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COHORT STUDIES

OBJECTIVES

After reading this chapter, you should be able to:

 1. Distinguish between open and closed source populations as they relate to cohort study 
design.

 2. Describe the major design features of risk-based and rate-based cohort studies.

 3. Identify hypotheses and population types that are consistent with risk-based cohort studies.

 4. Identify hypotheses and population types that are consistent with rate-based cohort studies.

 5. Elaborate the principles used to select and measure the exposure in cohort studies.

 6. Design and implement a valid cohort study to investigate a specific hypothesis.
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8.1 INTRODUCTION

This chapter is concerned with the design, implementation, analysis, and reporting of cohort 
studies. The word cohort denotes a group of study subjects that has a defined characteristic in 
common, and in epidemiological  study design,  the characteristic  of interest  is  the exposure 
status (exposed and non-exposed study subjects). In a cohort study design, we follow subjects 
from exposure to outcome  (Grimes and Schulz, 2002). In  this sense, a cohort study closely 
resembles  a  controlled  trial  without  the  randomisation of  exposure.  The  study subjects  are 
usually individuals, but can be groups, such as families. Most frequently the outcome of interest 
is the occurrence of a specific disease, although other outcomes such as birth weight, quality of 
life, obesity/body mass index, or blood pressure might be the main focus of the study.

If the exposure status of potential study subjects is known beforehand, the selection of the study 
groups from the source population can be based directly on the exposure status (eg  when we 
select  2 cohorts, a group of exposed and one of non-exposed study subjects). If the exposure 
status is not known beforehand, another approach is to select a single group (cohort) of subjects 
within which there is likely to be a range of the exposure of interest. We denote the first design, 
with 2 groups defined by exposure status, as a cohort study and the latter as a single cohort or 
longitudinal  study; however, for purposes of study design we need not differentiate between 
them. In both instances, following their selection, we would ensure that the study subjects meet 
the inclusion/exclusion criteria for the study, verify the exposure status of each subject, and 
ensure that they do not have the outcome disease of interest. Then, we would observe the study 
subjects  for  a  defined follow-up period,  and when this period ends we would compare  the 
incidence of the disease in the 2 or more groups defined by exposure status. As mentioned, 
cohort  studies  are  similar  to  the  structure  of  clinical  trials,  but  without  randomisation  of 
exposure. This similarity is seen as an advantage in terms of making causal inferences (Davis 
and Al-Alem, 2011);  however,  as  Wilcox and Wacholder  (2008) point  out,  there  are  often 
different  findings from the 2 approaches and we need to find ways  to  ‘narrow the gap’. A 
straightforward example of a cohort study is shown in Example 8.1.

In some cohort studies, the outcome is measured on a quantitative scale (eg weight and physical 
measurements of the baby; see Example 8.2).  Nonetheless, comparing the weight of exposed 
and non-exposed subjects, or their offspring, also fits the cohort study design paradigm. 

Example 8.1 Retrospective risk-based cohort study investigating readmission rates 
(risk) of patients discharged against medical advice

This cohort study by Choi et al (2011) was based on data recorded at one hospital. The outcome was 
the patient’s readmission to the hospital within 14 days of discharge. The dichotomous exposure was 
discharge  against  medical  advice  (exposed=DAMA)  versus  being  discharged  with  medical  advice 
(unexposed=DWMA). To reduce potential confounding, each DAMA patient was matched with one 
DWMA patient of the same 10-year  age group,  gender,  and having been hospitalised with  similar 
clinical  characteristics.  DAMA was  based on  a  patient  not  returning to  the  hospital  after  6  hours 
without medical advice. If a patient had more than one DAMA, the first occurrence only was included 
in the analysis. The major outcome was being readmitted within 14 days of discharge; this fits the risk-
based outcome because all discharged patients were observed for the full 14-day risk period. Twenty- 
six per cent of DAMA patients were readmitted by 14 days versus 3% of the DWMA. To account for 
the matching, conditional logistic regression was used for the statistical analysis of the data.
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As mentioned, the basis of the cohort study design is to compare the frequency of the outcome 
(usually disease or a health measure) in  2 or more groups of subjects that are similar in all 
regards except for exposure; the quality of the study will depend on how closely the real study 
approaches  that  ideal.  In  many cohort  studies  the outcome is ‘time-to-outcome’,  and hence 
survival models are used for their analysis. Levin (2006) and Soh and Saw (2010) describe the 
basic features and analysis of cohort studies. Euser  et al (2009) describe a number of cohort 
design features in the context of kidney disease research. Hood  (2009) reviews cohort study 
design in the context of nursing research. Comprehensive and classical reviews of cohort study 
design and analysis are available (Prentice, 1995; Samet and Munoz, 1998a; 1998b), as well as 
a more  recent  series  of  articles  on  the  critical  appraisal  of  cohort  studies,  from a  clinical 
perspective  (Mamdani et  al,  2005;  Normand et  al,  2005;  Rochon et  al,  2005).  The  latter 
discussions focus on methods to prevent selection bias and confounding. We will discuss the 
reporting of cohort studies later in this chapter (see Section 8.9). 

Each specific study presents its own unique challenges, but the starting point for all studies is to 
clearly and concisely state the objective. This includes defining the  target  (the population to 
which inferences will be made) and source populations (the population from which the study 
group will be drawn), the  unit of observation (eg individuals or groups), the  exposure, the 
disease, the  follow-up period, and the setting (ie  context or venue) of interest. If  sufficient 
biological facts are known, the hypothesis should indicate the amount, or duration, of exposure 
that is believed to be needed to ‘cause’ the disease. Clarifying the study objective often helps us 
decide whether current or past exposure is relevant, whether lifetime exposure or exposure in a 
narrower window of time is important, whether repeated measures of exposures are required 
and if so, how to handle changes in exposure status. 

Depending  on  the  availability  of  suitable  records,  cohort  studies  can  be  performed 
prospectively or retrospectively (Euser et al, 2009). In a prospective study design, the disease 
has not occurred at the time the study starts; conversely,  in a  retrospective study design, the 
follow-up period has ended, and the disease event has occurred when the study subjects are 
selected  (Hudson et  al,  2005) (see  Examples  8.1–8.5).  Prospective  studies  provide  the 
opportunity  for  more  detailed  information-gathering  (see  Examples  8.6,  8.7,  and  8.9)  and 
attention to recording the details of interest than do retrospective studies which require suitable 
existing databases.

We close this section with an ‘interesting’ example of creating virtual cohorts. McCartney et al 
(2010) created a virtual cohort based on the consumption of meat products (the exposure factor) 
available  at  a  suspect  meat  outlet  in  Paisley,  Scotland.  Because  many  of  the  actual  meat 
products  had  been  sold  by  the  time  the  investigation  started,  the  delicatessen’s  computer 
records of purchases and sales were used to create the virtual population of families exposed to 

Example 8.2 A retrospective cohort study with outcome measured on a continuous scale

Crane et al (2011) conducted a study through interviews of women who had given birth between April 
2001 and March 2009 in two provinces in Canada. More than 11,000 women took part; 11% self-
declared exposure to environmental tobacco smoke. A number of outcomes were measured including 
the physical dimensions of the infant, the Apgar score, respiratory distress syndrome, and stillbirths. 
Using  multiple  regression  to  control  for  a  number  of  potential  confounding  variables,  the  study 
concluded  that  environmental  tobacco  smoke  was  associated  with  a  number  of  adverse  perinatal 
outcomes including lower birth weight and smaller body size (linear regression), as well as increased 
stillbirths (logistic regression).
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the meat products. The distribution of the various types of meat to ‘purchasing units’ (usually a 
family  or  household)  formed  a  number  (n=25)  of  exposure  groupings.  The  outcome  was 
whether  members of the purchasing unit had E. coli  O157 cultured from their stool samples; 
members of 14 purchasing units were infected, no culture positives were noted in the remaining 
967 purchasing units. This allowed the investigators to determine the relative risk of infection 
by  meat  product  on  a  purchasing-unit  basis.  The  authors  argued  that  their  approach 
circumvented recall biases that can arise when using a traditional case-control study approach to 
identify high-risk foods in this setting.

8.2 SELECTING THE STUDY GROUP

When selecting the exposure groups,  it  is best if the groups come from one clearly defined 
source population. This helps ensure that the study subjects have numerous characteristics in 
common, and can reduce the background  ‘noise’ and/or the risk of unmeasured confounding. 
As an example, the source population might be administratively or geographically defined, be a 
member of a specific group, or a patient at a clinic or hospital facility.  Other study-subject 
specific eligibility criteria such as age, race, socioeconomic class etc can be used to define the 
study groups; all eligibility criteria should be specified explicitly. Most often, the study subjects 
are chosen purposely,  not randomly,  from the source population. When obtaining the study 
group using clinic/hospital/laboratory records,  we assume that  the source  population is  that 
population of individuals who would have used these facilities if they needed care. Although 
this non-random selection increases the risk of selection bias, it is often the only practical way 
to proceed with a study. Harcombe  et al (2011) describe four key design features to reduce 
potential bias when trying to obtain a volunteer study group using a postal survey. 

When using secondary data, it can be important to verify that the source population contains 
valid data on exposure and outcomes; for example, hospital data may not always be valid for 
assessing  the care  of  patients  with specific  disease  conditions  (Jonkman et  al,  2001).  This 
aspect of study design will be discussed in greater detail in Chapter 12.

We close this section with another interesting example of obtaining study subjects. Swerdlow et  
al (2011) used a ‘generations study design’ to obtain their study group for an investigation of 

Example 8.3 A retrospective cohort study with matching on multiple factors based on 
the propensity score

Mehta et al (2010) reported on a retrospective population-based cohort design to investigate risk factors 
for falls and fractures in older adults (equal to or greater than 50 years of age). The exposure of interest  
was the use of atypical  versus  typical  antipsychotic  agents.  Data were obtained from a health-plan 
database. The use of antipsychotic drugs was based on prescription-claim data. Patients taking atypical 
antipsychotic agents were matched with patients not taking atypical antipsychotics. 

More than 60 covariates were included in the propensity-score estimation which attempts to identify 
people  with  similar  covariate  backgrounds.  Then,  the  Greedy 5-1 matching technique was  used to 
select  exposed and non-exposed subjects with similar  propensity scores;  this technique reduces the 
matched pair bias caused by incomplete and inexact matching. Each exposure group contained 5,580 
people  among which  a  total  of  825 falls/fracture  cases  occurred.  There  were  450  fractures  in  the 
atypical users and 375 in typical users. The hazard ratio did not differ significantly between the two 
exposure groups. However, it was noted that the use of any antipsychotic medication for more than 90 
days was associated with a significant increased risk (HR=1.8) of either a fall or fracture. 
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breast cancer. The initial study group was composed of women from a breast cancer charity, 
and volunteers for the study (generation 1). Each of these women was asked to nominate a 
family member or friend (generation 2), and if they agreed to participate they were asked to 
repeat this process (up to 18 generations). Initially, more than 300,000 women >16 years of age 
were interested in the study. Of these, more than 200,000 agreed to participate and 47% of these 
returned  the  questionnaire  and  became  members  of  the  study.  Ninety-two  per  cent  of  the 
members  returned  the  blood sample.  Of  interest  was  that  a  mail-out  schedule  was  used  to 
distribute blood vials so that a reasonably constant flow of plasma could be obtained, processed, 
and analysed. The authors discuss the strengths and weaknesses of their design in moderate 
detail, and this will be useful reading for those proposing to conduct a large cohort study.

8.2.1 Sample Size

Usually, when developing a cohort design, we assume that an equal number of exposed and 
non-exposed  individuals  will  be  selected.  However,  if  cost  or  other  practicalities  dictate 
different  sample  sizes  across  exposure  categories,  then  this  can  be  accounted  for.  Initial 
estimates  of  sample  size  can  be  performed  assuming the  disease  is  measured  by risk (see 
Section 8.2.2), as shown in Chapter 2. This approach is often sufficient for initial estimates of 
sample size, even if the population is open and a rate-based study must be used (see  Section 
8.2.3). 

Computer  software  for  sample-size estimation usually allows for  unequal  sample  sizes  and 
repeated  measures  when planning  the  study.  More  recent  software  is  available  to  estimate 
sample size when using multivariable regression models, or proportional hazard models (see 
Section 19.14) (Barthel et al, 2006; Latouche et al, 2004) for analyses. Latouche and Porcher 
(2007) describe how to estimate sample size  when competing risks are present. Cai and Zeng 
(2007) discuss  sample  size  estimation  in  cohort  and  case-cohort  designs.  Matsui  (2005) 
discusses sample-size estimation for rate-based designs where the outcome is survival time. 
Mazumdar et al (2006) discuss sample-size estimation in strata-matched designs with survival-
time outcomes. Basagana et al (2011) describe a sample-size estimator, including the software, 
that accounts for time-varying exposures. The researcher needs to specify the proposed number 
of  observation times for assessing the outcome, the within-subject variation of exposure, and 
the exposure covariance between observation times (this can vary from compound symmetry to 
auto-regressive).  Accounting for  the time-varying  aspects  allows the use of  smaller  sample 
sizes than if a time invariant structure is assumed. Although the subject is not covered in this 

Example 8.4 Retrospective risk-based cohort study of surgical complications

Kelz et al (2009) compared morbidity and mortality following more than 56,000 general and vascular 
surgical procedures performed between 2001 and 2004. Data were obtained from the National Surgical 
Quality Improvement Program database. Time of operation was the exposure variable of interest; this 
was grouped into 7, 2-hour periods starting at 7:30 am with all procedures starting between 9:30 pm 
and  7:30  am in  a  single  group.  Rates  (risk)  of  morbidity  and  mortality  are  given  in  the  report. 
Following adjustment for patient and procedure characteristics, mortality within 30 days following the 
procedure had a moderately strong association (OR=1.22) with start times after 9:30 pm. Similarly, 
morbidity  within  30 days  following  the procedure was  increased (odds ratio  equal 1.32) for  those 
surgical  procedures starting after  9:30 pm.  However,  when  the surgery was  classified as being an 
emergency, no odds ratios were significant. Thus, the excess crude risk for late-night, early-morning 
surgeries was explained by the nature of the clinical cases.  
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text, sample-size formulae for studies based on micro-arrays are available (Matsui et al, 2008; 
Oura et al, 2009).

8.2.2 Risk-based (cumulative incidence) designs

This is the simplest form of cohort study, but it requires that a number of assumptions be met in 
order for the design to be valid. First, the exposure groups must be defined at the start of the 
study and remain unchanged during the study (ie they are  fixed cohorts). Second, the study 
groups  must  be  closed in  that  all  subjects  must  be  observed  for the  full  risk  period  (eg 
Examples 8.1, 8.4, and 8.5). In  this design, it  is best if there are few (or no) losses (losses 
include  study subjects  that  develop  other  diseases,  or  die  from other  outcomes,  as  well  as 
withdrawals  from the study).  If  the percentage  of  study subjects  that  is  lost  becomes  large 
(some use >10% as a cutpoint), this will cast doubt on the validity of the study findings.  For 
these reasons, risk-based designs work best for diseases (outcomes) with a relatively short risk 
period. Since all subjects are observed for the full risk period, this allows the calculation of risk 
in each of the exposure categories. For chronic diseases such as many cancers, where the risk 
period is lifelong and often greater than the follow-up period of the study, a rate-based design is 
often preferred.

In a 2X2 table, the summary algebraic format for classifying the study subjects in a risk-based 
cohort study is shown below:

Exposed Non-exposed Total

Diseased a1 a0 m1

Non-diseased b1 b0 m0

Total n1 n0 n

In this design, we select n1 exposed and n0 non-exposed individuals from the N1 exposed and N0 

non-exposed  individuals  in  the  source  population.  Having  ensured  that  none  of  the  study 
subjects has the disease at the start of follow-up, we observe all subjects for the defined follow-

Example 8.5 A retrospective risk-based cohort study of HIV-positive women

This  retrospective  risk-based  cohort  study  followed  approximately  250  HIV-positive  women  who 
received care at the Ottawa Hospital General Campus Immunodeficiency Clinic from 2002 to 2005 
(Leece et  al,  2010).  Women  who  had  undergone  a  hysterectomy  were  excluded  from this  study. 
Relevant information was obtained from the patient’s medical reports and included the number of clinic 
visits during the study.  Care was taken to validate the accuracy of abstraction from the charts. The 
outcome of interest was undergoing a cervical screening test, and information on this was obtained 
from electronic laboratory records. Pap-test results were reported according to the Bethesda system. 
Overall, 145 of the 250 women underwent the screening test and 48 (33%) of these had at least one 
abnormal  test  result.  The  exposure  groups  were  based  on  the  demographic  characteristics  of  the 
patients, their HIV status, and whether or not they had primary health-care providers. Analysis was by 
χ2 tests  (continuous  predictors  were  categorised)  and  by a  general  linear  (logistic)  model.  The 12 
women without a primary-care provider were less likely to undergo screening (n=8 [67%]) than the 84 
of 206 [41%] women with health-care providers; RR=1.6). Abnormal screening test results are common 
in women with HIV but the only significant predictor was a recent low CD4 cell count. The authors 
included much descriptive data in the report and this helps the reader gain a better understanding of the 
context, and results, of the study.
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up period. During this time, we note that a1 exposed subjects develop the disease out of the n1 

exposed subjects, and a0 non-exposed subjects out of the n0 non-exposed subjects develop the 
disease. Overall, we observe a total of m1 diseased and m0 non-diseased subjects. The 2 risks (R) 
of interest are: 

R1=a 1/n1 and R0=a0/n0 Eq 8.1

Note The  denominator  of  interest  is  the  number  of  subjects  in  each  exposure  category 
(Examples 8.1 and 8.3)

8.2.3 Rate-based (incidence density) designs                                      

In many instances, not every study subject is under observation for their full risk period. This is 
especially true if the source population is dynamic and the follow-up period is long. Thus, some 
subjects may be added to the study group part way through the biological risk period for the 
outcome of interest. In addition, a significant proportion of subjects may withdraw from the 
study part way through the follow-up period. Also, the exposure status of subjects might change 
during the study period. In these situations, we cannot just count the number of exposed and 
non-exposed subjects; rather, we need to accumulate the amount of ‘at-risk time’ contributed by 
each study subject in each of the exposed and non-exposed categories. Thus, the denominator of 
the rate becomes the amount of study-subject-time per exposure category and this requires a 
rate-based approach to study design and analysis (Examples 8.6–8.7). 

In this design, each of the initially selected exposed and non-exposed subjects contributes ‘at-
risk’ time to the denominator of the rates until they develop the disease, or are lost to the study, 
or their observation ends because the study is terminated. If new individuals are added to the 
study group during the follow-up period, then the amount of time-at-risk for each study subject 
is added to the appropriate exposed or non-exposed category. 

In a 2X2 table, the summary format for classifying the study subjects in a rate-based cohort 
study is shown below.

Exposed Non-exposed Total

Diseased a1 a0 m1

Person-time at risk t1 t0 T

Example 8.6 A prospective longitudinal rate-based cohort study  

Chalmers  et al (2011) conducted this prospective longitudinal rate-based cohort study to identify risk 
factors for injury in amateur club rugby. The study group consisted of 704 male rugby players, aged 13 
years and over. The ‘time’ component was a ‘game’ and in total there were 6,263 player-games. The 
exposures included a variety of factors including age, ethnicity, rugby experience, height, weight, body 
mass  index,  physical  activity,  cigarette  smoking,  previous  injury,  playing  while  injured,  position, 
training,  time of season,  warm-up,  foul-play,  weather  conditions,  ground conditions, and protective 
equipment. Poisson regression was used to estimate the effect of each factor after adjusting for all other 
factors.  Since  it  was  reasonable  to  assume  constant  injury  rates  over  the  study  period,  Poisson 
regression could be used for the analysis. Some of the findings included Pacific Island versus Maori 
ethnicity (injury incidence rate ratio (IR=1.5); ≥40 hours strenuous physical activity per week (IR=1.5); 
playing while injured (IR=1.5); very hard ground condition (IR=1.5);  foul-play (IR=1.9), and use of 
headgear (IR=1.2). 
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Initially, we might select n1 exposed and n0 non-exposed individuals from the source population. 
All these subjects are followed for the duration of their time-at-risk within the study period. In 
so doing, we observe a1 exposed cases of the disease out of t1 person-time units of exposure and 
a0 non-exposed cases of the disease out of t0 non-exposed person-time units. Here t1 is the sum 
of all of the exposed time-at-risk contributed by the study subjects whether they developed the 
disease or not. Similarly  t0 is the summed time-at-risk study subjects contributed in the non-
exposed category. The 2 rates (I) of interest that we wish to estimate are:

I 1=a 1/t 1 and I 0=a0/ t 0 Eq 8.2

If  the  follow-up  time  is  relatively  short,  the  above  rates  can  be  used  to  measure  disease 
frequency, and analysed with Poisson models. If the follow-up time is sufficiently long that the 
assumption  of  a  constant  rate  over  the  entire  follow-up  period  is  highly  suspect,  survival 
analysis methods can be used to overcome this difficulty (see Chapter 19). Examples 8.3, 8.6 
and 8.7 describe 3 rate-based cohort studies.

8.3 THE EXPOSURE

In cohort studies, our objective is to identify the consequences of a specific exposure factor. 
The exposure refers to any potential cause of disease and, for example, these might range from 
characteristics of the study subject, to infectious or noxious agents, to environmental, housing, 
or food-related factors. Exposures that can be manipulated are of special interest as these lead 
more  directly  to  control  of  the  disease  than  factors  that  we  cannot  manipulate.  Although 

Example 8.7  A prospective rate-based cohort study with numerous examples of coding 
exposures

This  rate-based  cohort  study  was  based  on  women  taking  part  in  the  Women’s  Health  Initiative 
Observational Study (Luo  et al, 2011). The study involved more than 90,000 women aged 50 to 79 
years at over 40 clinical centres throughout the United States between 1993 and 1998. A number of 
exclusion criteria were included and explained in the report. More than 12,000 of the women were 
excluded because of a history of cancer. All information on exposures and confounders was collected at 
baseline.  Smoking  was  classified as  never,  former,  or  current.  Women who were  smokers,  or had 
smoked, were asked the age at which smoking started, the number of cigarettes smoked per day, and 
the duration of smoking in years. Among former smokers, age at quitting was collected. A combined 
variable,  pack-years,  was  calculated  by multiplying  the  total  years  of  smoking  by  the  number  of 
cigarettes  smoked  per  day  divided  by  20.  Information  on  exposure  to  passive  smoking  was  also 
collected. Invasive breast cancer was the outcome of interest. 

After an average of 10.3 years of follow-up, 3,520 incident cases (4.0 per 1,000 person-years in non-
smokers; 4.6 per 1,000 person-years in former and current smokers) of invasive breast cancer had been 
identified. The impact of exposure to passive smoking was investigated among the 41,000 women who 
had never smoked; 1,692  (4 per 1,000 person-years) of these women had developed invasive breast 
cancer. A variety of methods were used in order to investigate  the cumulative dose of exposure to 
passive smoking.  Given the long period of follow-up, Cox proportional hazards models (instead of 
Poisson  models)  were  used  to  estimate  the  hazard  ratios  from  smoking  and/or  exposure  to 
environmental  smoke.  Smoking increased the risk of invasive breast cancer among former smokers 
(HR=1.09), and among current smokers (HR=1.16). Among lifetime non-smokers, 88% were exposed 
to passive smoking.  Only those women in the highest level of exposure to passive smoking had an 
increased risk of breast cancer. The authors noted that they did not observe a significant dose-response 
trend.
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measuring exposure might seem simple at first glance, careful thought should be given to the 
manner in which it is measured and expressed (see Example 8.9). Each study design should 
include the details of what constitutes exposure, and whenever possible, we should specify how 
long after an  exposure threshold is reached before one might reasonably expect to see the 
disease  arise from that  exposure (if  indeed it  was a  cause  of the disease (ie the  induction 
period)). The more complex the exposure, the more important it becomes to validate that the 
assessment/measurement of exposure in the proposed study is valid. Heinavaara  et al (2011) 
give an example of validating exposure to mobile phone use. Duffy et al  (1994) discuss design 
and analysis when both exposure and outcome are measured multiple times during the study 
period.

Exposure status can be measured on a dichotomous scale (eg exposed or non-exposed) (see 
Examples 8.1 and 8.3), an ordinal scale (eg low, medium, or high dose) (Example 8.10), or a 
continuous scale (eg organisms per gm of feces, ppm of a toxin in air or water etc) (Example 
8.8). Exposure can be expressed separately in terms of dosage and duration or as a combination 
of the  two (eg  pack-years for quantifying cigarette exposure). Often it is necessary to decide 
whether  lifetime exposure,  historical  exposure,  or  current  exposure (relative  to  the  time of 
disease  occurrence)  are the best  measures  of  ‘exposure’.  Because  both exposure status and 
‘time  exposed’ are  crucial  components  of  a  valid  cohort  study,  it  is  vital  to  reduce  the 
measurement error for exposure. To achieve this often requires a thorough understanding of the 
‘exposure agent’ and of the etiologically high-risk period for disease causation. 

8.3.1 Permanent exposures

The exposure might be a permanent factor (ie time-invariant) or a factor that can change over 
time (ie time varying). Permanent exposures include factors such as sex or race, and one-time 
exposures  such  as  vaccination.  Permanent  and  ‘one-time’  exposures  are  relatively  easy  to 
measure, but even here a moment’s thought might suggest that defining ‘sufficient’ with respect 

Example 8.8 Cohort study with  primary risk factor measured on a continuous scale

Warensjo  et  al (2011) conducted  a  cohort  study  that  investigated  risk  factors  for  fractures  and 
osteoporosis in women who were members of the Swedish Mammography Cohort (this was established 
between 1987 and 1990 and involved more than 90,000 women). Seventy-four per cent of these women 
completed a questionnaire covering diet and lifestyle. Fracture events were identified through linkage 
to  the  Swedish  National  Patient  Registry.  Details  on  the  diet  questionnaire  and  its  validation  are 
included in the paper. Calcium intake was the major exposure of interest.  The lifetime use of dietary 
supplements and multivitamins was reported. One calcium dose was considered to be 500 mg if it was 
from calcium supplements, and 120 mg if it was from multivitamins. Total calcium intake included 
supplemental calcium. 

Both dietary and total calcium intake in the 1997 food-frequency questionnaire correlated well with 
estimates  from  14  repeated,  24-hour  recalls  over  one  year  (r=0.77).  The  authors  examined  the 
relationship  between  quintiles  of  cumulative  dietary calcium intake  and  incidence  of  fracture  and 
osteoporosis. The end of the follow-up was December 31, 2008. Both Cox proportional hazard models 
and  logistic  models  were  used  for  analysis  of  the  data.  The  findings  of  the  study  indicated  an 
association between a chronic, low-dietary intake of calcium and an increased incidence of fractures 
and  osteoporosis.  Above  the  base  level  of  calcium  intake  there  were  only  minor  differences  in 
incidence of fracture or osteoporosis. In people with the highest dietary calcium intakes, the rate of hip 
fracture was somewhat increased.
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to vaccination or smoking might be more complex than it first appears. Age at vaccination, or at 
initiation of smoking could be important features of exposure.  In any event, for factors where 
the exposure is based on a threshold or dosage, the amount of exposure necessary to deem an 
individual as being ‘exposed’ needs to be clearly stated (sometimes this is one of the objectives 
of the study itself (Rohan et al, 2007)). In early studies of a health problem, the objective might 
be to assess if there is an exposure threshold, and if so, at what exposure level? When a detailed 
definition of what constitutes exposure is available, if the disease event occurs before exposure 
is completed in an individual, it should not be included as an outcome event in the analysis 
because  exposure has not  been completed (so it  could not  have caused  the disease).  These 
issues are shown in Fig. 8.1.
When  exposure  is  measured  on  a  continuous  scale  but,  for  purposes  of  the  analysis, 
categorisation of exposure is desirable, the criteria for classification of the exposure should be 
clearly explained. 

8.3.2 Non-permanent exposures

Non-permanent exposures can include factors such as  food intake, lifestyle, or environmental 
exposures  that  can  change  over  time,  or  study-subject-specific  factors  such  as  vaccination 
where the timing (age, stage of pregnancy, etc) of the procedure can be important. For these 
exposures, both the timing and the extent of the exposure might be important to measure and 
analyse.  This adds complexity to the measurement  of the exposure factor  (eg the timing of 
lifestyle  changes  and exposure to smoking  in  Example 8.9).  Sometimes a  simple summary 
measure of exposure will suffice (eg  years smoked), whereas in other studies more complex 
measures of exposure are needed  (eg  cumulative pack-years smoked). The more information 
that  can  be  collected  on  exposure  the  better,  such  as  the  exposure  level(s)  when exposure 
started, and when (if) exposure stopped, because it adds credibility to conclusions about causal 

Fig. 8.1 Life experience with exposure, induction period and time at risk
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Example 8.9 Prospective cohort study with numerous examples of coding exposures

Rohan et al (2007) published their design of a prospective cohort study based largely on alumni from 3 
universities  in  Ontario,  Canada  who  were  recruited  over  a  3-year  period,  1995-1998.  The  major 
outcome  was  new  cases  of  cancer.  Participants  completed  baseline  lifestyle  and  food-frequency 
questionnaires, measured their waist and hip circumferences and provided hair and toenail specimens 
(for trace element and DNA analysis). More than 73,000 individuals were recruited and 97% of them 
provided  biological  specimens.  The  exposure  factors  of  interest  include  exercise  lifestyle  factors, 
molecular markers, and the characteristics of the subject’s diet. There is a good discussion on creating 
compound nutritional variables in the context  of measuring nutritional intake using food frequency 
questionnaires and subsequently, verifying the data.   
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relationships, is more useful for preventive action or intervention, and enhances our biological 
understanding of the problem. Examples 8.7 and 8.8 are cohort  studies with exposures  that 
changed over time. 

To obtain the exposure time, for each study subject, the time-at-risk in each exposure category 
accumulates  from the moment exposure is  completed until  the event  of interest  occurs,  the 
subject  becomes lost to follow-up, or the study ends. With losses to follow-up, time-at-risk 
accumulates until the last date exposure status is known (if the precise time of loss is unknown, 
use the midpoint  of the last  known exposure period).  If  there is  a known induction period 
following completion of exposure, then, until that period is over, the time at risk of ‘exposed’ 
individuals  should  be  added  to  that  of  the  non-exposed  group.  Some researchers  prefer  to 
discard the disease experience during the induction period for exposed individuals because of 
uncertainties about the duration of the induction period. In the face of uncertainty about these 
effects, this is likely the best choice providing there is sufficient time-at-risk in the exposed 
group to maintain precision. 

Note If the exposure status changes, an individual study subject can accumulate time-at-risk in 
both  exposed  and  non-exposed  categories.  Previously  non-exposed  subjects  will  contribute 
time-at-risk  to  the  exposed  category  after  the  exposure  threshold  is  reached.  Similarly,  if 
previously exposed individuals become non-exposed, we would add the non-exposure time (of 
previously exposed individuals) to the non-exposed cohort only after the time period when any 
lag effects that could be present had ended. Provided lag effects are minimal, when different 
exposure categories exist for the same study subject, the exposure category assigned to subjects 
who develop the disease is that level of exposure the subject was in at the time the outcome 
event occurred. 

As noted above, exposure status of study subjects can be classified as exposed or non-exposed 
(ie a dichotomous exposure) (Examples 8.1 and 8.3) or perhaps on an ordinal level of exposure 
category  (eg Example  8.10—never,  former,  or  lifetime  alcohol  consumption).  However,  in 
many studies, exposure is measured on a continuous scale (cigarettes or packs per day) and the 

Example 8.10 Estimating the population attributable fraction in a cohort study 

Schutze  et  al (2011) reported on a  multicentre  prospective  cohort  study that,  from 1992 to  2000, 
recruited about 520,000 randomly selected men and women between 35 to 70 years of age from 10 
European countries. The main exposure factor of interest was alcohol consumption, and the outcome of 
interest  was the new occurrence of a cancer.  At recruitment,  exposure was measured as alcohol in 
grams per day. Prior consumption of alcohol was based on self-reported consumption of beer, wine, 
and spirits. Based on the consumption in the past (and at recruitment) 3 categories of alcohol exposure 
were  created—never,  former,  and lifetime  consumers.  Information  on the incidence of  cancer was 
obtained through record linkage with regional cancer registries. The follow-up period ended between 
2002 and 2005.

Given the size and complexity  of this study,  the details on the analytical  procedures were equally 
complex. Separate statistical models were used for men and women, and most models contained a large 
number of potential confounders. Essentially, the impact of alcohol consumption, as measured by the 
regression  coefficient,  was  combined  with  information  from the  populations  on  the  prevalence  of 
alcohol consumption above recommended levels. The authors also examined for interactions between 
smoking  and  alcohol  consumption.  If  causality  is  assumed,  consuming  alcohol  beyond  the 
recommended levels  could be responsible for 10% of all  cancers in men and 3% of all  cancers in 
women.
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threshold to complete exposure may either be unknown, or it is deemed more appropriate to 
model the exposure-outcome association in a dose-response manner (eg Example 8.8). As in 
other instances, maintaining the continuous scale has advantages because the categorisation of a 
continuous exposure variable usually results in loss of information. In this instance, one might 
relate the disease frequency (ie risk or rate) to exposure on a continuous exposure scale using an 
appropriate regression model.

Hernan  et  al (2009) have  published  an  extensive  discussion  of  the  issues  involved  with 
observing the study subjects over the follow-up period when there are time varying exposure 
factors of interest. 

8.4 DISEASE AS EXPOSURE

Disease can serve as an exposure for other outcomes such as other diseases, mortality or quality 
of life measures. Lazo  et al (2011) reported on a study based on following more than 11,000 
adults, for 18 years, who participated in the Third National Health and Nutrition Examination 
Survey.  The  exposure  of  interest  was  the  presence  of  non-alcoholic,  fatty-liver  disease 
(NAFLD).  The  prevalence  of  NAFLD  with elevated  levels  of  liver  enzymes  in  the  source 
population was 3.1% and 16.4% had NAFLD with no increased levels of liver enzymes. Those 
with NAFLD but with normal liver enzyme levels had a similar risk (hazard ratio) of mortality 
and cause specific mortality as those without NAFLD. This was also true for those who had 
fatty-liver disease and increased levels of liver enzymes. 

8.5 ENSURING EXPOSED AND NON-EXPOSED GROUPS ARE COMPARABLE

If the study subjects in the different exposure groups are not comparable (ie not exchangeable) 
with respect to factors related to both the outcome and exposure, a biased (ie confounded, see 
Chapter 13 for a discussion of  confounding) assessment of the exposure-outcome association 
can result  (Klein-Geltink et al, 2007).  As Hernan (2012) notes, this is a key reason to prefer 
randomised experiments over observational studies because exchangeability is expected in the 
former. Investigators conducting observational studies need to use their expert knowledge to 
identify  and  measure  all  potential  confounders  in  the  hope  they  achieve  exchangeability 
conditional on the measured covariates. Unfortunately, exchangeability cannot be empirically 
tested in observational studies, so we never know if we have succeeded. 

In  general,  one or more of the following  3 approaches can be used to help ensure that  the 
exposed and non-exposed groups are comparable except for their exposure status. The first of 
these approaches is applied prior to subject selection and involves the use of  exclusion (also 
called restricted sampling) of study subjects. In this approach, we identify variables likely to be 
confounders and then we restrict the selection of study subjects to those that have only one level 
of these variables (eg include only one age, one race, or one sex of person in the study). This 
prevents  confounding  by  the  specified  factors,  serves  to  reduce  the  background  variability 
among study subjects, and might help reduce confounding from other unknown factors (see 
Section 13.2.1 for further discussion on restriction). 

A second approach can be used at the time of study-subject selection and involves matching the 
level of confounders in study subjects across the exposure categories. To accomplish this, we 
identify major (ie strong) confounding variables, and then select the non-exposed subjects so 
that they have the same level of the confounder as the exposed subjects (the exact criteria for 
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matching should be specified  and reported)  (see  Example 8.1).  Matching can  help achieve 
greater  study  efficacy  as  well  as  prevent  confounding  in  cohort  studies.  When  there  are 
numerous  confounders  to  control,  the  process  can  be  generalised  using propensity  scores 
(Example 8.3) (see Section 13.3 for a discussion of matching and Section 13.8 for propensity 
scores).

The third method to prevent confounding is to use analytic control (see Example 8.2). In this 
approach, we identify and measure the important confounders and then use statistical control 
(eg  ranging from Mantel-Haenszel-type stratification to multivariable regression approaches) 
during the analysis to adjust for these confounders (see all of Chapter 13 for a more detailed 
discussion  of  confounding).  Hernan  (2012) discusses  ‘exchangeability’ and  other  features 
needed  for  obtaining unbiased measures  of  association and extending these with inferences 
about causation.

8.6 FOLLOW-UP PERIOD 

To enhance  the  validity  of  a  cohort  study,  the  follow-up process  must  be  as  complete  as 
possible  and  unbiased  with  respect  to  exposure  status.  Achieving  unbiased  follow-up may 
require  some  form  of  observer-blinding  process  as  to  exposure  status.  ‘Blinding’ can  be 
implemented in both prospective and retrospective studies (although the latter has more limited 
options).  For example, in a prospective study,  one set  of researchers  that is unaware of the 
exposure status can be assigned the task of follow-up. In a retrospective study, the researchers 
reviewing records for the outcome should be kept unaware of the exposure status whenever 
possible. In either situation, the fact and date of outcome occurrence should be as accurate as 
possible to reduce the possibility of bias and measurement errors. If  passive surveillance for 
cases is used, cases occur when identified (eg this might be the date of first  symptoms, or 
physician examination). With active surveillance and regular evaluation of study subjects, it is 
feasible to get more accurate data on time of outcome occurrence. 

Unless the follow-up period is short, it is helpful to enumerate and characterise the population 
at risk at specified times during the study period, as noted by Tooth  et al (2005). Collecting 
ancillary information is  useful  to help manage issues  such as  loss to  follow-up because  of 
competing risks including death or relocation of study subjects, and to assess if censorship is 
unrelated  to  exposure.  Chang  et  al (2009) described  an analytic  method (shared  parameter 
models) to account for losses to follow-up and reduce bias, since in many studies, one cannot 
assume that the losses are randomly distributed. 

8.7 MEASURING THE OUTCOME

Although the most frequent outcome in cohort studies is the occurrence of a specific disease, 
measured as either a risk or a rate, the disease outcome could be measured on an ordinal scale 
(eg none, mild, moderate, severe), or the outcome could be measured on a continuous scale (eg 
weight, birth weight, quality of life index  etc (see Example 8.2). For example, Harley  et al 
(2011) investigated  the  association  between  exposure  to  polybrominated  diphenyl  ethers 
(PBDEs—a flame retardant) and infant birth weight, length, head circumference, and length of 
gestation. Exposure was indicated by serum PBDE levels during week 26 of pregnancy. Here, 
both the exposure and the outcome were measured on a continuous scale.  

Each study will need explicit protocols for determining the occurrence and timing of outcome 
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events. Clear definition(s) of diagnostic criteria are useful to ensure as few diagnostic errors as 
possible. This can prove difficult in retrospective studies when only the summary diagnostic 
information is available. The specific diagnostic criteria should be included in the study plan for 
prospective  studies.  When  possible,  in  prospective  studies,  ensuring  blinding of  the 
diagnosticians is helpful to equalise, but not necessarily reduce, diagnostic errors.

When the outcome (eg disease) is measured as incidence, strictly speaking, this requires at least 
2 examinations: the first at the start of the follow-up period to ensure that the study subjects did 
not have the disease of interest, and the second to investigate whether or not (and when) the 
disease  developed  during  the  observation  period.  Including  only  new  disease  events 
circumvents the reverse-causation problem from measuring prevalence as well as ensuring that 
the associations are not biased by duration-of-disease effects and survival bias (see Chapter 12). 
In retrospective studies, one often has to assume freedom from the disease at the start of the 
follow-up period;  whereas  in prospective studies,  it  is  desirable to formally ensure that  the 
study subjects are free of the disease at the start of follow-up. 

If clinical diagnostic data are used to indicate the occurrence and timing of the disease event, 
the incident  date usually  will  be  based  on time of  diagnosis  not  on time of  occurrence  of 
disease. For diseases that might remain in the subclinical state for extended periods, ignoring 
this difference could lead to inferential errors about causal associations. If the study group is 
screened for the disease event at regular intervals, the time of occurrence of the disease should 
be placed at the midpoint between examinations. 

One of the advantages of a cohort study is that we can assess multiple outcomes from a given 
exposure factor. In terms of causal inferences, Kunzli et al (2001) have indicated that following 
a defined group of study subjects over time allows the researcher to capture all deaths in the 
study group regardless of whether the effects of exposure are short or long term. However, if 
multiple  outcomes  are  assessed  (Crane et  al,  2011;  Harley et  al,  2011),  some  might  be 
significantly associated with the exposure by chance alone. In this instance, it might be best to 
consider the study as hypothesis-generating not hypothesis-testing, unless the outcomes were 
specified  a priori,  or  a  penalty  is  applied  to  the  P-value  that  is  used  to  declare  a  test  as 
‘statistically significant’.

8.8 ANALYSIS 

8.8.1 Risk-based cohort analysis

If  the source population is closed, we can measure the average risk of disease and survival 
times during the follow-up period. Bivariable, risk-based analyses are shown in Chapter 6, and 
stratified analyses (to control confounding) in Chapter 13. Traditionally, multivariable models 
for risk-based outcomes have been built using logistic-regression models (Chapter 16), which 
use  odds ratios  as  the base measure  of  association.  See  Section 18.4.1 for  a  discussion of 
methods for multivariable estimation of risk ratios (the natural measure of association for a risk-
based cohort study). Cheung (2007) has described the use of linear regression if risk difference, 
rather than risk ratio, is the association measure of interest. 

Both  Cox  (2006) and  Greenland  (2004) discuss  the  estimation  of  population  attributable 
fractions (AFp) in cohort studies. Cox suggests using a log-linear model approach for adjusted 
AFp  when  the  prevalence  of  exposure  is  known  (ie a  single  cohort  or  longitudinal  study 
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sampling)  or  estimable (available  in  some cohort  study situations).  Greenland  demonstrates 
how to obtain a variety of association measures, including AFp, using one or more of logistic, 
log-linear, and Poisson models (see Example 8.10). 

8.8.2 Rate-based cohort analyses

If the source population is open, rates are used to measure disease frequency (see Examples 8.6 
and  8.7)  and  if  the  rate  is  deemed  to  be  constant  over  the  follow-up period,  the  adjusted 
incidence rate  ratios (IRs)  can be obtained using Poisson models.  Because  of the long risk 
period for the outcome, most formal analyses of rate data in the medical literature have used 
survival  models  (see  Examples  8.3  and  8.7). Callas  et  al (1998) compared  a  proportional 
hazard, Poisson and logistic model for the analysis of cohort data, and concluded that either one 
of the former  2 approaches would be preferable to logistic analysis. This has been confirmed 
more recently by others (Greenland, 2004). For multivariable analyses of grouped data, we can 
use a Poisson regression model (see Chapter 18) that includes the study-subject time-at-risk in 
each exposure category as the offset; the coefficients from this model provide direct estimates 
of the incidence rate ratio. As noted earlier, the incidence of disease is expressed relative to the 
time  at  risk  in  each  level  of  exposure,  not  to  the  number  of  exposed  (or  non-exposed) 
individuals. If the time of disease (outcome) occurrence is of more interest than the fact of its 
occurrence, survival models are the method of choice (Case et al, 2002). 

In the majority of rate-based cohort studies, a proportional hazards model is the basis of the 
analysis  (Hernan, 2010; see Chapter 19). As Hernan points out, the hazard ratio (HR) can be 
thought of as equivalent to an IR. However, Hernan goes on to discuss what he perceives as 2 
drawbacks to  HRs; first, the average  HR (which is usually what is reported) can change over 
time, and second, the period-specific HRs have a built in bias. The latter, Hernan argues, is due 
to the conditional probability which forms the basis of the HR. The HR at time ‘t’ is conditional 
on not developing the outcome prior to time ‘t’. Thus, as the duration of follow-up increases, it 
becomes increasingly likely that  the number of people who are susceptible to the exposure 
effects  becomes  smaller  as  the  study period  gets  longer,  so  the risk  in  the  exposed  group 
decreases over time relative to that in the non-exposed group. If  true, this suggests that the 
value of the average  HR is dependent on the duration of follow-up. Hernan describes how to 
circumvent this problem through the use of covariate adjusted survival curves―see his paper 
for details. Earlier, Hernan  et al (2008) proposed an analytic strategy for cohort studies that 
more closely approximates the analysis  of a randomised trial using data on postmenopausal 
hormone  therapy  and  coronary  heart  disease  as  their  example. The  main  features  of  this 
approach are to subdivide the follow-up period into shorter time intervals, and treat each of 
these  as  a  ‘trial.’ In  each  ‘trial’, subjects  are  censored  when  they  change  their  baseline 
exposure.  Then,  the  uncensored  subject  time is  weighted  by the  inverse  of  their  estimated 
probability  of  remaining  uncensored  until  that  point  (these  were  obtained  using  a  logistic 
model). They fit separate models for initiators (exposed) and non-initiators (non-exposed), and 
in each  ‘trial’, each subject contributed as many observations to the model as the amount of 
time that subject was on the baseline therapy. Danaei et al (2011) elaborated and expanded on 
this approach.

Gran  et al  (2010) describe a sequential technique based on the Cox hazard model to analyse 
data with time-dependent confounders. The latter occurs when a covariate is affected by past 
exposure, and is a predictor of future exposure and outcome (eg the CD4 count when assessing 
the impact of treatment on HIV). 
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Laaksonen et al (2010) describe how to estimate the population attributable fraction (PAF) for 
the incidence of a disease during lifetime and a PAF for the prevalence of disease at a point in 
time. They propose a method to adjust for deaths during the follow-up period, rather than just 
censoring the data at the point of death.

Xue  et al (2010) explain how to apply marginal and mixed-effect  models to the analysis of 
cohort  data  when repeated  measurements  of  exposure and covariates  are  used.  The authors 
compare and contrast these approaches to logistic and proportional hazard models, with respect 
to their use and interpretation. 

8.9 REPORTING OF COHORT STUDIES

As mentioned in Chapter 7, there has been a widespread initiative to improve the reporting of 
observational studies (STROBE; von Elm et al (2007)). We elaborated on these in this chapter 
as they should be used to help plan and report the study, as well as help you assess the validity 
of published cohort studies. See Table 8.1 for design aspects specific to cohort studies (Tooth et  
al, 2005). 

We  have  noted  an  increased  frequency  of  reporting  on  the  design  and  implementation  of 
proposed or early stage studies. We view this as a positive trend because it allows everyone to 
assess the potential strengths  and weaknesses  of a particular study without being biased by 
outcome data,  as  mentioned in  Section 7.2.  See  Gern et  al (2009);  Hermsen et  al (2011); 
Origasa et al (2011); Poulos et al (2011); Schuz et al (2011)as examples.  

Table 8.1 Criteria used to assess published cohort studies 
Criteria

1. Are the objectives or hypotheses of the study stated?

2. Is the target population defined? 

3. Is the sampling frame defined? 

4. Is the study population defined?

5. Are the study setting (venue) and/or geographic location stated?

6. Are the dates between which the study was conducted stated or implicit?

7. Are eligibility criteria stated? 

8. Are issues of ‘selection in’ to the study mentioned?

9. Is the number of participants justified? 

10. Are numbers meeting and not meeting the eligibility criteria stated?

11. For those not eligible, are the reasons why stated? 

12. Are the numbers of people who did/did not consent to participate stated?

13. Are the reasons that people refused to consent stated? 

14. Were responders compared with non-responders? 

15. Was the number of participants at the beginning of the study stated?

16. Were methods of data collection stated?
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17. Was the reliability (repeatability) of measurement methods mentioned?

18. Was the validity (against a ‘gold standard’) of measurement methods mentioned?

19. Were any confounders mentioned? 

20. Was the number of participants at each stage specified? 

21. Were reasons for loss to follow-up quantified? 

22. Was the ‘missingness’ of data items at each wave mentioned? 

23. Was the type of analysis conducted stated? 

24. Were ‘longitudinal’ analysis methods stated? 

25. Were absolute effect sizes reported? 

26. Were relative effect sizes reported? 

27. Was loss to follow-up taken into account in the analysis? 

28. Were confounders accounted for in the analyses? 

29. Were missing data accounted for in the analyses? 

30. Was the impact of biases assessed qualitatively? 

31. Was the impact of biases estimated quantitatively? 

32. Did authors relate results back to a target population? 

33. Was there any other discussion of ‘generalisability’?
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