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SCREENING AND DIAGNOSTIC TESTS

OBJECTIVES

After reading this chapter, you should be able to:

1.

2.

Define accuracy and precision as they relate to test characteristics.

Interpret measures of precision for quantitative test results, and calculate and interpret kappa
for categorical test results.

. Define epidemiologic sensitivity and specificity, and calculate their estimates and their

standard errors (or confidence intervals).

. Define predictive values and explain the factors that influence them.

. Choose appropriate cutpoints for declaring a test result positive (this includes using receiver

operating characteristics curves and likelihood ratios).

. Use multiple tests and interpret results in series or parallel.
. Understand the impact of using multiple tests that are not conditionally independent.

. Describe multiple approaches to evaluating (ie estimating sensitivity and specificity)

diagnostic tests.

. Understand latent class models for estimating sensitivity and specificity when no gold

standard exists.

10. Understand how population characteristics might affect estimates of sensitivity and

specificity and be able to use logistic regression to evaluate these effects.

11. Describe the main features influencing group-level sensitivity and specificity based on

testing individuals.

12. Describe the main features affecting the use of pooled specimens.
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5.1 INTRODUCTION

Most of us think of tests as specific laboratory test procedures (eg liver enzyme, serum
creatinine, or blood urea nitrogen). A test, more generally, is any device or process designed to
detect or quantify a sign, substance, tissue change, or body response in an individual. Tests can
also be applied at the household or other level of aggregation. Thus, for our purposes, in
addition to the above examples of tests, we can consider clinical signs (eg looking for a jugular
pulse), questions posed in the history-taking of a case work-up (eg how long since previous
migraine), questions in a questionnaire (eg about drinking water source), or findings at post-
mortem examination as tests. Indeed, tests are used in virtually all problem-solving activities,
and therefore the understanding of the principles of test evaluation and interpretation are basic
to many of our activities. Some general papers dealing with diagnostic tests and their evaluation
are Banoo et al (2010), Bossuyt (2008), and Sox (1996). Standardised guidelines for reporting
studies of diagnostic accuracy (STARD statement) have been published (Bossuyt ef al, 2003).

If tests are being considered for use in a decision-making context (eg clinic diagnosis), the
selection of an appropriate test should be based on the test result altering your assessment of the
probability that a disease does or does not exist, and that guides what you will do next (further
tests, surgery, treat with a specific antimicrobial, quarantine the household etc) (Sox, 1986;
Vickers, 2008). In the research context, understanding the characteristics of tests is essential to
knowing how they affect the quality of data gathered for research purposes. The evaluation of
tests might be the stated goal of a research project, or this assessment might be an important
precursor to a larger research programme.

5.1.1 Screening vs diagnostic tests

A test can be applied at various stages in the disease process. Generally, in clinical medicine,
we assume that the earlier the intervention, the better the recovery or prognosis. Tests can be
used as screening tests in healthy people (ie to detect seroprevalence of diseases, disease
agents, or preclinical disease). Usually the people or groups that test positive will be given a
further in-depth diagnostic work-up, but in other cases, such as in regional disease-control
programmes, the initial test result is taken as the state of nature. For screening to be effective,
early detection of disease must offer benefits to the individual, relative to letting the disease run
its course and being detected when it becomes clinical. Diagnostic tests are used to confirm or
classify disease, guide treatment or aid in the prognosis of clinical disease. In this setting, all
individuals tested are ‘abnormal’, and the challenge is to identify the specific disease that the
individual in question has. Despite their different uses, the principles of evaluation and
interpretation are the same for both screening and diagnostic tests.

5.2 ATTRIBUTES OF THE TEST PER SE

Throughout most of this chapter, the focus will be on assessing how well tests are able to
determine correctly whether individuals (or groups of individuals) are diseased or not.
However, before starting the discussion of the relationship between test results and disease
status, we will address some issues related to the ability of a test to accurately reflect the
amount of the substance (eg liver enzyme or serum antibody level) being measured, and how
consistent the results of the test are if the test is repeated.
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The terminology used in the literature to describe the evaluation of tests is not entirely
consistent (de Vet et al, 2006; Streiner and Norman, 2006). However, concepts that relate to the
test per se include analytic sensitivity and specificity, accuracy, and precision. Our usage of the
term precision is as a general term to reflect the variability among test results.

5.2.1 Analytic sensitivity and specificity

The analytic sensitivity of an assay for detecting a certain chemical compound refers to the
lowest concentration the test can detect. In a laboratory setting, specificity refers to the capacity
of a test to react to only one chemical compound (eg the analytical sensitivity of rapid
diagnostic tests for the detection of HIN1 influenza has been compared with that of seasonal
influenza (Chan et al, 2009), or the analytical sensitivity of 3 different tests for Chlamydia
infection have been evaluated (Chernesky et al, 2006)). Diagnostic (epidemiologic) sensitivity
and specificity depend (in part) on analytic sensitivity and specificity, but are distinctly
different concepts (Saah and Hoover, 1997) and are discussed in Section 5.3.

5.2.2 Accuracy and precision

The laboratory accuracy of a test relates to its ability to give a true measure of the substance of
interest (eg blood glucose, serum antibody level). To be accurate, a test need not always be close
to the true value, but if repeat tests are run, the resulting average should be close to the true value.

The precision of a test relates to how consistent the results from the test are. If a test always
gives the same value for a sample (regardless of whether or not it is the correct value), it is said
to be precise. Fig. 5.1 shows the various combinations of accuracy and precision.

©OO©E

accurate and inaccurate accurate but inaccurate and
precise but precise not precise not precise

Fig. 5.1 Laboratory accuracy and precision

Results from tests that are inaccurate can only be ‘corrected’ if a measure of the inaccuracy is
available and used to adjust the test results. Imprecision can be dealt with by performing
repeated tests and averaging the results. Correct calibration of equipment and adherence to
standard operating procedures are essential to good accuracy and precision; however, the details
are beyond the scope of this book.

5.2.3 Measuring accuracy

Assessing accuracy involves running the test on samples with a known quantity of the
substance present. These can be clinical samples for which the quantity of the substance has
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been determined by a generally accepted reference procedure. Alternatively, the accuracy of a
test can be determined by testing samples to which a known quantity of a substance has been
added. The possibility of background levels in the original sample and concern about the
representativeness of these ‘spiked’ samples make this approach less desirable for evaluating
tests designed for routine clinical use. A much more detailed description of procedures for
evaluating laboratory-based tests (specifically serologic tests) can be found in Jacobson (1998).

5.2.4 Precision and agreement

As indicated above, the term precision is used to denote variability among test results.
Variability obtained from repeated testing of the same sample within the same laboratory is
referred to as repeatability. Variability obtained from testing the same sample in different
laboratories is called reproducibility and is, in part, a reflection of how easy it is to set up the
test in different settings. A related concept is that of reliability, which refers to the ability of a
test to distinguish between individuals and is not, strictly speaking, a measure of precision (see
Section 5.2.5).

Agreement refers to how well 2 tests agree. It might refer to the level of agreement between 2
different tests for the same substance, or between responses of 2 different raters who are
estimating a value (eg 2 individuals evaluating blood pressure on an individual). General
frameworks for evaluating agreement have recently been published (Barnhart et al, 2007; Haber
and Barnhart, 2008).

Evaluating precision, or agreement, involves comparing multiple sets of test results which have
measured the same quantity. Methods for quantifying the variability in test results are discussed
in the following 2 sections. The same procedures that are used for measuring precision can be
used to measure agreement between 2 (or more) different tests applied to the same sample.

5.2.5 Measuring precision and agreement for tests with quantitative outcomes

Some commonly used techniques for quantifying variability or for expressing results of
comparisons between pairs of test results are:

»  coefficient of variation

»  Pearson correlation coefficient

«  concordance correlation coefficient (CCC)

» limits of agreement plots

« intra-class correlation coefficient (/CC) (see Section 20.3.3).

The coefficient of variation (CV) is computed as:

H Eq 5.1

where o is the standard deviation among test results on the same sample and u is the average of
the test results. The CV for a given sample can be computed based on any number of repeat
runs of the same test; then these values can be averaged over samples to compute an overall
estimate of the CV (see Example 5.1).

A Pearson correlation coefficient measures the degree to which one set of test results
(measured on a continuous scale) varies (linearly) with a second set. However, it does not
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directly compare the values obtained (it ignores the scales of the 2 sets of results) and for this
reason, it is much less useful than a concordance correlation coefficient for comparing 2 sets of
test results (see Example 5.1) and we do not recommend its use.

As with a Pearson correlation coefficient, a concordance correlation coefficient (CCC) (Lin,
1989; 2000) can be used to compare 2 sets of test results (eg results from 2 laboratories), and it
better reflects the level of agreement between the 2 sets of results than the Pearson correlation
coefficient does. If 2 sets of continuous-scale test results agreed perfectly, a plot of one set
against the other would produce a straight line at a 45° angle (the equality line). The CCC is
computed from 3 parameters. The first, the location-shift parameter, measures how far the data
are (above or below) from the equality line. The second, the scale-shift parameter, measures the
difference between the slope for the sample data and the equality line (slope=1). (The product
of the location-shift and scale-shift parameters is referred to as the accuracy parameter.) The
third, the usual Pearson correlation coefficient, measures how tightly clustered the sample data
are around the line (slope). The CCC is the product of the accuracy parameter and the Pearson
correlation coefficient. A value of 1 for the CCC indicates perfect agreement. Example 5.1

Example 5.1 Measuring precision—quantitative test results
data =nv

A set of 34 individual fecal samples was tested for norovirus 3 times using a commercially available
enzyme immunoassay (EIA). The results were used to evaluate the precision (repeatability) of the test.

The CV for each sample was
computed based on the 3
4.007 replicate  values and  then
averaged across the 34 samples.
The mean CV value was 0.387,
indicating that the standard
deviation among the 3 replicates
was less than 40% of the mean of
the samples.

3.00+

2.00

Pearson correlation (not
recommended) was wused to
compare replicate values from 1
and 2, 1 and 3, and 2 and 3. The
correlations were approximately
0.97 for all pairs.

adjusted OD - sample 1

1.00+

T T T
0.00 1.00 2.00 3.00 4.00
adjusted OD - sample 2

line of perfect concordance ‘ Comparing replicates 1 and 2,
the CCC was 0.97, indicating
Fig. 5.2 Concordance correlation plot very good agreement among the

2 sets of values. (Note In this
specific example, the Pearson correlation and the CCC were very close, but this is not generally the
case.) Fig. 5.2 shows a CCC plot for samples 1 and 2.

‘ ————— reduced major axis

Note Data must overlay the solid line for perfect concordance. The reduced major axis is the linear
regression line through the observations.

There appears to be slightly greater disagreement between the 2 sets of values at high optical density
(OD) readings compared with low OD readings, but the data are quite sparse above 1.0.

(continued on next page)
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Example 5.1 (continued)

The limits of agreement plot for the same data is shown in Fig. 5.3. It indicates that most of the
differences between the replicates fell in the range of -0.4 and +0.4 units.

All points would lie along the line y=0 if there was perfect agreement between the 2 sets of results.

difference between values

o observed average difference

o

o

lower limit of agreement

0 1 2 3 4
mean value

Fig. 5.3 Limits of agreement plot

shows a concordance correlation plot for 2 sets of EIA results. The CCC has been generalised
to deal with more than 2 sets of test results, to work with categorical data (Barnhart et al, 2002;
King and Chinchilli, 2001), and to deal with the issue of repeated measurements (King et al,
2007).

A limits of agreement plot (also called a Bland-Altman plot) (Bland and Altman, 1986) plots
the differences between the pairs of test results against their mean value. The mean (u,) and
standard deviation of the differences (0,) are computed and lines denoting the ‘limits of
agreement’ are added to the plot at u, + 1.960,. These indicate the range of differences between
the 2 sets of test results. This plot helps to determine if there is a systematic difference between
the 2 sets of observations (ie mean difference < or > 0), and the range of errors (indicated by the
spread of the points (de Vet, 2007)). The plot is also useful to determine if the level of
disagreement between the 2 sets of results varies with the mean value of the substance being
measured and can be used to identify the presence of outlying observations. A limits of
agreement plot is presented in Fig. 5.3.

Reliability is not, strictly speaking, a measure of precision because it relates the variability of a
test result to the amount of variation among individuals (McDowell and Newell, 1996).
Nevertheless, it is a term commonly encountered in clinical epidemiology literature. Reliability
is most commonly measured using the intra-class correlation coefficient (/CC), which is
described in more detail in Section 20.3.3. In the context of diagnostic test evaluation, the /CC
relates the amount of variability among individuals to the total variability, which consists of
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variability among individuals plus variability among measurements within an individual (de
Vet et al, 2000).

_ variability among individuals
variability among individuals + measurement error

Alternatively, it can be viewed as 1 minus the proportion of variance due to measurement error.
If a test is imprecise (much measurement error), the reliability will be low. See de Vet et al
(2006) for a discussion on the use of agreement and reliability measures.

5.2.6 Measuring precision and agreement for tests with a qualitative outcome

All of the above procedures are useful if the quantity of interest is measured on a continuous
scale. If the test results are categorical (dichotomous or multiple categories), a kappa (also
called Cohen’s kappa) (Cohen, 1960) statistic can be used to measure the level of agreement
between 2 (or more) sets of test results. Obviously, the assessments must be carried out
independently of each other using the same set of outcome categories. The data layout for
assessing agreement is shown in Table 5.1 for a 2X2 table (larger ‘square’ tables are also used).

Table 5.1 Layout for comparing results from 2 qualitative (dichotomous) tests

Test 2 positive Test 2 negative Total
Test 1 positive N1 N1z ns.
Test 1 negative N2 N2 N,
Total N P n

5.2.7 Kappa

In assessing how well the 2 tests agree, we are not seeking answers relative to a reference (gold)
standard (Section 5.3.1) as this might not exist, but rather whether the results of 2 tests agree
with each other. Obviously, there will always be some agreement due to chance, and this must
be considered in the analysis. For example, if one test was positive in 30% of subjects and the
other test was positive in 40%, both would be expected to be positive in 0.4*0.3=0.12 or 12%
of subjects by chance alone. So, the important question is: what is the level, or extent, of
agreement beyond what would have been expected by chance? This question is answered by a
statistic called Cohen’s kappa (k). We can calculate the essential elements of «x as follows:

»  observed agreement = (11, + nx)/n

« expected agreement (chance) = [(n,.* n.1)/n + (n2.* n,)/n]/n

» actual agreement beyond chance = observed - expected

»  potential agreement beyond chance = (1 - expected)

+ k= actual agreement beyond chance/potential agreement beyond chance.

A formula for calculating x directly is:

(”11 Ny =Ny n2])

nynytnyn, Eq 5.2
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Procedures for computing the standard error, confidence intervals, and tests of significance for
K are available elsewhere (Reichenheim, 2004).

Common interpretations of x, when applied to a test that is subjective in nature (eg identifying
lesions on an X-ray), are shown below (Landis and Koch, 1977). One would expect to apply a
more stringent interpretation when comparing 2 reasonably objective tests (eg virus isolation
and PCR).

<0 poor agreement

0.01t0 0.2 slight agreement

0.21t0 0.4 fair agreement

0.41 t0 0.6 moderate agreement

0.61 t0 0.8 substantial agreement
0.81t0 1.0 almost perfect agreement

Example 5.2 shows the computation of x for assessing agreement between PCR and EIA results
for norovirus when both tests were run on 188 stool samples.

5.2.8 Factors affecting kappa

It has been well-established that bias (tendency of one rater to assign more positive test results
than another rater) and the prevalence of the underlying condition both affect x (Cook, 2007,
Nam, 2007; Sargeant and Martin, 1998). Alternative approaches to measuring agreement have
been suggested and these include: maximum kappa (Feinstein and Cicchetti, 1990), Yule’s Y
(Spitznagel and Helzer, 1985), indices of positive and negative agreement (Cicchetti and
Feinstein, 1990), a prevalence and bias adjusted kappa (PABAK—also called the S coefficient)

Example 5.2 Agreement among dichotomous test results
data =nv

Stool samples from 188 individuals were tested for norovirus using both a PCR assay and an EIA. Both
tests generate continuous-scale results so these were dichotomised (for PCR positive=cycle threshold
(ct)<34, for EIA positive=OD>0.1) The data were:

EIA positive EIA negative Total
PCR positive 68 26 94
PCR negative 6 88 94
Total 74 114 188

McNemar’s y* test had an exact P-value of 0.005, indicating that one of the tests (in this case PCR)
produced significantly more positive results. Given this, it makes little sense to test agreement, but for
pedagogical purposes:

observed agreement=0.83 expected agreement=0.5

x=0.66 SE(x)*=0.054

95% CI of k*=0.546 , 0.768

Thus, the level of agreement appears substantial. However, the CI is quite wide, reflecting some
uncertainty about the estimate.

“There are a number of formulae for the SE; the one used here does not assume independence of observations.
*There are a number of ways of computing the confidence interval for kappa, the estimates shown are bias-corrected
bootstrap confidence intervals.
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(Byrt et al, 1993; Thomsen and Baadsgaard, 2006), and conditional relative odds ratio (Suzuki,
2006). However, in general, these have not been widely adopted so it is important to consider
the role of bias and prevalence on «.

Bias Before quantifying the level of agreement, we need to determine if the 2 tests are
classifying approximately the same proportion of individuals as positive. (If one test produces
more positive test results than the other, there is not much point in proceeding to evaluate
agreement.) We compare the proportion positive to each test (ie p; and p,, where p, and p,
represent the proportion positive to tests 1 and 2, respectively) using the McNemar’s j* test for
paired data (Lachenbruch, 2007; McNemar, 1947) or an exact binomial test for correlated
proportions (formula not shown).

McNemar's X2=(n12—n21)2/(n12+n21) Eq 5.3

A non-significant test indicates that there is little evidence that the 2 proportions differ. If
significant, this test suggests a serious disagreement between the tests, and thus the detailed
assessment of agreement could be of little value.

Prevalence As noted, the prevalence of the condition being diagnosed affects x. Two tests (or 2
raters) will have a higher x value if the prevalence of the underlying condition is moderate
(~0.5) than if it is very high or very low. The relationship between prevalence and « is complex,
and depends on the distribution of difficult-to-classify individuals in the population. However,
in general, the influence of prevalence is only substantial at very high (>0.8) and very low
(<0.2) prevalence values. A much more detailed review of this issue, and the conclusion that we
should not be concerned about the effect of prevalence on x, has been published (Vach, 2005).

5.2.9 Multiple raters (tests)

Kappa can be extended to situations in which there are more than 2 raters (or tests). In this
instance, there is no assumption about the uniqueness of the raters, so an individual may be
evaluated by different numbers of raters or by the same number of raters but with different
individuals doing the rating. (However, a balanced study in which the same raters evaluate all
individuals will provide the most meaningful results.) This same approach can be used when
there are only 2 raters, but the identity of those raters differs across subjects. Details of these
methods are covered in Fleiss ef al (2003).

When data from multiple raters are available, an alternative to computing x is to model the
probability of a positive test result using a multilevel model (see Chapter 22) with the rater as a
random effect (Woodard et al, 2007). This analysis focuses on factors that affect the probability
of a positive test result, but the estimate of the between-rater variance provides some insight
into the level of agreement.

5.2.10 Weighted kappa

For tests measured on an ordinal scale, computation of the usual x assumes that any pair of test
results which are not in perfect agreement are considered to be in disagreement. However, if a
test result is scored on a 5-point scale, a pair of tests with scores of 5 and 4, respectively, should
be considered in ‘less disagreement’ than a pair of scores of 5 and 1. Partial agreement can be
taken into account using a weighted « in which pairs of test results that are close are considered
to be in partial agreement (through a weight matrix which specifies how much agreement
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should be assigned to them). A weighted x is sensitive to the number of categories used
(Brenner and Kliebsch, 1996) and to the choice of weights (Graham and Jackson, 1993).
Confidence intervals can be computed using bootstrap methods (Reichenheim, 2004) and an
exact test of statistical significance is available (Brusco et al, 2007) (although we are usually
more interested in the magnitude of x than in its statistical significance).

Example 5.3 shows the data layout and the results of an unweighted and weighted x for
comparing PCR and EIA results that have each been categorised on a 3-point scale. It has been
reported that computing an intra-class correlation coefficient may be superior to the use of a
weighted kappa when dealing with ordinal response categories (Maclure and Willett, 1987).

5.3 THE ABILITY OF A TEST TO DETECT DISEASE OR HEALTH

The 2 key characteristics we estimate are the ability of a test to detect diseased individuals
correctly (its sensitivity), and to give the correct answer if the individual in question is not
diseased (its specificity). The two previous terms are sometimes referred to as diagnostic
sensitivity and diagnostic specificity, but for simplicity we will use the single word terms. For
pedagogical purposes, we will assume that individuals are the units of interest (the principles
apply to other levels of aggregation). Further, we will assume that a specific ‘disease’ is the
outcome, although other conditions such as pregnancy, determination of an exposure, having a

Example 5.3 Agreement among ordinal test results
data =nv

The data described in Example 5.1 were used, except the original continuous data were categorised on
3-point scales as follows:

e PC: Neg (ct=34), + (27<ct<34), ++ (1=ct<27)

+ EIA: Neg (OD<0.1), +(0.1<OD<0.11), ++ (0.11<OD<4)

EIA
PCR Neg + ++
Neg 79 3 5
+ 4 1
++ 20 2 65

An unweighted kappa (which assumes that all test results which were not identical were in
disagreement) and a weighted kappa in which test results were:

 identical: weighted as complete agreement

* 1 level apart: weighted as 50% agreement

» 2 levels apart: weighted as complete disagreement.

95% ClI
Kappa SE Lower Upper
Unweighted 0.628 0.067 0.520 0.732
Weighted 0.663 0.071 0.547 0.762

The two values are close (partially because of the relatively small sample in the + category), but the
weighted kappa is probably a better reflection of the agreement between the 2 sets of tests than the
unweighted kappa.
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specified antibody titre, or infection status could be substituted in a particular instance. To
initiate this discussion, it is simplest to assume that the test we are evaluating gives only
dichotomous answers—positive or negative. This might be a bacterial culture in which the
organism is either present or absent, or a survey question about whether a household is attached
to a municipal water supply or not. In reality, many test results provide a continuum of
responses and a certain level of response (colour, test result relative to background signal, level
of enzyme activity, endpoint titre etc) is selected such that, at or beyond that level, the test
result is deemed to be positive.

5.3.1 The gold standard

A gold standard (GS) is a test or procedure that is absolutely accurate. It diagnoses all of the
specific disease that exists and misdiagnoses none. For example, if we had a definitive test for
human immunodeficiency virus (HIV) infection that correctly identified all HIV-infected
individuals as positive and gave negative results in all non-infected individuals, the test would
be considered a gold standard. In reality, there are very few true gold standards. Partly this is
related to imperfections in the test itself, but a good portion of the error is due to biological
variability. People do not immediately become ‘diseased’, even subclinically, when exposed to
an infectious, toxic, physical, or metabolic agent. Usually, a period of time will pass before the
agent is present in sufficient numbers, or the individual responds in a manner that produces a
detectable or meaningful change. The timescale for an individual’s response to cross the
threshold and be considered positive varies from person to person.

Traditionally, in order to assess a new test, we required a gold standard. However, alternative
approaches for evaluating diagnostic tests are discussed in Section 5.7

5.3.2 Sensitivity and specificity

The concepts of sensitivity and specificity are often easier to understand through the use of a
2X2 contingency table, displaying disease and test results in a sample of individuals.

Table 5.2 Data layout for test evaluation

Test positive (T+) Test negative (T-) Total
Disease positive (D+) a (true positive) b (false negative) m4
Disease negative (D-) c (false positive) d (true negative) Mo
Total n4 No n

The sensitivity of a test (Se) is the proportion of diseased (D+) individuals that test positive. It
is described statistically as the conditional probability of testing positive given that the
individual is diseased [p(7+]D+)], and is measured by:

a a

Se= =
atb m, Eq5.4

The specificity of a test (Sp) is the proportion of non-diseased (D-) individuals that test
negative. It is described statistically as the conditional probability of testing negative given that
the individual does not have the disease of interest [p(7-|D-)] and is measured by:
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Sp= d _d
c+d m, Eq5.5

For future purposes, we will denote the false positive fraction (FPF) as 1-Sp, and the false
negative fraction (FNF) as 1-Se. From a practical perspective, if you want to confirm a disease,
you would use a test with a high Sp because there are few false positives. Conversely, if you
want to rule out a disease, you would use a test with a high Se because there are few false
negatives. Confidence intervals for Se, Sp, FPF and FNF can be obtained using procedures
applicable for estimating the confidence interval of a proportion (see Section 4.10). Estimates of
Se and Sp are specific for a given population and may vary across source populations. Methods
for estimating Se and Sp are covered in Sections 5.7 and 5.8, and factors that might affect the Se
and Sp are discussed in Section 5.9.

The estimation of Se and Sp of the EIA test in the norovirus data is shown in Example 5.4. The
gold standard determination was based on a combination of test results (see Chapter 31).

5.3.3 True and apparent prevalence

Two other terms are important descriptors of the tested subgroup. One denotes the actual level
of disease that is present. In screening-test jargon, this is called the true prevalence (P). (In

Example 5.4 Sensitivity, specificity, and predictive values
data =nv

The EIA results in the norovirus data were used for the following example. No true, independent gold
standard (GS) existed for those data, so a GS was computed using results from several different tests
and from repeated testing of selected samples. (See Chapter 31 for a complete description of the data
and the determination of the gold standard.)

T+ T-

GS + (D+) 71 11 82

GS - (D-) 3 103 106
74 114 188

For purposes of description, the 71 individuals are called true positives, the 3 are false positives, the 11
are false negatives, and the 103 are true negatives.

In this example,
e Se=71/82=286.6% 95% CI=(77.3% , 93.1%)
e Sp=103/106 =97.2% 95% CI=(92% , 99.4%)
* FNF=1-0.866 = 13.4%
e FPF=1-0972=2.8%
e P=282/188=43.6%
e AP=74/188=39.4%
s PV+=171/74=95.9% 95% CI = (88.6% , 99.2%)
e PV-=103/114=90.4% 95% CI=(83.4%,95.1%).
Note The confidence intervals are exact, based on the binomial distribution.

The Sp is very high and the Se is reasonable. However, limitations in the Se mean that, in this particular
population, a negative test result was only indicative of an uninfected individual 90% of the time (PV- ).
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clinical epidemiology, an estimate of this is referred to as pre-test prevalence.) P is a useful
piece of information to include in our discussion of test evaluation, because it will affect the
interpretation of the test result. In Example 5.4, P=p(D+)=m1/n=82/188=0.436 or 43.6%.

In contrast to the ‘true’ state, unless our test is perfect, the test results will only provide an
estimate of the true prevalence and, in screening-test jargon, this is called the apparent
prevalence (4P). In Example 5.4, AP=p(T+)=n/n=74/188=0.394 or 39.4%. In clinical
epidemiology, this might be referred to as a post-test prevalence. In general, AP can be
computed as:

AP=p(T+)=P*Se+(1-P)(1-Sp) Eq. 5.6

5.3.4 Estimating true prevalence from apparent prevalence

If the Se and Sp of a test are known, the true prevalence of disease in a population is estimated
by Rogan and Gladen (1978):

AP—(1-8p) _AP+Sp—1
1-[(1-8p)+(1-Se)] Se+Sp—1 Eq5.7

P=p(D+)=

For example, if 4P=0.150 and Se=0.363, Sp=0.876, then our estimate of true prevalence is
0.109 or 10.9%. It is possible that some combinations of Se, Sp, and AP result in estimates of
true prevalence outside its allowed range (0-1). This indicates that one or both of the Se and Sp
estimates used are not applicable for the population being studied.

5.4 PREDICTIVE VALUES

The Se and Sp are characteristics of the test. However, these terms do not tell us directly how
useful the test might be when applied to individuals of unknown disease status. Once we have
decided to use a test, we want to know the probability that the individual has or does not have
the disease in question, depending on whether it tests positive or negative. These probabilities
are called predictive values, and change with different populations of individuals tested with
the same test because they are driven by the true prevalence of disease in the target population
as well as by the test characteristics. In this discussion, we assume the group of subjects being
tested is homogeneous with respect to the prevalence of disease. If not, then the covariates that
affect disease risk should be identified and separate estimates made for each subpopulation.

5.4.1 Predictive value positive

With data as shown in Table 5.2, the predictive value of a positive test (PV+) is the probability
that given a positive test, the individual actually has the disease; this might be represented as
p(D+|T+) or a/n;. The predictive value of a positive test can generally be estimated using the
following formula:

p(D+)*Se

PV +=
p(D+)*Se+p(D-)*(1-Sp) Eq 5.8

which explicitly shows how the true prevalence of disease in the tested group affects the PV+.
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5.4.2 Predictive value negative

In a similar manner, the PV of a negative test (PV-) is the probability that given a negative test,
the individual does not have the disease (ie p(D-|T-)). In Table 5.2 this is PV-=d/n,. The
predictive value of a negative test result can be estimated using the following formula:

V. = p(D-)*Sp
p(D-)*Sp+p(D+)*(1-Se) Eq5.9

Estimates of PV+ and PV- are shown in Example 5.4. Note These values represent the
predictive values given the P observed in the study population.

Because we are more often interested in the ‘disease’ side of the question, there is a measure of
the probability that an individual that tests negatively is actually diseased. It is called the
positive predictive value of a negative test or PPV-=b/n, or 1-(PV-).

5.4.3 Effect of prevalence on predictive values

As noted above, the predictive values of the test depend on the sensitivity and specificity of the
test, and the prevalence of the disease in the population in which it is used. Consequently,
predictive values are not good measures of a test’s performance (because they vary from
population to population). Example 5.5 shows how dramatically predictive values can change
as the prevalence of a disease varies from 50% down to 0.1%.

Computing confidence intervals (CI) for PVs is not straightforward. The CI at the observed P
can be computed as a CI for a binomial proportion (see Section 4.10) given the observed
sample size. In situations in which the PV+ or PV- approaches 1 (often the PV- approaches 1
when P is small) exact methods of computing CI for binomial proportions (or other methods of
dealing with the problem that the CI may extend below 0 or above 1) should be employed
(Mercaldo et al, 2007). In order to estimate PVs for values of P other than that observed in the
data, the uncertainty about the estimates of the Se and Sp, as well as the estimate of P, need to
be taken into account (see Zou (2004) for a discussion of the problem and one approach to
computing these CIs).

5.4.4 Increasing the predictive value of a positive test

One way to increase the predictive value of a positive test is to use the test on people where the
prevalence in the population being tested is relatively high. Thus, in a screening programme
designed to ascertain if a disease is present, we often might slant our testing toward people that
are more likely to have the disease in question. Hence, testing high-risk individuals is a useful
way of increasing the pre-test (prior) probability of disease.

A second way to increase PV+ is to use a more specific test (with the same or higher Se), or
change the cutpoint of the current test to increase the Sp (but this would decrease the Se
somewhat also). As Sp increases, PV+ increases, because the number of false positives
approaches zero. A third and very common way to increase PV+ is to use more than one test. In
this last situation, the result depends on the method of interpretation as well as the individual
test characteristics (see Section 5.6).
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Example 5.5 Effect of prevalence on predictive values
data =nv

In order to examine the impact of a change in P on the outcome of a test, we will use the values of Se
and Sp from Example 5.4 and specify 3 scenarios where the true prevalence varies from 50% to 5%,
and then to 0.1%. For pedagogical purposes, we demonstrate the calculations for the 50% prevalence
scenario in a 2X2 table. A simple way to proceed to obtain these results is to construct a fictitious
population of 1000 individuals with 500 being ‘diseased’ (ie D+) and 500 being D- based on the true
prevalence of 50%. Then, we calculate 86.6% (Se) of 500 and fill in the 433 true positives. Finally, we
calculate 97.2% (Sp) of 500, fill in the 486 true negatives, and complete the table.

Test + Test -
D+ 433 67 500
D- 14 486 500
447 553 1000
From these data:
PV+=433/447=96.9% The probability that an individual with a positive test result was truly
infected is 96.9%

PV-=486/553=87.9% The probability that an individual with a negative test result was truly

infected is 87.9%

Comparable values if the prevalence is 5% or 0.1% are:

Prevalence (%) PV+ (%) PV- (%)
5 61.9 99.3
0.1 3.0 100

As you can see, the PV+ drops off rapidly as P falls, but the PV- rises.

5.5 INTERPRETING TEST RESULTS THAT ARE MEASURED ON A CONTINUOUS SCALE

For many tests, the substance being evaluated (eg blood urea nitrogen levels, EIA optical
densities) is measured on a continuous scale or with semi-quantitative (ordinal) results.
Predictive probabilities associated with these test results can be used directly to estimate the
prevalence of disease in a population (Choi et al, 2006). However, to interpret the result at an
individual level, we need to select a cutpoint (also called cut-off or threshold) to determine
what level of result indicates a positive test result. This is true when interpreting serologic titres.

In reality, there is often an overlap in the distribution of the substance being measured between
healthy and diseased people, and we usually select a cutpoint that optimises the Se and Sp of the
test. The dilemma is depicted in Fig. 5.4. As will be demonstrated (Section 5.5.3), it is often
useful to use the actual result when assessing the health status of the tested subject(s).

5.5.1 Selecting a cutpoint

If there is any overlap in the test values for D+ and D- individuals, whatever cutpoint we
choose will result in both false positive and false negative test results (eg Fig. 5.4). For the
norovirus data, the distributions of optical density (OD) values in the GS+ and GS- individuals
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Fig. 5.4 Overlap between healthy and diseased individuals

overlap considerably. Because of this overlap, if we raise the cutpoint, the Sp will increase
(false positives decrease) and the Se will decrease (more false negatives). Lowering the cutpoint
has the opposite effect. Thus, the choice of cutpoint will depend on the relative seriousness of
either a false negative or a false positive test result.

If one has to choose among multiple cutpoints, graphical procedures such as receiver
operating characteristic curves (ROC—described below) or a sensitivity-specificity plot
(also called a 2-graph ROC plot) might be used to help choose an optimal cutpoint.
Alternatively, it is possible to use the actual test result value by computing likelihood ratios (see
Section 5.5.3) and avoid having to select a specific cutpoint.

A sensitivity-specificity plot (Reichenheim, 2002) shows how the Se and Sp of a test changes as
the cutpoint is moved through the possible range of values (Fig. 5.5). It can be used to identify
where the 2 values are equal, but this is not necessarily the best cutpoint. Depending on the cost
of false positive and false negative test results, it may be important to choose a cutpoint which
results in high Se (and consequently relatively low Sp) or vice versa. As can be seen in Fig. 5.5,
obtaining a Sp much greater than 98% for the norovirus EIA test entails accepting quite a low Se.
Possible approaches to choosing a cutpoint have recently been published (Caraguel et al, 2011).

5.5.2 Receiver operating characteristic curves

A receiver operating characteristic curve is a plot of the Se of a test versus the false positive rate
(1-Sp) computed at a number of different cutpoints to select the optimum cutpoint for
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Fig. 5.5 Sensitivity-specificity plot of the norovirus test data (dashed lines are 95%
confidence intervals)

distinguishing between D+ and D- individuals (Greiner et al/, 2000). The 45° line in Fig. 5.6
represents a test with discriminating ability that is no better than chance alone. The closer the
ROC curve gets to the top-left corner of the graph, the better the ability of the test to
discriminate between D+ and D- individuals. (The top-left corner represents a test with a Se of
100% and a Sp of 100%.)

Use of an ROC curve has the advantage over a ‘one cutpoint value’ for determining Se and Sp,
in that it describes the overall ability of the test to discriminate D+ from D- individuals over a
range of cutpoints. The area under the ROC curve (AUC) can be interpreted as the probability
that a randomly selected D+ individual has a greater test value (eg optical density) than a
randomly selected D- individual (again assuming the distribution of the test results in the D+
group is higher than that in the D- group). Multiple approaches to estimating the SE of the AUC
have been reviewed (Faraggi and Reiser, 2002; Hajian-Tilaki and Hanley, 2002). ROC analysis
can also be used to compare 2 (or more) tests based on the AUC, see Pepe (2003) for details.

Assuming equal costs of false negative and false positive test results, the optimal cutpoint is
that with Se+Sp at a maximum, and this occurs where the curve gets closest to the top left
corner of the graph (or alternatively, the farthest away from the 45° line). Depending on the
seriousness of false negative versus false positive results, one might want to emphasise test
results in one particular region of the ROC curve such as an area that constrains Se (or Sp)
within defined limits. This is referred to as the partial AUC (Walter, 2005b).
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Both parametric and non-parametric ROC curves can be generated. A non-parametric curve
simply plots the Se and (1-Sp) using each of the observed values of the test result as a cutpoint.
A parametric ROC curve provides a smoothed estimate by assuming that the latent variables
representing the Se and (1-Sp) at various cutpoints follow a specified distribution (usually
binormal). Example 5.6 shows parametric and non-parametric ROC curves for the norovirus
EIA data. Recently, a semi-parametric ROC curve has been proposed (Wan and Zhang, 2007).

5.5.3 Likelihood ratios

A likelihood ratio (LR) is the ratio of the probability of a given test result among D+ individuals
to the probability of that test result among D- individuals. Consequently, for a test with a
dichotomous test result, there are 2 LRs: one for a positive test results (LR+) and one for a
negative test result (LR-). Recall that, in general, an odds is P/(1-P) so an LR of a positive test
result (LR+) is the odds of disease given a positive test result divided by the pre-test odds:

PV+/(1-PV+)_ Se
P/(1-P) 1-Sp Eq5.10

where P=prevalence or p(D+) in the group being tested. Consequently, LRs reflect how our
view changes of how likely disease is when we get the test result.

LR+=

For tests with continuous outcomes, there are 3 possible LRs (Choi, 1998; Gardner and Greiner,
2006):

Example 5.6 ROC curves
data =nv

Fig. 5.6 shows both non-parametric (points) and parametric (dashed line) ROC curves along with 95%
CI curves for the parametric ROC. The proximity of the curve to the top left corner, and the high AUC
value (0.955) confirm that the test performs well in classifying infected and non-infected individuals.

Sensitivity

1 - Specificity
Area under curve = 0.955, SE(area)=0.015

Fig. 5.6 Parametric and non-parametric ROC curves
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* test value specific
* cutpoint specific; and
* category specific.

A test value-specific LR is the ratio of the probabilities of an exact test result in D+ and D-
individuals. Because of sample size limitations, it is not usually computed. However, it can be
estimated by determining the tangent to the ROC curve at that test value (Choi, 1998).

5.5.4 Cutpoint-specific LR

A cutpoint-specific LR (LR.,) at a selected cutpoint is the ratio of the probabilities of test results
above the cutpoint in D+ individuals to that in D- individuals. It can be written as:

1=5p, Eq5.11

where cp denotes the cutpoint at or above which the test is considered positive. In this context,
the LR+ can be viewed as the probability of a D+ individual having a test result above the
cutpoint relative to the probability of the same result in a D- subject. The LR+ can be
estimated as the slope of the line from the origin to the cutpoint on an ROC curve (Choi, 1998).

The LR for a negative test result (LR-) at a given cutpoint is the ratio (1-Se)/Sp. It denotes the
probability of the negative result from a D+ subject relative to that of a D- subject. Examples of
LRs at various cutpoints are shown in Example 5.7.

The LR makes use of the actual test result (as opposed to just being positive) and gives a
quantitative estimate of the increased probability of disease given the observed result. For
example, at the cutpoint 0.05 (Se=0.927, Sp=0.774), the LR+ is 4.10, meaning that an individual
that tests positive at this cutpoint (ie a test result >0.05) is 4.1 times more likely to be infected

Example 5.7 Likelihood ratios
data =nv

Cutpoint-specific and category-specific likelihood ratios for the norovirus data.

Optical Cumulative  Cumulative D+ D-
density sensitivity specificity LR+ LRcp- category category LRcat
cutpoint (%) (%) (%) (%)

0 100.0 0.0 1.0 1.22 29.25 0.04
0.01 100.0 20.8 1.3 0.00 6.1 48.11 0.13
0.05 92.7 77.4 4.1 0.09 6.1 19.81 0.31

0.1 86.6 97.2 30.6 0.14 21.95 1.89 11.61
0.3 64.6 99.1 68.5 0.36 24.39 0.94 25.95
0.7 40.2 100.0 0.60 23.17 0
1.5 171 100.0 0.83 17.07 0

Categories are computed with the cutpoint shown as the left-hand end of the category (eg the category
for cutpoint 0.01 is from 0.01 to 0.04999). Results are based on 188 test results.
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than you thought they were prior to testing. Note Technically, we should state that the odds,
rather than the probability, of the disease has gone up 4.1 times, but if the disease is rare, then
odds~probability. This approach makes use of the fact that, in general, the LR increases as the
strength of the response (test result) increases.

5.5.5 Category-specific LR

Often researchers in a diagnostic setting prefer to calculate LRs based on the category-specific
result (LR _ ) as opposed to the cumulative distributions (Giard and Hermans, 1996).
Here the LR is:

IR _P(result category | D+)
P (result category | D-) Eq5.12

cat

The LR.. can be estimated as the slope of the line joining 2 points of an ROC curve that
represent the boundaries of the category.

Regardless of how they are computed, LRs are useful because they combine information on
both sensitivity and specificity, and they allow the determination of post-test from pre-test odds
of disease as shown:

post-test odds= LR * pre-test odds Eq5.13

When interpreting the post-test odds, we need to be aware of whether the LR, or LR, is being
used. The former gives the post-test odds for an individual testing positive at that level or
higher, whereas the latter gives the post-test odds for individuals testing positive in that specific
category (or level) of test result. The process of computing the category-specific post-test
probability follows—assuming that, prior to testing, you thought there was a 2% probability of
the individual being positive for norovirus, and that the test OD was 0.43 (LR.,=25.95 (from
Example 5.7)):
» convert the pre-test probability to pre-test odds
pre-test odds=0.02/0.98=0.0204
* multiply the pre-test odds by the likelihood ratio to get the post-test odds
post-test 0dds=0.0204*25.95=0.5294
* convert the post-test odds to a post-test probability
post-test probability=0.5294/(1+0.5294)=0.35

After obtaining a test result of 0.43, your estimate of the probability that the individual is
infected is 35%.

The variance of the InLR, is:
var(In LR, )=(1— p(result|D+))/ a+(1— p(result|D-))/b Eq5.14
where a and b are the number of individuals with the result of interest in the D+ and D- groups,
respectively. A (1-a)% Cl is:
LR, *exp(=Z,\var(InLR,,)) Eq 5.15



SCREENING AND DIAGNOSTIC TESTS 115

5.6 USING MULTIPLE TESTS

As stated, the use of multiple tests is an often-used approach to improve the overall diagnostic
ability of the screening (or diagnostic) process.

5.6.1 Parallel and series interpretation

Using 2 tests represents the simplest extension of more than one test although the principles
discussed below hold true for multiple tests. Suppose we have 2 different tests for detecting a
disease. In Example 5.8, we use the results from the EIA (Se=0.866, Sp=0.972) and the PCR
(Se=0.963, Sp=0.858). If both tests are carried out, the results can be interpreted in one of 2
ways. With series interpretation, only people that test positive to both tests are considered test
positive. With parallel interpretation, people that test positive to one test, the other test, or both
tests are considered test positive. Series interpretation increases Sp but decreases Se, whereas
parallel testing increases Se and decreases Sp.

Tests are considered conditionally independent if the probability of getting a given result on
one test does not depend on the result from the other test, given the disease status of the
individual. For example, assume that you are dealing with a D- individual. Two tests will be
conditionally independent if the probability of a false positive on test #2 is the same in
individuals that were 7- on test #1 and in those that were 7+ on test #1. If tests are conditionally

Example 5.8 Multiple tests—series versus parallel interpretation
data =nv

The data in this example are from the norovirus test dataset. The tests we are using are the enzyme
immunoassay (EIA) and the polymerase chain reaction (PCR) test, with the gold standard as
determined in Example 5.4 (see also dataset description Chapter 31). The observed joint distributions
of test results are shown below along with the 4 possible test interpretation criteria.

Number of individuals by test-result category Totals

EIA result + + - -
PCR result + - + -
D+ individuals 68 3 11 0 82
D- individuals 0 3 15 88 106
Series interpretation + - - -
Parallel interpretation + + + -

Se of EIA only=71/82=0.866 Sp of EIA only=103/106=0.972

Se of PCR only=79/82=0.963 Sp of PCR only=91/106=0.858

Se of series interpretation=68/82=0.829
Se of parallel interpretation=(68+3+11)/82=1.000
Sp of series interpretation=(3+15+88)/106=1.000

Sp of parallel interpretation=88/106=0.830
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independent, the formulae for Se and Sp under parallel (Se,, Sp,) and series (Ses, Sps)
interpretation are:

Se,=Se,+ Se,—(Se, *Se,) Eq. 5.16
Sp,=S8p *Sp, Eq. 5.17
Se,=Se * Se, Eq. 5.18

Sp,=Sp,+Sp,—(Sp,*Sp,) Eq. 5.19

Note If tests are going to be interpreted in series, it often makes sense to first test all individuals
with the test that is less expensive and/or more rapid, and then test all test positives with the
second test. This is referred to as sequential testing and it provides the same results as
simultaneous testing, but at lower cost, because only those subjects/samples positive to the first
test are followed-up with the second.

5.6.2 Correlated test results

Given the previous discussion on parallel and series interpretation, one might think that
virtually 100% Se would be obtainable with 2 to 3 tests used in parallel, or 100% Sp with 3 to 4
tests used in series. However, Example 5.8 uses observed values, not ones we might expect
assuming conditional independence of tests. The expected distributions of results, if the tests
were independent, are shown in Table 5.3.

Table 5.3 Expected Se and Sp levels with combined tests for norovirus assuming
conditional independence (data from Example 5.8)

Sensitivity Specificity
Interpretation Expected Observed Expected Observed
Parallel 0.866+0.963- 0.972*0.858=0.834 0.830
0.866*0.963=0.995 1.000
Series 0.866*0.963=0.834 0.829 0.972+0.858-
0.972*0.858=0.996 1.000

For these 2 tests, the observed and expected Se (and also Sp) are very close, suggesting that
there is little or no conditional dependence between the two tests. Note that conditional
independence assumes that, in D+ individuals, the probability of a positive test result to test #2
is the same in samples that test negative to test #1 as it is in those that test positive to test #1. A
similar assumption exists in D- individuals. More likely, and as observed (to a limited extent)
with these data, especially if the tests are biologically related (eg both antibody tests), if test #1
is negative, the result on test #2 is more likely to be negative than if test #1 was positive. In this
instance, we would describe the test results as conditionally dependent, or correlated (Gardner
et al, 2000), not conditionally independent. (Note If either the Se or Sp of a test equals 1 (ie is
perfect), then it will always be conditionally independent (for that characteristic) of other tests.)

The extent of the dependence can be calculated as shown below and in Example 5.9.

1. Denote the observed proportion of D+ individuals with a positive test result to both tests as
pin (more generally p;; ¢ denoting test #1 result, j denoting test #2 result, and k& denoting
disease status {1=D+, 0=D-}).
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Example 5.9 Estimating covariance between test results
data =nv

Using the Se and Sp estimates obtained in Example 5.8, the covariance in the D+ and D- groups are:
D+ group: covar(+) = pi; - Se; * Se;= 68/ 82 - (.866 * .963) = -.005
D- group: covar(-) = pooo - Sp1 * Sp>=88/106 - (.972 * .858) =-.004

We do not expect to find negative covariances, but these are extremely small values, confirming that
there is negligible conditional dependence between these 2 tests.

2. In the D+ group, and using the sample estimates of Se for tests #1 and #2, respectively, (Se
and Se,), the covariance is:

covar(+)=py;,— Se,* Se, Eq5.20

3. Similarly, in the D- group and using the sample estimates of Sp; and Sp,, the covariance is:

covar (-)=po —Sp* Sp, Eq 5.21

The usual circumstance would be that these covariances would be positive, indicating
dependence. In a more formal sense, if one calculates an OR on the data from the D+ group
(OR+) and separately on the D- group (OR-), these ORs describe the above 2 covariances,
respectively. If the tests were conditionally independent, the ORs would equal 1. Similarly, if
the test results are conditionally independent, the kappa statistic in data from D+ and D-
individuals would both equal 0.

4. Given dependence, the Se and Sp resulting from parallel interpretation of 2 tests are:

Se,=1—pgy=1-[(1—Se,)*(1—Se,)+covar (+)] Eq5.22
SP, = Pooo =Sp ¥ Sp,+covar (-) Eq 5.23

From series interpretation of 2 tests these are:
Se,=p,,, =Se,* Se, +covar (+) Eq5.24
Sp.=1—[p,,,=1—(1-Sp,)*(1—Sp,)+covar (-)] Eq 525

Functionally, this means that the gains/losses from using either of these approaches are not as
great as predicted under conditional independence. It can also affect the choice of tests to be
used. For example, a more optimal outcome might arise from combining 2 independent tests
with lower sensitivities than 2 dependent tests with higher sensitivities.

5.7 EVALUATION OF DIAGNOSTIC TESTS

There is a variety of approaches to estimating the Se and Sp of a diagnostic test. These include:
«  the use of gold standard populations
» the use of a gold standard reference test
«  the use of a pseudo-gold standard test (or combination of tests)
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« reference test with known Se and Sp
«  evaluation when there is no ‘gold standard’ (Section 5.8).

5.7.1 Gold standard populations

In some situations, a population which is assumed to be completely free of a disease may be
available for estimating the Sp of a test. The main issue to be considered in this case is whether
or not the characteristics of the population result in an estimate of Sp that is appropriate for the
population of interest. It is not often possible to identify a population in which all individuals
are assumed to be D+ for the estimation of Se.

Another approach to estimating Sp when disease is known to be infrequent (say, less than 2%)
is to assume that all of the test positive individuals are false positives (ie Sp=1-4P). For
example, if 4 individuals per 1000 test positive to some screening test; hence, the Sp of this test
cannot be less than 1-0.004=0.996 (99.6%). If a portion of the test positives are found (or
known) to be true positives, then the AP can be adjusted accordingly and the estimate of the Sp
raised.

5.7.2 Gold standard reference test

In some cases, a gold standard test (or combination of tests) is available. Studies using a gold
standard reference test may be conducted in one of 2 ways. One approach (1-stage approach)
is to test a sample of people from the population with both the gold standard test(s) and the test
being evaluated. Se and Sp can then be computed directly and the binomial distribution can be
used to calculate the standard errors and confidence limits (see Section 4.10). A drawback of
this approach is that a very large sample size will be required to obtain a reasonable estimate of
Se if the disease prevalence is low.

An alternative 2-stage approach is to screen a sample from the population with the test being
evaluated and then a subsample of 7+ and 7- individuals is submitted to the gold standard test
(to determine their ‘true’ health status). It is vitally important that selection of people for
verification be independent of their true health status (random sampling is the preferred
method). If the fraction of 7+ individuals that is selected for verification is different than that
fraction of 7- samples, this must be taken into account when estimating Se and Sp. If we denote
the fraction (sf) of the test positives that are verified as sfr:, and that of the test negatives as sfr.,
then the corrected estimate of Se is:

alsfr.
SeCOIT= T i
alsf . +blsfr. Eq 5.26
and the corrected estimate of Sp is:
dlsf .
SPeon="7 o
dlsfr+clsf . Eq5.27

See Example 5.10. If sfri=sfr., no adjustment for the sampling fractions is needed.

The variances of these ‘corrected’ proportions are calculated using only the number of verified
individuals in the variance formulae (ie the a+b verified individuals for Se.. and the c+d
verified individuals for Spc. (Table 5.2)) (Greiner and Gardner, 2000).
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Example 5.10 Estimating Se and Sp using a validation subsample
data = hypothetical

Suppose we screen 10,000 people for tuberculosis using an intradermal injection with purified protein
derivative (PPD), and we get positive reactions in 242 people. A detailed follow-up (involving X-rays
and evaluation of sputum samples) is done on 100 of the people with reactions and 200 of the ‘clear’
individuals. In the individuals with reactions, 83 are confirmed as having tuberculosis, whereas 2 of the
200 clear individuals are found to have evidence of tuberculosis. The data are shown here.

Reaction+ Reaction-
TB+ (D+) 83 2
TB- (D-) 17 198
100 200

and
sf7.=100/242=0.413

sfr.=200/9758=0.0205

From these we can calculate Secor and Speor

P 83/0.413 _201.0
©T83/0.41342/0.0205  298.6

=0.673

with approximate SE of \ [(0.673*(1-.673))/85]=0.051 and

_ 198/0.0205 96585 _
Speon = 198/0.0205+17/0.413 ~ 9699.7 0.996

with approximate SE of \ [(0.996*(1-.996))/215]=0.004

Procedures for deciding the optimal balance between individuals tested with the new test (stage
1) and individuals submitted to gold standard testing (stage 2) have been published (McNamee,
2002). A procedure in which stage 2 is replaced with a sequential process of first evaluating the
specificity of the test and then (if the specificity is acceptable) proceeding to evaluating the Se
has been recommended (Wruck et al, 2006).

Regardless of whether a 1-stage or 2-stage approach is used, it is advantageous to have a
spectrum of host attributes and clustering units (if any) present (ie people from a number of
different villages). The results should be assessed for differences in Se or Sp by host attributes
using logistic regression (see Section 5.9.2). Blind assessment and complete work-ups of all
individuals are useful aids to prevent bias in the estimates. When Se and Sp are estimated based
on samples obtained from several people within a number of groups, adjustment of the SEs for
the clustering effect should be made. This can be done using hierarchical multilevel procedures
(Chapters 20 and 22) or survey statistics (Chapter 2) (Greiner, 2003).

5.7.3 Pseudo-gold standard procedures

Pseudo-gold standards involve the use of a combination of imperfect tests as a substitute for a
gold standard. Two approaches have been described: discrepant resolution and composite
reference standard. The former has a problem in that disease status measurement is
conditional upon the test being evaluated, and hence produces biased results (Miller, 1998). It
will not be considered further.
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A composite reference standard (CRS) is formed by first testing all samples with a reference
test and then all reference test negative samples are tested with a resolver test. The results are
interpreted in parallel, so that any specimen that was positive on either the reference or resolver
test is considered CRS positive, while specimens that are negative on both tests are CRS
negative (Alonzo and Pepe, 1999). These results are then used to evaluate the test of interest in
place of a gold standard test. Example 5.11 shows the use of a composite reference standard for
evaluating the Se and Sp of a test.

Pseudo-gold standards can also be created using an ad-hoc, study-specific approach provided
there is sufficient justification for the approach chosen. This was the approach used to generate
the gold standard variable for the norovirus data (see Chapter 31 for specifics).

5.7.4 Reference test with known Se and Sp

If the Se and Sp of a reference test (Serr and Spr, respectively) are known, then from the data in
a 2X2 table based on the new test results (but with disease status determined by the reference
test), we could estimate the Sen.w and Spu.w of the new test using the syntax of Table 5.2 as
follows (Enge ef al, 2000):

n Spref_c
Senew=
NSP o= My Eq 5.28
nySe . .—b
pﬂCW=
nSe ey Eq5.29

Example 5.11 Use of pseudo-gold standard for evaluating Se and Sp of a diagnostic test
data =nv

In order to evaluate the Se and Sp of EM, a composite reference standard (CRS) test result was
c