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LINEAR REGRESSION

OBJECTIVES

After reading this chapter, you should be able to:

 1. Identify  if  least  squares  regression  is  an  appropriate  analytical  tool  for  meeting  your 
objectives given the characteristics of your data. 

 2. Construct  a  linear  model to meet your  objectives,  including control  of confounding and 
identification of interaction. 

 3. Interpret the regression coefficients from both technical and causal perspectives.

 4. Convert  nominal,  ordinal,  or  continuous  predictor  variables  into  regular  or  hierarchical 
variables and interpret the resulting coefficients correctly. 

 5. Assess  the model  for  linearity  between  continuous predictors  and the  outcome,  and for 
homoscedasticity and normality of residuals. You should also be able to identify appropriate 
transformations of the outcome or predictor variables to help ensure that the model meets 
these assumptions. 

 6. Detect and assess individual observations as potential outliers, leverage observations, and/or 
influential observations. 

 7. Identify study designs that have data which require a time-series approach to analysis.
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14.1 INTRODUCTION

Up to this point, most of the examples in which we relate an outcome to an exposure have been 
based on qualitative outcome variables—that is variables that are categorical or dichotomous. 
Here  we  describe  linear  regression  that  is  suitable  for  modelling  the  outcome  when  it  is 
measured on a continuous or  near-continuous scale.  Examples of  these would include birth 
weight, blood pressure, body mass index and, in some circumstances, disease frequency at a 
regional (eg county) level. Recent work has also shown that linear regression can be used to 
model incidence risk differences (Cheung, 2007). One example to demonstrate the use of linear 
models is Abu-Zidan and Rao (2003), in which multiple regression was used to identify factors 
related to the severity of injury in falls from horses (based on a continuously distributed injury 
severity score). Two journal articles which provide a readable introduction to linear regression 
are Marill (2004a; 2004b).

In regression analysis, the relationship between the outcome and the predictors is asymmetric— 
we think the value of one variable (the outcome) is caused by (or we wish to predict it by) the 
value or state of another variable (the predictor(s)). (Note The outcome and predictor variables 
are sometimes referred to as dependent and independent variables, respectively.) We will refer 
to the predictor variable(s) of primary interest as the exposure variable(s) and other predictors 
as extraneous variables. The predictor variables can be measured on continuous, categorical, or 
dichotomous scales.

14.2 REGRESSION ANALYSIS

When only one predictor variable is used, the model is called a simple regression model. The 
term ‘model’ is used to denote the formal statistical formula, or equation, that describes the 
relationship we believe exists between the predictor and the outcome. For example, the model

Y =01 X 1 Eq 14.1

is  a  statistical  way of  describing  how the value  of  the  outcome variable Y changes  across 
population groups formed by the values of the predictor variable X1. More formally, it says that 
the mean value of the outcome Y for any value of the predictor variable is determined using a 
starting point  β0,  when  X1 has the value 0,  and for  each unit  increase in  X1 the outcome  Y 
changes by β1 units. β0 is usually referred to as the constant, or the intercept term, whereas β1 

is usually referred to as the  regression coefficient. The  ε component is called the  error and 
reflects the fact that the relationship between X1 and Y is not exact. The errors are assumed to be 
normally and independently  distributed (ε~N(0,σ2)).  We estimate these  errors  by  residuals; 
these are the difference between the observed (actual) value of the observation and the value 
predicted by the model for a given value of X1. 

The βs represent population parameters which we estimate based on the observed data and our 
model. We will refer to predictor variables as  Xs. In general, we will denote the number of 
observations as n. Thus, our predicted values are:

Y i=01 X 1i , i=1, , n Eq 14.2

where Y i is the predicted value of the outcome for the ith observation at the observed value of 
the predictor X1i. (Note While it is common practise to use a ‘^’ to designate predicted values
Y i  or estimated coefficients  , we will generally omit the ‘^’ because whether we are referring 
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to observed data and true population parameters or predicted values and estimates of parameters 
is generally obvious from the context. Similarly, in Eq 14.2, specific observations are denoted 
by the subscript i; however, in most instances, for simplicity, we will omit reference to specific 
observations.) 

Bear in mind that in using X-variables to predict Y in a regression model there is no necessary 
underlying  assumption  of  causation;  we  might  just  be  estimating  predictive  associations. 
Nonetheless,  we often use terms such as ‘X affects  Y’,  or the ‘effect  of  X on  Y  is...’  when 
interpreting the results  of our  models.  For clarity,  we will  always  try to indicate  if  we are 
making ‘causal’ assumptions.

Almost without exception, the regression models used by epidemiologists will contain more 
than one predictor variable. These belong to the family known as multiple regression models, or 
multivariable  models.  (Note that  multivariate indicates  2  or  more  outcome  variables; 
multivariable denotes more than 1 predictor.) With 2 predictor variables, the regression model 
could be written as: 

Y =01 X 12 X 2 Eq 14.3

which suggests that we can predict the value of the outcome Y knowing the baseline (intercept 
or constant) β0 and the values of the 2 predictor variables (ie the Xs). The parameters β1 and β2 

describe the direction and magnitude of the association of  X1 and  X2 with  Y.  More generally, 
there can be as many X-variables as needed (the number of predictors is often denoted with k). 
A major difference from the simple regression model is that, in the above multivariable model, 
β1 is an estimate of the effect of  X1 on  Y after controlling for the effects of  X2, and  β2 is the 
estimated effect of X2 on Y after controlling for the effects of X1. Expressed another way, β1 is 
an estimate of the effect of  X1 on Y among individuals that have the same value of  X2. As in 
simple regression, the model suggests that we cannot predict  Y exactly,  so the random error 
term (ε) takes this into account. Thus, our prediction equation is: 

Y =01 X 12 X 2 Eq 14.4

where Y is the predicted value of the outcome for specific values of the 2 predictors X1 and X2. 
In this equation,  β1 describes the number of units change in  Y as  X1 changes by one unit,  X2 

being held constant, whereas β2 describes the number of units change in Y as X2 changes by one 
unit, X1 being held constant. 

In observational studies, incorporating more than one predictor almost always leads to a more 
complete understanding of how the outcome varies, and it also decreases the chance that the 
regression  coefficients  for  exposures  of  interest  are  biased  by  confounding  (extraneous) 
variables. Assuming that we have not included intervening variables (see Chapter 13) or effects 
of the outcome in our model, the βs are not biased (confounded) by any variable included in the 
regression equation, but can be biased if confounding variables are omitted from the equation. 
From a causal perspective, if intervening variables are included, the coefficients do not estimate 
the causal  effect  (see Section 14.7). Unfortunately,  one can never be sure that there are not 
other variables that were omitted from the model that also affect  Y and are related to one or 
more of  the  Xs.  These  X-variables  could be unknown,  not  thought  (at  least  initially)  to  be 
important, or (as often happens) not practical/possible to measure. In other circumstances, we 
might  have  numerous  potential  confounders  and  need  to  decide  on  the  important  ones  to 
include.  As  noted in  Chapter  15,  a  major  trade-off  in  model-building  is  to  avoid  omitting 
necessary  variables  which  could  confound  the  relationship  described  by  the  βs,  while  not 
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including variables of little importance in the equation as this will increase the number of  βs 
estimated and may lead to poor performance of the equation on future datasets. Also, having to 
measure unnecessary variables increases the cost of future work. 

In  order  to  assist  with  the  principles  of  describing  multiple  regression,  we  will  develop 
examples from a dataset concerning the birth weights of babies in the USA in 2007. The names 
of the variables used in this chapter and their descriptions are shown in Table 14.1; further 
details are in Chapter 31. 

Table 14.1 Selected variables from the dataset bwt5k
Variable Scale of 

measurement
Description

obs N/A observation number

bwt continuous birth weight (gm)

mrace_c4 nominal mother's race (4 categories) also as 3 categories 
(mrace_c3)

white dichotomous mrace_c4 recoded to white vs other

meduc_c4 ordinal mother's education

college dichotomous meduc_c4 recoded to college vs <college

tbo ordinal total birth order

tbo_c2 dichotomous tbo recoded to primiparous vs multiparous

multbrth dichotomous single birth vs multiple babies (twins, etc)

wtgain continuous maternal weight gain (lb)

wtgain_c2 wtgain recoded to low (<30 lb) and high (>30 lb)

cig_1, cig_2, cig_3 continuous cigarettes 1st, 2nd, and 3rd trimesters

gest continuous gestation length (weeks)

14.3 HYPOTHESIS TESTING AND EFFECT ESTIMATION

14.3.1 The ANOVA table

The idea behind using regression is that we believe that information in the X-variables can be 
used to predict the value of  Y. Now, if we have collected the data, we know the observed  Y-
values and we can describe the distribution of Y using the mean, variance, and other statistics. 
Relevant statistics for -bwt- were: median=3328 gm and mean (average)=3295 gm, the standard 
deviation was 566 gm and the range was 480 gm to 5,550 gm. 

Without more information, the best estimate of the value of Y for a particular subject would be 
an estimate of central tendency such as the median or mean value. However, if the X-variable 
contains information about the Y-variable, we should be able to do a better job of predicting the 
value of  Y for an individual (baby) than if we did not have that information. The formal way 
this is approached in regression is to ascertain how much of the sums of squares (SS) of Y (the 
numerator of the variance of Y) we can explain/predict with knowledge of the X-variable(s). 
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Table 14.2 Analysis of variance showing decomposition of sums of squares in regression 
model with k predictor variables

Source 
of variation

Sums 
of squares

Degrees of 
freedom

Mean 
squares F-test

Model (or regression) SSM=∑i=1

n
 Y −Y 2 dfM = k MSM = SSM/dfM MSM/MSE

Error (or residual) SSE=∑i=1

n
Y i− Y i

2 dfE = n-(k+1) MSE = SSE/dfE

Total SST=∑i=1

n
Y i−Y 2 dfT = n-1 MST = SST/dfT

In the formulae in the table, Y  is the mean of the Ys, and k is the number of predictor variables 
in the model (not counting the intercept). When the SS are divided by their degrees of freedom 
(df), the result is a mean square, here denoted as MSM (model), MSE (error) and MST (total)
—in other settings we might call these variances, but the jargon in regression is to call them 
mean squares. Formally, this decomposition of the total sums of squares (SST) is shown in the 
second  column of  Table  14.2  (ie SST=SSM+SSE;  also,  dfT=dfM+dfE).  For  our  example, 
gestation length will be the X-variable of interest. The MSE is our estimate of the error variance 
and therefore, also denoted as σ2. Furthermore, σ, the square root of σ2, is called the root MSE, 
or the standard error of prediction (see Example 14.1).

The sums of squares are partitioned by choosing values of the  βs that minimise the SSE (or 
MSE); hence the name ‘least squares regression’. There is an explicit formula for doing this, 
which, in general, involves matrix algebra, but for the simple linear regression model, the  βs 
can be determined using:

0=Y −1 X 1 and 1=∑ X 1i− X 1 Y i−Y /SSX1 with SSX1=∑ X 1i− X 1
2 Eq 14.5

For a small dataset, these computations could be done by calculator, but in practise we always 
use computer software. 

14.3.2 Assessing the significance of a linear regression model

To assess  whether  the  predictors  in  the  model  (collectively)  have  a  statistically  significant 
relationship with the outcome, we use the F-test from the analysis of variance (ANOVA) table. 
The null hypothesis is H0:  β1=β2=...βk=0 (ie all regression coefficients except the intercept are 
zero). The alternative hypothesis is that this is not true—that is, at least one (but not necessarily 
all)  of  the  βs  is  non-zero.  The  distribution  of  the  F-statistic  is  an  F-distribution  with  the 
numerator degrees of freedom equal to dfM and the denominator degrees of freedom equal to 
dfE  (as  given  in  Table  14.2).  In  Example  14.1,  the  F-value  (1,790)  is  highly  significant 
(p<0.001), indicating that the X-variable(s) in the model (-gest- in this instance) explains some 
of the variation in -bwt-. One feature of the ANOVA table that we should always pay attention 
to is the number of observations included in the model. In multivariable models with missing 
data, this number can decrease considerably as more predictors are added to the model.

Some care is necessary when interpreting the model F-statistic, as its meaning changes with the 
method  of  model-building  (Livingston  and  Salt,  2005).  The  F-test  probably  has  a 
straightforward  meaning  only  when  the  Xs  are  manipulated  treatments  in  a  controlled 
experiment, and all comparisons are appropriately planned  a priori. In observational studies, 
the  F-statistic is influenced by the number of variables available for entry,  their correlations 
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with each other, the number actually selected for inclusion in the model, and the total number of 
subjects (sampling units). Most variable selection methods (Chapter 15) choose variables in a 
manner that tends to maximise F; hence the observed F overestimates the actual significance of 
the model. On the other hand, if useless variables are forced into the model with the hope of 
controlling all confounding, the F-statistic might be biased downwards. Sometimes, with highly 
correlated variables in the model, the F-test might be significant, yet the test of the individual 
coefficients might suggest that none of them differ significantly from zero (see Section 14.5).

14.3.3 Testing the significance of a regression coefficient

A t-test with n-(k+1) degrees of freedom (ie the dfE) is used to evaluate the significance of any 
of the regression coefficients (eg the jth coefficient). The usual null hypothesis is H0:  βj=0 but 
any other value of β* can be used in H0: βj=β* depending on the context. The t-test formula is: 

t=
 j−*
SE  j Eq 14.6

Example 14.1 A simple linear regression model of birth weight on gestation length
data = bw5k

A linear regression model with -bwt- as the outcome and -gest- as the sole predictor was fit using the 
birth-weight data. The top left of the table below shows the decomposition of the sums of squares, the 
top right gives details about the regression model.

Number of obs = 5000
F(1,4998) = 1790.09

Source SS df MS Prob > F = 0.0000
Model 422130383 1 422130383 R-squared = 0.2637
Residual 1.1786e+09 4998 235814.6 Adj R-squared = 0.2636
Total 1.6007e+09 4999 320210.4 Root MSE = 485.61

Note that the variance (MS) of -bwt- is 320,210.4 and this is quite a bit larger than the MS residual 
suggesting that gestation length does explain some of the variation in -bwt-. The root MSE has the 
same scale as  -bwt-  (ie grams)  and,  because -gest-  is  associated with  -bwt-,  it  is  smaller  than the 
standard deviation (566 gm) of -bwt-. 

The regression coefficients from the model are shown below.
bwt Coef SE t P>t 95% CI

gest 124.487 2.942 42.31 0.000 118.719 130.255

constant -1513.854 113.868 -13.29 0.000 -1737.085 -1290.623

The coefficient for -gest- suggests that, for each additional week in gestation length, -bwt- increases by 
124.5 gm. Given the SE (2.94) of this statistic, the t-statistic (42.3) is significant at <0.001 so we can 
assume, at this point, that -gest- has an association with (or effect on) -bwt-. This is consistent with the 
95% confidence interval values which do not include 0 (the no-effect level). The CI suggests that a 
reasonable range for the effect of a 1-week change in gestation length is between 119 gm and 130 gm.

We usually do not test the intercept, but it is essential for interpretation of this model as it represents 
the value of the outcome (-bwt- in this instance) when the values of all X-variables in the model have 
the value 0. Of course gestations of length 0 do not exist, so subsequently, we will describe how to 
scale the predictor variable(s) so that the intercept has a sensible interpretation (Section 14.4.1).
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where SE(βj) is the standard error (SE) of the estimated coefficient. This SE is always computed 
as the root MSE times a constant that depends on the formula for the estimated coefficient and 
the values of the  X-variables in the model. Except for the simplest situations, it is not easily 
computable;  however,  it  is  always  given in the computer output from the estimation of the 
model. For a model with only one predictor (X1), the SE of the regression coefficient is: 

SE 1=MSE/SSX1 Eq 14.7

As the formula indicates, both the variance of  X1 and the MSE affect  the standard error.  In 
Example  14.1,  the  t-value  of  42.3  has  a  P-value  of  <0.001  so  we  would  reject  the  null 
hypothesis  that  the true  regression  coefficient  has  the  value  β1=0 which  would indicate  no 
association  of  -gest-  with  -bwt-.  Fig.  14.1 shows the trend  of  increasing birth  weight  with 
increasing gestation length.

Similar to the  F-statistic, the inference to be made based on the P-value associated with the 
calculated t-statistic is often difficult to assess in non-experimental studies. In experiments, the 
Xs are manipulated treatments, or blocking factors, and the observed t-value can be referred to 
tables (of the t-distribution) for a P-value (observed level of significance). The same is probably 
true if the variable being tested in an observational study was of  a priori interest (eg if the 
observational study was conducted to determine the effect of a specific X on Y, given control of 
a set of other variables). However, if a variable selection program was used to sort through a list 
of variables, selecting those with large t-values in the absence of a specific a priori hypothesis, 
then the observed level of significance is higher than the nominal level of significance (usually 
termed α) that you specify for a variable to enter/stay in the equation. Nonetheless, using the P-
value  as  a  guideline  is  a  convenient  and  accepted  way  of  identifying  potentially  useful 
predictors of the outcome. 

Fig. 14.1 Prediction (confidence) intervals for mean (dash line) and new 
observation (dash-dot line)
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14.3.4 Estimates and intervals for prediction

Calculating the point  estimate for predictions  in regression is  straightforward.  The complex 
component is determining the appropriate variance associated with the estimate, because there 
are 2 types  of variation in play.  One source of  variation results  from the estimation of  the 
parameters  of  the  regression  equation  (ie this  is  the  usual  SE).  The  other  is  the  variation 
associated with a new observation (ie the variation about the regression equation for the mean). 
The prediction (confidence) interval for a new observation involves both of these sources of 
variation. 

For  example,  in  a  simple  linear  regression  model,  the  predicted  value  for  a  population  of 
individuals with X1=x* has a SE (designated SEmean; sometimes called the prediction error) of

SEmean Y ∣x
*=  1

n

 x *− X 1

2

SSX1 Eq 14.8

which can be interpreted as the variation associated with the expectation (ie mean) of a large 
number of new observations, with the particular value x* chosen for prediction. Using the data 
in Example 14.1, for a gestation length of 40 weeks, the predicted outcome is 3,466 gm with a 
prediction SE of 7.96 gm. 

The standard error for a new single observation (designated SEobs; sometimes called the forecast 
SE) with predictor value x* is increased because we must account for the additional σ2, as the 
individual predicted value is unlikely to equal its expectation (ie unlikely to exactly equal the 
average value for all individuals with X=x*):

SEobsY∣x*= 11
n

 x *− X 1

2

SSX1 Eq 14.9

Using the data in Example 14.1, for a specific 40-week gestation, the predicted outcome is 3,466 gm 
with a forecast SE of 486 gm. Two points can be made here. First, the variation associated with 
predicting the mean outcome is much less and prediction intervals much narrower than those 
for a specific subject. Second, the further that x* is from the mean value of X1, the greater the 
variability in the prediction. The 95% confidence intervals for the predictions are found using:

95 % CI=Y ±t .05SE Eq 14.10

where the t-statistic has the dfE and SE is either SEmean or SEobs (as noted above).

The association between birth weight and gestation length, as determined by a linear regression 
of -bwt- on -gest-, with prediction intervals for the mean and for a new observation are shown 
in Fig. 14.1.

14.3.5 Interpreting R2 and adjusted R2

R2 describes the amount of variance in the outcome variable that is ‘explained’ or ‘accounted 
for’  by  the  predictor  variables  and  usually  is  called  the  coefficient  of  determination (in 
Example  14.1,  this  is  26.4%).  Given  that  more  than  73%  of  the  variation  in  -bwt-  is 
unexplained, this suggests that we cannot predict birth weight very precisely if we only know 
the  gestation  length.  Perhaps  additional  variables  can  add  to  the  explained  proportion  (a 
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rationale for a multivariable model). One formula for R2 is R2=SSM/SST=1-(SSE/SST). It also 
is  the  squared  correlation  coefficient  between  the  predicted  and  observed  Y-values.  The 
contribution of a specific variable to R2 is one way of measuring the relative importance of that 
variable in the final model. Several indices of importance based on this approach have been 
evaluated (Chao et al, 2008). 

Unfortunately, R2 always increases as variables are added to a regression model which makes R2 

useless for variable selection. However,  R2 can be adjusted for the number of variables in the 
equation (k), and this adjusted value will tend to decline if the variables added contain little 
additional  information  about  the  outcome.  The  formula  for  the  adjusted  R2 is:  adjusted  
R2=1-(MSE/MST).

In multivariable models, the adjusted R2 is slightly lower than the R2. The adjusted R2 is useful 
for comparing the relative predictive abilities of models with different numbers of variables in 
them. For example, if one model has 7 variables and another has 3, the R2 for the model with 7 
might exceed that for the model with 3 (and it always will if the smaller model is a submodel of 
the larger one), but its adjusted R2 might be less. The adjusted R2 is sometimes used as a basis 
for  selecting  potentially  good  models,  but  this  approach  is  not  without  its  drawbacks  (see 
Section 15.8.1). 

When assessing R2 we should be aware that non-random sampling can have a pronounced effect 
on its value. For example, if you select subjects on the basis of extreme X-values, as in a cohort 
study,  you  might  artificially  increase  the  R2.  It  would  be  appropriate  to  use  regression  to 
estimate the effect of X on Y, but the R2 per se would be of little value. In a similar manner, if 
the  X-values are limited to a narrow range, the  R2 might be very low. It is perhaps useful to 
point out that if subjects are sampled based on their Y-values, we cannot use linear regression to 
assess the effect of selected X-variables on Y.

Before moving on to multivariable models, we include Example 14.2—a regression model with 
a dichotomous predictor, namely one of our key exposure variables -multbrth-.

14.3.6 Assessing the significance of groups of predictor variables

Often it is necessary to simultaneously evaluate the significance of a group of X-variables, as 
opposed to just one variable. For example, this approach should be used when a set of indicator 
variables has been created from a nominal variable (Section 14.4.2), or if it is desired to add or 
remove more than one variable at a time (eg a set of variables relating to physical activity or 
nutrition) from the model. 

In order to assess the impact of the set of variables, we note the change in the error (residual) 
sum of squares (SSE) before and after entering (or deleting) the set of variables. (Alternatively, 
one might use the model sum of squares, as indicated below.) That is, note SSE full with the 
variable set of interest in the model (called the ‘full model’), then remove the set of variables 
(eg Xj and  Xk)  and  note  the  SSEred (for  the  ‘reduced  model’).  If  variables  Xj and  Xk are 
important, then SSEfull « SSEred (and SSMfull » SSMred).

The increase in SSE (or reduction in SSM) by deleting the variables from the model is divided 
by the number of variables in the set (which equals dfEred-dfEfull) to give us the MS from these 
variables. Dividing this MS by the MSEfull provides an F-test of the significance of Xj and Xk 

conditional on the other variables in the model. The formula to assess a set of variables is: 
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F group=
SSE red−SSEfull

df E red−df E full 
MSEfull

~ F df Ered−df Efull , df Efull under H0
Eq 14.11

where the null hypothesis (H0) is that the reduced model gives an adequate description of the 
data,  and  large  values  of  the  F-test  are  considered  as  evidence  against  H0.  As  noted,  the 
numerator  of the formula might  alternatively be calculated  from differences  of  SS- and df-
values for the model (instead of error); as SSMfull-SSMred=SSEred-SSEfull, it gives the same result. 
Most software contains specific procedures to automate this process. Example 14.3 shows the 
calculation of an F-test for the 3 cigarette variables that were added to the simple linear model 
of Example 14.1.

14.4 NATURE OF THE X-VARIABLES

The X-variables can be continuous or categorical, with the latter being either nominal (meaning 
that  the  variable’s  values  constitute  ‘levels’  (or  categories)  with  no  meaningful  numerical 
representation or ordinal (in which case the values represent ordered levels of the variable, eg 
high,  medium,  low).  Examples  of  nominal  variables  include:  city  of  residence,  categories 
representing different races etc. Nominal and ordinal variables with more than 2 levels should 
not  be  used  as  predictors  in  their  numerical  form,  they  need  to  be  converted  to  indicator 
variables (see Section 14.4.2). This is because the corresponding βs would be meaningless (eg 

Example 14.2 A simple regression with a dichotomous predictor
data = bw5k

A simple linear regression model of birth weight (-bwt-) whether or not the birth was multiple (twins or 
triplets) (-multbrth-) as the only predictor was fit.

Number of obs = 5000
F(1,4998) = 543.52

Source SS df MS Prob > F = 0.0000

 Model 157000944 1 157000944 R-squared = 0.0981
  Residual 1.4437e+09 4998 288861.7 Adj R-squared = 0.0979
 Total 1.6007e+09 4999 320210.4 Root MSE = 537.46

Note  that  in  this  model,  the  X-variable(s)  in  the  model  is  deemed  to  be  significantly  (P<0.001) 
associated with -bwt-, and by itself, it explains a reasonable amount (9.8%) of the variation in -bwt-. 

bwt Coef SE  t P>t 95% CI

multbrth -943.675 40.478 -23.31 0.000 -1023.029 -864.321

constant 3329.614 7.744 429.97 0.000 3314.433 3344.796

The regression coefficient for -multbrth- is -943.7, indicating that as -multbrth- increases by 1 unit the 
-bwt- decreases by 943.7 gm (recall that the coding for -multbrth- is 0 if it was a single birth and 1 if 
the birth was of twins or triplets; so an increase of 1 unit is the difference in outcome between babies 
that were part of a multiple birth vs those that were not). The P-value indicates that the apparent effect 
of 943.7 gm is significantly different from 0, so ‘chance’ is not a likely explanation for the association. 
The substantial R2 suggests that this is going to be an important predictor of birth weight.
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because race 4 is not twice something in race 2, or race 5 is not 3 units more than race 2 etc), 
and would not achieve the desired effect (eg removing variation among races when examining 
the relationship between smoking and birth weights of babies). 

However, a nominal predictor with only 2 levels (a dichotomous variable) can be used directly, 
especially when it is coded as 1 or 0 (eg the variables -black- and -college-; see Table 14.1). 
Such variables often serve as answers to questions about present/absent, alive/dead, sick/well 
etc. The regression coefficient represents the difference in the outcome between the 2 levels (ie 
level 1 minus level 0) of the variable. 

For categorical (nominal or ordinal) variables with multiple levels, we use indicator variables 
(also called dummy variables) to code the information into a set of dichotomous variables. See 
Section  14.4.2  for  a  discussion  of  regular  indicator  variables that  can  be  used  for  both 
nominal  and  ordinal  variables,  and  Section  14.4.3  for  hierarchical  indicator  variables 
applicable  only  to  ordinal  or  quantitative  variables.  However,  first  let’s  examine  how  to 
improve the interpretation of regression parameters.

14.4.1 Scaling variables to improve the interpretation of the regression parameter(s)

Often the predictor variables have a limited range of possible, or sensible values. For example, 
many cannot  be  interpreted  sensibly at  the  value  0  (ie if  gestation  length  was  a  predictor 
variable, it has no meaningful interpretation at the value 0 because a baby can’t be born after a 
0-week gestation). Yet, the intercept reflects the value of the outcome when the predictor has 
the value 0. Thus, it is often useful to scale these variables by subtracting the lowest possible 
sensible value from each observed value before entering the variable into the model. Then, the 

Example 14.3 Testing the significance of multiple variables
data = bw5k 

In this example, we have added variables representing the number of cigarettes the mother smoked in 
each of the three trimesters to the model which just contained gestation length. We want to check the 
overall  significance  of  these smoking  variables.  The ANOVA table  from the full  model  is  shown 
below: 

Number of obs = 5000
F(4,4995) = 462.95

Source SS df MS Prob > F = 0.0000
Model 432936925 4 108234231 R-squared = 0.2705
Residual 1.1678e+09 4995 233792.7 Adj R-squared = 0.2699
Total 1.6007e+09 4999 320210.4 Root MSE = 483.52

In the simple model with only -gest- as a predictor, we had SSEred=1178.6 x 106 with 4,998 df. Hence 
the F-test is:

F=1178.6∗106−1167.8∗106/ 4998−4995 
0.2338∗106 =15.4

This  F-statistic  is  highly  significant  with  3  and  4,995  df  (P<0.0001).  It  is  clear  that  smoking  is 
associated with birth weight. (Note None of the individual regression coefficients for the number of 
cigarettes smoked was significant. This apparent contradiction with the overall significance of these 
variables is due to collinearity—see Section 14.5.)
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intercept  coefficient  β0 will be the value of the outcome at the lowest possible value of the 
original  X-variable(s), instead of at zero. Alternatively, an  ‘average’ value may be subtracted 
(instead of the lowest possible one). As an example, we might rescale -gest- by subtracting the 
average gestation length (39 weeks) so β0 will reflect the birth weight of a baby with a 39-week 
gestation. Scaling has no effect on the regression coefficient or its SE, but it does change the 
value of the intercept (constant) (see Example 14.4). Scaling can be done by adding or subtracting 
any meaningful value—not just the two possibilities (lowest possible or average) identified above. 

Another use of scaling is when the  X-variable is measured with much greater accuracy than 
needed (eg regressing -bwt- in grams on number of cigarettes smoked per day during the first 
trimester which ranged from 0 to 90 in our example). In its original form, the coefficient for 
-cig_1- represents the expected effect of one additional cigarette, which might be a very small 
value. This problem can be circumvented by dividing the value of X by a suitable constant (eg 
20 to convert the measure from cigarettes per day to packs per day). Here, a unit change in the 
new variable reflects the expected change in birth weight for each pack of cigarettes smoked. 

14.4.2 Coding regular indicator variables

Indicator variables (also called dummy variables) are created variables whose values have no 
direct physical relationship to the characteristic being described. For example, suppose there is 
a variable called -mrace_c3- that specifies the mother’s race (in 3 categories). Further, suppose 
categories are coded as 1, 2, or 3 (or A, B, C) and we wish to control for mother’s race when 
examining the potential effect  of cigarette smoking on birth weight.  To do this, we create 2 
regular  indicator (sometimes called  disjoint) variables (X1 and  X2) as logical  answers to the 
following  questions:  was  the  race  1?;  if  yes,  then  X1=1,  else  X1=0.  For  the  next  indicator 
variable we ask: was the race 2?; if yes, then X2=1, else X2=0. With respect to these variables, 
the values in the table would be present in the dataset. 

race X1 X2

1 1 0

2 0 1

3 0 0

Thus, race 3 is identified as the race with both indicator variables equal to 0, and will be the 
referent (or comparison level or reference category) for assessing the effect of races 1 and 2 
on the outcome. So, in general, to code j levels of a nominal variable, j-1 indicator variables are 
required, and the jth level takes the value 0 for all the indicators (see Example 14.5). As the third 
race has become the referent level (when all the indicator variables are in the equation), β1 (the 
coefficient of  X1) estimates the difference in the outcome between races 1 and 3, whereas  β2 

estimates the difference in the outcome between races 2 and 3.

One of the levels of the nominal variable will be the referent, so there is merit in considering 
which level it should be. In terms of the information provided to the model, it does not matter, 
but  careful  consideration  can  enhance  the  interpretation  of  the  coefficients.  In  essence, 
considerations about biological interpretation and the precision of estimates in each level of the 
nominal variable should be weighed in choosing a referent (eg if body temperature is recorded 
as below normal, normal or above normal, it might make sense to use ‘normal’ as the referent 
value). In addition, the referent should have a sufficiently large sample size so that the contrasts 
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(comparisons with the referent) have reasonable precision. Sometimes the level of the nominal 
variable that has an ‘average’ response (eg close to the mean of the dependent variable) is the 
desired referent; however, this can lead to a situation where no design variables are significant, 
as the extreme categories might differ from each other but not from the outcome in the middle 
(mean) indicator. (Note The significance of the indicator variables as a set (Section 14.3.6) is 
unaffected by the choice of reference category.) In other instances, the choice of the referent 
can be arbitrary, as for example, when the indicators are race indicators and the race effects are 
not  of primary interest,  but  they must  be controlled to prevent  confounding.  Example 14.5 
shows the creation of a set of indicator variables for mother’s education level.

Most  software  programs  have  automated  procedures  to  create  indicator  variables,  and  the 
coding can be more flexible than shown here. By default, some use the first category of the 
nominal variable as the referent, others use the last category as the referent. Most allow the user 
to set the referent using the contextual considerations just mentioned. In Example 14.6, we use 
regular dummy variables to code for mother’s education when predicting the effect of gestation 
length with birth weight.

Example 14.5 Coding indicator (regular dummy) variables 
data = bw5k

We will  demonstrate forming regular  (ie disjoint)  indicator variables  from a nominal  variable.  For 
example,  when  considering the variable  for  the  mother’s education (meduc_c4),  the  categories  are 
coded 1=less than high school diploma, 2=high school diploma, 3=some college or university,  and 
4=university/college degree. Let’s assume that it makes sense to use the lowest level as the baseline or 
referent, then the coding for the 3 indicator variables could be completed by writing code to answer the 
following questions.
If meduc_c4=2 then hs=1 else hs=0

If meduc_c4=3 then coll=1 else coll=0

If meduc_c4=4 then degree=1 else degree=0

The effect and significance of each new variable (-hs-,  -coll-, and -degree-) would be in relation to 
having  less  than  a  high  school  diploma.  Whether  or  not  the  information  in  the  original  variable 
-meduc_c4- added significantly to the model should be assessed by an F-test as shown in Example 14.3.

Example 14.4 Scaling predictor variables 
data = bw5k

Here we scale -gest- by subtracting 39 (the average observed gestation length) from the actual gestation 
length, so our new variable is gest39=gest-39.

bwt Coef SE t P>t 95% CI

gest21 124.487 2.942 42.31 0.000 118.719 130.255

constant 3341.136 6.953278 480.51 0.000  3327.505 3354.768

The effect  of an increase of 1 week in the scaled variable is the same as in the unscaled variable 
(Example 14.1; 124.5 gm). In the original scale, -bwt- was predicted to be -1,514 gm for a 0-week 
gestation; here it is 3,341 gm for a 39-week gestation (gest39=0). In general, the constant will be a 
sensible number that is easy to interpret and explain if the predictor(s) is appropriately scaled.
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As noted earlier, all indicator variables (of each nominal variable) usually should be entered or 
excluded from the model as a set using the  F-test in Section 14.3.6. Once the set has been 
deemed  important  in  a  statistical  sense  or  from the  perspective  of  confounding  control,  it 
sometimes is desirable to allow only some (eg the statistically significant  or the ‘important’ 
indicators) to remain in the model. Removal of unnecessary indicators can aid the development 
of a more parsimonious model, but should be done with caution. The decision about removing 
some of the indicators can be assisted by testing the equality of selected indicator coefficients. 
(Note To select indicators in a statistically correct sense, multiple comparison procedures which 
make the P-value for significant differences smaller must be applied—see Section 11.9.1.) One 
must be aware that removal of some indicators changes the interpretation of the coefficients for 
the remaining indicators.  For example, when using indicator variables for mother’s race (as 
above), if only indicator  X1 is in the model, the referent will be the weighted average of the 
outcome in races 2 and 3, and the coefficient associated with X1 will represent the difference in 
response between race 1 and this average. Any effects from indicators not included in the model 
are present in the constant term. 

14.4.3 Coding hierarchical indicator variables

If  the  predictor  variables  are  ordinal  in  type  (reflect  relative  changes  in  an  underlying 
characteristic,  eg severity  of  a  disease),  it  is  sometimes  difficult  to  associate  the  levels  of 
severity with specific numerical values that would make it meaningful to use the variable as a 
continuous predictor. As an example, when coding a variable representing severity (eg using 1, 
2, or 3 to represent mild, moderate, or severe pregnancy-associated hypertension), there might 
be concern when using these codes as a continuous predictor (eg is the biological effect of the 
difference between mild and moderate the same as between moderate and severe?). It is always 
possible  to  use  regular  indicator  variables,  but  they  do  not  reflect  the  ordering  of  levels. 
Therefore, the use of  hierarchical  (or  incremental) indicator variables is often the preferred 

Example 14.6 Using and interpreting regular indicator variables in linear regression
data = bw5k

A model for -bwt- was fit with -gest-, and 3 indicator variables for mother’s education level as the 
predictors. 

bwt Coef SE t P>t 95% CI

gest21 124.383 2.938 42.33 0.000 118.622 130.144

meduc_c4=2 20.046 20.980 0.96 0.339 -21.083 61.176

meduc_c4=3 53.270 21.887 2.43 0.015 10.361 96.179

meduc_c4=4 80.599 19.272 4.18 0.000 42.818 118.380

constant 1057.097 53.930 19.60 0.000 951.370 1162.824

In this instance, the referent level is ‘less than high school diploma’; the -bwt- of these babies for a 21-
week gestation (gest21=0) is 1,057 gm (the intercept). The coefficient for each education level variable 
reflects the difference in -bwt- between babies born to those mothers and those born to mothers with 
less than a high school diploma. We can use a multiple partial F-test to test the overall significance of 
the  education  level  predictors  (P=0.001).  Individually,  the  2  highest  levels  of  education  are 
significantly different from the baseline, but having a high school diploma is not.
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approach, in order to maintain the ordering inherent in the original variable. This approach can 
also be used to recode a continuous variable based on using appropriate cutpoints. 

Hierarchical indicator variables contrast the outcome in the categorised version of the original 
variable against the level immediately preceding it (assuming all hierarchical variables are in 
the model). As with regular indicator variables, it is possible to include just a subset of the 
indicators. One such situation occurs if we are interested in identifying cutpoints of an ordinal 
or continuous variable where the relationship with the outcome changes. In this setting, we can 
select  the  most  significant  incremental  variable(s)  for  entry.  The  corresponding  coefficient 
contrasts the outcome in each level of the categorised  X-variable to the outcome in the levels 
below it (Walter et al, 1987). Other codings are available, but are beyond the scope of this book
—see http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter5/statareg5.htm.

In  Example  14.7,  we  compare  mother’s  education  levels  using  disjoint  (ie dummy)  and 
hierarchical indicators. The disjoint coefficients reflect the difference in -bwt- in each education 
level relative to the lowest (baseline) education level (less than high school diploma). With the 
hierarchical indicators, say for level 4, the regression coefficient reflects the difference in -bwt- 
between level 3 (some college) and level 4 (university/college degree). It can be seen that, in 
general, birth weights increased with education level.

14.4.4 Errors in the X-variables

In the regression model, the X-variables are ‘fixed’ (ie constant), and assumed to be measured 
without error.  In  reality,  they might be fixed because they are set by the experimenter in a 
controlled trial (eg treatment or dose), or because they represent values that are constant (eg site 
or year). However, when the X-variables are measured quantities (eg in observational studies), 
these measurements might contain error—either a natural variation related to the measurements, 
or error in the sense of misrecordings. The consequence of this error is that relations between 
the outcome and the observed X-values are not the same as those with the true X-values. The 
regression model estimates the relationship between the observed  X-values and the outcome, 
and this is the appropriate relationship for purposes of prediction. However, when attempting to 
describe a causal relationship between the X-variables and the outcome, it is desirable to have 
the true values of the X-variables. 

Special models exist for taking error in the  X-variables into account, so-called  measurement 
error models, but they are beyond the scope of this book (Fuller, 2006). Nonetheless, many 
software programs support the use of regression calibration (see Section 12.8) which is useful 
for adjusting for measurement errors. Murad and Freedman  (2007) have extended this to the 

Example 14.7 Indicator vs hierarchical coding of variables
data = bw5k

The effect  of mother’s education on -bwt- was estimated by using ordinary (disjoint) indicator and 
hierarchical dummy variables in a linear regression model (which also included -gest-).

Variable Indicator coding Hierarchical coding

meduc_c4=2 20.046 20.046

meduc_c4=3 53.270 33.224

meduc_c4=4 80.599 27.329

http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter5/statareg5.htm
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situation when an interaction term between 2 covariates,  each measured with error,  is being 
assessed. Austin and Hoch (2004) describe methods to adjust the regression when one or more 
X-variables  are  censored.  However,  as  indicated  in  Chapter  12,  if  the  magnitude  of  the 
measurement error is small relative to the range of the X-values in the model, we need not be 
unduly  worried  when  using  the  ordinary  regression  model.  Ignoring  measurement  errors 
generally tends to bias the parameters towards the null (ie effects will be (numerically) smaller 
than if the completely accurate  information was present). On the other hand, if the errors are 
large relative to the range of X-values, serious consideration of the need for validation studies 
(see Chapter 10) is in order.

14.5 DETECTING HIGHLY CORRELATED (COLLINEAR) VARIABLES

Despite  the fact  that  multiple  regression  is  used to  adjust  for  correlations  among predictor 
variables in the model, if the variables are too highly correlated, then a number of problems 
arise.  Before discussing these,  recall  that  in a  multivariable regression model the estimated 
effect of each variable generally depends on the other variables in the model. On one hand, this 
is the advantage of multivariable analysis—that the effect of a variable is studied while taking 
into account the correlations between that variable and others in the model and their effects on 
Y, thereby  avoiding  duplication of  effects.  On the  other,  this  means  that  the  effect  of  any 
variable might change when other variables are added to, or removed from, the model. If, for a 
particular  variable,  such  changes  are  large  (eg involving  a  shift  of  sign),  its  interpretation 
becomes difficult.  Only in the special  case  that  all  the  X-variables  are uncorrelated are the 
effects of different variables estimated completely independently of each other. Thus, the first 
problem arising from highly correlated (or collinear) predictors is that estimated effects (ie the 
regression coefficients) will depend strongly on the other predictors present in the model. As a 
consequence, it might be difficult to statistically select the ‘important’ predictors from a larger 
group of predictors. Both of these concerns are less serious when the purpose of the analysis is 
prediction than when interpretation of causal effects is the objective. If we express this problem 
in a more technical manner, the standard error of regression coefficients become very large in a 
highly collinear model (Section 14.5.1); hence we become less certain of the likely magnitude 
of the association (ie of the true value of β). 

In a multivariable model, one X-variable should not be a perfect mapping of another X-variable 
or be perfectly predictable by a combination of the other X-variables in the regression model. 
However,  even  before  the  correlations  become  ‘perfect’,  as  a  general  rule,  if  2  (or  more) 
variables are highly correlated (|ρ|>0.8–0.9), it will be difficult to select between (among) them 
for inclusion in the regression equation. When 2 variables are highly and positively correlated, 
the resulting coefficients (βs) will be highly and negatively correlated. In extreme situations, 
none of the coefficients of the highly correlated variables will be declared significantly different 
from  zero,  despite  the  fact  that  the  F-test  of  the  model  might  indicate  that  the  variables 
collectively contribute significantly to the model. This situation happens when the 3 measures 
of  cigarette  consumption  are  included  in  a  regression  model  of  -bwt-.  Collectively,  the  3 
measures are highly significant, but individually all of their P-values are >0.3 (data not shown).

Extreme values of odds ratios (eg 8-10 or more) can be used to detect collinearity between 
dichotomous variables, and extreme correlation coefficients (>0.8-0.9) for continuous variables. 
In linear models, a convenient way to detect either collinearity or multicollinearity is through 
the use of the variance inflation factor (Section 14.5.1). Pitard and Viel  (1997) describe more 
formal methods for detecting collinearity and provide solutions when using regression models.
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One way of  eliminating collinearity problems is  through considered exclusion of one of the 
collinear variables, or by making a new combination of the variables on substantive grounds. In 
extreme situations, specialised regression approaches, such as ridge regression, might be needed. 

Most software provides indicators about possible collinearity using a variance inflation factor 
(Section 14.5.1) or its reciprocal  tolerance. Unfortunately,  the methods we use for including 
interaction terms (Section 14.6) and power terms (Section 14.9.3) in models sometimes leads to 
a  high  collinearity  between  the  variables.  Thus,  we  describe  a  general  method  for 
circumventing high correlations between the latter constructed variables, known as  centring 
(Section 14.5.2).  Before doing that, we will discuss the problem of collinearity in terms of 
variance inflation.

14.5.1 Variance inflation factors

The effect  of entering a new variable into the model on the variance of the coefficients for 
variables  currently  in  the  model  can  be  assessed  with  a  statistic  known  as  the  variance 
inflation factor (VIF). The formula for VIF is:

VIF= 1
1−RX

2
Eq 14.12

where R2
X is the coefficient of determination from regressing the variable that is about to enter 

the model on the other variables in the model. As this coefficient gets larger (as it does if it is 
collinear), so does the VIF. We illustrate the importance of the VIF in a simple linear regression 
model, in which the variance of the regression coefficient β1 for X1 is from Eq 14.5.

var 1 1=
MSE1 

SSX1 Eq 14.13

where the superscript (1) refers to the simple linear regression model. When we place X2 in the 
model, if it is correlated with X1, 3 things will happen: 

1. the coefficient β1 will change because we account for the correlation of X1 with X2, 
2. the residual sum of squares (and in most cases also the MSE(2)) will become smaller 

because X1 and X2 together can predict Y better than X1 on its own, and
3. the  standard  error  of  β1 might  increase  by  an  amount  roughly  equal  to VIF ; 

specifically, var(β1) in the combined model (2) with both X1 and X2 is:

var 2 1=
MSE2

SSX1
× 1
1−R2

2 Eq 14.14

where  R2
2 is the coefficient of determination from a regressing  X2 on  X1.  Thus, the standard 

error of β1 increases unless the reduction in MSE(2) from MSE(1) by adding X2 more than offsets 
the increase due to the VIF. Adding variable X2 can also cause the variance of β1 to decrease if 
X2 is a good predictor of the outcome and X1 and X2 are nearly (or totally) independent of each 
other, in which case VIF is approximately 1. 

The role of the VIF in multiple regression models is similar to this. A (conservative) guide for 
interpreting VIFs is that values above 10 indicate serious collinearity. As discussed above, this 
does not necessarily mean that the model is useless or that one is obliged to remove one or more 
X-variables  from  the  model;  it  should,  however,  always  be  taken  as  a  warning  for  the 
interpretation of regression coefficients and the increase in their standard errors. 
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14.5.2 Centring variables to reduce collinearity

Centring a continuous variable  is  performed by subtracting the mean value (or  some other 
central value) from each observed X-value, similarly to the scaling discussed in Section 14.4.1. 
Centring a variable prior to creating a power term (or an interaction term between 2 continuous 
variables) reduces the correlation between the variables to a low level (provided the variables 
are symmetrically distributed about their mean). If the distribution is not symmetric, then larger 
(or  smaller)  values  than  the  mean  might  need  to  be  subtracted.  It  should  be  stressed  that 
centring only affects correlations between variables constructed from each other, and it does not 
change  the  predictions  or  the  fit  of  the  model,  only  the  values  and  interpretation  of  the 
regression coefficients. See Example 14.8 for a discussion of VIFs and centring.

14.6 DETECTING AND MODELLING INTERACTION

In Chapter 1, we developed the view that, given the component cause model, we might expect 
to see interaction when 2 factors act synergistically or antagonistically. Whereas, within limits, 
this might be true, the significance of an interaction term need not indicate anything about the 
causal  model;  it  might  merely  describe  the  nature  of  the  relationship  being  modelled.  In 
previous sections of this chapter, the models contained only  main effects of the  Xs; hence it 
assumes that the association of X1 to Y is the same at all levels of X2 and the association of X2 to 
Y is the same at all levels of  X1. A test of this assumption (whether or not the effect of one 
variable depends on the level of another variable(s)) is to examine if an ‘interaction term’ adds 
significantly to the regression model.

In the situation where X-variables are not indicator variables, the interaction term is formed by 
the product X1*X2 which can be tested in the following model: 

Y =01 X 12 X 23 X 1 X 2 Eq 14.15

by assessing if β3=0 (see Example 14.9). If interaction is absent (β3 is deemed to be not different 
from 0), the main effects (or ‘additive’) model is deemed to describe the effects adequately. It is 
not necessary to centre the variables X1 and X2 to see if an interaction term is needed, because β3 

and its standard error  will be unaffected by centring.  However,  if the interaction is needed, 
centring might be useful because it allows us to interpret  β1 and β2 as linear effects  when the 
interaction cancels  (eg β1 applies to the situation when (the centred version of)  X2 is zero). 
Higher order interactions can be investigated by extending this process to an interaction term 
that is the product of 3 (or more) variables (see Chapter 15). 

Interactions involving categorical variables (with more than 2 levels) are modelled by including 
products between all indicator variables needed in the main effects model. For example, the 
interaction between a 3-level and a 4-level categorical variable requires (3-1)*(4-1)=6 product 
variables. These 6 variables should be tested and explored as a group (Section 14.3.6). In many 
multivariable analyses, the number of possibilities for interaction is large and there is no single 
correct way to assess if interaction is present. Section 15.7 discusses some options for deciding 
which interaction terms to include when building a multivariable model. However, in general 
we suggest that, unless the potential number of interactions is small, interactions be limited to 
those of biological relevance and that 3- and 4-way interactions only be investigated when there 
are  good,  biologically  sound,  reasons  for  doing  so.  Example  14.9  demonstrates  interaction 
between 2 dichotomous variables, and Example 14.10 between a dichotomous and a continuous 
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predictor. Example 14.11 shows an interaction between 2 continuous variables.

14.7 CAUSAL INTERPRETATION OF A MULTIVARIABLE LINEAR MODEL

So far in this chapter we have focused on the technical interpretation of regression coefficients. 
Example  14.12  is  presented  to  focus  on  the  development  and  causal  interpretation  of  a 
multivariable linear model designed to assess the effects of 4 factors (-white-, -college-, -cig_2-, 
and -gest-) on birth weight. When making causal inferences, care is needed to ensure that only 
the appropriate variables are included in the analysis (see Section 13.1). In this regard, a causal 
diagram is very helpful (our hypothesised causal diagram is shown in Fig. 14.3).

Let us assume that our main objective is to evaluate the effects of cigarette smoking on birth 
weights.  To  simplify  matters,  we  will  restrict  the  analyses  to  single  births.  The  diagram 
indicates that we are assuming that gestation length (-gest-) is an intervening variable between 

Example 14.8 The use of centring to avoid collinearity problems
data = bw5k

There is some evidence that the relationship between gestation length and birth weight is not linear (ie not 
a straight line). One way to deal with this problem is to add a quadratic term to the model (-gest_sq-). (See 
Chapter  15  for  a  much  more  complete  discussion  of  the  issue  of  non-linearity.)  Consequently,  a 
quadratic model with -gest- and -gest_sq- (-gest- squared) was built.

bwt Coef SE t P>t 95% CI

gest 590.914 32.990 17.91 0.000 526.239 655.589

gest_sq -6.365 0.448 -14.19 0.000 -7.244 -5.485

constant -9999.664 608.231 -16.44 0.000 -11192.060 -8807.264

Both terms are statistically significant but the effect of -gest- seems absurd (adding 0.59 kg per week). 
The correlation between -gest- and -gest_sq- is 0.99 with a resulting VIF of 131. We can see the impact 
of this by noting that the SE of -gest- increased by over 11 times (from 2.94 (simple linear model in Ex 
14.1) to 33) when the quadratic term was added.

In  order  to  deal  with  this  problem of  collinearity,  we  can  centre  the  gestation  length  variable  by 
subtracting its mean (for -gest- this is 39) to create the centred variable -gest39-, and then, we create the 
squared centred gestation -gest39_sq-. The summary of this model is shown below.

bwt Coef SE t P>t 95% CI

gest39 94.483 3.577 26.42 0.000 87.471 101.495

gest39_sq -6.365 0.448 -14.19 0.000 -7.244 -5.485

constant 3365.579 7.032 478.60 0.000 3351.793 3379.365

First, we should note that the coefficients and SEs for the quadratic terms are exactly the same in the 2 
models, but the coefficient for the linear term has changed. The 2 models also have identical R2 (0.292) 
and root MSE (476.2). Second, we note that the SE of the linear component -gest39- is approximately 
back to what it was when only the linear term (-gest39-) was in the model. Centring has reduced the 
correlation between -gest39- and -gest39_sq- to -0.59 and the  VIF is now reduced to 1.54. Because 
gestation length was scaled, the constant in this model represents the predicted -bwt- for a 39-week 
gestation.
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-cig- and -bwt- (as is -wtgain-). Consequently, -gest- and -wtgain- will be excluded from the 
model. See Section 13.11.6 for a discussion of intervening variables.

Because we were primarily interested in the effects of smoking, we made an a priori decision to 
only consider interactions between -cig_2- and other variables. If we had considered a larger 
number  of  potential  interactions,  we  should  probably  have  done  something  to  address  the 
problem of multiple comparisons (see Section 15.7). If we had selected a subset of variables 
from a much larger  ‘pool’ of potential predictors, we should alter the F-statistic critical value 
for significance (Livingston and Salt, 2005). 

Example 14.9 Interaction between 2 dichotomous variables
data = bw5k

The  dichotomous  versions  of  maternal  weight  gain  (below or  above  30  lb)  and  total  birth  order 
(primiparous/multiparous) were evaluated in a regression model. The model with just these 2 predictors 
of -bwt- is shown.

bwt Coef SE t P>t 95% CI

wtgain_c2 166.970 16.005 10.43 0.000 135.594 198.346

tbo_c2 58.451 16.945 3.45 0.001 25.230 91.671

constant 3165.005 17.050 185.63 0.000 3131.579 3198.432

Both factors are significant. In order to assess if the effect of one of these variables depends on the 
level of the other, we form an interaction term (a product of the 2 variables) and add it to the model. 

bwt Coef SE t P>t 95% CI

wtgain_c2 227.464 28.477 7.99 0.000 171.637 283.292

tbo_c2 110.495 26.413 4.18 0.000 58.713 162.277

wg_c2*tbo_c2 -88.379 34.420 -2.57 0.010 -155.857 -20.901

constant 3126.995 22.573 138.53 0.000 3082.742 3171.248

Note that since both -wtgain_ct- and -tbo_c2- are dichotomous and coded 0 for ‘no’ and 1 for ‘yes’, the 
interaction term has the value 1 only when both factors (weight gain >30 and multiparous) are present. 
In this sense, if it is significant, it says that we need to adjust (using β3) the predicted outcome when 
both factors are present to better reflect what was observed. Otherwise the combined effect of the 2 is 
just the sum of their individual effects.

There is evidence that the effect of high weight gain depends on whether the birth is primiparous or 
multiparous (and vice versa) because the interaction term is significant. Note also that the main effect 
of each variable is significant:

• When neither factor is present (ie primiparous births with weight gain <30 lb), the predicted 
outcome is 3,127 gm.

• In primiparous births with weight gain >30 gm, the predicted outcome is 3127+227=3354 gm.
• In multiparous births with weight gain <30 gm, the predicted outcome is 3127+110=3237 gm.
• When both factors are present, the predicted outcome is 3127+227+110-88=3376 gm.
•  All VIFs for the model are moderate (<4.3), so collinearity is not an issue.

What this model implies is that the positive effect of multiparous birth on birth weight is present if 
weight gain is low, but is negligible if weight gain is high (110-88=22 gm). Similarly, high weight gain 
has a bigger effect in primiparous births (227 gm) than in multiparous births (227-88=139 gm).
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14.8 EVALUATING THE LEAST SQUARES MODEL

Valid regression analyses are based on a set of assumptions and, once our initial model is built, 
we need  to evaluate  whether  the model meets  these (we say initial  because  after  checking 
whether the model meets the key assumptions, we might have to alter it). We will use the model 
shown in Example 14.13 for the purposes of this evaluation.

The key assumptions of the model are: 
• independence—the values of the dependent variable are statistically independent from 

one another (ie  the -bwt- value of 1 baby does not depend on the -bwt- value of other 
babies in the dataset). Usually we do not worry about independence unless the context is 
such that the assumption is likely to be broken. For example, the structure of the data 

Example 14.10 Interaction between a dichotomous and a continuous variable
data = bw5k

We continue with the investigation of the interaction between birth order (primiparous (parity=1) vs 
multiparous (parity=2+)) and weight gain, but we leave the latter variable as a continuous (but centred) 
predictor.

bwt Coef SE t P>t 95% CI

wtgain_ct 8.221 0.914 8.99 0.000 6.429 10.013

tbo_c2 70.733 17.040 4.15 0.000 37.326 104.140

wg_ct*tbo_c2 -2.728 1.133 -2.41 0.016 -4.949 -0.507

constant 3243.394 14.031 231.16 0.000 3215.887 3270.902

Once again,  the  interaction term is 
significant.  As  before,  multiparous 
births  seem  to  be  heavier,  but  the 
coefficient  (70.7)  represents  the 
effect  of  being  multiparous  when 
wtgain_ct=0 (ie average weight gain 
of 31 lb). In primiparous births, the 
effect of each additional lb of weight 
gain is to raise birth weight by 8.22 
gm.  In  multiparous  births,  the 
positive effect  of increasing weight 
gain  appears  to  be  reduced 
(compared  with  primiparous). 
Alternatively,  the  effect  of 
multiparous  appears  to  be  reduced 
as  weight  gain  increases.  In  a 
situation  such  as  this,  a  graph  is 
more likely to make the interaction 
effects  apparent.  This  is  easily 
accomplished by obtaining the predicted -bwt- from the model and plotting it against the continuous 
predictor (-wtgain-) in primiparous and multiparous births (Fig. 14.2). 

Here we can see the difference in effect of -wtgain_ct- between multiparous (the solid sloped line) and 
primiparous (the dashed line) births. The graph indicates that weight gain always has a positive effect 
on birth weight, but the effect is more pronounced in primiparous births. 

Fig. 14.2 Interaction between birth order and weight 
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Example 14.11 Interaction between 2 continuous variables
data = bw5k

Here we continue our investigation of the interaction between weight gain and total birth order (parity), 
but we now leave both variables as continuous predictors. The regression with the interaction term is as 
follows.

bwt Coef SE t P>t 95% CI

wtgain 8.530 1.007 8.47 0.000 6.555 10.504

tbo 45.813 12.418 3.69 0.000 21.468 70.158

wg*tbo -0.929 0.361 -2.58 0.010 -1.636 -0.223

constant 2986.017 36.126 82.65 0.000 2915.194 3056.841

Once  again,  the  interaction  term  is 
statistically  significant  (P=0.01)  and 
negative  in direction.  It  is  easiest  to 
understand  the  interaction  effect  by 
categorising one of the predictors (in 
this case -tbo-) and graphing separate 
lines  showing  the effect  of  -wtgain- 
on  -bwt-  for  various  birth  orders. 
According to this model,  the impact 
of  weight  gain  on  birth  weight 
decreases  as  parity  goes  up  (Fig. 
14.4).

Fig. 14.4 Interaction between -wtgain- and  -tbo- 
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Fig. 14.3 Causal diagram of factors thought to influence birth weight

Note Variables to the left are assumed to have potential effects on variables to the right with which they are 
connected by an arrow (eg -white- is assumed to affect -multbrth-, but -college- is not).
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might signal a lack of independence when there are multiple observations on a single 
individual, or on multiple individuals within a group (eg multiple babies from the same 
mother).  Methods for dealing with clustered data are presented in Chapters 20–23. A 
specific type of clustering (serial correlation) is likely to occur when assessing regular 
measurements from an individual (eg daily weights taken during the first 3 months of 
life). Repeated data that are collected at equal time intervals over an extended period 
such as this are called time-series, and specific methods are required to adjust for the fact 

Example 14.12 An initial causal model of the impact of several factors on -bwt-
data = bw5k

A model  was fit  to evaluate the effects  of cigarette  smoking on birth weight.  Based on the causal 
diagram  shown  in  Fig.  14.2,  -gest-  and  -wtgain-  were  excluded  because  they  were  intervening 
variables. The analysis was restricted to single births. Interactions between -cig_2- and other variables 
were considered and the interaction with -white- (mother’s race) was retained for didactic purposes 
even though it was not significant (P=0.012).

Number of obs = 4817
F(5, 4811) = 21.58

Source SS df MS Prob > F = 0.0000
Model 30372133.9 5 6074426.8 R-squared = 0.0219
Residual 1.3544e+09 4811 281516.8 Adj R-squared = 0.0209
Total 1.3847e+09 4816 287531.0 Root MSE = 530.58

bwt Coef SE t P>t 95% CI

white 102.567 16.588 6.18 0.000 70.047 135.088

cig_2 -30.679 10.679 -2.87 0.004 -51.615 -9.743

white*cig_2 17.178 10.945 1.57 0.117 -4.279 38.634

college 43.909 16.419 2.67 0.008 11.719 76.098

tbo 22.662 5.255 4.31 0.000 12.359 32.964

constant 3203.065 18.872 169.72 0.000 3166.067 3240.063

Subject to this model meeting the major assumptions of linear regression (Section 14.9) and a case-by-
case analysis of the residuals (Section 14.10), we offer the following interpretation.

The model is highly significant (F=21.58 P<0.001) but it only explains 2.2% of the overall variation in 
-bwt-. The SE of prediction (531 gm) is only marginally smaller than the original crude SD of 536 gm.

Although  not  significant,  interpretation  of  the  interaction  between  a  dichotomous  (-white-)  and 
continuous  predictor  (-cig_2-)  suggests  the  following.  Among  non-white  mothers,  each  additional 
cigarette smoked during the 2nd trimester reduced the -bwt- by 30.7 gm (with a 95% confidence interval 
of 9.7 gm to 51.6 gm). For white mothers, the effect was -30.7+17.2=-13.5 gm per cigarette per day. 
Babies from non-smoking, white mothers were, on average, 102.6 gm heavier (than other races) and 
the discrepancy between white mothers and other races increased as the number of cigarettes smoked 
increased (by 17.2 gm/day). As the mother’s parity increased, so too did the expected birth weight (by 
22.7 gm for each additional previous baby) and college educated mothers had heavier babies (43.9 gm). 
However, all of these estimates are based on the assumption that other factors were held constant. For 
example,  the  effect  of  being  white  is  based  on  comparing  mothers  of  the  2  racial  groups  with  
comparable smoking habits, education levels, and parity.
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that the value of the outcome on one day is likely highly correlated with the value on the 
previous day; hence the errors are correlated and not independent (see Section 14.11).

• homoscedasticity—the variance of the outcome is the same at all levels of the predictor 
variables (ie the variance in -bwt- when the gestation length was 36 weeks should be the 
same as when it  was 42 weeks  etc) and within all  combinations of the values of the 
predictor variables. If this is true, then the MSE will be constant. This is an important 
assumption, perhaps more so than having a normal distribution of residuals. 

Example 14.13 Evaluation of homoscedasticity (equal variances) 
data = bw5k

Number of obs = 5000
F(4, 4995) = 476.34

Source SS df MS Prob > F = 0.0000
Model 442004512 4 110501128 R-squared = 0.2761
Residual 1.1587e+09 4995 231977.405 Adj R-squared = 0.2755
Total 1.6007e+09 4999 320210.372 Root MSE = 481.64

bwt Coef SE t P>t 95% CI

white 76.842 14.683 5.23 0.000 48.058 105.626

college 25.223 14.570 1.73 0.083 -3.341 53.786

cig_2 -15.430 2.136 -7.22 0.000 -19.618 -11.243

gest 124.263 2.921 42.55 0.000 118.537 129.989

constant -1552.323 113.118 -13.72 0.000 -1774.083 -1330.563

A scatterplot of standardised residuals vs predicted values based on the model above was generated.

Visually, it appears as if there is substantially more variability in the mid-range of predicted values. 
However,  this  can  be  difficult  to 
assess  given  that  50%  of  predicted 
values  fall  between 3,170 and 3,443. 
The  Cook-Weisberg  test  for 
heteroscedasticity  yields  a  χ2-statistic 
of  173.7  with  1  df.  This  very 
significant result (P<0.001) indicates a 
non-constant variance. Computing the 
SD  of  the  residuals  in  ranges  of 
predicted  values  with  cutpoints  of 
2,500;  3,000;  3,500;  and  4,000, 
suggests  that  the variance is  actually 
highest in the lowest group (SD=1.76 
if  pv<2,500)  but  there  are  only  86 
observations  in  this  group.  Although 
statistically significantly different, the 
range of SDs for  the categories  over 
2,500  is  only  from  0.91  to  1.28 
suggesting  that  the  problem  of 
heteroscedasticity  may  not  be  as 
serious as it first appears.

Fig. 14.5 Scatterplot of standardised residuals vs 
fitted values

-4

-2

0

2

4

st
an

da
rd

is
ed

 re
si

du
al

s

1000 2000 3000 4000 5000

linear prediction



LINEAR REGRESSION 383

• normal distribution—the residuals should be normally distributed at all  levels of the 
predictors, or at all combinations of predictors in the model (ie residual values for babies 
born to college-educated mothers should be normally distributed as they should be for 
babies  born  to  mothers  without  a  college  education).  We  often  try  to  get  a  quick 
assessment of this before starting the regression analysis by assessing the  normality of 
the distribution of the outcome. The residual errors from very non-normally distributed 
outcomes are unlikely to be ‘normalised’ by regression on the predictor variables unless 
the  R2 of the model is very high. On the other hand, as a simple example, if a strong 
dichotomous predictor for the outcome exists, then the raw distribution of the outcome 
will show as bimodal and therefore non-normal, but the residuals from the model might 
be normally distributed. 

• linearity—because  the  relationship  between  the  outcome  and  continuous  or  ordinal 
predictors (modelled as continuous) is described by a single coefficient, this assumes that 
the association is a straight-line relationship (ie a 1-week increase in -gest- from 38 to 39 
affects  -bwt-  by the same amount  as  a  1-week increase  from 41 to  42).  There  is  no 
assumption involved for dichotomous variables as 2 points can always be connected by a 
straight line. 

Each of the last 3 assumptions is discussed in more detail below (Sections 14.9.1, 14.9.2, and 
14.9.4),  and  we can  learn  much about  them by examining residuals,  often  using  graphical 
methods, although formal tests are also available. (Note Whether or not the observations are 
independent is usually known from the structure of the data and will not be discussed further in 
this section (see Chapters 20–23 for further discussion of this issue).) At this point, we would 
note that  ensuring  our  model  meets  the 3 major  assumptions (homoscedasticity,  normality, 
linearity) is very important, and alterations to meet one of these assumptions can influence the 
validity of the other 2 assumptions. In order to expedite model-building, we suggest a cursory 
examination of  these major  assumptions early  in the model-building process.  If  any of  the 
major assumptions are obviously violated at this stage, we would suggest instituting whatever 
changes are necessary to ‘improve’ the fit before serious model-building. We have ignored that 
principle to date in order to keep the model  ‘simple’ and explain the basic features of linear 
regression. Once we are satisfied that these 3 major assumptions have been met, we should 
pursue a more detailed search for specific observations that might be outliers, leverage points, 
and/or influential points. Because of the importance of residuals in these assessments, we begin 
by describing different types of residual. 

14.8.1 Residuals

The  raw residual (ri) is the difference between the observed and predicted value for the  ith 

observation and has the same units as the outcome variable, 
r i=Y i− Y i Eq 14.16

where  the  subscript  i denotes  the  particular  observation  on  subject  ‘i’ from the  ‘n’ study 
subjects. The raw residual  ri  is our ‘estimate’ of the error for observation  i, by subtracting its 
predicted mean from the observed value.

The mean of all residuals is zero, and the variance of each residual is: 

var r i=21−hi  Eq 14.17
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where  hi  is the weight of the ith observation in determining ri. The hi is called the leverage of 
that observation and indicates the potential for this observation to have a major impact on the 
model. In a simple regression model, hi has the following formula:

hi=
1
n

X 1i−X 1

2

SSX1 Eq 14.18

indicating that  as the value of the predictor  gets  farther  from its  mean, the leverage  of the 
observation increases. Note that this ‘potential’ impact depends only on the predictor, not on the 
value of the outcome. Leverage has a more obvious meaning when the predictor is measured on 
the continuous scale. We return to the subject of leverage in Section 14.10.2. 

The raw residuals can be scaled by dividing them by their SE. If all observations are used to 
estimate  σ2, this produces what are called  standardised (std) residuals (these are also called 
internally studentised residuals): 

r si=
r i

 1−hi Eq 14.19

The reference distribution for standardised residuals is a t with (dfE), so for sample sizes with 
n>30, based on the Gaussian distribution, there should be only about 5% of values outside of 
the interval (-2, 2). The major advantage of standardised residuals relative to raw residuals is 
that we have this absolute scale for what constitutes a large residual. 

The raw and standardised residuals are computed from the prediction for the  ith observation 
from  the  regression  equation  based  on  all  observations.  That  is,  the  observation  itself 
contributes to the prediction. An influential observation might not show a large residual because 
of its impact on the prediction. To ‘truly’ examine whether the ith observation is in agreement 
with the model, we should compare it with the prediction based on the other n-1 observations. 
Such (standardised) residuals are called  studentised (stu)  residuals or externally studentised 
residuals (others denote them as deletion residuals, or jackknife residuals):

r ti=
r−i

−i1−hi Eq 14.20

where  the ‘-i’  notation indicates  that  observation  i  is  not  included  in  the prediction or  the 
model’s variance. These residuals are distributed as a  t-distribution (with dfE-1; Table 14.2), 
assuming the model is correct.

To summarise, standardised residuals might yield a large value if: 
•  the observation is an outlier in the response (Y) variable (ie ri is large), or 
•  the observation is an outlier in the predictor variable(s) (ie hi is large). 

Studentised residuals might be large if either of the above is true, or if  the observation strongly 
affects the fit of the model (ie the model changes considerably when the observation is removed). 

We now proceed to use data on the residuals to assess the overall fit of the model. Although we 
separate the study of homoscedasticity from normality, in practise one should look at both, as 
well as linearity before deciding on modifications (eg transformations) to the variables.
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14.9 EVALUATING THE MAJOR ASSUMPTIONS

In general, evaluating the model assumptions relies heavily on graphical methods, although a 
large  battery  of  statistical  tests  exists  for  evaluating  different  assumptions.  However,  we 
recommend the tests to be used only as a supplement to the graphical methods, and that caution 
should be exercised when tests and graphics lead to different conclusions. 

14.9.1 Homoscedasticity

A  constant  variance  of  residuals  is  an  important  assumption  in  linear  regression.  Without 
equality of variance (a situation called  heteroscedasticity), the significance tests are, at best, 
only approximate because the standard error  is too small for some values and too large for 
others.  One  can  examine  the  homoscedasticity  assumption,  by  plotting  the  standardised 
residuals against the predicted values. If the variance is constant across the range of predicted 
Y-values, then a scatter of points resembling a horizontal band will result. If the variance is not 
constant, a pattern such as fanning (increased variance with larger predicted values), or coning 
(decreased variance with larger predicted values) might result. These patterns suggest that the 
dependent variable might need to be transformed (or a weighted regression used). It might also 
be useful to plot standardised residuals against individual (continuous) predictors and look for 
similar  patterns,  and  to  compare  the  residual  variances  in  the  groups  formed  by levels  of 
categorical variables. 

A number  of  statistical  tests  for  heteroscedasticity  exist,  and  a commonly used one  is  the 
Breusch-Pagan  test (also known as  the  Cook-Weisberg test)  (1983).  The null  hypothesis  is 
homoscedasticity,  so  a  significant  (P<0.05)  test  result  indicates  the  presence  of 
heteroscedasticity. An evaluation of heteroscedasticity is presented in Example 14.13. (Note All 
subsequent model diagnostics are based on the model shown in Example 14.13.)

14.9.2 Normality of residuals

To examine for normality, one can plot the residuals in the form of a histogram (Example 14.14). 
An alternative, and more sensitive display, is a  normal probability plot (sometimes called Q-Q 
(quantile-quantile) plot) for the residuals. If the residuals are normally distributed, the resulting 
plot will be (approximately) a straight line at  45° to the horizontal (see right side Fig. 14.6, 
Example 14.14). If the residuals are skewed to the right, the normal plot will curve below the 45° 
line (the curve is convex), whereas, if the residuals are left skewed, the normal plot will curve 
above the 45° line (the curve is concave). If the residuals are too peaked (platykurtic), the normal 
plot will be sigmoid curved. Whether such departures from normality are most easily visualised 
in the normal plot or the histogram is largely a matter of taste. As an aid for the interpretation, 
the skewness and kurtosis of the standardised residuals can also be computed. 

Many statistical tests for normality are available, with one of the commonly used tests being the 
Shapiro-Wilk test. The null hypothesis is that the distribution is normal, so a significant P-value 
(<0.05) is an indication of non-normality. However, our experience is that with large sample 
sizes,  this test  often yields  a significant  result  when only mild departure  from normality is 
evident. Consequently, we often rely more heavily on visual assessment (especially of a Q-Q 
plot). 
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14.9.3 Correcting error distribution problems: transformations of the outcome

There are a number of possible transformations of the outcome variable,  but only the more 
frequently used ones are mentioned here. Most software programs provide a variety of easily 
accessed transformations so that we can readily try different approaches. The selection of the 
correct transformation is also aided by knowledge of what has worked in similar situations in 
the past, although formal assessment of the appropriate transformation remains useful (Afifi et  
al, 2007). Some general rules are: 

• if the variance of the residuals increases mildly (ie proportional to the mean) with the 
outcome, a square-root transform of Y may prove useful, 

• if  the  ‘fanning’  is  stronger  (proportional  to  the  mean  squared),  a  logarithmic 
transformation of Y often works, 

• if  the variance  decreases  with the outcome and the relationship of  X  and  Y  is  nearly 
linear, a reciprocal transformation of Y could prove helpful, 

• if Y is a proportion (p) (or more generally, an outcome in a bounded interval but without 
a binomial denominator) the {arcsin (p1/2)}. transformation may stabilise the variance. 

Sometimes a more formal approach to identifying the optimal transformation is needed. In this 
regard, if we are concerned about a lack of normality, there is a family of transformations called 
Box-Cox transformations. The intent here is to determine the power transformation Yλ (except 

Example 14.14 Evaluating normality of residuals
data = bw5k

The histogram on the left and the  Q-Q plot (which displays the quantiles of the residuals versus the 
quantiles of the normal probability distribution) both suggest reasonable normality, although the Q-Q 
plot does identify the fact that there are more extreme (both negative and positive) residuals than would 
be expected.

Further evidence of a lack of normality can be obtained from a test for a normal distribution. The 
Shapiro-Wilk’s  statistic  has  a  value  of  W=0.995  (small  values  of  W  are  critical  for  a  normal 
distribution) with p<0.0001, indicating non-normality. 

Fig. 14.6 Histogram and Q-Q plot of standardised residuals
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for  λ=0, see below) which will make the distribution of the errors as close to an independent 
Gaussian sample as possible. The Box-Cox analysis, available in most software, computes the 
value of λ which best ‘normalises’ the errors using an iterative maximum-likelihood procedure. 
These transforms can only be used on positive numbers (ie >0), but they can be applied to the 
outcome variable, the predictor(s), or both. Some examples of Box-Cox transformations (where 
Y* is the transformed value of Y) are: 

•  if λ=1, we use Y*=Y 
•  if λ=1/2, we use Y*=√Y (square root of Y)
•  if λ=0, we use Y*=lnY,
•  if λ=-1, we use Y*=-1/Y. 

Usually it is sufficient  to round the estimated  λ to the nearest 1/4 unit (ie λ=0.45 would be 
λ=1/2), or to pick a ‘nice’ value within the 95% confidence interval for  λ. In the model from 
Example 14.13,  λ=1.38 and in this case,  the model was refit  with -bwt-1.38 as the outcome. 
While  this  improved the normality of  the  residuals,  the Shapiro-Wilk test  remained  highly 
significant (data not shown). (See Section 14.9.6 for a discussion on interpretation of results 
from this transformed model.)  Note If  the Box-Cox procedure suggests a log transform and 
there are observations with the Y=0, a small number (usually the lowest observed value of Y in 
your data) should be added to Y before making the log transform (Afifi et al, 2007).

Note that  the analysis  for homoscedasticity and normality should be based on the residuals 
(from an appropriate linear model) not on the distribution of the outcome itself. It should also 
be noted that Box-Cox is only one (but commonly used) type of transformation; there is no 
guarantee that the optimal λ works well (only that it is the best among the power transforms), 
and many other transformations might be relevant. For example, if the distributional problem 
with the residuals is mainly one of skewness, an alternative transform is of the form Y*=ln(Y-c), 
where c is a value to be selected to help correct the skewness. An advantage of this transform is 
that it is not constrained to transforming only positive numbers; but Y-c must be positive.

14.9.4 Linearity of predictor-outcome association

In a regression model, we assume that the relationship between the continuous predictor and the 
outcome  is  linear.  Most  software  regression  packages  will  allow  graphical  assessment  of 
linearity,  some only in  a  univariable  model,  others  in  multivariable  models.  With  multiple 
continuous  variables  in  the  model,  one  approach  to  detecting  non-linearity  is  to  plot  the 
residuals  against  each  of  the  continuous  predictor  variables  (see  Example  14.15).  The 
sensitivity of this process can be increased by using a smoothing function to help you visualise 
any pattern that might be present, but be careful of patterns in areas where the data are sparse. 
Methods for assessing linearity and dealing with non-linearity are discussed much more fully in 
Section 15.6.  However,  3  possible  approaches  to  resolving a non-linearity problem will  be 
mentioned here. The first is to add a power term of X (eg quadratic). The second approach is to 
try to transform the Y-variable (as discussed below). The third is to categorise the continuous 
predictor and include either regular or hierarchical indicator variables in the model in place of 
the  continuous  predictor  variable.  Example  14.15  shows a  lowess  smoothed  curve  to  help 
evaluate the linearity of the relationship between gestation length and -bwt-. 

Suggestions for correcting a lack of linearity by transformation 
In order to correct a lack of linearity, we can transform the outcome or the predictor(s) or both. 
As  will  become  apparent,  we  often  have  to  use  transformations  to  correct  for  both 
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heteroscedasticity and lack of normality. Sometimes correcting for one problem solves others, 
but  sometimes  correcting  one  problem  makes  a  new  problem  on  the  other  fronts.  If  we 
transform the outcome variable to improve linearity, this will definitely affect the variance and 
normality  of  residuals  so  these  must  be  checked  after  transforming  the  outcome  variable. 
Indeed, we might have to rebuild the model. If we transform the offending predictor(s), then the 
variance and normality of residuals are likely to remain relatively stable. Thus, often the route 
of choice for improving linearity is  to test quadratic,  or other power transformations of the 
predictor(s) within a power of ±2 to assess their significance. The following are guidelines: 

• if the outcome increases at a decreasing rate with X, then try a lnX or a X1/2 
transformation

• if the outcome increases at an increasing rate with X, then try X2 or eX 
• if the outcome decreases at a decreasing rate with X, then try X -1 or e-X.

If  the relationship is  more complex, it  may be necessary to use more complex polynomial 
models or hierarchical indicators instead of the continuous-scaled variable (see Section 15.6). 
We can choose the important cutpoints for the hierarchical indicators by identifying which ones 
are statistically significant (Section 14.4.2). 

14.9.5 Correcting distribution problems using robust standard errors

A number of distributional problems can be dealt with using robust standard errors. These are 
discussed  in  more  detail  in  Section  20.5.4  as  they  might  also  play  a  role  in  dealing  with 
clustered data. Robust SEs are generally larger than regular SEs and hence, the resulting CIs for 
the coefficients are wider. If robust errors are used, be careful not to use the F-test to assess the 
model as it  is  no longer  valid.  Also,  the MSE no longer  estimates  σ2 as  there  is  no single 
parametric value. After examining the residuals on a case-by-case basis, we refit the model of 

Example 14.15 Evaluating linearity between gestation length and birth weight
data = bw5k

A lowess smoothed curve was fit to a 
scatterplot  of  the  standardised 
residuals  (derived from a model  in 
which -gest- was entered only as a 
linear  term)  against  birth  weight
(-bwt-).  It  is  clear  that  the  effect  of 
-gest-  is  not  linear.  Note This  could 
have been predicted by using a lowess 
smoothed  curve  to  evaluate  the 
unconditional  association  between 
-gest- and -bwt- (plot not shown). See 
Chapter  15  for  a  more  detailed 
discussion of evaluating linearity.

Adding a quadratic term for -gest-
(-gest39-  and  -gest39_sq-)  improved 
the linearity assumption but evidence 
of non-linearity remained. The revised 
model  had  better  predictive  ability  R2 of  30%  compared  with  28%,  but  the  problems  of 
heteroscedasticity and non-normality became more severe (data not shown).

Fig. 14.7 Lowess smoothed curve through 
scatterplot of residuals vs gestation length
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Example 14.16 using robust standard errors to help assess the importance of cigarette smoking 
and gestation length. Both remained highly statistically significant, but the SE of -gest- was 
approximately 50% larger (Example 14.16).

14.9.6 Interpreting transformed models

Although visual assessments of homoscedasticity and normality appeared reasonable for the 
model  presented  in  Example  14.13,  there  was  statistical  evidence  of  violation  of  both 
assumptions. Subsequently, a Box-Cox analysis suggested that a bwt1.38 transformation might be 
appropriate (details not shown). This transformation reduced the amount of heteroscedasticity 
(although it remained statistically significant). The transformation also improved the normality 
of the residuals, but once again statistical evidence of departure from normality remained. The 
main problem with the  distribution of  the  residuals  appears  to  be a  number  of  quite  large 
positive residuals.  Coefficients  (or  SEs)  from the original  model  and Box-Cox transformed 
model  cannot  be compared  because  they are  on different  scales  (discussed below),  but  the
P-values for the significance can be. In this example, all predictors remain highly statistically 
significant, providing a degree of comfort that the original model may be satisfactory.

One  problem  with  transformations  is  that  they  change  the  structure  of  the  model  and 
interpretation can become more difficult. Among transformations of the outcome, only the log 
transformation allows for back-transformation of regression coefficients (to give multiplicative 
effects on original scale). In general, rather than trying to explain the model in a mathematical 
sense, we suggest that you make extensive use of graphical techniques, compute the predicted 
values and plot the back-transformed outcomes. The key is to obtain the predicted outcome 
(and  any  confidence  limits)  in  the  transformed  scale  and  then  use  the  back-transform  to 
determine the outcome in the original scale—on the assumption that explanations of effect are 
much easier  in  the  original  scale.  Sometimes  it  is  advantageous  to  leave  the  model  in  its 
transformed format. For example, it is standard practise to use log transformed bacteria counts 
from microbiological studies of factors that affect bacterial counts.

When applying transformations to multivariable models, we need to be careful when making 
predictions because additive and linear models in one scale become (possibly strongly) non-

Example 14.16 Final model with robust SEs 
data = bw5k

A model was built with birth weight on the original scale with robust SEs.

bwt Coef
Robust

SE t P>t 95% CI

white 76.842 14.584 5.27 0.000 48.252 105.433

college 25.223 14.576 1.73 0.084 -3.353 53.798

cig_2 -15.430 2.559 -6.03 0.000 -20.448 -10.413

gest 124.263 4.398 28.25 0.000 115.640 132.886

constant -1552.323 171.298 -9.06 0.000 -1888.142 -1216.503

The interpretation of the results of this model are presented in the text (Section 14.9.5).
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linear and non-additive (ie showing interaction) in another. Thus, the outcome depends on the 
values  of  all  of  the  variables  in  the  model  even  though  there  is  no  actual  interaction.  A 
recommended practice here is to use the mean values for variables not of direct interest ,and a 
range of values for those variables of primary interest when computing the predicted values. 
Again,  all  confidence  intervals  etc are  determined  in  the  transformed scale  and then back-
transformed into the original scale as necessary.

For comparison purposes, we present predicted values from the original model and the Box-
Cox transformed model for the 2 levels of college education at 2 levels of gestation length (with 
all other predictors set to 0).

Table 14.3 Predicted birth weights from the original and Box-Cox transformed 
models 

gest=38 gest=42

college=
0

college=1 college=0 college=1

original 3170 3195 3667 3692

Box-Cox transformed 3273 3299 3733 3758
Note Estimates computed with all other predictors set to 0.

Note On both scales,  the  effect  of  a  college  education  is  25  gm.  The effect  of  change  in 
gestation length (from 38 to 42 weeks) increased birth weight by 497 gm on the original scale, 
but by approximately 460 gm in the transformed model. It appears that the effect of gestation 
length is  slightly smaller in the transformed model. For a more detailed discussion of back 
transformations see Afifi et al (2007).

14.9.7 Specification bias

If the model is correct, the residuals are uncorrelated with the predicted outcome ( Y). However, 
if an important variable is missing from the equation, the model suffers from specification bias. 
This might  reflect  itself  in a  linear  pattern  of the standardised  residuals  with the predicted 
values of Y. For example, small (negative) residuals might be associated with lower values of 
Y  and large (positive) residuals with large values of Y , suggesting that one or more important 

predictor variables are missing. Specifically,  the sampling units with positive residuals have 
something in common that also gives them large observed values of Y, and this feature might 
help identify the missing variable. However, if a model has a low R2, it is difficult to discern 
some of these patterns because of the relatively large variability in ri. There are formal tests for 
specification bias, but they are beyond the scope of this text.

14.10 ASSESSMENT OF INDIVIDUAL OBSERVATIONS

Our previous efforts were directed toward evaluating the major assumptions on which linear 
regression  models  are  based.  Here  we  assess  the  fit  of  the  model  on  an  observation  by 
observation basis. Specifically, we look for:

• cases that are not well fit by the model and, hence have large residuals; some of these 
might be deemed outliers. In a technical sense, outliers have large values of studentised 
residuals that are very unlikely to have arisen due to chance.
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• cases with unusual X-values; these are called leverage observations. 
• cases that have an unduly large impact on the model; these are influential observations. 

Our rationale for pursuing this observation-by-observation analysis is that we want to be sure 
the model is  correct  for the majority of the study subjects,  and if  we can identify specific 
instances of observations that do not fit, or have a big influence on our model, it can help us 
identify the reason(s) for that impact. In addition, this pursuit can often provide insight into 
features of the data that can be useful in clarifying the model results or in planning studies. 

There are 2 general  approaches to assist in this task—one is to use graphical  techniques to 
detect observations with an unusual value (ie atypical relative to the others) on the test statistic, 
and the other is based on identifying observations that exceed a specific cutpoint. Both have 
their advantages. The key is to try a variety of approaches and see which you prefer, but there is 
no need to use all possible approaches in a given dataset. Although we use graphical techniques 
regularly, here we present only tabular results. If a predictor variable is interval censored (ie 
treated as a continuous variable but only takes selected values), special methods, beyond the 
level of this text, are available for the assessment of the residuals (Topp and Gómez, 2004).

14.10.1 Outliers 

In general, an outlier is an observation in a dataset which is far removed in value from the 
others in the dataset. In multivariable datasets, we need to make precise the meaning of ‘far 
removed in value’,  because  it  may be only in the combination of several  variables  that  an 
observation becomes unusual (eg being college educated, a heavy smoker and having a long 
gestation). In regression analysis, we distinguish between outliers in the outcome variable and 
outliers among the predictor variables (not involving the outcome). 

An outlier in the outcome is detected by a (numerically) large residual, where ‘large’ is viewed 
relative to the other observations and to what would be expected for a dataset of the same size.

It is important to note that, although we are interested in identifying outliers, we do so largely to 
try to explain/understand why they fit  poorly,  not  to remove them without reason.  Outliers 
inflate the standard error of the estimate and hence reduce the power of statistical tests. Unusual 
values of the outcome, or predictors, might reflect the state of nature, they might arise because 
of  transcription  or  data-entry  errors,  or  they  might  signal  that  we  are  missing  important 
covariates  that  could ‘explain’ the poor fitting points.  In  most instances,  one should not  be 
unduly concerned  about  these  data points  unless  their  standardised value is  greater  than 3, 
although values between 2 and 3 might be having an impact on the model. Recall that with 
normally distributed residuals, a small percentage (0.3%) of standardised residuals would be 
expected to lie outside of ±3.

If an observation is suspected to be an outlier, it can be assessed with a 2-tailed t-test based on 
the studentised (stu) residual.  However,  the probability associated with this test depends on 
whether the observation was suspected of being an outlier a priori or not. If an observation was 
suspected beforehand, then the P-value is found by comparing the studentised residual with the 
value of a  t-distribution with dfE-1 degrees of freedom. However, if we are testing a specific 
data point subsequent to observing the residuals, we should multiply the above probability by 
the number of observations (n) which is equivalent  to using the Bonferroni  adjustment (Eq 
14.20). If the studentised residual is larger than this number, then it can be considered to be a 
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statistically confirmed outlier. In this dataset, a studentised residual greater than 4.42 would be 
considered to be an outlier.

P=2∗n∗t dfE , r ti Eq 14.21

Some general rules in managing outlier observations include: 
• identify observations with large studentised residuals
• try to find an explanation for them, such as a recording error or erroneous test result (ie 

equipment or operator problem)
• if there is no recording error, then think about what factors the outliers might have in 

common that, if measured, could explain their lack of fit
• try refitting the model without the outliers, to see the effect on the model
• if the observations are to be deleted (which they rarely are), be sure to explicitly record 

this for yourself and those who read your research report. (It is hard to justify the deletion 
of observations.)

Although deleting outliers will improve the fit of the model to the sample data, it might actually 
decrease the model’s validity as a predictor for future observations. In Example 14.17, we have 
presented the 5 largest positive and negative residuals from our model along with the values of 
the key predictor  variables;  this presentation often helps you  understand the reason for  the 
departures from expectation. 

14.10.2 Detecting ‘unusual’ observations—leverage

This activity focuses on identifying subjects with unusual values in the  Xs and is particularly 
applicable when many continuous variables are present in the model. For this purpose, we use 
the leverage from Eq 14.18 which indicates the potential for the ith observation to have a major 
impact on the model. 

In general, observations with at least one of the predictors that is far from the mean will tend to 
have a large leverage; note that leverage lies between 1/n<hi<1. Observations with a very high 
leverage may have a large influence on the regression model; whether they do or not depends 
on the observed Y-values. A common rule is to examine observations that have leverage values 
>2(k+1)/n,  where  k is  the number of  predictors  in  the model  (or  the number  of regression 
parameters, excluding the intercept). There is a fair bit of arbitrariness in this cutpoint (another 
commonly used value is 3(k+1)/n), and hence one should initially look for observations with 
relatively extreme leverage values regardless of the cutpoints. Using this last approach for our 
example, observation with a leverage above 0.017 can be considered as extreme in its predictor 
values.  The  5 cases  with the  largest  leverage  values  are  shown in Example 14.18.  Having 
identified potentially influential observations, we then proceed to evaluate their actual influence 
on the model. 

14.10.3 Detecting influential observations—Cook’s distance and DFITS

An intuitive test of an observation’s overall influence is to omit it from the model, recalculate 
the  model  and  note  the  amount  of  change  in  the  predicted  outcome.  If  an  observation  is 
influential, the change will be large; if not, the change will be small (see Example 14.19). This 
approach forms the basis of  Cook’s distance Di which is the sum of squared differences in 
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fitted values with and without observation  i (summed over all other observations and scaled 
suitably). A more direct interpretation of Cook’s distance derives from Eq 14.22. 

Di=
r si

2

k1 
∗

hi

1−hi Eq 14.22

emphasising that  a  large  standardised  residual,  a  large  leverage,  or  both can lead to  undue 
influence. 

A  commonly  suggested  cutpoint  is  to  compare  the  Cook’s  value  with  the  F(k+1,  n-k-1) 
distribution.  If  it  exceeds  the  50th percentile  (not  5%),  which  is  essentially  1,  then  the 

Example 14.17 Examination of standardised and studentised residuals
data = bw5k

Standardised and studentised residuals were computed based on the model presented in Example 14.16 
with ordinary SEs. Given the relatively large size of the dataset, the differences between the 2 sets of 
residuals were minimal. Based on our data, with 5,000 observations and 4,995 degrees of freedom, an 
observation with a studentised residual more extreme than ±4.42 would be ‘unusual’ with a P-value of 
<0.05.  Since we  have  no babies  with  such an extreme residual,  we  conclude there  are  no serious 
outliers.

In a dataset of this size, we would expect to see 250 and 50 residuals with absolute values >2 and >3, 
respectively. We observe that there are 243 and 41, respectively, suggesting a reasonable distribution of 
extreme residuals.

The 5 smallest (ie most extreme negative) standardised residuals (-rsta-) were:
obs bwt white college cig_2 gest pv rsta

2853524 1644 1 0 10 43 3714 -4.30

2946097 1515 0 1 0 40 3443 -4.01

1394806 1165 1 1 0 36 3023 -3.86

747439 2195 0 0 0 45 4040 -3.83

4005523 1985 1 1 0 42 3769 -3.71

Most of these were babies with long gestation periods (≥39 weeks),  but very low birth weights.  If 
possible, it would be useful to attempt to validate the data about the length of the gestation period.

The 5 largest standardised residuals were:
obs bwt white college cig_2 gest pv rsta

591651 5370 1 1 0 41 3645 3.58

3144236 3759 1 0 0 28 2004 3.65

3666116 4338 0 1 0 33 2574 3.67

283005 5216 1 0 0 38 3247 4.09

368699 5550 0 0 0 40 3418 4.43

These were normal weight babies delivered from very short gestation periods, or exceptionally heavy 
babies from normal (or slightly prolonged) gestation periods. As above, it would be useful to attempt to 
verify the data about the length of the gestation.
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Example 14.19 Examination of influential observations
data = bw5k

A total of 288 observations had Cook’s D values above the suggested threshold (4/5000=0.0008). The 
observations with the 10 largest Cook’s D values  are listed below. Most had positive DFIT values.

obs bwt white college cig_2 gest pv rsta Cook's D dfit

3406296 1503 1 1 20 35 2590 -2.27 0.009 -0.21

2853524 1644 1 0 10 43 3714 -4.30 0.010 -0.22

1358363 3874 1 1 0 29 2153 3.58 0.010 0.23

3321093 2892 0 0 0 25 1554 2.79 0.011 0.24

3144236 3759 1 0 0 28 2004 3.65 0.013 0.26

373122 2807 0 0 0 24 1430 2.87 0.014 0.26

3118691 4311 1 0 20 37 2814 3.12 0.014 0.27

783858 3340 1 0 45 39 2676 1.40 0.015 0.28

2797566 3856 1 0 40 40 2878 2.06 0.025 0.36

3402360 4250 1 0 40 38 2629 3.42 0.070 0.59

The most influential observations fell into one of three groups:
• babies whose mothers smoked, but who had birth weights substantially above predicted values
• babies with very short gestational lengths but with birth weights substantially above predicted 

values
• two babies from mothers who smoked but had birth weights much lower than expected.

It will be important to make sure that these observations don’t have an undue influence on the model. 
Removing these values had relatively little effect on the model with the exception that the detrimental 
effect of cigarette smoking becomes larger (coefficient for -cig_2- was changed from -15 to -18).

Example 14.18 Examination of high leverage observations
data = bw5k

Leverage values (-lev-) were computed based on the model presented in Example 14.16 with ordinary 
SEs. The 5 largest values were:

obs bwt white college cig_2 gest pv rsta lev

3503942 2920 1 0 30 38 2784 0.29 0.016 

2797566 3856 1 0 40 40 2878 2.06 0.029

2718923 2997 1 0 40 38 2629 0.77 0.029

3402360 4250 1 0 40 38 2629 3.42 0.029

783858 3340 1 0 45 39 2676 1.40 0.037

All of the highest leverage cases were babies born to mothers with high cigarette consumption.
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observation should be investigated. However, in our practical experience, the values of Di rarely 
exceed this cutpoint, so it is recommended to look instead for values that are extreme relative to 
the others in the data. In our dataset, if we use 4/n as the cutpoint, a large Cook’s Di would have 
a value exceeding 0.0008 and 288 babies have this value or greater.

A similar approach is used with a statistic known as DFITS (or DFFITS) (Example 14.19). It is 
an acronym that stands for ‘difference in fit’ between when the observation is in the model 
versus when it is out. DFITS indicates the number of standard errors change to the model when 
that observation is deleted.  The following formula for DFITS shows its strong similarity to 
Cook’s distance:

DFITSi=r ti  hi

1−hi  Eq 14.23

Thus, the DFITS statistic is based on the studentised residual and retains its sign. Again, if the 
DFITS numerically exceeds a value of, for example, 1 for  n<120 or 2√((k+1)/n)  in a larger 
dataset, it means that if that observation was deleted, the model would change by a relatively 
large amount (recall that k is the number of predictor variables in the model). As with outliers, 
we should be hesitant to remove influential observations without good reason. In general, we do 
not remove influential observations unless the data are known to be incorrect, or there is a clear 
explanation for their influence. If  observations are removed, the reason(s) for their removal, 
must be drawn to the attention of those reading your research results.

In our model, a large value for DFITS is 0.063, and there are a number (292) of observations 
with larger values than these. The 10 observations with the largest Cook’s  D (and also large 
DFITS) are shown in Example 14.19. Characteristics of those babies are also discussed.

14.10.4 Detecting influential values of specific predictors

Given  an  exposure  variable  of  interest,  one  can  assess  the  impact  of  deleting  a  specific 
observation on the value of the regression coefficient for that variable. The statistic used for this 
is known as a delta-beta (DB) and reflects the number of standard errors by which the specific 
regression coefficient  changes when that  observation is  deleted.  Thus,  it  helps identify if  a 
particular observation has a large influence on the β for that variable. Critical values for n<120 
are 1 and for larger datasets 2/√n. Again, this value might be too sensitive and initially one 
should just focus on observations with very extreme DB values.

In our model, the critical DB value was ±0.028 and 130 babies exceeded this threshold for the 
DB for  -cig_2-.  Not  surprisingly,  these  influential  observations  are  all  from babies  whose 
mothers  smoked  heavily  (≥15  cigarettes  per  day).  However,  there  is  no  justification  for 
removing any of these observations from our dataset. In general, the DB statistics are much 
more useful if the variables of interest are continuous rather than dichotomous. 

14.10.5 Comments on the model deficiencies

In our examples, we have taken you through the basic steps of assessing a linear regression model. 
We did identify some problems with normality and heteroscedasticity, and with the linearity of the 
gestation length effect. This last issue will be investigated more thoroughly in Section 15.6. We 
were unable to identify a transformation that completely resolved the first two issues. However, 
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we felt justified in remaining with the original model because the statistical significance of all of 
our predictors was never in question and the effects of the predictors did not change dramatically 
when we used a transformed model. There were no statistically significant outliers.

14.11 TIME-SERIES DATA

Time-series  data  are  characterised  by an  outcome measured  at  equal  time intervals  over  a 
reasonably long time period, such as hospital admissions per day for 1–5 years, or daily weights 
of babies over the first 3 months of life. In this setting, the outcome in one time period (eg one 
day) is likely to be correlated with the outcome in adjacent time periods. This correlation of 
outcomes often leads to correlation of residuals and breaks one of the major assumptions of 
(ordinary  least  squares  (OLS))  linear  regression.  Often,  we  can  predict  that  data  will  be 
correlated  given  the  structure  of  our  sampling  of  subjects  (for  example,  taking  repeated 
measurements of an outcome on the same individuals over time). Pires and Rodrigues  (2007) 
describe methods for use when only some of the errors are correlated, such as would occur if a 
dataset had data from babies with multiple weight measurements, when most data came from 
babies with only one measurement. Analyses to control for the correlations between repeated 
measurements on a group of study subjects are described in Chapter 23. 

In time-series data, a correlation between residuals on adjacent time periods (eg days) arises 
because we make repeated observations, at equally spaced intervals, on our study subjects (for 
example,  taking  daily  weight  measurements).  The  set  of  predictors  could  be  daily 
measurements of breast-feeding frequency or time spent sleeping. If we analyse such data, to 
estimate the impact of frequency of feeding on weight, the coefficients reflecting the ‘effect’ of 
the predictors are unbiased but the standard errors are likely to be incorrect. The correlation of 
residuals can lead to either inflated or deflated standard errors. If we suspect serial correlation, 
we can use the  Durbin-Watson test to assess this. In general, a Durbin-Watson test value of 
approximately 2 indicates  no correlation,  and as  the test  statistic gets  smaller  this indicates 
increasing  correlation  between  adjacent  residuals.  There  are  more  advanced  tests  of  serial 
correlation such as the Ljung-Box Q-test (Ljung and Box, 1978), that provide a specific P-value 
that is easier to interpret than the Durbin-Watson test. 

Examples of time-series analysis include the analysis of temporal patterns of  Campylobacter  
spp. in humans and poultry (Hartnack et al, 2009); relationships between ambient temperature 
and enteric  infections  (Fleury et  al,  2006),  and temporal  patterns  of  fox  rabies  in  Ontario, 
Canada  (Tinline and MacInnes, 2004). Poirier  et al (2008) give an example of modelling the 
effect of an intervention in poultry production on the future monthly number of isolations of 
poultry-related Salmonella spp. in humans. A useful text on the analysis of time-series data is 
Diggle (1990).

One of the early steps in analysing time-series data is to plot the outcome data and, in this 
regard, a smoothed curve is a good way to enhance visualisation of trends and other patterns 
such as seasonal changes in the outcome. If the time counter is ‘t’ (eg for daily measurements 
t=day), we can use a variety of smoothing functions of length 2m+1 (m≥t). The larger m is, the 
greater the smoothing (of all fluctuations of duration less than m). For example, if we have a 
daily time series and m=1, then a 3-day moving average will remove variation in the outcome 
measure of periodicity of 3 days or less. Before proceeding to detailed analyses, it is important 
that the data be ‘stationary’—that is, any trend, or seasonal variation be removed (however, this 
is beyond the level of this text).
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Once  this  is  accomplished,  we  should  examine  the  correlation  between  residuals  over  a 
specified number of lag periods (for example, correlations between residuals over a 7-day lag 
(m=7) evaluates the correlations between observations ranging from 1–7 days apart). Typically, 
the correlation is greatest for time points that are closest together (ie observations on the same 
subjects  made close  together  in  time tend to  be strongly correlated  with one  another).  For 
example,  the residuals from daily weight  would be expected to be most strongly correlated 
between adjacent days and the correlation tends to decrease as the number of days between 
measurements increases. The autocorrelation function can be used to ascertain the correlation 
structure for outcomes in periods up to m time units apart. The partial autocorrelation function 
between 2 outcomes m units apart takes into account the correlation between time units between 
1 and m and is useful for identifying where sudden changes in the correlation structure occur. 
Most software packages have convenient commands to allow you to examine these correlations 
over  a variety of lag periods.  Knowledge of these correlations provides guidance about the 
desired model structure. 

14.11.1 Adjusting for serial correlation

One way to correct  for the correlation between residuals is to use a weighted least squares 
estimator,  and 2 such estimators are the Cochrane-Orcutt  and the Prais-Winsten estimators. 
These do not take the dynamic nature of the time series (eg trends, weekly or seasonal patterns) 
into account but they do make corrections to the standard errors, assuming a lag of one time 
unit suffices. Again, many software packages will allow you to run these regressions, and it is 
usual practise to rerun the tests for correlated residuals after running these models to ensure that 
the correlations have been removed.

A more advanced approach involves the use of what are termed autoregressive models (Zeger 
et al, 2006). The details of these are beyond the level of this text and will not be pursued here. 
However,  we  will  (barely)  introduce  the  subject  at  this  point.  Essentially,  we  model  the 
outcome (Yt) on a given day as a function of a number of predictors (ie the Xs). The Xs can be 
variables that we have reason to believe will account for some of the patterns evident in the 
time series such as seasonal and/or annual trends, or they could be time-dependent exposure 
variables (Xts) whose ‘effect’ we are attempting to estimate. The choice of these would depend 
on our beliefs about what processes are ‘driving’ the patterns seen in the time series. Once these 
fixed effects  are  included,  it  is  common to find that  the nature  and strength of  the lagged 
correlations  have  changed  from  the  original  naive  values.  The  equation  below  is  an 
autoregressive (AR) model because we have included the outcome on the previous 2 days as 
predictors; this would be an AR-2 model.

Y t=01 X 1 t2 X 2 t1Y t−12Y t−2t  Eq 14.24

This model also implies that the predictor variables are time dependent (and measured on the 
same time scale as  Y) variables. For example  Yt could be weight on day  t and  X1t could be 
nursing frequency on day t, and X2t could be a measure of the time slept on day t. As shown in 
Fleury et al (2006), Yt could be the daily number of enteric disease cases and the Xts could be 
weather variables.

With an AR1 structure, correlations have an exponential decay over time (the structure of the 
decay is more complex for AR2, AR3  etc). It  is useful to verify this, for example, visually 
through correlograms, in order to ensure that the expected decay is consistent with the data. If 
there are sudden changes in the correlation structure, or if the correlation of Yt with Yt-1 drops 
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very quickly, then a moving average model could be helpful to account for these. The moving-
average (MA) component uses the residuals of time periods at the specified lags to account for 
the correlation structure. As the name suggests, ARMA models use both auto-regressive and 
moving average  processes.  An ARMA-11 model of  AR-1 and MA-1 is useful  if  the AR-1 
model includes measurement error. As noted above, for their validity, ARMA models must be 
stationary (this indicates that the mean, variance, and autocorrelation structures are the same 
over time) and this needs to be verified. Stationarity does not mean that we cannot model events 
that change over time, but we may need to adjust for them by removing trend, seasonality etc.
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