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HYBRID STUDY DESIGNS

OBJECTIVES

After reading this chapter, you should be able to:

 1. Describe the key features of each of 6 hybrid study designs (case-crossover,  case-series, 
case-case, case-only, case-cohort, and case-case-control).

 2. Identify source  population characteristics,  including types  of  exposure and outcome,  for 
which these designs are appropriate. 

 3. Describe  2-stage  study  designs  and  identify  situations  in  which  the  traditional  cross- 
sectional, cohort, and case-control studies can benefit from a 2-stage design.

 4. Design the basic sampling strategy for a specific 2-stage case-control study.
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10.1 INTRODUCTION

In this chapter, we describe 6 variants of traditional observational study designs and a 2-stage 
design. Four of the variants involve cases only, while 2 involve control groups. Each design has 
its unique advantages and disadvantages. 

Studies involving cases only:
• The case-crossover is an elaboration on the crossover experimental design that allows the 

researcher to use only cases in the study by contrasting their exposure in 2 different time 
periods. See Section 10.2.

• The case-series design also uses only study subjects with the outcome of interest (ie cases), 
and seeks to identify associations between exposure and outcome using temporal clustering 
of cases around exposure. Smeeth  et al (2006) give an excellent overview of these study 
designs plus numerous examples of their use. See Section 10.5.

• The  case-case  approach  is  based  on  the  traditional  case-control  sampling  strategy  and 
typically contrasts the exposure of study subjects with an etiologically defined disease with 
the exposure of other subjects (ie controls) with a related etiologically defined disease. See 
Section 10.3.

• The case-only design is used when the level of exposure in a hypothetical control group can 
be predicted on a biological basis. It allows for inferences about interactions, but not main 
effects, between an exposure and other risk factors using data from cases only. We note that 
there can be some confusion in study design terminology because all of the above study 
types use data from cases only; however, design-wise, this is a specific study design denoted 
as case-only. See Section 10.7.

Studies involving control groups:
• The case-cohort design includes both cases and non-cases, and incorporates the strengths of 

the cohort approach with the efficiency of a case-control design. See Section 10.6.
• The  case-case-control  study  is  similar  to  a  case-control  study,  except  that  it  involves  2 

distinct case series. It has been used to evaluate factors associated with antibiotic resistance. 
See Section 10.4.

The last hybrid study we describe here—the two-stage design—is useful as a validation study 
and also to enhance the cost-effectiveness of the traditional observational study designs. The 
design allows for collection of readily available data on all subjects and supplementing these 
data with (the usually) more expensive data on selected covariates from a random sample of the 
study subjects. These are described in Section 10.8.

10.2 CASE-CROSSOVER STUDIES

10.2.1 Basis

This is the observational study analogue to the crossover experimental design, where the case 
serves  as  its  own control.  The level,  or  fact,  of exposure just  prior to the outcome case is 
contrasted to that of exposure in other time periods. It is most suited for the situation where the 
exposure is well-defined and transient, and the outcome is almost immediate (ie the outcome 
will happen temporally close to the exposure, if the exposure was the cause of the outcome). 
For validity, the design needs to meet the same assumptions about lag effects (ie none or time 
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limited) and duration of disease (ie short duration) as in crossover experiments or crossover 
clinical  trials.  Delaney  and  Suissa  (2009) discuss  the  design  in  the  context  of  pharmaco-
epidemiology. They note that because of the lag effects of many drugs, as well as the impact of 
the  disease  on  future  exposure,  the  bidirectional  design  (see  Section 10.2.2)  where  control 
periods are identified after the incident case often cannot be used. Maclure  (2012) describes 
case-crossover and case-series methods with a focus on pharmaco-epidemiology.

The case-crossover design alleviates many of the problems associated with choosing controls in 
a case-control study, in that the exposure status of the case just prior to the time of the event 
occurrence is compared with the exposure status of the same individual at other times (Navidi 
and Weinhandl, 2002). Since the same case subject serves as its own control in one or more 
different  time  periods,  all  time-invariant  host-related  confounders  are  controlled.  Maclure 
(2007),  has  characterised  case-crossover  studies  as  answering  the  ‘why  now’ question,  as 
distinct from the ‘why me’ question which is answered by traditional case-control studies. The 
design is used frequently to assess the impact of air pollution or weather  on morbidity and 
mortality (see Carracedo-Martinez et al (2010) for a systematic review of its use in this research 
area).

10.2.2 Design issues

Initially,  and dependent on the biology of the disease and suspected risk factors, we need to 
identify the case-risk time. This is the period during which the outcome would likely occur if 
the association with the exposure was causal. In the context of this study design, it is the time 
period during which the case subject would be exposed to the suspect causal factor. In choosing 
this risk period, be mindful that shortening the length of the risk period to the most reasonable 
induction  period  for  a  specified  exposure  and  outcome  will  reduce  the  false  detection  of 
exposure-outcome  associations  (Mittleman,  2005).  The  risk  period  for  factors  such  as  the 
potential impact of physical exertion on myocardial infarction might be a few hours, whereas if 
studying  the potential  impact  of  mobile  phone use on automobile  accidents,  it  might  be 5 
minutes (Sato et al, 2010). The most common risk period in studies of air pollution impacts on 
health is one day (Carracedo-Martinez et al, 2010); in Example 10.1, the risk period is 6 weeks. 

Next, we need to consider the referent or control period selection strategy. Normally, we want 
the control periods to be temporally close to the time of the index case (this minimises the 

Example 10.1 A case-crossover study of weather events and waterborne disease 
outbreaks 

Thomas et al (2006) studied 92 waterborne disease outbreaks occurring from 1975 to 2001 in Canada. 
The  authors  hypothesised  that  extreme  rainfall  and  spring  weather  conditions  might  influence  the 
occurrence of these outbreaks. Data on these exposures were obtained from Environment Canada. Each 
outbreak of waterborne disease was considered a case, and the case-risk time was the six weeks prior to 
the  date  of  onset  of  the  outbreak.  For  analysis,  the  27-year  period was  stratified  into 6 mutually 
exclusive time periods. A 6-week, control-risk period was selected from each of the remaining 5 non-
case periods and matched by month, day, and ecozone (describing the location of the outbreak). The 
data were analysed using forward stepwise conditional logistic regression analysis; ecozone was forced 
into  all  models.  Two-way  interactions  involving  ecozone  and  the  environmental  exposures  were 
considered based on biological plausibility. Warmer temperatures and extreme rainfall were identified 
as possible contributing factors to the outbreaks.
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effects of long-term temporal changes in exposures). However, if there is likely to be a high 
correlation of exposure level from day to day, then it is best not to choose control periods that 
reside too close in time (eg the day previous) to that of the case. The design controls for time 
invariant variables, but there is an implicit assumption of no trend in exposure prevalence (if 
binary),  or exposure level (if continuous) across the referent window (ie the risk period; the 
length of time between the earliest and latest point at which exposure would be measured for 
each case). How best to resolve this issue has been the major focus of controversy (Navidi and 
Weinhandl, 2002; Moller et al, 2004). 

When this study design was first developed, the selected control periods usually were earlier 
than the case times. This design has problems with changes in exposure level over time, but is 
an acceptable approach for obtaining exposure data if the occurrence of the case event might 
affect subsequent exposures (eg if one is studying the impact of a training schedule, such as the 
distance run in the previous week, with a leg injury,  the injury itself would likely alter the 
subsequent  training  period).  For  example,  in  a  study  of  the  potential  impact  of  alcohol 
consumption on accidental injury, the risk period was set at 6 hours with control periods at the 
same time the day before and 7 days before the incident injury (Thornley et al, 2011; Williams 
et al, 2011). Wang et al (2011a) describe two variations in study design—the case-time-control 
study  and  the  case-case-time-control  study—with  emphasis  on  studies  in  pharmaco-
epidemiology where the outcome changes the future exposure. Darrow (2010), recognising the 
value of bidirectional designs, discusses the selection of control periods in settings where the 
subject is no longer at risk following the incident event (eg if the outcome is death). 

More recently, most designs have used symmetric bidirectional designs to counteract potential 
changes in exposure level or frequency. In this design, a control period is selected both before 
and after the case occurs (usually equally spaced) in the hope that, if exposure or covariate 
levels are changing over time, the higher and lower exposure values at these times would cancel 
each other out. Control periods can be matched to the same day of the week as the case, if 
confounding by day is likely to occur  (Janes et al, 2005). Navidi and Weinhandl  (2002) had 
recommended  using  a  semi-symmetric  bidirectional  design  that  includes  only  1  of  the  2 
potential control-risk periods (the choice of which is selected randomly);  however,  recently, 
Carracedo-Martínez et al (2010) have noted that the semi-symmetric design is rarely used for 
studies  of  the impact  of  air  pollution,  largely  because  of  its  decreased  power.  These  same 
authors provide a step-by-step guide to conducting a symmetric  case-crossover  study of the 
impact of air pollutants on health.

One problem with the symmetric approach is that for cases that occur early or late in the study 
period, only 1 of the 2 risk periods may be feasible.  The implementation of the suggested 
selection method is as follows: suppose that a case might occur at any time (tk) in a defined 
study period from the first day (k=1) to the last study day (k=N). To identify the control periods 
for each case we:

1. Choose a suitable lag time, L, to separate the case occurrence and control periods. For 
example, it might be L=1 week. 

2. Let tk be the failure time for the jth case.
3. Choose tk+L as the control day for early cases, if tk ≤L.
4. Choose tk-L as the control day for later cases, if tk >(N-L).
5. Choose control days as tk-L and tk+L f  for most cases, if tk >L and <(N-L).

An extension of this approach is called the full-stratum bidirectional referent selection in which 
the referents are all time periods (eg days) in the follow-up period other than the index day. 
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Navidi  and  Weinhandl  (2002) describe  how  a case–crossover  analysis  with  full-stratum 
bidirectional referents and a shared exposure series (eg air pollution exposure) is equivalent to a 
Poisson regression analysis. 

Janes  et  al (2005) suggested  an  improvement  to  this  design  when  a  database  of  shared 
exposures  (eg air  pollution  in  their  example)  is  available  by  using  a  set  of  time-stratified 
control-risk periods. In this setting, air pollution data are available for each day and are not 
(directly) impacted by the occurrence of the incident event. It is nonetheless possible that after a 
serious asthma attack on a day with high levels of pollution, the affected subjects might change 
their  behaviour  and  stay  indoors.  In  the  time-stratified  design,  the  study  period  (say,  the 
summer of 2012) could be stratified into months (a priori). Then, whenever a case arises, say 
on a Wednesday in July, all of the other Wednesdays within July would be used as control days 
(again this fits the setting where exposure data are available at no/low cost for these periods); 
essentially this approach matches on day and month, and is used instead of selecting the lag 
time L to identify control periods as shown above. The exposure is ‘shared’ since the data are 
available for all cases on a given day. If sampling is used, or if the exposures are ‘unshared’ (ie 
the exposure is independent across cases, for example, in an athlete’s training pattern), more 
than one control period (or day) within the referent time window can be selected for each case. 
More control periods increase statistical power, but of course this may demand more detailed 
follow-up to obtain the data on exposure. 

10.2.3 Analysis

The  case-crossover  design  reduces  the  chance  that  unmeasured  confounding  will  bias  the 
results. Hence, data can be analysed as a matched case-control study; in a simple design with 
just one control period, the data layout is that of a 2X2 table, and McNemar’s test can be used 
to test for an association. With more than one control period, most researchers use conditional 
logistic regression (Smeeth et al, 2006) for analysis. The parameter eβ represents the change in 
the odds of an event associated with a short-term 1-unit increase in exposure. If the exposure 
changes  over  time,  an  extension  of  the  case-crossover  design,  the  case-time-control  design 
(Suissa, 1995) can be used. Kim  et al (2011) discuss methods to allow for the detection of 
effect  modification  by  the  covariates  that  are  included  in  the  matching  process;  the  usual 
conditional  logistic  model  cannot  assess  the  effect  of  the  covariates  (eg day  of  the  week) 
included in the matching process, but can assess interaction. 

When exposure data are available for all risk periods within the study period (eg daily exposure 
data for a 3-month period), we could use exposure data for all of the days in the observational 
period  except  for  the  risk  period  for  each  index  case  occurrence  as  referent  days.  In  this 
instance, the case count on each day could be modelled as a Poisson random variable whose 
mean is a function of the exposure level on that day (Janes et al, 2005; Navidi and Weinhandl, 
2002). This approach also allows adjustments for overdispersion and autocorrelation in the data. 
Lu et al (2008) and Janes et al (2005) make the linkages between conditional logistic regression 
analysis  using multiple  time-matched  referents  in  case-crossover  studies  and  Poisson  time-
series  explicit.  The  advantages  of  using  the  Poisson  approach  are  that  it  allows  for 
overdispersion, the fit of the model can be checked using standardised residuals, and influential 
cases can be identified using standard Poisson model diagnostics (see Section 18.5). Removing 
influential cases can often change the model results considerably. Having said this, Carracedo-
Martínez et al (2010) indicate that most researchers continue to use a logistic model to analyse 
their  data  because  the  Poisson  models  often  have  problems with  convergence.  Wang  et  al 
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(2011b) demonstrated that when fitting a conditional logistic model to time-stratified data with 
many  cases  sharing  the  same  exposure  data,  it  is  important  to  use  Breslow’s  method  for 
handling ties, otherwise biased estimates of exposure effects are likely when using SAS; the 
bias was not seen when using R or Stata. Examples 10.1 and 10.2 describe 2 case-crossover 
studies.

10.3 CASE-CASE STUDIES

10.3.1 Basis

Case-case studies are a variant of case-control studies where the control subjects have the same 
‘disease’ as the case (eg the cases might be subjects with Salmonella typhimurium, whereas the 
controls could be subjects with  Salmonella  Heidelberg (McCarthy and Giesecke, 1999)). The 
design was proposed as optimal for identifying risk factors for disease when using data from 
ongoing surveillance systems for focused subsets of disease (eg reportable food and waterborne 
disease). Since all subjects whose data are in the surveillance database have undergone a similar 
selection experience, and all subjects have a somewhat similar clinical experience, the design 
should minimise both selection and recall bias. In this situation, trying to choose a valid set of 
controls to use in a traditional case-control study approach would be very difficult because most 
potential controls have diseases that are associated with the exposure(s) of interest. For similar 
reasons, Kaye et al (2005) suggested this approach for identifying risk factors for antimicrobial 
resistance.  The  design  has  also  been  described  for  elaborating  risk  factors  for  different 
molecularly defined subtypes of breast cancer (Martinez et al, 2010).

10.3.2 Design issues

In most situations where this design has been used, the controls have the same family (genus) of 
agent (eg Salmonella) but perhaps a different serovar.  This design allows us to identify risk 
factors for similar endemic diseases that have a different specific serovar as the causal agent (eg 
perhaps  turkey  versus  pork  as  the  major  source  when  investigating  food-borne  Salmonella 
cases). The design also has been applied to outbreak investigations. In this instance, the control 
subjects have the same  ‘strain’ of causal  agent  as the case-disease subject,  but  they do not 
belong to the outbreak cluster of cases. This application is used to identify exposures associated 

Example 10.2 A case-crossover study within a common source epidemic 

Haegebaert et al (2003)  used a case-crossover design to identify risk factors in a common source food-
borne outbreak of salmonellosis. Food exposures during the 3-day risk period before onset of illness 
were compared with those of a control-period of 3 days that preceded the case-risk period by 2 days. 
Thirty-five confirmed cases, most of whom lived in chronic care institutions, with complete records of 
food consumption during these periods were identified. The relative risk for each meat product in the 
diet was estimated using the Mantel-Haenszel odds ratio for matched pairs. The authors discuss the 
pros and cons of the case-crossover study in this context, and note that the design had the advantage of 
not requiring the selection of control subjects, many of whom might have eaten the same foods but not 
developed illness because of their physiological or immune status. In this study, all control-risk periods 
were prior to the case-risk periods since the outcome, as well as the passage of time, would alter the 
food items consumed by these patients.
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with  being  in  the  set  of  outbreak  cases  rather  than  a  sporadic  case  of  salmonellosis  (see 
Example 10.4). 

Similar to case-crossover studies, this study design is best suited to situations where the risk 
factors (eg contaminated food) have only a short incubation or induction period before they 
produce  their  effect.  Similar  to  secondary-base  case-control  studies,  it  is  best  to  select  the 
comparison  ‘cases’ randomly from subjects who have one of a variety of other serotypes, or 
strains, of the same agent.  Control cases  also should have entered the surveillance database 
during the same calendar-time period. In general, the design will not identify global risk factors 
for the onset of disease such as patient characteristics or surrogate risk factors such as  ‘food 
item’ or ‘water source’ since many of the subjects in the surveillance system will share these in 
common. It  can, however,  help identify specific risk factors that relate to the risk of having 
clinical disease from a particular organism. Examples 10.3 and 10.4 demonstrate the utility of 
this design.

Wilson  et al (2008) discussed some limitations of case-case studies including selection bias 
(tendency for only the more serious cases of the disease to be reported); information bias (most 
of the data are collected and recorded by people who know the specific outcome); confounding 
(because of the lack of information on confounders in most surveillance databases); and a lack 
of detail on exposure. Nonetheless, they found good agreement between the results of case-case 
studies and other methods applied to routine surveillance data. 

10.3.3 Analysis of case-case studies

The data from a case-case study can be analysed by the same techniques as risk-based, case-
control studies; namely logistic regression. Note that since the exposure in the control-cases 
does not estimate the level of exposure in the source population, the odds ratio is not a true risk 
measure. Rather, it reflects the relative differences in exposure level between two subtypes of 
one disease.

10.4 CASE-CASE-CONTROL STUDIES

This study design was developed to overcome limitations of traditional case-control  studies 
when applied to the study of risk factors  for  antimicrobial  resistant  organisms (Kaye  et  al, 
2005).  The  example  used  by  these  authors  was  the  study  of  risk  factors  for  vancomycin-

Example 10.3 A case-case study of 2 Campylobacter species 

Gillespie et al (2002) describe a study in which the exposure history of people with  Campylobacter  
coli infection was compared with that of cases of Campylobacter jejuni infection. Although the former 
species is much less common, it was deemed important to differentiate the risk factors for C coli from 
those  for  C  jejuni.  Many previous  studies  tended  to  examine  risk  factors  for  just  one  of  the 
Campylobacter species or risk factors for undifferentiated Campylobacter. Data were obtained from a 
population-based surveillance system in England and Wales. Exposure history was obtained from the 
standard structured questionnaire used as part of the surveillance system. Differences in demographic 
characteristics  in  exposure  history  were  assessed  using  Pearson’s  χ2 test  and  the  Student’s  T-test. 
Backward stepwise logistic regression was used to model multiple characteristics and exposures, and to 
investigate potential interactions among the main effects. As we have mentioned, the authors noted that 
exposures common to both species of Campylobacter would not be identified using this study design.
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susceptible Enterococcus (VSE) and vancomycin-resistant Enterococcus (VRE). This organism 
is common in hospital settings. 

10.4.1 Design issues

This design is similar to a traditional case-control study, except that 2 sets of cases are used—
one the subjects with VSE, the other subjects with VRE. In a hospital setting, the control group 
would be chosen from other hospitalised patients who have either VSE or VRE. The authors 
recommend that only the first positive culture result for a patient be included, and if nosocomial 
infections are of interest, the cases should include only the first positive culture taken more than 
48 hours after admission. Control subjects should come from the same source population as the 
cases; thus one must consider whether or not to use other patients, or other subjects attending a 
local primary care facility, or randomly choosing people from the presumed source population. 
For nosocomial infections, the controls should be selected from other patients that have been 
hospitalised more than 48 hours. In  either instance,  it  would be important to know that  the 
controls were culture negative for both VSE and VRE.

10.4.2 Analysis 

Analysis of case-case-control studies can be accomplished similar to a risk-based case-control 
study by using logistic regression applied to each case series separately (but using the single 
control series). Because there is only one control set, it is difficult to use restricted sampling or 
matching when selecting controls. Thus, control of confounders is by multivariable modelling 
using unconditional logistic regression. Inferences about factors leading to VRE are made by 
comparison  of  the  findings  in  the  VSE and  VRE models  (Kaye  et  al,  2005).  Category  A 
variables are those present only in the model for the resistant phenotype of the target organism. 
These  variables  represent  unique  risk  factors  for  resistant  cases.  Category  B  includes  risk 
factors present only in the model for the susceptible phenotype of the target organism. These 
variables represent unique risk factors for the susceptible phenotype.

Category  C  variables  are  present  in  both  models  and  represent  risk  factors  for  the  target 
organism in general. The authors argue that this design is better than a case-case design, which 
would contrast the exposure history of VSE subjects directly with that of VRE subjects. Their 
basis for this argument is that VRE appears to arise from external sources and “the likelihood of 
de  novo  emergence  of  vancomycin  resistance  in  a  susceptible  endogenous  strain  of 
Enterococcus is negligible.” 

Example 10.4 A case-case study of a Salmonella outbreak 

Krumkamp et al (2008)  investigated a  Salmonella outbreak that occurred in June and July 2003 in 
Germany. Data for the affected district were obtained from a routine Salmonella surveillance system. 
Exposure  history was  collected via  telephone interviews  6 weeks  after  the  last  outbreak case was 
notified. There were 10 cases in the outbreak group of Salmonella strain  1,4,[5],12:i:-. Two hundred 
and fifteen other Salmonella cases (mostly Salmonella enteritis and a variety of less-frequent sporadic 
strains) were reported in the same geographic area in 2003. Ninety-seven control cases were obtained 
from these 215 cases, the remaining potential control cases had either incomplete information or could 
not be contacted for the telephone interview. Fisher’s exact test and odds ratios were used for analyses. 
The major and only risk factor identified was meat sold from one butcher in the district.
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As  another  example,  Melo  and  Fortaleza  (2009) studied  nasopharyngeal  colonisation  with 
methicillin-resistant  Staphylococcus  aureus (MRSA).  To  identify  risk  factors  for  MRSA 
colonisation, they conducted a case-case-control  study,  enrolling 122 patients  admitted to a 
medical-surgical intensive care unit (ICU). All patients had been screened for nasopharyngeal 
colonisation with  S. aureus upon admission and weekly thereafter. The 2 sets of cases used 
patients who acquired colonisation with MRSA and methicillin-susceptible S. aureus (MSSA), 
respectively. Control subjects were patients in whom colonisation was not detected during an 
ICU stay.

10.5 CASE-SERIES STUDIES

10.5.1 Basis

Recently, a new study design called the self-controlled case-series, or just ‘case-series’, design 
has been published (Whitaker et al,  2006; 2009). This design (which might be viewed as a 
variant of the case-crossover design) can be used to study the temporal association between a 
time-varying exposure, and an adverse outcome using only study subjects who experience that 
outcome. For example, assume we have a defined cohort of study subjects; each study subject 
will have an observation period during which time the exposure history and outcome events can 
be observed. Given the knowledge of the potential effects of the exposure, a risk period for each 
study subject will be defined. The risk period denotes periods during, or after, exposure when 
the study subjects are deemed to be at increased (or decreased) risk of the outcome (eg this 
often ranges from 6–35 days for febrile conditions post-vaccination depending on the specific 
vaccine components). All other times within the observation period constitute control periods. 
The design is based on using the number of cases arising in the risk period compared with the 
number  of  cases  arising in  the  remainder  of  the  observation  period  after  adjusting  for  the 
duration of these periods. The advantages of this study design include the fact that only cases 
need  to  be  studied  in  detail  and  all  time  invariant  factors  are  controlled  (ie they  are  not 
confounders) by the design. Depending on the context, one characteristic that may need control, 
however, is the age of the study subject; similarly, if the outcome is influenced by factors that 
vary with season, then season should also be controlled.

10.5.2 Design issues

The case-series design has been used to study associations between vaccination and a host of 
untoward health events  (see  Weldeselassie et al (2011)) for a thorough review of this study 
design).

One of the first design considerations is to define the outcome of interest. Then, we need to 
specify the (usually) calendar period in which the subjects will be observed (the observation 
period) for the outcome event and the source population for cases. Once these are established, 
data  on  the  case-series  can  be  obtained  in  either  a  retrospective  or  a  prospective  manner. 
Obviously,  it  is  important to clearly define what is meant by exposure and the outcome of 
interest; for example, vaccination with a measles, mumps, and rubella vaccine. The vaccination 
date (more generally the specified exposure) of each case is used to define one or more risk 
periods, during which individuals are hypothesised to be at increased (or reduced) risk of the 
event of interest after (or, for reasons to be discussed later, before) vaccination. All other time 
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within an individual’s observation period, that does not fall within a risk period, is included in 
that individual’s control period.

The  design  is  best  suited  for  studying  outcomes  that  only  occur  once  per  study  subject; 
however,  multiple  outcomes  per  study  subject  can  be  studied  provided  the  outcomes  are 
independent of each other (see comments later). The observation period usually is selected to 
coincide with, and include, the presumed high-risk period of the outcome. If  age of subject 
should be controlled,  age groups,  within which there is unlikely to be confounding by age, 
should be specified. Similarly, the length of the risk period should be decided. It is possible to 
subdivide the total risk period into smaller subgroupings (for example a 3-month risk period 
could be subdivided into 3, 1-month risk periods). If the total observation period used in the 
study does not include the full-time interval during which the risk of the outcome is altered by 
the exposure, any resulting association between the exposure and the outcome will be biased 
toward the null. Formulae for determining sample size are given in Whitaker et al (2009), and 
this (or related) publication should be studied for further details on design issues.

A basic assumption is that the occurrence of the outcome does not alter the probability of future 
exposure.  Whitaker  et al (2009) describe  methods  for  coping  with  this  assumption  if  it  is 
unlikely  to  be  valid.  One  strategy  is  to  ignore  all  post-outcome  exposures  (ie second 
vaccinations). Also, the outcome event should not censor or affect the observation period after 
its occurrence. That is, it should not alter the survival of the study subject or their participation 
in the study. Whitaker  et  al (2009) cite other studies that suggest that the bias from violating 
this  assumption  may not  be  great.  Multiple  occurrences  per  study subject  can  be  included 
provided they are independent of each other. If this is unlikely to be a valid assumption, then 
only first events should be included (see Example 10.5). 

10.5.3 Analysis

Estimation of parameters is most readily achieved by fitting a conditional Poisson regression 
model. The parameter of interest is the relative incidence, which is the incidence in a risk period 
relative to the control  periods.  A tutorial  is  available with full  practical  details and worked 
examples (Whitaker et al, 2006).

Whitaker  et  al (2009) provide  other  examples  for  structuring  and  analysing  the  data.  The 
analysis uses the Poisson regression model where the outcome is the number of events per risk 
and control time interval and the log of the length of each time interval is used as the offset. The 

Example 10.5 Risk of falls associated with anti-hypertensive medication: A case-series 
study 

Gribbin et al (2011) used data from a database containing the diagnostic and prescription data recorded 
by  primary-care  physicians  from 386 general  practices  who  used  a  specific  practice  management 
system in the United Kingdom. Cases of falling (n=9862) in the years 2003–2006 in patients 60 years 
or older were obtained. Based on an analysis of elapsed time between prescriptions for a particular 
class of antihypertensive, the authors calculated episodes of continuous exposure of not more than 60 
days.  After  the  prescription was  initiated for  each  patient,  periods of  exposure  were  defined  (and 
subdivided into day 0, days 1–21 and day 22–60). All remaining person‐time was used as the baseline 
(unexposed) comparison period.

Poisson regression was used to estimate incidence rate ratios (IRs) for the different periods of exposure. 
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measure of association is the relative IR (see Chapter 18). Specific codings for the analysis are 
available at http://statistics.open.ac.uk/sccs/.

10.6 CASE-COHORT STUDIES

10.6.1 Basis

The case-cohort design has the same advantages as a full cohort study, but it has the additional 
advantage  of  being  an  efficient  study  design  when  disease  is  infrequent,  and  the  cost  of 
obtaining covariate (including exposure) information is expensive. The basis of the design is 
that a random sample of all subjects in the full cohort is obtained at the start of the study; this 
serves  as  the  ‘control-cohort’  and cases  arise  from these  subjects.  Since  most  diseases  are 
infrequent, there would be insufficient cases in the control cohort to provide reasonable power 
to the study. Thus, the full cohort is observed for the study period and all cases arising in the 
full cohort (including the control-cohort) are included in the study. The exposure and covariate 
data in the case subjects are compared with those of the study subjects in the control cohort who 
did not develop the outcome of interest (risk-based design), or had not developed the outcome 
at the time of case occurrence (rate-based design) (Kulathinal et al, 2007). The design also can 
be modified when the outcome is not rare by sampling only some of the cases from the full 
cohort.  A  major  advantage  of  the  case-cohort  approach  is  that  the  one  control-cohort  can 
provide the basis of comparison for a series of outcomes, thus allowing the investigation of 
associations among more than one disease (or different definitions of the same disease) and a 
defined  exposure  (as  in  a  regular  cohort  study),  but  without  having  to  follow  the  entire 
population at risk. The disease frequency can be estimated using the data from the control-
cohort. The design is especially efficient if biological samples can be obtained from the control-
cohort at the study outset and stored for later analysis. 

10.6.2 Design issues

Initially,  we need to define the eligible cohort based on such information as having a health 
history, being willing to provide details on personal and lifestyle characteristics (age, race, sex, 
weight,  smoking  status,  nutritional  survey  etc)  and  be  willing  to  provide  essential  tissue 
samples (eg blood sample). The subcohort can be drawn from this eligible group using simple 
random sampling without replacement, or the eligible cohort can be classified based on a few 
key variables that might confound the study results and the subcohort drawn using stratified 
random sampling.

If the original full cohort is a closed population (see Section 8.7.1), then a risk-based design, 
which is particularly suited to studying permanent risk factors, can be used. In this design, the 
control-cohort is selected from the at-risk members of the full cohort at the start of the study 
using  random sampling  (without  replacement)  and  the  subjects  in  this  sample  that  do  not 
become cases  during the study period serve as the control  series.  The essential  information 
alluded to above regarding covariates and exposure status is obtained from cases arising outside 
of the control cohort. If the outcome frequency is high, a significant proportion of the subjects 
in the control cohort will become cases; hence, the number initially sampled for the control-
cohort should be adjusted upward to compensate for this. For valid inferences, if significant 
losses to follow-up are present, we must demonstrate that the reasons for loss are not related to 

http://statistics.open.ac.uk/sccs/
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the risk of developing the outcome(s) of interest. As an example of a risk-based study, Matsuda 
et al (2011) conducted an analysis of factors associated with placental abruption and placenta 
previa, based on a subcohort of 5,036 of 242,715 births in Japan. A multivariable unconditional 
logistic model was used for analysis with the odds ratio being an estimate of the relative risk.

If the original cohort is open, the control-cohort is selected from the at-risk members of the full 
cohort  at  the  start  of  the  study  using  random sampling  without  replacement.  The  baseline 
characteristics  of  the  control  cohort  would  be  obtained  and  this  group would be  followed, 
usually by regular surveys to update exposure and covariate data. For example, Agalliu  et al 
(2011) followed a subcohort of 1,979 men from their enrolment date (between 1995 and 1998) 
to the end of 2003 using food intake and nutritional-supplement surveys  in a  study of  risk 
factors for prostate cancer. Men in the full cohort with existing prostate cancer at enrolment 
were excluded. All cases arising in the full cohort and in the subcohort were identified, and 
their exposure and covariate information at the time of becoming a case recorded. If the disease 
is common, only a sample of cases from outside of the control-cohort need be included in the 
study (Pfeiffer et al, 2005). If the exposure and covariates are permanent, the status of the cases 
can be assessed as of the time of occurrence, whereas the status of members of the control-
cohort can be assessed at the start of the study. All members of the control-cohort who have not 
developed  the  outcome  at  the  time  the  case  occurred  are  eligible  for  inclusion  as  control 
subjects, and all, or a sample of them, can be used in the analysis (this arises naturally in a rate-
based proportional hazard model providing the data are structured correctly). 

If exposure status can change during the study period, depending on the nature of exposure and 
how it is measured, additional data maybe required to establish the exposure status of subjects 
in the control-cohort at the time the cases occur. As noted previously, consideration needs to be 
given  to  the  requirements  for  obtaining  exposure  data  or  biological  specimens  from study 
subjects; only subjects likely to agree to these requirements should be considered eligible for 
the subcohort. Serially stored tissue specimens allow for the detection of exposure changes. For 
example, Pfeiffer et al (2005) used stored dust samples taken at intervals throughout the study 
period  for  endotoxin  levels  in  a  study  of  childhood asthma.  In  other  situations,  data  from 
external sources can be used. For example, in a study of the effects of air pollution on health, 
historical records of air pollution levels might suffice to establish the exposure of cases and 
members  of  the  control-cohort  at  different  points  in  time during the  study period.  In  most 
studies, self-declared exposure and covariate status are updated regularly throughout the follow-
up period.

Note that if several outcomes are to be assessed, exposure and covariate data are needed on 
each of the cases as well as all  members of the control-cohort.  When selecting the original 
control cohort, the subjects can be sampled using stratified sampling to ensure that the covariate 
patterns of the control cohort are similar to those of the anticipated (future) cases (Kulathinal et  
al, 2007). For example, if young adults have a higher risk of the outcome than older adults, the 
control cohort can be selected in a manner to ensure that the majority of study subjects in the 
control cohort will be young adults. 

Kubota and Wakana (2011) give sample size formulae for case-cohort studies.

10.6.3 Analysis

At the end of the study period, there will be records of the number of cases arising from within 
the control-cohort, the number of cases arising outside the control-cohort, and the remaining 
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number  of  non-cases  in  the  control-cohort.  If  a  risk-based  design  is  appropriate,  we  can 
combine (ie add) the 2 types of case together, and the data can be analysed in a 2X2 table using 
a case-control format with the  OR as the measure of association. Logistic regression can be 
used to control for additional covariates. 

Many researchers with open-population studies use Cox survival methods and hence, hazard 
ratios, for analysis (Kulathinal et al, 2007); these models need to be weighted usually inversely 
to the probability of being sampled. For example, if a 20% random sample of the cohort is used 
for the subcohort, typical weights are 1 for cases and 1/0.2=5 for controls in the subcohort. If a 
stratified  sample  was  selected,  the  weights  should  reflect  the  (inverse  of  the)  sampling 
probabilities in each of the strata. If non-response and exclusion criteria exclude very many of 
the initially sampled individuals, the sampling probabilities should reflect  the actual number 
who agreed to participate, not the initial sampling probabilities (so if only 80% of the cases 
agree to participate, the inverse weighting would be 1.2 for cases, not 1). Historically, authors 
have proposed 3 different weighting schemes in the Cox model that account for whether the 
cases come from the full or control-cohort (Onland-Moret et al, 2007) and the choice of these 
weights is available in modern computing packages (Prentice’s method provides estimates that 
most closely resemble estimates from the full cohort). The use of robust standard errors is also 
recommended. Other analytic methods are available when not all cases from the full cohort are 
used in the study (Pfeiffer et al, 2005). 

Breslow  et al (2009) suggest  using the entire non-case population as the full control cohort 
when at least some of the important covariate values are known for all subjects. The subcohort 
is  selected  and  the  appropriate  laboratory  tests,  or  surveys,  run  to  establish  the  levels  or 
existence of key exposure variables.  Using the observed outcome, linear (if  the outcome is 
continuous) or logistic (if the outcome is binary) models are used to develop a predictive model 
of the outcome in the subcohort based on the covariates that are known for the full cohort. 
Then, the imputed values of the exposure are used for all members of the source population. 
This allows an analysis of the exposure outcome association in the full cohort. The delta-beta 
values  from the  population  model  can  then be  used  to  recalibrate  the  model  based  on  the 
subcohort.  Although  this  approach  appears  valid,  it  ignores  the  uncertainty  concerning 
imputation model parameters and the values to impute according to a given model. This led 
Marti and Chavance (2011) to develop a method of analysis based on multiple imputations.

Cai and Zeng  (2007) provide methods for determining power when subsampling of cases is 
used, and in the simpler situation when all cases are used in the analyses. Kim et al (2006) show 
that  using the case-control  approach to estimating sample size works well  and is  simple to 
implement. Zhang et al (2011) describe how to adjust for clustered data in case-cohort studies. 
The need for this occurs if many of the cases are diagnosed/treated at the same clinic. One can 
use frailty models for this purpose,  but Zhang  et al focus on a marginal  model which uses 
adjusted variances  to account  for within-cluster correlation.  Li  et al (2008) suggest  using a 
weighted-likelihood method to  adjust  for  clustering.  Example  10.6  describes  a  case-cohort 
study.

10.7 CASE-ONLY STUDIES 

This design was originally conceived for use when the exposure status of the ‘controls’ could 
be predicted without having an explicit control group (eg in genetic studies, the distribution of 
genetic exposure in the  ‘controls’ is derived from theoretical grounds such as the blood-type 
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distribution in the source population). Underlying the design, which is highly efficient relative 
to  case-control  designs,  lies  a  strong  assumption  about  independence  between  the  gene 
frequency and other environmental  factors.  Specifically,  the genes being studied need to be 
inherited and not mutations which might be caused by the environmental exposures. The design 
allows  for  the  identification  of  interactions  between  a  covariate  (not  necessarily  a  genetic 
factor) and an exposure, provided the exposure and the covariate of interest are independent of 
each  other  (Rosenbaum, 2004),  but  not  the main effects.  Schwartz  (2005) provides  a  good 
introduction  to  the  basic  design  and  analysis  of  case-only  studies.  VanderWeele  (2011) 
describes how to determine the appropriate sample for a case-only study.

Recently, the design has been applied to the study of the effects of non-genetic risk factors such 
as personal-level risk factors (eg age, race, behaviours), and factors related to socioeconomic 
class on the risk of  mortality.  For example,  the design has been used to assess  if  personal 
characteristics interact with extreme weather (Medina-Ramon et al, 2006) and if socioeconomic 
class interacts with weather to modify the risk of death (Armstrong, 2003). 

Clarke  and  Morris  (2010) discuss  sample  size  for  case-only  studies  of  gene-environment 
interactions. 

10.7.1 Analysis

Armstrong (2003) describes the analytical approach, and how the choice of model depends on 
the nature of the potential interacting variable of interest. 

Assume that  we  can  use  a  Poisson  model  to  investigate  the  association  of  the  number  of 
subjects experiencing the outcome (Y) as a function of a binary exposure and a binary covariate 
(eg sex). The model, including the potential interaction between exposure and sex, might look 
like:

ln EY =01exposure2 sex3exposure∗sex 

Example 10.6 A case-cohort study of drinking water quality and risk of stomach cancer 

Auvinen et al (2005) evaluated radon and other radionuclides in drinking water and the risk of stomach 
cancer. The subjects of interest were those who obtained their drinking water from drilled wells and 
this comprised a base population of over 144,000 people during the presumed exposure period from 
1967 to 1980.  An initial  control cohort  of 4,590 subjects was selected as the referent  group using 
random sampling after stratifying by age and sex. However, most of these subjects were not long-term 
users of drilled well water; only 371 subjects had used drinking water from drilled wells prior to 1981. 
These became the effective control cohort of interest for the study. The occurrence of stomach cancer 
up to January 1, 1996 was identified through a cancer registry; 107 cases using drinking water from 
drilled wells prior to 1981 were identified; none were from the control cohort. 

Information  on  the  characteristics  of  wells  was  obtained  directly  from  the  study  subjects,  proxy 
respondents,  current  residents  of  the  dwellings,  and  local  health  authorities.  Water  samples  were 
collected blindly with regard to case status between July and November 1996, and analysed for radon 
and other radionuclides; about 80 percent of the cases and the effective control-cohort subjects had 
water samples tested. Data analysis was based on a proportional hazard model. This approach takes 
account of how long each study subject was exposed to a particular level of radon each time a case 
occurred. All statistically significant hazard ratios were below 1, suggesting a sparing effect of radon 
levels on stomach cancer.
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We could use this model to create a 2X2 table of expected outcome event counts according to 
the 4 combinations of exposure and sex (Schwartz, 2005). In turn, we could then create an odds 
ratio of these counts which would reflect any interaction between the exposure and sex (ie the 
β3 term). It turns out that this is equivalent to a logistic model of sex (a covariate of interest), as 
a function of the exposure in subjects experiencing the outcome:

 logit  sex=1=01exposure

If  β1 is significant, it indicates that sex is an effect modifier for the exposure in terms of the 
outcome of interest.  This is the basis of testing for interaction in case-only studies. Tchetgen 
and Robins  (2010) propose a semi-parametric approach to analysis. Examples 10.7 and 10.8 
outline typical case-only studies.

10.8 TWO-STAGE SAMPLING DESIGNS

A 2-stage  sampling design  can  be  applied  to  the  traditional  cohort,  case-control,  or  cross-
sectional study designs (Hagel, 2011). There are numerous uses of the term ‘2-stage’, but herein 
it refers to studies where information on the exposure and outcome of concern is gathered on an 
appropriate  number  of  first-stage  subjects  (ie the number of  subjects  based  on sample-size 
estimates), and then, a sample of the study subjects is selected for a second-stage study in which 
more detailed information (and often more expensive exposure or covariate data) is collected. 
This approach is very efficient when the cost of obtaining the data on covariates is high. The 
design also fits the situation where a valid measure of the exposure of interest is very expensive 
to obtain, but an inexpensive surrogate measure is available. The surrogate measure is applied 
to all study subjects, then a more detailed work-up is performed on a subsample of the study 
subjects to more accurately determine the true exposure status. The approach also can be used 
to obtain data on variables for which there are numerous missing values. Instead of assuming 
that the data are missing at random, the study subjects with missing data can be the subject of a 
second-stage data-collection effort. As discussed in Section 12.8, the 2-stage approach is the 
basis of validation substudies (McNamee, 2002; 2005).

A key question in a 2-stage design is what sample size should be used for the second stage? 
There are a number of approaches but, as Hanley et al (2005) noted, the tools available have not 
been greatly improved in the past decade. In cohort studies, we can take a fixed number of 
exposed and non-exposed subjects. In a case-control study, we could take a fixed number of 
cases and controls. However, for optimal efficiency of a 2-stage study, it is better to stratify on 
the 4 exposure-disease categories  (present  in a 2X2 table) and take an approximately equal 
number of subjects from each of the 4 categories. This might involve taking all of the subjects 
in certain exposure-disease categories and a sample of subjects in others. 

Example 10.7 Case-only study of potential effect modifiers of risk of death in humans 

Schwartz  (2005) investigated  whether  sex,  non-white  status,  or  age  greater  than  85  years  were 
modifiers of the effect of temperature extremes on the number of deaths in Wayne County, Michigan. 
Data on weather were obtained from a near-by meteorological station, and the days with excessive hot 
and cold weather were identified. Two periods were investigated: one focused on a single day, and the 
other on a 3-day average of events. Data on the potential effect modifiers were obtained from medical 
records of people who died. Separate models for excessive heat and cold were developed. The results 
indicated that depending on the temperature extreme, all 3 covariates interacted with the temperature 
extreme and affected the number of deaths.
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Cain and Breslow  (1988) developed the methodology to analyse  2-stage data using logistic 
regression followed by Flanders  and Greenland  (1991).  Hanley  et  al (2005) give a  worked 
example  of  calculating  the  adjusted  odds  ratio  and  its  variance.  Essentially,  one  uses  the 
adjusted odds ratio from stage 2 as the adjusted estimate of association between the exposure 
and disease. The variance of the estimate is based on the variance of the stage 2 odds ratio with 
adjustments for the sample sizes used in each stage. The approach to obtaining correct variance 
estimates is somewhat more complex, with multiple confounders,  but is relatively simple to 
implement if  the data are all  dichotomous (see Hanley  et  al (2005) for details).  Chen  et al 
(2009) describe 2-stage case-only studies. Fears and Gail  (2000) describe 2-stage studies with 
cluster sampling of controls. Example 10.9 describes a 2-stage study design.

Example 10.9 A 2-stage case-control study of determinants of the incidence of 
childhood asthma in Quebec 

Martel et al (2009) conducted a case-control study with a 2-stage sampling strategy using data from 3 
interlinked  administrative  health  databases  in  Quebec,  Canada.  From  the  databases,  a  cohort  of 
pregnant women and their children was formed. It consisted of all asthmatic women (n=8226) and a 
sample of non-asthmatic women (n=18039) who had had at least one singleton pregnancy ending in a 
live birth between 1990 and 2002. If  a woman had had more than one pregnancy during the study 
period, only the latest pregnancy was retained in the cohort. The first stage of the study consisted of a 
case-control  study,  nested in  the  cohort  of  children.  5,226 asthmatic  children (cases)  and 20 non-
asthmatic children per case (selected using density sampling matching to the time of case occurrence) 
were selected. Covariate information was available in the original database. The second stage of the study 
used a questionnaire mailed to a subsample of mothers of cases and controls to obtain more information on 
variables not available in databases. Balanced sampling of cells of the first-stage exposure-outcome cross-
table was performed. This allowed the over-representation of small  cells  and an increase in statistical 
power.  Crude  rates  of  childhood  asthma  for  children  of  asthmatic  and  non-asthmatic  mothers  were 
estimated from the cohort. For the first stage of the study, the authors obtained crude and adjusted rate 
ratios using conditional logistic regression. For the analysis using the subsample of cases and controls, 
crude  and  adjusted  odds ratios  were  obtained using unconditional  logistic  regression.  Final  corrected 
estimates were obtained for maternal asthma using sampling fractions and maternal asthma estimates from 
the first stage of the study. See Collet et al (1998) for variance adjustment in the second-stage sample. 

Example 10.8 A case-only analysis of the health impacts of heat waves in 5 regions of 
New South Wales, Australia

Khalaj et al (2010) used a case-only design to identify underlying health conditions that increased the 
risk of hospital admission during heat waves in Australia. Daily hospital admissions were obtained 
from  NSW databases  during September 1 to February 28 of each year,  from 1998 to 2006 in 5 
regions. Data  from Sydney weather  stations were  used for  exposure  data.  The authors  fitted 
logistic regression models of the presence or absence of each primary diagnosis as the  outcome and 
an extreme heat indicator as the predictor. The analysis was repeated using this temperature indicator 
on the day of hospitalisation (lag0), the day before hospitalisation (lag1), and for the 3-day average 
ending on the day of hospital admission. If the proposed modifier (ie a primary diagnosis) of the effect 
of extreme temperature was a modifier of season (eg if diabetics have a stronger seasonal pattern 
than other diseases), a confounding with the interaction of interest could occur. Therefore, all models 
also included a sine and cosine term with a 365, 24-day period to capture interactions between season 
and the characteristic being investigated. 
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