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VALIDITY IN OBSERVATIONAL STUDIES

OBJECTIVES

After reading this chapter, you should be able to:

 1. Identify the different types of selection bias and assess whether or not a particular study is 
likely to suffer from excess selection bias.

 2. Determine the likely direction and magnitude of a selection bias through the use of estimates 
of sampling fractions or sampling odds.

 3. Apply the principles of bias prevention in the design of a study; for example, how to avoid 
detection bias in secondary-base studies.

 4. Explain the differences  between non-differential  and differential  misclassification bias in 
terms of sensitivity and specificity.

 5. Evaluate misclassification of exposure, disease or both in 2X2 tables.

 6. Explain why one cannot use the population sensitivity and specificity estimates to correct 
for disease status misclassification in case-control studies.

 7. Evaluate the likely impact  of misclassification on observed associations using sensitivity 
analysis.

 8. Know how to apply validation studies and adjust observed data using techniques such as 
regression calibration.

 9. Modify sample-size estimates to account for misclassification.
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12.1 INTRODUCTION

An awareness of the key features of study design, implementation and analysis, as outlined in 
Chapters 7–10, should help to ensure that we obtain valid results from our research efforts. In 
this regard, the term validity relates to the absence of a systematic bias in results; that is, a valid 
measure of association in the study group will have the same value as the true measure in the 
source population (except for variation due to sampling error).  To the extent  that the study 
group and the source population measures differ systematically, the result is said to be biased. 
There are 3 major types of bias: 

1. selection  bias:  due  to  factors  affecting  the selection  of  study subjects,  or  to  other 
factors  that  relate  to  the  willingness  of  potential  study subjects  to  participate  in  a 
research project (we also include a discussion of follow-up and loss to follow-up bias 
in this section)

2. information  bias:  due  to  factors  affecting  the  accuracy  of  information  (lack  of 
measurement and misclassification error) on the exposure, outcome, or covariates of 
interest

3. confounding bias: due to the effects of factors other than the exposure of interest on 
the observed measure of association. 

In this chapter, we discuss the nature, impact, and prevention of selection and information bias; 
confounding is discussed in Chapter 13. There is a large literature on selection and information 
bias and often research relating to the specific topic and study design of interest is available. 
Here  we  have  selected  research  and  instructive  papers  that  provide  widely  applicable 
approaches to prevent and correct for these biases.

Most  analytic  studies  are  conducted  on  non-randomly  sampled  study  subjects,  so  there  is 
always some uncertainty about how well the attributes and the associations in the study group 
reflect the attributes and associations in the source population from which the study group is 
drawn. Once the study groups are selected, we must be able to accurately measure the exposure, 
extraneous factors and outcome of interest, and control confounding, in order to make valid 
conclusions about the exposure-outcome association. In this context, an internally valid study 
will  allow  us,  based  on  the  study  group  data,  to  make  unbiased  inferences  about  the 
association(s) of interest in the source population. Bleijenbergh et al (2011) discuss criteria for 
internal validity especially when using participatory research methods. External validity relates to 
the ability to make correct inferences to populations beyond the source population (the first of 
these being the target population). In this regard, while it is certainly desirable that the study 
and  source  populations  be  ‘representative’  of  the  larger  target  population,  one  should  not 
sacrifice internal validity in order to gain external validity (see  Alonso et al (2007); Boffetta, 
(2011)). In the extreme, there is no value in being able to extrapolate incorrect results. Boffetta 
(2011) notes that the study groups in both the Framingham Heart Study, and the physicians 
used by Doll and Hill for their studies on health effects of smoking had higher internal than 
external validity. Vergouwe et al (2010) note that when trying to externally validate risk models 
it is important that the characteristics of the training (development) sample and the validation 
sample  be  similar  with  respect  to  demographic  factors  as  well  as  case  mix  and  severity. 
Generalisability is  an  inferential  step  beyond  external  validity  and  refers  to  the  ability  to 
develop and extend valid scientific theories to broadly defined populations (eg associations that 
are valid across populations and/or species). 
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12.2 SELECTION BIAS

Selection bias results from the fact that the composition of the study group differs from that in 
the source population and this biases the association observed between the exposure and the 
outcome of interest. Selection bias can effect study results a great deal. Hence the criteria used 
to select study subjects, and maintain them in the study, are important to describe (see  Beck, 
2009; Grimes and Schulz, 2002; Sandler, 2002, and also pertinent sections in Chapters 7–10). 
For example, Inrig and Toto (2011) suggest that selection bias is responsible for a major portion 
of the difference in cardiovascular disease rates between subjects receiving peritoneal dialysis 
versus hemodialysis for end-stage renal disease.  

From a sampling and study-design perspective, each study will have (should have) an objective 
that relates to a defined  target population. In particular, Tugwell  et al (2011) argue for the 
importance of authors making the target population for their comparative effectiveness research 
explicit. Ideally, the study group will completely reflect the source population and the source 
population  will  completely  reflect  the  target  population.  For  practical  purposes,  it  is  often 
necessary, or desirable, to obtain the study subjects from a subset of the target population (ie the 
source  population).  In  most  instances,  the  source  population  is  not  obtained  by  formal 
sampling so we should expect it to have different characteristics from the target population. We 
as researchers need to obtain our study subjects, usually volunteers, from the source population, 
and in most instances, only a portion of the potential study subjects will agree to participate and 
become the study group.  Thus, the study group may not represent the source population fully 
(see Section 2.1.3).

As noted in Chapters 7–10, associations are investigated by contrasting outcomes in 2 or more 
subsets of our study subjects. As described in Chapter 1, the ideal comparison group for causal 
inferences is the counterfactual group. For example, in a cohort study, the ideal counterfactual 
group for  the exposed study group would be the exact  same subjects  if  they had not been 
exposed. This is why, whenever possible, we use randomised controlled trials in which random 
allocation of study participants ensures exchangeability of the study groups, which is as close as 
we can get to having a true counterfactual group. However, observational studies are often the 
only feasible approach to investigating a problem. Thus, in a cohort study, we must strive to 
select the non-exposed study group in a manner that ensures that the exposed and non-exposed 
groups  are  fully  comparable  with  respect  to  all  factors  that  might  bias  the  measure  of 
association. Our intent is to have the association that is under investigation be the same in the 
study groups as in the source population. From a selection bias prevention point of view, this 
means that the 2 groups under study should be comparable at the initiation of the study and any 
decrease in this ‘comparability’ throughout the study period should not be a result of the study 
process. Steiner et al (2010) have suggested an approach to help identify variables that lead to 
selection bias (called bias variables) and to control their effects in observational studies. We 
also would note that clinical trials (Chapter 11) are not immune to selection bias. Although 
randomisation  helps  ensure  that  the  groups  receiving  the  treatment(s)  are  comparable  (ie 
exchangeable), as the study subjects are usually volunteers, they may differ from the source 
population  in  a  manner  that  leads  to  biased  results  (eg if  the  treatment  interacts  with  the 
characteristics of the study groups that differ from those in the source population) (Beck, 2009).

In the narrow sense, a selection bias happens before the study begins because of the manner of 
choosing the study group. However,  after the study group is formed, its characteristics may 
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change during the study due to factors that influence ongoing participation. We will discuss 
these issues under the heading of selection bias. Bias variables (Geneletti et al, 2009) influence 
participation in the study in such a way that the either the initial or final composition of the 
study group differs from that in the source population, and this biases the observed association. 
The basic conditions for selection bias can be shown pictorially using the techniques of directed 
acyclic  graphs  (DAC;  aka causal  diagrams)  and  the  concept  of  statistical  conditional 
dependence (Hernan et al, 2004; Sjolander et al, 2008). For example, in the left column of Fig. 
12.1,  we  indicate  that  both  exposure  (E)  and  the  outcome  disease  (D)  directly  affect  the 
selection (S) of study subjects. In this depiction, E and D are independent of each other (ie not 
associated)  in  the  source  population;  however,  when  we conduct  the  study  using  only the 
responders (ie condition on selection S), assuming that there is some non-response in the source 
population,  E and  D become associated.  Alternatively,  had  E and  D been associated in the 
source population, the observed association in the study group would differ from that in the 
source population; in both instances, selection bias would occur. In the right column, disease 
directly affects selection in the source population (as in a case-control study), but exposure only 
indirectly affects selection (via the bias variable—eg behaviour or attitude, or other disease). 
Unless the  bias variable (which is directly related to both the exposure and to selection) is 
controlled or ‘adjusted for’, exposure will be statistically related to selection. As a consequence, 
a biased association between exposure and disease will result in the study group. As a third 
example (not shown), the bias variable could be related to the disease, not the exposure, and the 
exposure  could  be  directly  related  to  selection.  In  summary,  as  Hernan  et  al,  (2004) 
demonstrate,  using directed acyclic  graphs,  selection bias  is  a  result  of conditioning on the 
common effects of exposure and disease, or on the effects of variables related to exposure and 
disease.  In a similar manner, Westreich  (2012) describes how selection bias (in this specific 
case, a form of bias called Berkson’s bias—see Section 12.3.4) is similar to confounding when 
the variables of concern affect the selection of study subjects; DACs are used to demonstrate 
when bias will and will not occur. Shahar (2009); Shahar and Shahar, 2009 have elaborated on 
this approach with application to information bias (see Section 12.5).

12.2.1   Sampling fractions and sampling odds in selection bias

We can also gain some understanding of selection bias using sampling fractions. Assume the 
source population and study group have the structure shown in Table 12.1 (upper-case letters 
represent the number of subjects in the source population, lower-case letters the study group). 

Fig. 12.1 A diagram depicting basic conditions for selection bias

Note ORED=1, but ORED|S≠1
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Table 12.1 A representation of the structure of the source population and study group
Source population structure Study group structure

E+ E- E+ E-

D+ A1 A0 M1 D+ a1 a0 m1

D- B1 B0 M0 D- b1 b0 m0

N1 N0 N n1 n0 n

Our intent is to select the study group in a manner that avoids selection bias. Formally,  the 
study group is a sample of the source population. We can visualise the sampling fractions (sf) in 
each of the 4 categories of exposure and disease as:

sf 11=a1/A1

sf 12=a 0/A0

sf 21=b1/B1

sf 22=b0/B0 Eq 12.1

where the subscripts refer to the row-cell combination in the 2X2 table structure (row 1, column 
1 is the upper left cell:  exposed and diseased  etc) of Table 12.1. If  the study subjects were 
obtained by random selection, of ‘n’ from ‘N’  subjects,  the 4 sampling fractions  would be 
equal, except for random variation. Under this selection method, it is reasonable and correct to 
assume that all 4 sampling fractions are equal and there is no selection bias (Morabia, 1997). 
Furthermore, if the sampling fractions are equal, the odds ratio (OR) of the sampling fractions 
(ORsf) equals 1. It is noteworthy that the 4 sampling fractions can be unequal and not produce 
bias in the observed OR provided the ORsf equals 1. Under this latter condition, there is also no 
bias to the risk ratio (RR) if disease is infrequent. In reality, we rarely know the values of the sf  
so  this  limits  the  practical  utility  of  this  approach.  Nonetheless,  understanding  the  role  of 
sampling fractions provides a theoretical basis for understanding the conditions under which 
bias will or will not occur. See Example 12.1 for an application of using the sampling fraction 
odds ratio to investigate selection bias arising from non-response.

In  practise,  sampling  odds might  be  easier  to  conceptualise  than  the  individual  sampling 
fractions.  For example,  in a risk-based cohort,  or longitudinal  study,  one could express the 
sampling odds of disease (soD+|E) among exposed subjects versus the sampling odds of disease 
in the non-exposed subjects as:

soD+∣E +=sf 11/ sf 21

soD+∣E -=sf 12/ sf 22 Eq 12.2

If these selection odds are equal, there is no bias, and this becomes the goal of study-subject 
selection strategies in observational studies. If the ratio of the sampling odds is greater than 1, 
then the bias is away from the null; if the ratio of the sampling odds is less than 1, the bias is 
toward the null. Thus, from a practical perspective in designing a cohort study we need to ask 
ourselves,  over  and  above  the  associations  between  exposure  and  disease  in  the  exposure 
cohorts, am I more (or less) likely to select for disease in the exposed than in the non-exposed 
cohort? As noted, in Example 12.1, because of the non-response the sampling odds for disease 
among  the  exposed  is  5.89  (ie 0.053/0.009),  and  among  the  non-exposed,  it  is  7.5  (ie 
0.075/0.10) giving a ratio of sampling odds equal to 0.8. In relative terms, because of the non-
response,  we  have  overselected  non-exposed  diseased  subjects,  and  biased  the  observed 
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association toward the null. Similarly,  in designing a case-control study, we wish to avoid a 
differential selection for exposure that is over and above any associations between exposure and 
disease in the case and control groups in the source population. 

Example 12.1 Selection bias due to non-response

In  order  to  demonstrate  that  non-response  can  bias  an  association  measure,  we  first  give  an 
hypothesised example where the non-response is related only to exposure and not to the outcome. In 
this situation,  one would  not  expect  the non-response to bias the  measure  of  association.  For  this 
example, we will initially assume the following scenario:

• 10% of the subjects in the source population are exposed
• In the exposed subjects in the source population, 30% are non-responders (nr) and the risk of 

the outcome in the non-responders is the same as that in the responders (r) at 25%
• In  the  non-exposed subjects in  the source population,  10% are non-responders  and these 

subjects have the same risk of the outcome as the responders at 12%.

Based on these assumptions, the source population structure is:
Exposedr Exposednr Non-exposedr Non-exposednr

D+ 175 75 972 108

D- 525 225 7128 792

700 300 8100 900

Risk 0.25 0.25 0.12 0.12

If  we initially contact 100 exposed and 100 non-exposed individuals,  in the source population,  the 
overall response ‘rate’ is 80% and the study group will have the following structure:

Exposedr Non-exposedr

D+ 18 11

D- 52 79

70 90

Apart from rounding errors, the ratio of risks (RR) in the study group (RR=2.04) matches the risk ratio 
in the source population (RR=2.08), as does the OR (2.49 vs 2.44). There is no bias. 

Now,  given  exactly  the  same response risks,  we  will  assume that  non-response is  related to  both 
exposure and outcome, and the risk of the outcome is twice as high in non-responders as in responders 
in both the exposed (38% vs 19%) and non-exposed (22% vs 11%) groups. 

Under this scenario (and ignoring rounding errors), the population structure would be:
Exposedr Exposednr Non-exposedr Non-exposednr

D+ 133 114 891 198

D- 567 186 7209 702

700 300 8100 900

Risk 0.19 0.38 0.11 0.22

The ratio of the risks in the source population is 0.247/0.121=2.04, and the odds ratio is 2.38.
(continued on next page)
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12.3 EXAMPLES OF SELECTION BIAS

12.3.1 Choice of comparison groups 

A general principle is that the study groups should be selected from the same source population. 
In cohort studies, it is important that the subjects in the non-exposed group be comparable with 
those in the exposed group with respect to other risk factors for the outcome that are related to 
the exposure. This is more of an issue with the usual 2-group (ie  exposed and non-exposed) 
cohort design, than with a single-cohort study design, since in the latter the exposed and non-
exposed  groups  come  from  the  same  population.  Similarly,  in  a  case-control  study,  it  is 
important  that  the  control  group  reflects  either  prevalence  of  exposure  in  the  ‘non-case’ 
members of the population from which the cases arose (risk-based study) or the proportion of 
exposed person-time at risk for the non-case group in the source population (rate-based study). 
Since the members of the study groups are rarely obtained by random sampling, decisions about 
how to select the study subjects must include knowledge about the context and the biology of 
the problem being investigated, as well as the structure and dynamics of the source population. 

Example 12.1 (continued)

As before, if we initially contact 100 exposed and 100 non-exposed individuals, the study group will  
have the following structure (apart from sampling error):

Exposedr Non-exposedr

D+ 13 10

D- 57 80

70 90

Now the study group RR is 0.19/0.11=1.73, and the OR is 1.90; both are biased (under) estimates of the 
true associations. 

Note that in this scenario the sfs are:
sf 11=13/247=0.053
sf 21=57/753=0.075

sf 12=10 /1089=0.009
sf 22=80 /7911=0.010

and the odds ratio of the sfs is:

ORsf =
0.052∗0.01
0.075∗0.009

=0.8

Thus, based on the OR of the sfs, the bias would be expected to be toward the null, and we note that the 
true OR multiplied by the sampling fraction odds ratio gives the observed OR (ie 2.38*0.8=1.90). 

If we doubled the non-response risk in both exposed and non-exposed groups, the sampling fraction of 
the odds ratio would be 0.66. Thus, it is conceivable to produce considerable bias from this form of 
selection bias. 
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12.3.2 Non-response

Non-response bias can be a major problem in both surveys and analytic studies, and its level 
and effects are often understated (Mezei and Kheifets, 2006; Morton et al, 2006; Stang, 2003). 
Non-response  leads  to  bias  if  the  association  between  exposure  and  the  outcome  in  the 
responders differs from that in non-responders; hence, the association in the study group (ie 
only  the  responders)  differs  from  that  in  the  source  population.  Although  non-response 
produces its effects through a process similar to a confounding variable, it may not be directly 
controlled in the same manner. The stronger the association between exposure and disease, and 
the  greater  the  proportion  of  non-responders,  the  greater  the  potential  bias.  For  example, 
willingness to enrol in a study might be related to both the exposure and the outcome, hence the 
study group produces a biased response. One factor that appears to influence participation in 
surveys and observational studies is the socioeconomic status (SES) of the potential participant; 
subjects from a higher SES are more likely to participate than those from a lower SES. The 
method of contacting potential study subjects and obtaining information/samples from them can 
also affect participation. For example, Scott et al (2011) used a 3-arm, parallel-trial design with 
equal randomisation across arms. Physicians were randomly allocated to: online questionnaire; 
simultaneous mixed mode (a paper questionnaire and login details sent together); or sequential 
mixed mode (online followed by a paper questionnaire with the reminder). The online mode 
group had a response rate of 13%, followed by the simultaneous mixed mode group with 20%, 
and  the  sequential  mixed  mode  group  with  21%.  We  would  comment  that  although  low 
response rates such as these are not uncommon and they do not automatically produce selection 
bias, such low response rates  ‘open the door’ to problems of bias as shown in Example 12.1 
(see Mohner, 2012) for a thorough discussion of this topic with reference to population controls 
in case-control studies). As another example of response bias, Kypri et al (2011), used an online 
survey in New Zealand. A random sample of 7,130 students aged 17–25 years from 12 tertiary 
education institutions was used to assess a number of behavioural outcomes (thus this potential 
study group should have been unbiased). Data-collection was by a web-based health-behaviour 
survey,  with  3  email  reminders.  Early  respondents  (n=2607)  were  compared  with  late 
respondents (after 2nd reminder), and the latter served as a proxy for non-respondents. Binge 
drinking (38% vs 47%; p=0.002) and non-compliance with physical activity guidelines (12% vs 
18%; p=0.004) differed significantly between the 2 groups. Thus non-response may equate to 
selection bias in this situation.

One way to assess the possible effects of response bias is to ascertain if the extent of non-
response  within  each  group  (ie the  exposure  cohorts  or  the  case  and  control  groups)  is 
approximately equal. If they are, there will be little to no selection bias. Low overall response 
rates do not necessarily result in selection bias and high response rates do not guarantee a lack 
of bias  (Bjertnaes et al, 2008; Nohr et al, 2006). Achieving an equal response in the groups 
based  on  exposure  or  outcome  should  be  a  major  consideration  when  designing  and 
implementing observational studies. A second approach to assess possible bias is to compare 
responders and non-responders using whatever information you have on exposure, disease, or 
other features, recognising that because the potential participant won’t respond (or collaborate), 
these data might be limited. Sometimes external  registry data are available to provide some 
insight into potential biases. If  the differences are negligible, or if the variable(s) the groups 
differ on is not related to the outcome of interest in the study subjects, then selection bias will 
likely have only a small impact on the study results. In reporting the study results, Sneyd and 
Cox (2011) suggest that authors report both response and cooperation rates with a transparent 
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explanation  or  flow  chart  of  their  calculation.  Where  possible,  the  demographics  of  non-
responders  and  suitable  external  populations  should  also  be  included.  Example  12.1 
demonstrates how non-response produces bias.

12.3.3 Selective entry and survival bias

In  many circumstances,  the  composition  of  the  source  population  groups  is  (or  has  been) 
influenced  by  selection  and/or  survival  factors  in  that  only  subjects  that  possess  certain 
desirable attributes are selected for membership/employment and only a subset of those selected 
persist in that group. For example, we might think of a study of health status of 40–50 year old 
fire-fighters,  but  the  study  group  will  consist  only  of  individuals  who  have  been  able  to 
withstand the rigours of this work until at least age 40. This selection force has been termed the 
‘healthy worker effect’ (HWE), and it can be a major issue especially in occupational-health 
studies  (Burns et al, 2011). Le Moual  et al (2008) pointed out “work may cause asthma but 
asthma may also influence  work”.  As an example,  Braback  et  al  (2004) demonstrated that 
selection  bias  likely  contributed  to  the  lower  prevalence  of  asthma  and  allergic 
keratoconjunctivitis in farmers—children with these conditions are less likely to pursue farming 
because  of  the  physical  demands  and  the  known risks  of  other  respiratory  conditions  (eg 
chronic  bronchitis)  than  children  without  these  conditions.  Knowledge  of  this  helped  them 
interpret  the  results  of  earlier  studies  investigating  the association  between  occupation  and 
respiratory disease (the presence of early disease was affecting exposure (occupation) and also, 
later-life disease status). Longitudinal studies are better able to detect a HWE and avoid this 
bias than cross-sectional studies. Applebaum et al (2007) describe one technique based on date 
of entry (eg date of employment) to help avoid the healthy survivor bias. Chevrier et al (2012) 
describe their approach to correct for selection bias by controlling for baseline covariates that 
impact on selection and also by g-estimation (see their paper for a worked example). Atsma and 
de Vegt  (2011) describe  a similar  bias,  ‘the healthy donor effect’ in blood donor research; 
Danaei  et al  (2012) describe a related bias when current users of  ‘drugs’  are selected as the 
study group.  Austin and Platt  (2010) discuss the survivor (treatment)  bias (called immortal 
person-time bias by Vaduganathan and Suissa (2011)) with respect to assessing the efficacy of 
cardiac surgery; only the survivors get the surgical procedure. 

From a preventive perspective, both self-selection for becoming a study subject and the effect 
of inclusion/exclusion criteria can lead to selection bias. Cole et al  (2011) used matching and 
risk-set  sampling  to  reduce  selection  bias  in  case-control  studies  based  on  a  rare-disease 
registry.  Pizzi  et al  (2011) used data from a compulsory registry of all  births to assess the 
impact of their inclusion and exclusion criteria on the characteristics of the study group relative 
to the source population. The authors found that  although the selection criteria affected the 
composition of the study group (thus,it differed from that in the source population)—because 
the extent of confounding was greatly reduced—the overall bias was not necessarily greater 
than the expected results from studying the full cohort (which would have been very difficult 
and much more expensive).

Survival  (or  loss)  of  subjects  in  the source population might  be highly correlated  with the 
exposure factor and the outcome, thus leaving the study group (eg a cross-sectional sample) as 
a biased subset of the source population. For example, Kukull (2001) and Weuve et al (2012) 
demonstrated  that,  since  smoking  is  related  to  decreased  survival  (increased  attrition),  and 
cognitive  ability is  associated  with increased  survival,  smoking will  appear  less harmful  to 



284 VALIDITY IN
OBSERVATIONAL STUDIES

cognitive ability than it actually is. Whenever selective survival is likely to be an issue, it is 
helpful  if  the study group is  drawn from study subjects  that  entered  the  source  population 
during a specified time period, not just from subjects that are in population at the start of the 
current study period. In many of these instances, implementing longitudinal studies to track life-
course events would provide the best evidence of the impact of specific exposures throughout 
the life of the study subjects (Braback et al, 2004).

Survival bias can also result from the use of prevalent cases of disease (eg in case-control or 
cross-sectional studies). If the duration of survival after disease onset differs by exposure status, 
then bias could result. Cross-sectional studies are problematic in this regard, and partly for this 
reason, it is recommended that case-control studies usually should include only incident cases.

Unintentional  selection  bias  might  be  at  play  in  many  studies  of  antimicrobial  resistance 
patterns (Miller and Tang, 2004). Often the data are based on isolates obtained from clinically 
ill subjects, or from subjects with prior exposure to antimicrobials. Hence, many of the isolates 
would have been exposed to antimicrobials prior to culturing of tissue specimens. Thus, the 
number and type of bacterial isolates, and their level of antimicrobial resistance (or minimal 
inhibitory concentrations) might be more a function of what antimicrobials had been used and 
how effective they were at reaching and killing susceptible organisms in the tissue samples that 
get  cultured  than of  the prevalence  of  pathogenic  organisms or  their  level  of antimicrobial 
resistance in the source population. If  the objective of the study is to describe the extent of 
antimicrobial resistance in the source population, samples should be obtained from randomly 
selected subjects (some of which may have been exposed to antimicrobials). This would allow 
the impact of exposure to antimicrobials on the level of resistance to be assessed in a valid 
manner. Rempel and Laupland (2009) discuss this and other sources of bias when attempting to 
assess the levels of, and risk factors for, antimicrobial resistance.

12.3.4 Admission risk bias 

Admission risk bias has provoked much debate over the validity of secondary-base case-control 
studies, and is the basis of Berkson’s fallacy (Sadetzki et al, 2003; Schwartzbaum et al, 2003). 
In this instance, the probability of admission to the registry or hospital (ie the secondary-study 
base)  is  related to  both the disease  and the exposure.  That  the exposure of  interest  has  an 
independent risk of admission to the hospital or registry (ie p(H|E+)>0) is a prerequisite for a 
bias to occur. In practise, this effect is expressed through the production of exposure-related 
diseases other than the case disease of interest. A differential admission risk between the cases 
(p(H|D+)) and the average admission risk of the control disease categories (p(H|D-)) is also 
needed to produce the bias, but this is a very common situation in most case-control studies. 
Under  these  circumstances, the  controls  drawn  from the  hospitalised  population  might  not 
reflect the actual exposure status of the population from which the cases arose. 

In terms of the direction of bias, provided exposure leads to an elevated risk of ‘being in the 
registry’ and if the risk of hospitalisation (ie being in the registry) is greater for the disease of 
interest than the average risk for the potential controls, the sample (ie study group) OR will be 
smaller than the source population OR. Thus, if the study data leads to a statistically significant 
OR, the true association in the source population would be even stronger. Conversely, if the risk 
of hospitalisation (ie being in the registry) is lower for the disease of interest than the average 
risk for the potential controls, the sample OR will be greater than the source population OR. 
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A frequently cited example involves investigations of the association between smoking and 
lung cancer using hospital-based, case-control studies. Smoking can lead to hospitalisation for 
many diseases and thus, it is suspected that the prevalence of smoking is higher in the control 
group than in the source population (Sadetzki et al, 2003). Thus, it is important to try and obtain 
quantitative estimates of the likely degree of bias that different potential control groups might 
produce (see Example 12.2). Since it is nearly impossible to assess the degree of selection bias 
in any given secondary-base study, this constrains the inferences that should be drawn from a 
single secondary-base study. In Chapter 9 and Section 12.4, we develop guidelines for selecting 
cases and controls in a manner to prevent or minimise the magnitude of bias.

Because of the difficulties in selecting appropriate  controls in secondary-base studies, some 
researchers obtain controls directly from the putative source population. Tam et al (2003) have 
documented  that  disease  severity  and  societal  factors  influence  the  inclusion of  subjects  in 
registries for infectious intestinal disease. Their research suggests that we need to be careful 
when using population controls as they may not be representative of the actual population that 
gave rise to the cases. The same authors also supported the use of case-case studies to avoid this 
potential bias (see Section 10.3). 

12.3.5 Loss to follow-up and follow-up biases 

Similar to non-response bias, if there is a differential loss to follow-up that is related to the 
exposure status and the outcome, then bias in the measure of association will result. Thus, in the 
design and implementation of the study protocol, we should try to follow up study subjects as 
completely as possible and minimise losses.  Failing that, we should try to ensure that both 
groups are followed with equal rigour (this tends to equalise, but does not reduce, the losses). 
Unfortunately, the larger the losses, the more difficult it becomes to ensure equality of losses 
across the study groups. Greene et al (2011) found that, in Denmark, bias from loss to follow-
up in a long-term cohort study was quite modest for medical factors, whereas for behavioural 
factors (eg smoking), it may be large. Thus, for example, associations between smoking and 
attention deficit  hyperactivity  disorder  (ADHD)  may be seriously biased.  Pennefather  et  al 
(1999) in following  a geographically defined birth-cohort of children born before 32 weeks’ 
gestation observed that the children who were difficult to contact or who did not attend the first 
follow-up  at  2  years  of  age  had  an  increased  prevalence  of  ocular  abnormalities  (the 
ophthalmologist who did the assessment was blind to the subjects ‘difficulty of contact’ level). 
The authors could only speculate on explanations for this finding. 

Bias can also result from differential management of, or communications with, exposed and 
non-exposed study subjects during the study.  More generally,  behavioural  changes in study 
subjects as a result of being studied are referred to as the Hawthorne effect. In an observational 
study, the role of the researcher is to observe, not alter, the normal (ie usual) events experienced 
by the study subject. However, it is often difficult to ‘hide’ the reason for the study and the act 
of  enquiring  into  specific  lifestyle/housing/nutritional  factors  could  lead  the  participant  to 
modify his/her protocols in ways  that are not obvious to the researcher.  This could lead to 
differential management by exposure status, or at the very least, it could lead to exposure status 
changes during the study period. Being aware of this effect and implementing the study in a 
manner designed to minimise any follow-up bias, through complete and equivalent follow-up of 
the groups, is the best prevention.
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Robinson et al (2007) surveyed the literature for strategies to reduce follow-up losses and they 
provide a list of the 12 most frequently stated strategies. Among the more frequent strategies 
were: obtaining community involvement; creating study identity (eg study name and consistent 
letterhead); having study personnel with excellent communication skills; clearly explaining the 
benefits of the research, having regular scheduled contacts with participants; regular reminders; 
minimising  participant  burden,  and  providing  participant  specific  benefits  (perhaps  a  free 
consultation or a specific information package). 

12.3.6 Detection bias

Detection bias results when the probability of identifying the disease (or outcome) differs by 
exposure status. The bias can arise if those assessing the outcome know the exposure status of 
the study subject, and if they alter their assessment of the outcome because of that knowledge. 

In cohort studies, detection bias is best viewed as a misclassification. However, in case-control 
studies, the central issue in detection bias is one of selection. People that have the disease of 
interest  might  be misclassified as not  having that  disease because  they were  less likely (or 
never) to be examined for the disease (see Section 12.6). Detection bias is of special concern 
when a large percentage of the cases would be found (and therefore identified as potential study 
subjects) as a result of undergoing examination in a screening or diagnostic process, and where 
participation  is  influenced  by  exposure  status  (ie the  act  of  being  assessed  is  directly  or 
indirectly influenced by the exposure status). Given this scenario, the issue is how best to select 
controls. A frequently suggested guideline is that the controls should be non-cases that have 
undergone  the  same  screening,  but  the  nature  of  the  exposure,  disease  and  the  context  of 
diagnostic testing need to be considered  (Harris et al, 2005). The concern of Harris  et al was 
misclassifying  untested  subjects  as  non-cases  when,  in  reality,  they  were  mildly  diseased 
undetected cases  in studies  of antimicrobial  resistance.  They posited that  severity of illness 
would be the ‘bias’ variable (Fig. 12.1) that lead to testing (or not). Bowker et al (2011) suggest 
that detection bias might explain the increased risk of breast cancer in post-menopausal women 
shortly after their diagnosis with type 2 diabetes. 

Detection bias was at the root of protracted discussions about the appropriate control group for 
a series of uterine cancer  cases  in a study of the potential impacts of hormone-replacement 
therapy  in  women  (Greenland  and  Neutra,  1981).  Women  on  estrogen  tended  to  evidence 
vaginal bleeding and therefore would be examined (in a manner that could lead to the detection 
of  uterine  cancer)  more  frequently  than  women  not  on  estrogen.  Hence  the  possibility  of 
detection bias was raised. Some researchers  argued that  the controls should be restricted to 
those women who had been examined because  of vaginal  bleeding and found negative  for 
cancer.  However,  it  was  subsequently  determined  that  because  all  cases  of  uterine  cancer 
ultimately (regardless of screening) were detected, it was not necessary to enforce the general 
principle that controls should undergo the same testing regime as the cases. Another method to 
evaluate detection bias is described in Section 12.4.1.

12.3.7 Bias due to missing data

If missing data are distributed randomly, their absence will reduce precision and power, but not 
lead to biased associations. However, missing data can create a bias similar to non-response, 
because the researcher must adjust the analysis (eg impute the missing value) (Cole et al, 2006; 
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Fraser  and  Yan,  2007;  Fraser et  al,  2009),  drop  the  variable(s)  with  missing  values  (and 
possibly leave a confounding bias), or drop the observation (and hence effectively produce a 
non-response). Thus, minimising missing data and assessing whether the level of missing data 
is equivalent in the groups being compared (eg cases and controls) are recommended features of 
study design. See  Westreich (2012) for a discussion of how missing data can bias observed 
associations. We discuss the problem of missing values further in Section 15.5.

12.4 REDUCING SELECTION BIAS

Most of the specific recommendations for preventing selection bias are contained  in Section 
12.3 or in the study design chapters (Chapters 7–10) and will not be repeated here. However, 
being aware of the potential pitfalls in selecting study subjects, and conceptualising how these 
pitfalls might apply to selection of study subjects from the proposed source population is the 
first step in prevention. In cohort studies where explicit exposed and non-exposed groups are 
selected, care needs to be taken when selecting the comparison group, and due consideration 
should be given to minimising non-response bias, missing data, and ensuring equal follow-up 
and preventing detection bias (see Chapter 8 for details). Case-control studies (Chapter 9) are 
particularly  susceptible  to  selection  bias  because  of  the  (usual)  built-in  differential  risk  of 
inclusion  based  on  disease  status.  Thus,  minimising  a  differential  response  to  study 
participation between cases and potential controls should be a major focus of study subject 
selection procedures.  With regard to selection, the comparison group in case-control  studies 
need not be similar to the case group in all respects except for the disease of interest, but rather 
only with respect to the factors related to the outcome that might lead to being included in the 
study. A key principle for control selection is that they should represent the proportion exposed, 
or the exposure time, in the non-diseased members of the source population. This is chiefly a 
problem  in  secondary-base  studies  and  to  circumvent  it,  we  implement  the  guideline  of 
selecting controls only from non-case diagnostic categories that are unlikely to be associated 
with the exposure. Where possible, case-control studies should be based on only incident cases 
and  the  control  subjects  should  come  from the  same  source  population  as  the  cases  (See 
Chapter 9 for details). Even with all these precautions, care must be taken in making broad 
inferences from a single case-control study using secondary databases. 

12.4.1 Evaluating and correcting selection bias

For valid and effective control of selection bias, 1 of 2 conditions needs to be met: the factors 
associated with selection must be antecedents of both exposure and disease, or the distributions 
of exposure and disease must be known in the source population. Under the first condition, the 
bias can be controlled in a manner similar to confounding; for example, if socioeconomic status 
(SES) might lead to selection bias in a secondary-base case-control study, it can be measured 
and controlled in the analysis. Geneletti et al (2009) and Alonso et al (2006) describe methods 
to test for and correct selection bias in case-control studies, based on using data internal to the 
study, or in some instances data that are external to the study group.  The variable which is 
strongly related to selection, or study participation and produces the bias (called a bias breaker 
by Geneletti) needs to be identified so that unbiased estimates of its population distribution can 
be  obtained  (this  is  necessary  so  that  these  ‘corrected’  estimates  are  not  associated  with 
‘selection’). We refer you to Geneletti et al (2009) for the actual calculations and the constraints 
needed to select valid adjustment factors.
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As an example of identifying and adjusting for the bias variable in case-control studies of the 
impact of smoking, the observed association can be adjusted for selection bias, if the prevalence 
of smoking in the source population (from which the cases were obtained) is available (ie it 
replaces  the  observed  proportion  of  smokers  in  the  study  control  subjects).  In  general, 
Berkson’s fallacy can be prevented if estimates of the hospitalisation rates of the non-diseased 
subjects  are  available.  Although  this  is  difficult  to  implement,  the  potential  impact  of 
differential admission risks could be investigated in sensitivity analyses. Similarly, adjustment 
for the potential effect of SES on participation can be made using information on the combined 
level of SES in the cases and controls (this approach uses data internal to the case-control study 
to ‘adjust the biasing variable SES’). External data on the prevalence of SES from a recent 
census in the source population could also be used. In the case of detection bias in the studies of 
estrogen use and uterine cancer, selection bias could be ‘corrected’ by using the prevalence of 
vaginal bleeding among women with uterine cancer in the source population (here again, this 
corrects for the distribution of the biasing variable—vaginal bleeding). Alonso et al, 2006 and 
2007 describe the use of inverse probability weighting to adjust for selection bias as a result of 
dropouts during a cohort study. Berger (2005) describes how to use reverse propensity scores to 
detect and ‘correct’ for selection bias in randomised trials. In Chapter 13 we demonstrate the 
use  of  propensity  scores,  here  the  reverse  propensity  score  is  defined  as  the  probability, 
conditional  on  all  previous  allocations  and  the  allocation  procedure  (restrictions  on  the 
randomisation), that a given patient will receive a given treatment. Chang et al (2009) used 2 
shared parameter models, a Weibull accelerated failure time (AFT) model and a discrete failure 
time model, both of which were conditional on the subject-specific random effect, to analyse 
their data and minimise bias from attrition. 

Often,  we do not have solid estimates of the  sfs or of the distribution of the bias variable. 
However, we can assess the potential bias from single estimates of sampling fractions or the 
bias from a distribution of sampling fractions using a stochastic approach. In Example 12.2, we 
use software developed by Orsini et al (2008), to demonstrate both deterministic and stochastic 
adjustment  for  potential  selection  bias  based  on  estimating  the  sampling  fractions  in  case-
control  studies.  The  examples  given  above  of  the  bias-variables  hopefully  will  help  us  to 
identify the key variable(s) that affect selection in our studies and assess their potential impact 
on the study results. Sensitivity analyses (using a range of parameter estimates) can be useful 
for this purpose (Sjolander et al, 2008).

12.5 INFORMATION BIAS 

The previous discussion was concerned with whether the study subjects had the same exposure-
disease association as that which existed in the source population, and we assumed that disease 
and  exposure  were  correctly  classified.  We  will  now  review  the  effects  of  incorrectly 
classifying,  or  measuring,  the  study  subjects’  exposure,  extraneous  factors  and/or  outcome 
status.  When describing errors  in classification of categorical  variables,  the resultant bias is 
referred to as misclassification bias; if the variables of interest are continuous, then we term the 
erroneous result as measurement error or bias. Information bias is a collective term for either 
of  these  biases.  Information  bias  can  alter  the  magnitude  and  direction  of  estimates  of 
association,  in  ways  which  are  not  always  intuitive.  Also,  the  errors  in  classification,  or 
measurement, can affect different measures of association differently (ie  risk ratio versus risk 
difference). Hence, for our purposes, we will focus primarily on the effects of misclassification 
bias on relative measures  of association (RRs and  ORs).  In  the discussion that  follows, we 
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assume the study subject is an individual. Shahar  (2009); Shahar and Shahar (2009) display 
causal diagrams for the encoding, and evaluation of information bias.

We will begin this topic with the basics of misclassification—the most studied of information 
biases.

Example 12.2 Evaluation of potential selection bias based on estimates of sampling 
fractions

The table below displays the (fictitious) frequency of regular daycare attendance in children with and 
without childhood respiratory disease (CRD).

Regular day-care attendance No day-care attendance

Cases 31 16

Controls 25 30

These data indicate an increased risk (OR 2.33; 95% CI 1.04-5.19) of CRD in children who regularly 
attend a daycare versus those who remain at home. 

The remainder of this example is developed for pedagogical purposes only; we do not imply that the 
selection bias shown here actually exists. Suppose we know that selection bias is likely, and we have a 
good idea of the relative selection probabilities. We will adjust the odds ratio, deterministically, using 
the following sampling fractions (sf) to assess the potential impact of the selection bias:

Deterministic Stochastic

sf exposed cases (E+D+) 0.5 triangular (0.4, 0.5, 0.6)

sf non-exposed cases (E-D+) 0.6 triangular (0.5, 0.6, 0.7)

sf exposed controls (E+D-) 0.05 triangular (0.01, 0.05, 0.1)

sf non-exposed controls (E-D-) 0.1 triangular (0.05, 0.1, 0.2)

The deterministic sfs were chosen to reflect our belief that those children who are raised at home (ie the 
unexposed) would be more likely to participate in the study than those who regularly attend daycare. 
We also posit that the cases will have a higher participation level than the controls. While the observed 
OR was 2.33,  the  ‘adjusted’ OR (after accounting for the  sfs) was 1.40; the strength of association 
would be considerably (67%) reduced if these assumed sampling fractions existed.

To demonstrate stochastic sensitivity analysis, suppose we know the likely direction of selection bias 
but we don’t have a precise idea of the actual sfs. We specified a triangular distribution for the sfs as 
shown above (eg the sf for E+|D+ was assumed to have a minimum value of 0.4, a maximum of 0.6 and 
a most likely value of 0.5). This keeps the same direction of bias as before, but now we are uncertain 
about the actual sampling probabilities. The impact of considering the  sfs was to reduce the  OR to 
approximately 1.29 with 95% of the estimates falling between 0.45 and 3.13. (Note This is a stochastic 
process so slightly different results will be obtained with each analysis unless a random number seed is 
specified prior to the analysis).  Once again, note the downward direction of the  OR from what  we 
would have expected to see in the absence of selection bias. Clearly, if selection bias was present, at 
about the same magnitude as we specified here, then the true association was considerably weaker than 
what was observed in the initial study. 
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12.6 BIAS FROM MISCLASSIFICATION

Misclassification  bias  results  from  a  rearrangement  of  the  study  individuals  into  incorrect 
categories because of errors in classifying exposure, outcome, or both. Non-compliance with an 
assigned treatment in a clinical trial can also produce misclassification bias, because the subject 
was  not  actually  receiving  the  treatment  specified.  With categorical  measures  of  exposure, 
outcome, or other covariates, especially dichotomous measures (ie exposed or not, diseased or 
not), the errors of classification can be described in terms of sensitivity and specificity as shown 
in Chapter 5. Here sensitivity (Se) for a given event (eg exposed) is the probability that an 
individual  with  the  event  will  be  classified  as  having  the  event.  Specificity  (Sp)  is  the 
probability that  an individual  without the event (ie not exposed) will  be classified as being 
without the event. For example, in an early Swedish study, a positive association between folic 
acid use and twinning was reported. Invitro fertilisation (IVF) could be a strong confounder as 
it  is  associated  with  the  use  of  folic  acid  and  twinning,  and  this  could  lead  to  a  positive 
association between folic acid and twinning. Although the authors controlled for IVF, the fact 
of IVF was estimated using a surrogate variable with 40% misclassification. In the absence of 
knowledge on the true effect of folic acid on twinning, Berry et al (2005) used actual data from 
Swedish registries on IVF and determined that even a 5% misclassification of IVF would bias 
the  true  effect  of  folic  acid;  hence  the  need  for  preventing,  and/or  correcting  for, 
misclassification. Buonaccorsi et al (2011) have investigated the impact of misclassification on 
tests  for  trend  in  the  exposure-disease  association  with  emphasis  on  case-control  studies. 
Egleston et al (2011) have investigated the effects of misclassification resulting from ‘fatigue’ 
in surveys (question order effect); the effects differ by model type (linear vs logistic) and are 
not intuitive.    

12.6.1 Non-differential misclassification of exposure

The tabular data layout is the same as shown in Table 12.1. The true cell values for the study 
group are represented by a1,  b1,  a0, and b0, with m1 diseased and m0 non-diseased, n1 exposed, 
and n0 non-exposed subjects. The observed cell values will be denoted with the prime symbol as 
a1', b1', a0', and b0'.

If  misclassification  of  the  exposure  and  outcome  are  independent  (ie  errors  in  classifying 
exposure are the same in diseased and non-diseased animals and vice-versa when classifying 
disease  in  exposed  and  non-exposed  subjects),  then  the  misclassification  is  called  non-
differential. With non-differential misclassification for exposure we have: 

Se E∣D+=SeE∣D-=Se E and/or SpE∣D+=SpE∣D-=SpE

where  SeE is the sensitivity of exposure classification and  SpE is the specificity of exposure 
classification.

How do these  errors  relate  to  our  observed  data?  We begin  by assuming misclassification 
frequencies for exposure, denoted as SeE and SpE, and assuming SeD+=SpD-=100%. The true cell 
frequencies are shown in the left column and the observed frequencies in the right column of 
Table 12.2. Clearly, the observed cell values are a mixture of correctly and incorrectly classified 
study subjects.  Since  we are  only misclassifying  exposure  in  this  example,  the  number  of 
diseased  and  non-diseased  subjects  represents  the  true  number  of  subjects  in  each  health 
category.  With dichotomous  exposures  and  outcomes,  non-differential  errors  will  bias  the 
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measures  of  association  toward  the  null  (given  that  the  SeE+SpE >1)  (Jaffar et  al,  2003). 
Notwithstanding  this,  Jurek  et  al (2008) note  that  unless  the  classification  errors  are 
independent and  equal, then bias away from the null can occur; thus, the assumption that errors 
are approximately non-differential may not be predictive of bias toward the null. Assumptions 
about non-differential errors should be made only when it is logical that the conditions are met. 
We  would  point  out  however,  that  non-differential  exposure  misclassification  in  ecologic 
studies biases the measures of association away from the null (Chapter 29).

Table 12.2 Relationship between the number of correctly and incorrectly classified 
subjects by exposure status

True number Incorrectly classified number

a1 a1'=SeE*a1+(1-SpE)*a0

a0 a0'=(1-SeE)*a1+SpE*a0

b1 b1'=SeE*b1+(1-SpE)*b0

b0 b0'=(1-SeE)*b1+SpE*b0

The impact of classification errors depend on their magnitude and the actual prevalence of the 
item (ie exposure  or  disease)  being  classified.  Relatively  small  errors  (10–20%)  can  have 
sizable effects on relative risks. Nonetheless, Blair et al (2007) comment that some “exposure 
misclassification  probably  occurs  in  all  studies”.  Thus,  in  judging  the  effects  of 
misclassification  the  actual  likelihood of  that  misclassification  occurring  and  its  magnitude 
should be considered. A numerical example of the impact of non-differential misclassification 
is shown in Example 12.3. 

Whereas  in  cohort  and  cross-sectional  studies,  the  assumption  that  any errors  of  exposure 
classification  are  non-differential  may  be  logical  and  valid,  in  case-control  studies,  the 
assumption of non-differential errors is often open to question (see below). 

12.6.2 Evaluating non-differential exposure misclassification

A few moments  investigating  small  changes  in  the  estimated  sensitivity  and  specificity  of 
exposure classification (based on Table 12.2) will convince you that they can produce large 
changes in the observed association. Indeed, the variability in the data arising from these small 
changes  can  be  much  more  dramatic  than  changes  that  would  be  expected  from sampling 
variation. Jurek  et al (2006) stressed that quantitative methods are available to estimate the 
effect of, or correct for, these errors. Given that we often lack knowledge of the true SeE and SpE 

values, we view this process more as evaluation than ‘correction’. However, the quantification 
of potential effects provides valuable information that aids interpretation of study results.

As an introduction to this process (see Fox et al (2005)), if the most likely values of SeE and SpE 

are known, we can correct the observed classifications for the errors. Because we rarely know 
the  true  values  of  SeE and SpE,  we use  this  approach  to  evaluate  the  likely  direction  and 
magnitude  of  bias  that  a  range  of  reasonable  estimates  might  produce,  not  necessarily  to 
‘correct’  for  classification errors.  Nonetheless,  knowing the  ‘algebra’ behind these methods 
should aid our understanding of the process. Assuming non-differential errors, we can use the 
following approach to reclassify the study group. Since b1'+b0'=b1+b0=m0, we can solve for the 
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number of exposed controls b1 as:

b1=
b1 '−1−SpE∗m0

Se ESpE−1  Eq 12.3

Similarly, we can solve for the number of exposed cases a1 as:

a1=
a 1 '−1−SpE∗m1

SeESpE−1 Eq12.4
with b0 and a0 determined by b0=m0-b1 and a0=m1-a1. We now complete the ‘adjusted’ 2X2 table 
cell values and compute the estimate of the true OR. This process can also be used to assess the 
effect of differential errors in exposure status by repeating the process separately in each of the 
case and control groups using the appropriate estimates of SeE and SpE . 

Fox  et al (2005) and Orsini  et al (2008) have implemented this approach for evaluating and 
correcting misclassification errors in case-control studies with appropriate software code. Thus, 
we can ‘plug-in’ reasonable estimates of  SeE and SpE to ascertain the deterministic impact of 
classification errors.  Example 12.4 shows an evaluation of the effect  of misclassification of 
exposure using the data presented in Example 12.2. 

In this process, if we obtain ‘impossible’ results; this means that the ‘plug-in’ values used are 
not consistent with the data, so the actual error risks must differ from the values being used for 
‘corrections’.  In  attempting  to  obtain  better  estimates  of  actual  Se and  Sp  from  our  own 
validation, or external  datasets, Lyles  et al (2007) provide a test  of ‘transportability’  which 
ascertains  if  the  estimates  of  errors  in  different  datasets  are  similar.  They  also  provide  a 
likelihood ratio test to ascertain if the errors should be considered to be differential. 

In general, when exposure prevalence is low, lack of specificity produces more errors than lack 

Example 12.3 Impact of non-differential misclassification of exposure

In this (fictitious) example, we first assume that there is no misclassification; hence, the true study 
group structure in this example is:

Exposed Non-exposed Total

Diseased 90 70 160

Non-diseased 210 630 840

Total 300 700 1000

The true  OR  is 3.86. If we now assumed an exposure sensitivity of 80% and an assumed exposure 
specificity of 90%, we would expect to have the following observed cell numbers (calculations shown):Exposed Non-exposed Total

Diseased 90*0.8+0.1*70=79 70*0.9+90*0.2=81 160

Non-diseased 210*0.8+630*0.1=231 630*0.9+210*0.2=609 840

Total 300* 0.8+700*0.1=310 700*0.9+300*0.2=690 1000

Note Exposure misclassification does not affect the disease status totals, only the exposure category 
totals. As predicted, with non-differential errors the odds ratio has been reduced from 3.86 to 2.57.
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of sensitivity.  Walter  (2007) notes that the attributable fraction is not biased if sensitivity is 
perfect; however, if perfect sensitivity is achieved at a cost of substantially reduced specificity 
then the precision of the attributable fraction estimate can be decreased. Frost and White (2005) 
describe methods for correcting errors in time-varying risk factors in longitudinal studies, and 
demonstrate that some frequently used methods do not work adequately in this context.

Example 12.4 Evaluating exposure misclassification

The  original  data  are  shown  in  Example  12.2. Here,  as  examples  of  evaluating  potential 
misclassification bias, we have chosen the 3 different scenarios (ranges of errors and approaches to 
evaluation) shown in the table below; the impact of these errors on the observed OR is also included.

Scenario 1
Deterministic with

Non-differential errors

Scenario 2
Deterministic with
Differential errors

Scenario 3
Stochastic with

Differential errors

Se Cases 0.8 0.9 uniform(0.85–0.95)

Sp Cases 0.95 0.85 uniform(0.82–0.88)

Se Controls 0.8 0.8 uniform(0.7–0.9)

Sp Controls 0.95 0.95 uniform(0.92–0.98)

Observed OR 2.33 2.33 2.33

Adjusted OR 3.71 1.81 1.95 (median)

Scenario  1 The  SeE and SpE of  assessing  regular  daycare  attendance were  assumed  to  be  non-
differential (ie equal in the case and control groups) and were assumed to be a single set of values. 
Note The  adjusted  (assumed  closer  to  true)  OR is  larger  than  the  observed  OR.  As  expected, 
misclassification bias reduced the OR.

Scenario 2 The  SeE and SpE were assumed to be differential (SeE higher in cases and SpE higher in 
controls) and were assumed to be a single set of values. Note Now the adjusted OR is closer to the null 
value than the observed value. Misclassification bias has resulted in a bias away from the null.

Scenario  3 The  SeE and SpE were  assumed  to  be 
differential  (SeE higher  in  cases  and SpE higher  in 
controls) and but were now randomly selected from 
the  uniform  distributions  shown.  (A  uniform 
distribution is one which any value within the range 
specified is equally likely.) The median value for the 
adjusted OR from 2,000 simulations was 1.95 (similar 
to  the  deterministic  estimate).  A  distribution  of 
estimated  values  is  shown  in  Fig.  12.2. Note The 
adjusted OR is now closer to the null value than the 
observed value. Misclassification bias has resulted in 
a bias away from the null, and 95% of the adjusted 
values fell in the range of 1.72 to 2.16.

As these scenarios demonstrate, misclassification can 
produce  considerable  bias.  However,  one  needs  to 
have reasonable estimates of the ‘error rates’ in order 
to assess the direction and extent of bias the errors 
produce.

Fig. 12.2 Distribution of adjusted OR 
from stochastic analysis
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12.6.3 Non-differential misclassification of disease in cohort studies

Here the same concepts of classification errors arise as with exposure misclassification except 
that we now focus on errors in classifying health status in cohort studies. With non-differential 
misclassification for disease we have

Se D∣E+=SeD∣E-=SeD and/or SpD∣E+=SpD∣E-=SpD

where  SeD is  the  sensitivity  of  disease  classification  and  SpD is  the  specificity  of  disease 
classification. There are 2 components to disease classification in cohort studies and they have 
different impacts on the association measure. First, we need to establish the health status of all 
study subjects at the initiation of follow-up in order to exclude prevalent cases. Second, we 
need to identify the new cases of the outcome that develop during the study period. 

With respect to establishing the initial health status,  Pekkanen  et al (2006) demonstrate that 
imperfect assessment of the disease status at the start of a cohort study can bias subsequent 
measures of association. Imperfect sensitivity fails to exclude subjects with the outcome at the 
study outset; imperfect specificity has less of an impact. The equations to estimate the impact of 
this bias are complicated and have no simple arithmetic solution. However,  Pekkanen  et  al 
(2006) showed that non-differential misclassification of disease at baseline can lead to over- or 
underestimation  of  the  true  incidence  risk  ratio,  because  the  observed  incidence  risk  ratio 
reflects both the association at baseline and at follow-up. This underscores the need to carefully 
exclude all prevalent diseased subjects from the study using a sensitive test for disease at the 
initiation of the study.

The impact of errors in the diagnosis of the outcome during follow-up is similar to the impact of 
exposure  errors.  For  binary  outcomes  non-differential  errors  bias  the  association  measure 
toward the null; the impact of differential errors in classifying the outcome are more difficult to 
predict.  Adjusting for  these errors  is  similar  to the process  discussed in  Section 12.6.2 for 
exposure-related errors. Luan et al (2005) note that it is not always beneficial to adjust binary 
outcomes for misclassification because the increase in variance of the OR offsets the correction 
for bias. 

12.6.4 Non-differential misclassification of disease in case-control studies

Because  of  the  often  unknown  sfs  in  case-control  studies,  the  approach  to  correcting  for 
diagnostic errors that are applicable in cohort studies do not apply to case-control studies unless 
SpD=1.00. In that instance, imperfect disease sensitivity does not bias the  RR or  IR, and only 
biases  the  OR  if  disease  frequency  is  common.  The  key  here  is  that  it  pays  to  verify  the 
diagnoses of the cases so that there are no false positive cases, as the association measures will 
not be biased even if the diagnostic SeD is less than 100%.

When SpD <1,  non-cases will be included in our case series. Hence, in a case-control study, if 
we take all the apparent cases for our study, we will be including SeD*M1 of the true cases and 
(1-SpD)*M0 false positives as cases. Usually, we take only a fraction (sf) of the apparent non-
cases as controls,  hence ultimately,  we will  include a small  number of false negative cases 
(sf*(1-SpD)*M1) and a much larger number of true non-cases (sf*SpD*M0). Thus, in the study 
group, the case-control sensitivity will be

Se cc=SeD /SeDsf∗1−SpD  Eq 12.5
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and the case-control specificity will be 
Spcc=sf ∗SpD /1−SpDsf ∗SpD Eq 12.6

Both of these could be far from the true population values of sensitivity and specificity. Thus, 
external estimates of  SeD and  SpD cannot be used to correct  misclassification in case-control 
studies. Also, estimates of diagnostic  SeD and  SpD obtained from case-control study subjects 
cannot be used to estimate the population SeD and SpD values.

12.6.5 Misclassification of both exposure and disease

As noted earlier, if one works through many examples using realistic error rates, it becomes 
clear  that  misclassification  bias  can  create  much  more  uncertainty  in  our  measures  of 
association than sampling variation. Thus, we need to pay close attention to reducing these 
errors whenever possible. Although it is possible to conduct simultaneous adjustment for errors 
in exposure and outcome, in cohort or cross-sectional data, most researchers prefer to evaluate 
(what if?) for the more important errors or make the adjustments for one set of errors at a time. 

12.6.6 Differential misclassification of exposure or outcome

If the errors in exposure classification are related to the status of the outcome under study, the 
errors are called differential. Here, the SeE and SpE differ by disease status

Se E∣D≠SeE∣D- and/or SpE∣D+≠SpE∣D-

In a similar manner, for outcome classification, with differential errors, the SeD and/or SpD of 
classifying disease status differs overexposure levels

Se D∣E+≠SeD∣E- and/or SpD∣E+≠SpD∣E-

The resulting bias in the measure of association might be in any direction (eg  an association 
might  either  be exaggerated  or  underestimated).  A few minutes  with a  spreadsheet  playing 
‘what-if’ will help convince you of this. 

In  case-control  studies,  recall  bias is  one  illustration  of  (likely)  differential  errors  in  that 
‘affected’ subjects (ie cases) might be expected to have an increased sensitivity, and perhaps a 
lower specificity than non-affected subjects in recalling previous exposures. We developed an 
example  of  this  bias  in  Example  12.3.  Chyou  (2007)  studied  the  impact  of  differential 
misclassification of exposure among cases and controls, and confirmed that differential errors 
make the direction of bias difficult to predict.

12.6.7 Reducing misclassification errors

The specific ways that can be used to reduce misclassification errors are highly context specific. 
Nonetheless, in general, the frequency of errors can be reduced by

• using clear and explicit guidelines
• having well-trained consistent research personnel
• ‘double-checking’  the  exposure  and  disease  status  whenever  possible  (eg seek 

confirmation  of  information  whenever  possible  through  laboratory  results,  or  other 
confirmatory records of exposure or disease)
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• validating the test or survey instrument prior to its widespread use is certainly preferable 
(see Chapter 3 for some suggestions)  to trying to correct for misclassification errors after 
the fact

• collect specific rather than general exposure data as the latter often lead to attenuation of 
the  true  association  between  exposure  and  outcome  (Friesen et  al,  2007).  When 
attempting to obtain specific exposure information (eg pesticide or antibiotic use) either 
ask  detailed  questions,  or  ask  for  bottle  labels,  or  have  the  participant  identify  the 
exposure item from a portfolio of pictures  (Acquavella et al, 2006). Be aware that self-
reported  exposures  may not  correlate  very well  with objective  measures  of  exposure 
(Radon et al, 2007), and don’t make assumptions about exposures. For example, Jones et  
al (2006) found that  household  water  supply was  a  poor  indicator  of  drinking water 
source for subjects on private water systems.

In addition to reducing errors, because the results of non-differential misclassification generally 
are predictable, we often recommend ‘blind’ techniques for survey personnel to help ensure that 
the errors are equalised. This is a good general strategy, and can be applied to the perusal of 
case records, interview information etc. 

12.6.8 Misclassification of extraneous variables

If  a confounder is measured with error,  it  is impossible to fully control  for its confounding 
effect. If the misclassification is non-differential, and in the absence of qualitative interaction, 
the ‘adjusted’ measure of association will lie between the crude measure and the true measure 
(Ogburn and Vanderweele, 2012). The bias can be large if the true effect of the exposure is 
weak  and  the  confounder  is  strongly  related  to  exposure  and  the  outcome.  In  the  face  of 
misclassification of the confounder,  it  becomes difficult to know whether or not one should 
control for the confounder (see Chapter 13). A general recommendation is that the impact of 
controlling an extraneous variable should only be investigated when little misclassification of 
the confounder exists, or until  after  adjustments for the errors have been made. Berry  et al 
(2005) demonstrate that using a badly misclassified confounder to control a bias can lead to 
incorrect  conclusions.  Similarly,  Murad and Freedman  (2007) used ‘corrected’  estimates  of 
misclassified variables before examining for interaction. Clearly, one must focus on reducing 
misclassification error in all variables, not just exposure and outcome, if valid analyses and 
inferences are to be made. 

12.6.9 Misclassification of multinomial exposure or disease categories

With several levels of exposure, the effects of classification errors are less predictable than with 
dichotomous variables.  Fosgate  (2006) demonstrated that the likelihood ratio could be biased 
away  from  the  null  when  dividing  a  continuous  outcome  into  categories.  Non-differential 
misclassification in a multinomial variable might bias measures of association in intermediate 
exposure levels away from the null, and might even reverse the direction of the ORs for these 
levels. This becomes an important issue when we use regression models because, while these 
models  allow  for  error  in  the  measurement  of  the  outcome,  they  assume  no  error  of 
measurement of the predictor variables. Non-differential underestimation of exposure at high 
levels might cause a threshold effect  of exposure to appear  as a dose-response relationship. 
Likewise,  non-differential  misclassification of both  E and  D status  when the errors  are  not 
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independent might lead to bias away from the null, particularly when the prevalence of both 
exposure and disease are low. Leeflang et al (2008) noted that data driven choices of cut-points 
often lead to overly optimistic assessments of error levels, but the bias tends to decrease with 
increasing sample size. 

12.7 VALIDATION STUDIES TO CORRECT MISCLASSIFICATION

A thorough review of  the use of validation studies  to correct  misclassification is  given  by 
Thurigen et al (2000) especially as they relate to case-control studies. The 4 main approaches 
reviewed  are  regression  calibration,  maximum  likelihood,  semi-parametric  and  Bayesian 
methods. One summary finding is that we need to be aware of the limitations in using ‘simple’ 
approaches to correct for misclassification, but unfortunately the more advanced methods are 
not  user-friendly.  Two-stage  samples,  mentioned  in  Chapter  10,  are  useful  for  validation 
purposes  and  this  approach  is  also  elaborated  in  Section  12.8.  For  validation,  we  select  a 
subsample of study subjects and verify their exposure and/or disease status. Recall  that,  for 
direct  estimates  of  sensitivity  and  specificity,  we  are  determining  the  probability  of  the 
observed state (D'), given that we know the true state of the individual (D). That is:

p D'=1∣D=1 

whereas when correcting for misclassification, we are attempting to determine the probability 
of the true state, given knowledge of the observed state:

p D=1∣D'=1 

As noted previously,  a major problem with post-hoc adjustments of misclassification is that 
they are very sensitive to changes in the estimates of the error  rates used in the correction 
process. Thus, unless there is an extremely thorough validation procedure, the estimates of error 
might vary sufficiently such that different ‘corrected’ results could arise from applying a range 
of apparently sensible choices of the correction factor. Lyles et al (2007) discuss correcting for 
misclassification  using  internal  data  (as  in  a  2-stage  validation  study)  and  also  using  data 
external to the study. The authors note that it is very important for the sensitivity and specificity 
of misclassification to be equivalent in the 2 datasets (transportable) before attempting to adjust 
for the errors. García-Zattera et al (2010) have developed a Bayesian technique based on hidden 
Markov models for correcting misclassification errors, without the need for external data. Lyles 
et  al  (2011) provide  a  helpful  guide  to  correcting  misclassification  errors  in  the  outcome 
variable when using logistic regression (including case-control studies). They provide computer 
code  for  use  with  both  internal  and  external  validation  datasets.  Validation  to  correct  for 
measurement error is described in the next section.

12.8 MEASUREMENT ERROR 

Errors in measuring quantitative factors can lead to biased measures of association and this fact 
seems to be ignored frequently (Jurek et al, 2006). The bias can arise either because the variable 
is not measured  accurately  (ie a systematic bias), or due to a lack of  precision  (see Section 
5.2.2). In turn, lack of precision might arise from either variability in the test per se, or because 
the  substance  being  measured  varies  within  an  individual  (for  physiological  reasons)  and 
consequently, repeated measures are needed to provide a valid overall indicator of the status of 
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the individual (eg a mean of 2 or more samples). Non-differential measurement error tends to 
bias the dose-response curve towards the null (Rhomberg et al, 2011). 

Considerable work on the issue of measurement error and the general approach to correcting 
measurement bias has been published in recent years  (Freedman et al,  2008; Guolo, 2008). 
Before  discussing  techniques,  it  is  worthwhile  to  note  that  Walter  et  al (2007) have 
demonstrated that correcting for measurement error  in baseline variables produces a bias in 
controlled trials. However, in observational studies, as the groups being compared might differ 
at  the start  of  the  follow-up period,  the  variables  of  concern  will  need  to  be controlled  to 
prevent  confounding.  In  addition,  when  sample  sizes  are  small  but  the  between-group 
differences  are  large,  or  if  the  sample size  is  large,  it  is  generally  advisable  to  correct  for 
measurement error in baseline values (eg the initial level of the outcome variable). Correction 
of measurement error can be accomplished using the following approaches.

To introduce  the  concepts  of  correcting  measurement  errors,  let’s  suppose  that  we  have  2 
quantitative exposure factors and we wish to estimate their association with either a binary or 
continuous outcome. Allowing that the  Y-variable could represent the logistic transform of a 
binary outcome, or a  continuous outcome variable in a  linear  model,  we could express  the 
uncorrected ‘naive’ model as:

Y =0 u1u X 1 '2 u X 2 ' Eq 12.7

where the subscript ‘u’ indicates that the coefficients are biased because the predictor variables, 
here denoted as X', are measured with error. There is a variety of approaches to correcting for 
errors; one robust and relatively simple method is called the regression calibration estimate 
(RCE).  To obtain the RCE, we take  a  random subset  of  the study subjects  and perform a 
validation  study  so  that  the  true  values  for  X1 and  X2 are  obtained.  Now,  assuming  non-
differential measurement errors, we regress each true X variable on the set of observed predictor 
variables. That is:

X 1=011 X 1 '12 X 2 ' Eq 12.8
X 2=021 X 1 '22 X 2 ' Eq 12.9

Then, we calculate the estimated (ie the predicted) X values for all the study subjects, denoted 
here as  X1rc and X2rc using the coefficients from these equations. Then, we regress  Y on these 
estimated values.

Y =0rc1rc X 1rc2rc X 2rc Eq 12.10

The coefficients  β1rc should provide less biased estimates of the true  X-Y association than the 
naive estimates.  The standard errors need to be adjusted for the calibration process and are 
explained  in  Freedman  et  al (2008),  and  implemented  in  Hardin  et  al (2003).  The  above 
approach has a crucial assumption—namely non-differential measurement errors. If differential 
errors are suspected, the approach needs to be modified (Freedman et al, 2008). The regression 
models chosen for the  X variables depend on the assumed distribution of the  X variables (ie  
continuous or binary),  and the validity of the approach to correcting measurement errors,  in 
part, depends on the fit of the above models. Guo and Little  (2011) extend this approach to 
situations where the errors  are heteroscedastic.  Guo  et  al (2012) propose a  simple multiple 
imputation method that corrects for covariate measurement error in regression analysis, using 
externally  available  calibration  data.  Their  procedure  relies  on  multiple  imputation  and 
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functions better that regression calibration when measurement error is substantial. Murad and 
Freedman  (2007) apply  regression  calibration  to  correcting  measurement  error  before 
examining interactions  in linear  models.  Wang  et  al (2008) describe  methods to adjust  for 
missing data, measurement error and misclassification in longitudinal studies.

12.9 ERRORS IN SURROGATE MEASURES OF EXPOSURE

Often,  epidemiologists  focus  on the effects  of  a  complex  exposure  factor.  For  example,  in 
studies of the impact of air pollution from oil- and gas-processing emissions on human health, 
what is the appropriate  measure of air pollution? In this, and other examples,  the exposure 
might  be  a  complex  mixture  of  agents  (or  factors),  doses  and  duration,  and  it  will  take 
considerable  thought  as  to  what  components  of  exposure  to  measure  and  which  to  ignore. 
Which of the hundreds of polluting compounds does one measure? The most abundant, the least 
expensive to monitor, the most toxic? If a number of agents are measured, how will they be 
modelled? The answers to these questions (yes, there undoubtedly will be more than one correct 
answer) will largely involve knowing context-specific biological background information. 

The decisions about surrogate measures must then be translated into what will be measured, and 
how the various axes of exposure will be analysed in order to achieve the study objectives. For 
example,  will  the exposure be measured and analysed  on a continuous scale (the preferred 
option) or will it be categorised into a dichotomous or ordinal exposure variable? If levels of 
specific  agents are highly correlated,  which one should be analysed,  or should a composite 
variable be created? Although categorising continuous data is not the preferred choice, it might 
reflect  the reality of the exposure measurements better than the more refined measures. For 
example,  if  most  levels  of  exposure  are  at  or  near  the  laboratory  sensitivity  of  the  test 
procedure, it might be best to dichotomise into non-exposed (for most of the data) and exposed 
for the limited number of measurements that are clearly above accepted levels of exposure. Of 
course the measured factors,  being surrogates,  might still fail  to reflect the actual exposure. 
Thus, even if the variables measured are, in fact, measured without error, we need to be aware 
that  because  the variables  are  surrogates,  we could  still  be  left  with measurement  error  in 
respect of the true exposure. 

One solution might be to change the questions asked. Instead of asking about the effects of ‘air 
pollution’, ask about the effects of the measurable components (eg sulphur dioxide, then factors 
such as H2S or particulates would be extraneous variables). More focused questions still require 
the measurement and control of other factors that might confound or interact with the exposure 
but the more focused answers might allow better progress toward solving the issue(s).

12.10 THE IMPACT OF INFORMATION BIAS ON SAMPLE SIZE 

It  is  apparent  that  classification  and  measurement  errors  can  have  a  serious  impact  on the 
measures  of association. With non-differential  misclassification of categorical  variables,  the 
measures are biased toward the null. And, under classical measurement error models, the same 
is true for continuous variables. This has led some to conclude that in planning a study, the 
projected loss of power due to these errors should be considered and the sample size increased 
accordingly (Devine, 2003). The formulae used in Chapter 2 for sample size estimates assumed 
that  the  p1 and  p2 were  true  population  levels.  However,  because  the  outcomes  might  be 
measured with an imperfect test, survey question, or diagnostic procedure the observed disease 
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frequencies would be as follows:
p1 '=Se p11−Sp1− p1 and p2 '=Se p 21−Sp 1− p2

The difference  p1'-p2' is usually less than the difference p1-p2 and it is the adjusted estimates 
(and  their  variances)  that  should  be  used  to  estimate  sample  size  to  account  for  the 
misclassification. Some care is needed, however, because, if we are using the observed outcome 
levels from previous studies where outcomes were measured with error, these would already 
represent p1'  and p2' and need not be adjusted further.  Obuchowski (2008) generalises sample-
size estimation to account  for misclassification,  response bias  and other  features  of  clinical 
trials with emphasis on evaluating screening programs. 
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