+ and  D- individuals based on the 
pseudo-gold standard. Log-linear models can be used to compare nested models to determine 
the most parsimonious dependence structure with minimal, non-significant loss of fit for the 
data (Hanson et al, 2000).

Latent class models can be extended to account for dependence among tests in order to relax the 
assumption of  conditional  independence  eg (Branscum et  al,  2005;  Dendukuri  and  Joseph, 
2001; Georgiadis et al, 2003). If more complex models, which allow for dependence between 
tests, fit the observed data better, then it is assumed that the tests are not independent and the 
estimates from the more complex model are preferred. Albert and Dodd (2004) showed that in 
many practical situations, ML estimators of Se and Sp are biased when the dependence structure 
is  misspecified,  and  that  it  is  difficult  to  choose  the  correct  dependence  structure  using 
likelihood comparisons and other model diagnostics. They demonstrated that several models 
may fit the data equally well, while providing different accuracy estimates. They recommended 
using a gold standard whenever possible or even collecting gold standard information on a 
fraction of subjects to aid in choosing a model.

5.9 OTHER CONSIDERATIONS IN TEST EVALUATION

5.9.1 Factors that affect Se and Sp

Sensitivity and specificity represent average values of the test characteristics and as such, we 
can expect their levels to vary from one subgroup of the population to another. Consequently, 
when estimating  Se and  Sp, it is important that the study sample to which the gold standard 
diagnostic procedure is applied be representative of the target population (ie those people to 
whom the test will be applied in the future). This representativeness refers to the attributes of the 
individuals being tested including their age, race, sex etc as host and environmental factors might 
influence the ability of a test to detect disease. In fact, often it is useful to stratify the results 
based  on the  more important  of  these  factors  in order  to obtain more valid stratum-specific 
estimates. In addition, it is important that the study group contains an appropriate spectrum of 
disease (eg severity, chronicity, or stage of development). Certainly, the test characteristics might 
differ in various stages of the disease process; for example, testing a stool sample for occult 
blood is more likely to detect colon cancer if the disease is not in the early stages. 
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While the Se and Sp are often considered characteristics of a test, there is increasing evidence 
that for many tests, the Se and Sp vary with the characteristics of the population to which they 
are applied (Greiner and Gardner, 2000). For example, the specificity of PPD for the diagnosis 
tuberculosis  depends on the prevalence  of  other  mycobacterial  infections  in  the population. 
Often it is important to know what characteristics of a population affect the Se and Sp of a test 
(some might  prefer  to think of  factors  relating to  the occurrence  of false  negative  or  false 
positive results). 

5.9.2 Evaluating effects of factors on Se and Sp

If there are few factors that affect Se and Sp, you can stratify on these and estimate the Se and 
Sp in each stratum. However, when there are several factors to investigate, stratification rapidly 
runs  into  problems  of  inadequate  sample  size  and  it  is  more  convenient  to  use  a  logistic 
regression approach (Coughlin et al, 1992). For details on logistic regression, see Chapter 16.

The logistic regression approach involves modelling the dichotomous test outcome (positive or 
negative) as a function of the true disease status variable (Xts) as well as the factors that might 
affect the Se and Sp. This can be done either by carrying out separate logistic regressions using 
the  D+ and  D-  individuals  (as  shown in the equations  below and in  Example 5.13),  or  by 
including the true disease status variable (Xts) in the model. In the latter approach, it might be 
necessary to include interaction terms between Xts and the other factors to allow for the fact that 
those factors  might have different  effects  in  D+ and  D- individuals.  Non-significant  factors 
might be eliminated, but the variable representing the true disease status of the individual must 
remain in the model. 

For a given set of factor values, the Se of the test will be:

Se= e+

1e+ =
1

1e−+
Eq 5.33

where  +=0
+ j

+ X j  is  the  linear  predictor  from  a  logistic  model  based  only  on  D+ 
individuals.

The specificity of the test is:

Sp=1− e -

1e -=
1

1e−-
Eq 5.34

where -=0
-  j

- X j  is  the  linear  predictor  from  a  logistic  model  based  only  on  D- 
individuals.

One can use a similar approach to estimate predictive values, but in that case the outcome is the 
true disease status, and the test result is one of the explanatory variables. Example 5.13 shows 
the use of logistic regression to evaluate the effect of the artificially generated  ‘population of 
origin’ (from Example 5.12) on estimates of Se in the norovirus data.

5.9.3 Clustering of test results

In addition to considering how population characteristics may influence estimates of Se and Sp, 
it is important to take into consideration the fact that observations used in validation studies 
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may be clustered (observations not independent). For example, data may come from individuals 
who reside in the same household, and consequently have many characteristics in common. 
Procedures for dealing with clustered data are described in more detail in Chapters 20–23. One 
way to deal with the lack of independence would be to include random effects for clustering 
variables (eg random group effects) in the regression modelling approaches described above.

5.10 SAMPLE SIZE REQUIREMENTS

5.10.1 Gold standard-based procedures

When designing a study to estimate the Se and/or Sp of a test, we need to consider the number 
of people that are required to obtain a specified precision for each estimate. These form the 
basis for estimating the 95% (or other specified level) CIs as shown in Example 5.4. For  Se, 
estimates within ±5% might suffice, whereas for screening low-risk populations, much larger 
sample sizes are needed as Sp estimates often need to be within ±0.5% of the true value. In a 
diagnostic setting, Sp estimates within 3–5% of the true value should suffice. As these estimates 
of  Se  and  Sp  are  binomial  proportions,  sample  size  formulae  for  estimating  a  binomial 
proportion (see Chapter 2) are applicable. 

5.10.2 Latent class models

In general,  sample size requirements for studies using LCM to estimate  Se  and  Sp  are much 
larger than for those based on a gold standard approach. A spreadsheet for the calculation of 
sample sizes in the situation of  2 conditionally independent tests applied to  2 populations is 
available  (Georgiadis et al,  2005). It  confirms that sample size is heavily influenced by the 
magnitude of the difference between the prevalences of disease in the 2 populations.

Example 5.13 Evaluation of factors affecting Se and Sp
data = nv

A logistic regression model was fit to the GS+ observations with  ‘population of origin’ as the only 
predictor (with the high prevalence population as the reference category).

Logistic regression Number of obs = 82
LR chi2(2) = 0.28

Prob > chi2 = 0.5962
Log likelihood = -32.18 Pseudo R2 = 0.0043

IFAT Coef SE Z P>|z| 0.000

prev=low 0.424 0.828 0.51 0.608 -1.199 2.047

Constant 1.773 0.361 4.92 0.000 1.066 2.480

Population of origin did not have a significant effect on the Se of the test. This was not surprising given 
that population of origin was a hypothetical characteristic of interest and observations were randomly 
assigned to the 2 populations.
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5.11 GROUP-LEVEL TESTING

If a group, or other aggregate of individuals, is the unit of concern, and a single test of the group 
(eg a culture of the drinking water in the household) is taken to classify the household as test 
positive or test negative, the previously described approach to test evaluation and interpretation 
applies  directly.  The  group  becomes  the  unit  of  concern  rather  than  the  individual. (Note 
Throughout this section, the general term  ‘group’ will be used but the reader should keep in 
mind that this might refer to a household, a village, a geographic region, a clinic etc.)

However, frequently we are asked to certify the health status of a group based on test results 
compiled from a number of individuals. In this instance, in addition to the Se and Sp of the test 
at  the individual  level,  3 factors  interplay in determining the  Se and  Sp at  the group level 
(denoted GSe and GSp)—namely, the frequency of disease within infected groups, the number 
of  people  tested  in  the  group,  and  the  number  of  reactor  individuals  per  group  that  will 
designate a positive or negative group. Once the GSe and GSp of the procedure are known, the 
evaluation of the predictive values of positive and negative group results  follows the same 
pattern as already described (Christensen and Gardner, 2000; Martin et al, 1992). 

5.11.1 Apparent prevalence

As  mentioned,  group  sensitivity  (GSe)  and  group  specificity  (GSp)  are  influenced  by  the 
individual level  Se and  Sp, the within group  P, and the threshold number, or percentage,  of 
positive tests that denote the group, as test positive. For simplicity, we assume only one test is 
used; however, multiple tests and repeat testing results can make up the group test, and one 
need only establish their combined  Se and  Sp. Within a group, the probability of obtaining a 
positive test is: 

pT + =P∗Se1−P1−Sp  Eq 5.35

If a group is infected, then one or more positive test results may arise correctly based on P*Se, 
or may arise correctly, but for incorrect reasons, because of the (1-P)(1-Sp) component. 

Thus, if disease is present, the AP is APpos=P*Se+(1-P)(1-Sp).

However, if the group is not infected (P=0), then the AP is APneg=(1-Sp).

5.11.2 Group sensitivity

If the critical number of individuals testing positive to denote the group as test positive is k, we 
can use a suitable probability distribution for AP and solve for the probability of ≥k individuals 
testing  positive  when  n individuals  are  tested.  If  n/N is  less  than  0.1,  then  a  binomial 
distribution is acceptable for sampling of n individuals from a total of N individuals in a group; 
otherwise, the hypergeometric distribution, which provides more accurate estimates, should be 
used. In the simplest setting, if k=1, the easiest approach is to compute the binomial probability 
for k=0, and take 1 minus this probability to obtain the probability of one or more test positive 
individuals. Thus, for k=1, and assuming the group is infected:

GSe=1−1−AP pos
n

Eq 5.36
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In the more general case, if k or more positives are required before a group is declared positive, 
the GSe can be estimated as:

GSe=1−∑
0

k−1

C k−1
n AP pos

k−11−AP pos
n− k−1

Eq 5.37

where Cn
k is the number of combinations of k positives out of n individuals tested.

5.11.3 Group specificity

If the group is disease-free and k=1, then

GSp = Spn

More generally, at a cutpoint of k or more positives, the GSp will be:

GSp=∑
0

k−1

C k−1
n Spn−k−1 1−Spk−1

Eq 5.38

Both  GSe  and  GSp  are  estimates  of  population  parameters  that  apply  to  groups  with  the 
underlying conditions and characteristics used to determine the estimates.

5.11.4 Relationships among Se, Sp, GSe and GSp

Some general findings from studying group test characteristics are:
1. If n is fixed, GSe increases with P and/or AP, provided Se>(1-Sp).
2. As n increases, GSe increases. Gains in GSe from increasing n are especially large if 

AP <0.3.
3. With fixed n, GSe increases as Sp decreases (noted earlier).
4. GSp decreases as Sp decreases or as n increases.

An example of estimating GSe and GSp is shown in Example 5.14.

5.11.5 Uncertainty in estimates of Se, Sp, and prevalence

It is rare that the Se and Sp of the test(s) being used, or the underlying prevalence, are known 
with certainty. Consequently,  there will be uncertainty in the estimate of  GSe and  GSp. One 
approach to accounting for uncertainty in Se and Sp is to compute the variance of the estimate 
of the AP using the following formula (Rogan and Gladen, 1978):

var AP =P2∗Se∗1−Se
N

1−P 2∗Sp∗1−Sp
M Eq 5.39

where  N and M are the number of true positive and true negative individuals, respectively. A 
confidence interval of the estimate of AP can then be computed, and the lower and upper limits 
used in the formula for GSe (Eq 5.37) to obtain a confidence interval for GSe.

Similarly, a confidence interval for  GSp can be built using the lower and upper limits of the 
confidence interval for Sp (see Section 4.10).

The approach described above does not take into account that disease is likely to cluster within 
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groups, and given different disease processes within groups, the Se and Sp of the test may also 
vary from group to group. Because group-level testing is very common in veterinary medicine, 
a Monte Carlo simulation program for evaluating group-level  test  performance taking these 
factors into consideration has been published in the veterinary literature (Jordan and McEwen, 
1998), and  recently  used to  estimate  group-level  test  characteristics  for  tuberculosis  testing 
programs (Norby et al, 2005).

5.12 USE OF POOLED SAMPLES

Often to reduce cost, when individual  results  are not  needed,  or individual  samples are not 
available, specimens from a number of people might be pooled and tested as one sample. Such 
an approach is most efficient when P is low. Some of the issues that may affect the Se and Sp of 
a pooled sample (designated  PlSe and  PlSp, respectively) are: homogeneity of mixing (more 

Example 5.14 Estimating GSe and GSp

Assume that we are testing an average of 60 households in a number of villages  to determine the 
presence of contaminated drinking water. We will be culturing water samples for coliform bacteria and 
the culture procedures have an estimated Se of 0.391 and Sp of 0.964. We will assume that if the water 
supply for the village is contaminated, then 12% of households will have contaminated water on any 
given day.

AP pos=pT + =P∗Se1−P 1−Sp=0.12∗0.3910.88 1−0.964=0.079

and the AP in the villages without a contaminated water supply will be: AP neg=1−0.964=0.036.

Now, assume that the critical number of positive-testing households to classify a village as test positive 
is Y ≥2. For the purposes of this example, we will use the binomial probability distribution to solve for 
the  probability  of  ≥2  positive-testing  individuals  when  n=60  households  are  tested  (assuming  an 
infinite population). The probability of Y ≥2 is found by first computing the probability that Y <2.

p Y 2=∑
0

Y−1

CY
n APY 1−AP n−Y

The probability that Y=0 is: pY =0=C0
60∗0.0790∗1−0.07960=0.007

The probability that Y=1 is: pY =1=C1
60∗0.0791∗1−0.07959=0.037

The sum of these  2 probabilities is  0.044.  Hence,  the probability of  2 or more households testing 
positive in a village with a contaminated water supply is 1-0.044 = 0.956, which gives us the  GSe 
estimate.

For GSp, we would assume the villages do not have contaminated water so: 

the probability that Y=0 is: p Y =0=C 0
60∗0.964601−0.9640=0.111

the probability that Y=1 is: p Y =1=C 1
60∗0.964591−0.9641=0.248

Hence the GSp is 0.111 + 0.248=0.359.

With an  GSe of 96%, we can be confident that the village will be declared as having contaminated 
water if it truly does. However, with the GSp of only 36%, we will declare 64% of villages without a 
contaminated  water  supply  as  having  contaminated  water.  Consequently,  results  from  this  testing 
procedure would need to be used with great care. (If our goal is to ensure that we find villages with 
contaminated water, the procedure might be appropriate.)
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likely to be a problem with fecal samples than serum samples), whether individual samples are 
pooled at the laboratory or in the field (eg multiple swabs in a single tube of transport medium), 
the effects of dilution, or concentration, of the substance being tested for (perhaps to below the 
level the test can detect),  the characteristics of the people whose samples are going into the 
pool, and the increased possibility of having extraneous cross-reacting substances added to the 
pool because of the inclusion of material from more people.

While the dilution effect may reduce the Se of the test, the ability to test many more individuals 
may more than compensate for this. For example, much work has been done on the use of 
pooled samples for detecting Chlamydia trachomatis infections (Currie et al, 2004; Diamant et  
al, 2001; Morre et al, 2000; 2001). 

An internet-based  program for  estimating  disease  prevalence  from pooled  samples  under  a 
variety  of  conditions  (eg known  vs  unknown  Se and  Sp of  test)  is  available 
(http://www.ausvet.com.au/pprev/).  Both  frequentist  and  Bayesian  methods  of  estimating 
prevalence  from pooled  samples  used  in  the  program have  been  reviewed (Cowling et  al, 
1999). 

5.12.1 Pooled testing and GSe

Christensen and Gardner (2000) showed that GSe based on r pooled samples, each containing 
material from m individuals, and assuming homogeneous mixing and no dilution effect is:

GSe=1−[1−1−Pm1−PlSe 1−P m PlSp]r Eq 5.40

If the group is  D-, then the group  Sp based on the pooled sample (GSp) is (PlSp)r, and if no 
clustering occurs within pools, PlSp=Spm. Thus, if pooled testing is performed on a number of 
assumed D- groups, then the group apparent prevalence (GAP) is GAP=1-GSp=1-(PlSp)r which 
allows one to solve for the unknown  PlSp. Similarly,  because  Sp=PlSp1/m, increasing  r or  m 
increases  the  GSe and  decreases  GSp  in  the  same  manner  as  increasing  n  when  testing 
individuals within a group. The optimal choice of r and m should be investigated case by case. 
Estimating GSe and GSp based on pooled specimens is shown in Example 5.15.
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