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MODEL-BUILDING STRATEGIES

OBJECTIVES

After reading this chapter, you should be able to:

 1. Develop a ‘full’ (maximal) model which incorporates your biological understanding of the 
system being investigated.

 2. Carry out procedures to reduce a large number of predictors to a more manageable subset.

 3. Address key issues related to the predictors (eg functional form of the relationship between 
a continuous predictor and the outcome dealing with missing values).

 4. Build regression-type models while considering statistical and non-statistical criteria.

 5. Evaluate the reliability of a regression-type model.

 6. Present the results from your analysis in a meaningful way.
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15.1 INTRODUCTION

When building a regression model, we need to decide on the goals of the analysis, to recognise 
the need to incorporate both statistical considerations and our subject matter knowledge into 
that process, and to balance the desire to get the model which ‘best fits’ the data with the desire 
for parsimony (simplicity in the model). As will become apparent, the definition of ‘best fit’ 
depends on the goal of the analysis. Throughout this chapter (unless otherwise specified), the 
principles discussed relate to all types of regression model but will generally be presented in the 
context of a linear regression model.

Goals of the analysis
Regression models are generally built to meet one of 2 broad objectives. One goal might be to 
come up with the best model for predicting future observations. The details of this model (eg 
the effects  of specific  predictors)  might  be of  little consequence,  but  we want to keep any 
variables out of the model whose relationship with the dependent variable is questionable. If 
these variables are included, and a future observation has a relatively extreme value for one of 
those variables, the prediction might be inaccurate.

More often in epidemiology, the goal is to understand the relationship(s) (potentially causal) 
between one or more predictors and the outcome of interest. In this case, you want to obtain the 
most precise estimates of coefficients possible for the variables of interest. Careful attention 
must be paid to any interaction and confounding effects.

Role of subject matter knowledge
Subject matter knowledge must guide model-building. If the goal is simply to build a predictive 
model, the role of subject matter knowledge is to prevent the inclusion of variables not likely to 
be generally related to the outcome of interest. As noted, inclusion of these could make future 
predictions inaccurate.

If the goal is understanding biological relationships, it is important that factors which are likely 
to be confounders should be retained in the model, regardless of their statistical significance. 
On the other hand, inclusion of factors which are almost certainly not confounders (see Chapter 
13 for criteria for confounding) may result in biased results. This is most likely to happen if 
intermediate (intervening) variables are included in the analysis. Building a causal diagram is 
an essential first step in any model-building exercise in which the objective is to understand the 
relationships between predictors and the outcome (more on this in Section 15.3).

Subject matter knowledge may also help in the selection of variables. For example, choosing 
among collinear variables is facilitated if you are able to take into consideration the difficulty of 
measuring each of the predictors and their perceived reliability.

Parsimony vs fit
In general, parsimony (using as few predictors as required to obtain a good fit) should be your 
guide, but do not exclude variables that you have reason to believe (ie for biological reasons) 
should be in the model. Remember, the goal of most statistical analyses is to extract meaningful 
results from a complex dataset. If the final results are almost as complex as the original data, 
nothing has  been gained.  (If  the  number  of  regression  coefficients  equalled the number  of 
observations  in  the dataset,  we could have  a perfect  fitting model,  but  would have  gained 
nothing.) Simple models are more robust, less likely to be influenced by specific idiosyncrasies 
of the existing data, and consequently will perform better if applied to new data.
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15.2 STEPS IN BUILDING A MODEL

The steps involved in building a regression model are:
1. Specify the maximum model to be considered (ie identify the outcome and the full set 

of predictors that you want to consider).
2. Specify the criterion/criteria to be used in selecting the variables to be included in the 

model.
3. Specify the strategy for applying the criterion/criteria.
4. Conduct the analyses.
5. Evaluate the reliability of the model chosen.
6. Present the results.

15.2.1 Specifying the maximum model

The  first  step  in  specifying  the  maximum model is  to  identify  the  outcome  variable  and 
determine whether it is likely to need transformation (eg natural log transformation) or other 
form of manipulation (eg recategorisation of an outcome variable). Discussion of issues related 
to the outcome variable is presented in the chapters dealing with specific modelling techniques 
(eg Chapter 14 for linear regression models, Chapter 16 for logistic models).

The maximum model includes all possible predictors of interest. There are pros and cons to 
making the maximum model very large. On one hand, it will prevent you from overlooking 
potentially  important  predictors.  On  the  other  hand,  however,  adding  a  lot  of  predictors 
increases the chances of:

• collinearity among predictor  variables  (if  2  or  more  independent  variables  are highly 
correlated, the estimates of their coefficients in a regression model will be unstable), and

• including variables that are not important ‘in the real world’, but happen to be significant 
in  your  dataset.  (Interpretation  of  these  results  might  be  difficult  and  the  risk  of 
identifying spurious associations is high.)

When specifying the maximum model, you need to identify which variables should be included 
in the model-building process, how many should be included, and whether or not interaction 
terms need to be considered.  Bear  in mind that building the maximum model is as much a 
scientific/clinical task as it is a statistical one. The steps involved in specifying the maximum 
model include:

• drawing a causal diagram
• potentially reducing the number of predictors being considered
• considering the impact of missing values
• evaluating the effects of continuous predictors
• deciding what interactions are to be considered.

15.3 BUILDING A CAUSAL MODEL

It  is imperative that you have a causal model in place before you begin the model-building 
process. This model is usually presented as a causal diagram. These were introduced in Chapter 
13 and a much more complete discussion of causal diagrams is presented elsewhere (Rothman 
et al,  2008, Chapter 12). The diagram will identify potential causal relationships among the 
predictors and the outcome of interest. For example, if you were interested in evaluating the 
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effects of cigarette smoking on birth weight, and also had recorded data on mothers’ race and 
education level, total birth order (parity), gestation length, and number of babies born as well as 
weight gain during pregnancy, then a putative causal diagram might look like Fig. 15.1. (Note 
There are other data recorded in the dataset bw5k. This subset has been chosen for pedagogical 
purposes.)

If the objective of the study was to quantify the effects of cigarette smoking on birth weight, 
you would NOT include either of the intervening variables (gestation length or weight gain) in 
the regression model. Inclusion of these intervening variables would remove any of the effect 
from cigarette smoking that was mediated through them. On the other hand, if race or college 
education are suspected to be important confounders, they might be designated to remain in the 
model regardless of whether or not they are statistically significant. 

Even if a study has a large number of predictors, it is essential to start with a causal structure in 
mind  and  this  can  often  be  drawn  by  grouping  variables  into  logical  clusters  (eg all 
demographic variables together, all behaviour measures together).

15.4 REDUCING THE NUMBER OF PREDICTORS

It  is  sometimes necessary to reduce the number of predictors to be considered in a model- 
building process. However, before proceeding with an overview of the approaches for reducing 
a large  number of predictors,  we must  point  out  that,  in many cases,  the most  appropriate 
procedure would be to design a study which was much more focused and which collected high-
quality data on far fewer predictors. This will greatly reduce the risk of identifying associations 
for which making a causal inference is precarious. 

There  are  various  ways  to  reduce  the  number  of  predictors  that  need  to  be considered  for 
inclusion in a regression model. These include:

• screening predictors based on descriptive statistics
• correlation analysis of independent variables
• creation of indices
• screening variables based on unconditional associations
• principal components analysis/factor analysis
• correspondence analysis.

Fig. 15.1 Putative causal diagram for effects of cigarette smoking on birth 
weight
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These  will  each be reviewed briefly and more detail  can be found in  Dohoo  et  al (1997). 
However,  before  any reduction  in  the number of  independent  variables  is  undertaken,  it  is 
essential to identify the primary variables of interest and any other variables for which there is 
already evidence that they might be confounders or interacting variables. These should always 
be retained for consideration in the model.

15.4.1 Screening predictors based on descriptive statistics

It is crucial to become thoroughly familiar with your data before starting any model-building 
(Chatfield,  2002).  Descriptive  statistics  (means,  variances,  percentiles  etc for  continuous 
variables  and  frequency  tabulations  for  categorical  variables)  can  be  helpful  in  identifying 
variables which might be of little value in your model. Keep in mind that, in general, you want 
to  keep variables  that  you  are confident  have been  measured  accurately and precisely,  and 
which are relatively complete. Some specific guidelines  follow. 

• Avoid variables with large numbers of missing observations (see Section 15.5 for dealing 
with missing data).

• Select only variables with substantial variability (eg if almost all of the babies in a study 
are males, adding sex as a predictor is not likely to be helpful).

• If a categorical variable has many categories with small numbers of observations in each, 
consider combining categories (if this makes biological sense), or eliminating the variable. 

15.4.2 Correlation analysis

Examining all pairwise correlations among predictor variables will identify pairs of variables 
that contain essentially the same information. Inclusion of highly correlated variables will result 
in multicollinearity in the model, potentially producing unstable estimates of coefficients and 
incorrect  standard  errors.  Collinearity  will  often  be  a  problem with  correlation  coefficients 
greater  than 0.9,  but could occur at  lower levels.  If  pairs of highly correlated variables  are 
found, one of them should be selected for inclusion in the model based on criteria,  such as 
biological plausibility, fewer missing observations, ease, and/or reliability of measurement.

Note Examining correlations among variables in a pairwise manner will not necessarily prevent 
multicollinearity,  because  the  problem  can  also  arise  from  correlations  among  linear 
combinations of predictors. However, screening based on pairwise correlations will remove one 
potential source of the problem.

Note Correlations  are  really  only valid  for  continuous predictors,  but  in  practise,  checking 
correlations among dichotomous predictors is a convenient way of identifying highly collinear 
predictors. These relationships can be further assessed using cross-tabulations.

15.4.3 Creation of indices

It might be possible to combine a number of related predictor variables into a single index that 
represents  some  overall  level  of  a  factor.  This  might  be  done  subjectively  based  on  the 
perceived importance of the contribution of a number of factors. For example, the  Hamilton 
Rating Scale for Depression combines information about 22 characteristics (eg feelings of guilt, 
agitation) into an overall depression scale (Hamilton, 1960). The weight assigned to each factor 
might be subjectively assigned although, if possible, they should be based on evidence from 
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previous research. Alternatively, data on a number of factors can be combined in an objective 
manner if procedures to do so exist. For example, data on fan capacity, size and shape of air inlets, 
and room size might be used to compute the number of air changes per hour in a hospital room. 
This might then be expressed as the proportion of a recommended ventilation level. One drawback 
to the creation of indices is that it precludes the evaluation of the effects of individual factors 
which were used to create the index (see discussion of suppressor variables in Section 13.11.8). 

In a situation in which data on a number of related predictors have been recorded, and it is 
reasonable to assume that the individual predictors are all reflective of some underlying but 
unmeasured characteristic (also called a latent variable), those items may be combined into an 
index (or  scale).  Cronbach’s alpha may be used to evaluate the internal consistency of the 
scale (ie evaluate how well each predictor correlates with the scale). The scale is simply the 
sum, or average,  of the values of the individual predictors  (called items),  so these must  be 
standardised  if  they  are  not  measured  on  the  same  scale.  Cronbach’s  alpha  (also  called  a 
reliability coefficient)  is  the square of  the correlation between the scale  and the underlying 
characteristic.  Suggested  guidelines  for  the  interpretation  of  Cronbach’s  alpha  are: <0.60 
unacceptable,  0.60–0.65 undesirable, 0.66–0.70 minimally acceptable,  0.71–0.80 respectable, 
0.81–0.90 very good, and >0.90 consider shortening the scale by reducing the number of items 
(Dukes, 2007).

In addition to looking at Cronbach’s alpha, it is useful to evaluate the correlations between each 
item and the scale (or a scale generated without the item of interest) and with other items in the 
scale. This will identify items which do not fit well in the scale. Example 15.1 shows the use of 
Cronbach’s  alpha for  the simple task of  combining 3 measures  of  smoking into an overall 
measure of smoking during pregnancy.  A more substantial example—the use of Cronbach’s 
alpha  to  evaluate  the  reliability  of  scales  measuring  patient  satisfaction  with  out-of-hours 
primary medical care—can be found in McKinley et al (1997).

15.4.4 Screening variables based on unconditional associations

One of the most commonly used approaches to reducing the number of predictor variables is to 
select only those that have  unconditional associations with the outcome that are significant at 
some very liberal P-values (eg 0.15 or 0.2). The types of test used to evaluate these associations 
will depend on the form of the outcome and predictor variables. However, simple forms of a 
regression model (eg a linear or logistic regression model with a single predictor) will always 
be appropriate for this investigation. For example, univariable multinomial regression models 
were  used  to  identify  variables  to  be  used  subsequently  in  a  multivariable  multinomial 
(proportional odds) regression model (Polgreen et al, 2008).

One drawback to this approach is that an important predictor might be excluded if its effect is 
masked by another variable (ie the effect of a predictor only becomes evident once a confounder 
is controlled) (see distorter variables, Section 13.11.7). Using a liberal P-value helps prevent this 
problem. Another approach is to build a model with the statistically significant predictors and 
subsequently  add  all  eliminated  predictors,  one  at  a  time,  back  into  the  final  model.  If  the 
confounder was included in the final model, the eliminated predictor might then turn out to have a 
statistically significant association and be added back into the model.

This  process  of  screening  predictors  individually  can  be  extended  to  include  building 
multivariable models using mutually exclusive logical subsets of predictors to identify the key 
predictors in each subset, which are then retained for consideration in a final multivariable model.
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15.4.5 Principal components analysis, factor analysis, and correspondence analysis

Principal components analysis and factor analysis are 2 closely related techniques that can be 
used to consolidate the information contained in a set of predictor variables into a new set of 
uncorrelated  (ie orthogonal)  predictor  variables.  A  detailed  discussion  of  the  techniques  is 
beyond the scope of this book, but they will be summarised briefly. Both are designed primarily 
to  work  with  quantitative  (continuous)  predictors,  but  techniques  are  available  to  allow 
categorical predictors to be included.

Principal components analysis is used to convert a set of k predictor variables into a set of k 
orthogonal,  principal  components  with  each  successive  component  containing  a  decreasing 
proportion of the total variation among the original predictor variables. Because most of the 
variation  is  often  contained  in  the  first  few principal  components,  a  small  subset  is  often 
selected  for  use  as  predictors  in  the  regression  model.  The  composition  of  the  principal 
components does not vary depending on the number of components selected for retention. Once 
the regression model has been built with this subset of the principal components, the resulting 
coefficients can be back-transformed to obtain coefficients for the full set of original predictors. 
This resulting set of coefficients will be more stable than those from a model built directly from 
the original predictors because the problem of multicollinearity has been eliminated. However, 
there will be no evaluation of the statistical significance of each of the predictors and hence, no 
determination of which ones are most ‘important’.

Example 15.1 Cronbach’s alpha
data = bw5k

Three highly correlated variables related to cigarette smoking during pregnancy were considered:
cig_1 - daily cigarette consumption during the 1st trimester
cig_2 - daily cigarette consumption during the 2nd trimester
cig_3 - daily cigarette consumption during the 3rd trimester

Because  the  variance  of  these  3  variables  differed,  Cronbach’s  alpha  was  constructed  using 
standardised values for each predictor.

item obs sign
item-test 

correlationa
item-rest 

correlationb
average inter-item 

correlationc
Cronbach's

alphad

cig_1 5000 + 0.943 0.873 0.945 0.972

cig_2 5000 + 0.982 0.958 0.833 0.909

cig_3 5000 + 0.962 0.915 0.888 0.941

Test scale 0.889 0.960
a correlation between item and the scale (average of all items)
b correlation between item and a scale based on all other items
c average correlation among all other items
d Cronbach's alpha for a scale based on all other items

The  overall  reliability  coefficient  0.96  is  very  high  (estimated  correlation  between  the  scale  and 
underlying characteristic is √0.96=0.98). While the correlations between individual items and the scale 
are also very high (0.94–0.98), with only 3 items in the scale, each item contributes substantially to the 
scale. A better evaluation of each item is found by looking at the correlations between items and a scale 
built without the item of interest included (item-rest correlation). This identifies -cig_1- as the item 
with the lowest correlation to other items. The average correlation among the other items is also highest 
if -cig_1- is omitted (0.945).
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Factor analysis is a closely related technique, but is based on the assumption that a set of 
factors that have inherent meaning can be created from the original  variables. For example, 
Khader et al (2011) used factor analysis to evaluate interrelationships among cardiovascular 
risk factors which are components of metabolic syndrome X. Unlike principal components, the 
composition of the factors does vary as the number of factors selected for creation varies. The 
strength of a factor analysis rests with the plausibility of the assumption that the factors are 
truly measuring an underlying latent structure (eg having a set of factors related to high blood 
pressure). If  this assumption is valid, then knowing which of those underlying structures are 
associated with the outcome (eg metabolic syndrome X) might be as important as information 
about individual predictor variables. Establishing which of the original predictors are important 
determinants of the outcome is a subjective process based on the predictors that  are highly 
correlated (or have high ‘factor loadings’) with factors found to be significant predictors of the 
outcome. As with principal  components analysis,  there is  no statistical  testing of individual 
predictors.

Correspondence  analysis is  a  form  of  exploratory  data  analysis  designed  to  analyse  the 
relationships within a set of categorical variables. One of the main objectives of correspondence 
analysis is to produce a visual summary (usually 2-dimensional) of the complex relationships 
that exist within a set of categorical variables (both predictors and the outcome). The 2 axes are 
factorial and reflect the most ‘inertia’ (variability) in the original predictor variables. The result 
is a scatterplot which identifies clusters of predictors that are closely associated, with clusters 
farther  from  the  intersection  of  the  axes  having  stronger  associations.  After  considering 
relationships among the predictors, the values of the outcome variable (also categorical) can 
also be projected on the same axes to determine which clusters of predictor variable values are 
associated with the outcome(s) of interest. A correspondence analysis of a subset of the risk 
factors for birth weight is presented in Example 15.2.

While principal components analysis, factor analysis, and correspondence analysis can be used 
to deal with the problem of large numbers of independent variables, they are perhaps better 
viewed as complementary techniques to model-building procedures. They provide insight into 
how predictor variables are related to each other, and ultimately into how groups of predictors 
are related to the outcome of interest.

15.5 THE PROBLEM OF MISSING VALUES

Missing data are common in observational studies. Statistical programs for building regression 
models work on the basis of  complete case analysis—that is, they only use observations for 
which  there  are  no  missing  values  for  the  outcome  variable  or  any  of  the  predictors. 
Consequently,  even  a  relatively  low  overall  percentage  of  missing  values  can  result  in  a 
substantial reduction of the sample available for analysis if those missing data points are spread 
across observations. The complete case analysis can therefore be severely inefficient (ie have 
reduced power), but it can also induce bias if the complete cases are not representative of the 
full sample. To further discuss this, it  is useful  to distinguish between 3 possible mechanisms 
underlying missing values, and also between whether the missing data occur among the outcomes 
(Y) or the predictors (X). The missing-data mechanism concerns the reasons why some values are 
missing and, in particular, how these reasons might relate to values in the dataset. 

Data may be missing completely at random (MCAR) if the missing values are truly randomly 
distributed throughout the dataset (eg due to a sample being split and the results of that test 
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Example 15.2 Correspondence analysis of risk factors associated with birth weight 
data = bw5k

Multiple  correspondence analysis  was  used to  visually  assess  the  relationships  among several  risk 
factors and birth weight. Risk factors were dichotomised and birth weight was converted to a 3-level 
categorical variable as follows.

Factor Description

race white, non-white

mother's education college, less than college (no_coll)

cigarettes in 2nd trimester smoker, non-smoker

birth weight light (<3000 gm), med. (3000–3499 gm), heavy (≥3500 gm)

Correspondence analysis was used to visually evaluate the relationships among these variables with the 
results presented in Fig. 15.2.

Among the risk factors, non-smoking was closely associated with college education, and having less 
than a college education was somewhat associated with being non-white. Variation in birth weight was 
nearly all along dimension 2 which was heavily influenced by smoking status (and, to a lesser extent, 
college education and race).

Fig. 15.2  Multiple correspondence analysis of selected factors and 
their relationship with birth weight

ligh
tmed

he
avy

no
n-w

hite

white

no
_co

ll

col
leg

e

no
n-s

moke
r

sm
oke

r

-1

-.5

0

.5

di
m

en
sio

n 
2 

(3
9.

0%
)

-.5 0 .5 1 1.5
dimension 1 (61.0%)

MCA coordinate plot



410 MODEL-BUILDING STRATEGIES

consequently being missing). It could be said that whether or not a value is missing could be 
likened to the tossing of a coin. However,  MCAR does not require the probability of being 
missing to be equal to 0.5, nor even to be constant across the entire dataset. When considering 
missing  values  of  outcomes,  the  probability  of  missingness  is  allowed  to  depend  on  the 
(observed)  predictors,  because  the  inference  in  regression  models  is  conditional  on  the 
predictors. Therefore, for an MCAR assumption to hold, it is important to include as predictors 
any variables that  may be associated with the  missingness (eg time in a repeated measures 
study)  (Fitzmaurice et  al,  2004).  Missing values  of predictors  may similarly be allowed to 
depend  on  either  outcomes  or  other  predictors  without  missing  values.  Under  MCAR 
missingness, complete case analysis estimates will not be biased (Little and Rubin, 2002), but 
for missingness among the predictors only this also holds true under less restrictive assumptions 
(Donders et al, 2006; Harel and Zhou, 2007; Rubin, 2004).

If  the  observed  data  do  not  constitute  a  random sample  of  the full  (unobserved)  data,  the 
missingness  is  no  longer  MCAR.  If  the  probability  of  being  missing  can  be  completely 
explained by non-missing values in the data, either for the subject itself (if multiple outcomes 
are available at each subject) or for other subjects, then the missing data are called missing at 
random (MAR—ie they are missing at random, conditional on the observed values). It may be 
useful to contrast MAR with the alternative scenario (beyond MCAR): missing not at random 
(MNAR, or sometimes NMAR). Here the missingness depends on the unobserved data, ie the 
data  one  would  have  obtained  if  the  missingness  had  not  occurred.  If  the  fact  that  an 
observation was not obtained was linked to its (potential) value, this information is part of the 
evidence obtained in the study and must be included in the analysis to avoid bias. Complete 
case  analysis  will  generally  produce  biased  estimates  in  MAR  and  MNAR  scenarios  for 
outcomes;  the  bias  depends  on  the  proportion  of  missing  values  and  the  strength  of  their 
association with the observed or unobserved outcomes.   

The  2  main  alternative  methods  to  a  complete  case  analysis  are:  (i)  imputation,  and  (ii) 
analysis of the incomplete data by methods where the missing data are ignorable, ie the method 
is robust to missing data of the assumed form (Little, 2007). Imputation involves replacing the 
missing data points with values  predicted from the available data for  that  observation.  For 
missing values of a predictor variable, this prediction can be based solely on other predictors, or 
can include the observed outcome value for that variable (Moons et al, 2006). Single imputation 
involves  deriving a single  estimate for  each  missing value.  However,  an analysis  based on 
single imputed data does not take into account the uncertainty associated with the estimated 
values.  Multiple  imputation  involves  generating  multiple  imputed  datasets  and  combining 
results  from  the  analyses  of  all  of  these  datasets.  It  is  generally  accepted  that  multiple 
imputation  is  preferred  to  single  imputation.  Imputation  may  eliminate  (MAR)  or  reduce 
(MNAR) the bias resulting from missing values. Methods for imputation is an active research 
area and a detailed discussion of the topic is beyond the scope of this text; 2 recent review 
publications which introduce the subject are Donders et al (2006) and Harel and Zhou (2007), 
and a relatively recent text on the subject is Rubin (2004).

Maximum likelihood (ML) estimation and Bayesian estimation (which in this context is closely 
linked to multiple imputation, see Chapter 24) are the main examples of procedures that make 
MAR missing  values  ignorable.  In  principle,  ML estimation  requires  specification  of  the 
distribution of the missing values, but for outcome missing values, this is unnecessary under the 
MAR assumption (Fitzmaurice et al, 2004; Little, 2007). Implementation of ML procedures for 
missing covariates in logistic regression has been described  (Vach, 1994; Vach and Blettner, 
2007).  In  addition  to  imputation  and  use  of  robust  procedures,  a  wealth  of  models  and 
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procedures  exist  for  dealing  with  missing  values  under  MNAR  assumptions  in  different 
contexts. This is also an active research area,  and in particular “Statistics in Medicine” is a 
valuable source for current (and older) developments. For further discussion of missing data, 
we refer to Little and Rubin (2002), the standard statistical text on missing data.

15.6 EFFECTS OF CONTINUOUS PREDICTORS

It is important to evaluate the structure of the relationship between a continuous predictor and 
an outcome (which could be a quantity as in a linear regression, the log-odds of disease in a 
logistic model etc). The underlying assumption of linearity can be evaluated when carrying out 
diagnostics  for  the  model  (eg evaluation  of  residuals)  and  this  has  the  advantage  that  it 
evaluates  the  effects  of  a  continuous  predictor  after  adjustment  for  other  predictors  in  the 
model. However,  for practical purposes, it is useful to explore the nature of the relationship 
before starting model-building.

Some approaches to evaluating this relationship include:
• scatterplots and smoothed line plots
• converting the predictor to an ordinal variable (categorisation)
• exploring polynomial models
• using linear or cubic splines.

15.6.1 Scatterplots/smoothed line plots

Scatterplots are 2-way plots of the outcome (on the Y-axis) vs the continuous predictor (as 
shown in Fig. 15.3—a plot of the relationship between gestation length and birth weight. They 
are  primarily  useful  for  models  with  continuous  outcomes  (a  scatterplot  of  a  dichotomous 
outcome presents as 2 lines of dots at Y=0 and Y=1). By themselves, they rarely provide a clear 
indication of the nature of the functional relationship between the predictor and the outcome 
(you can imagine how difficult it would be to identify a curvilinear relationship just looking at 
the ‘dots’ in Fig. 15.3).

Smoothed lines
Scatterplots can be greatly improved by the addition of a smoothed line through the centre of 
the data, and there are multiple ways that this line can be constructed. All smoothed lines have a 
local-influence property in that the position of the line at any value of x (xi) is influenced by 
points  close  to  xi, but  not  by  points  at  a  large  distance  from  xi.  Smoothed-line  plots  are 
constructed as follows:

• for each value of the predictor (xi), select a number of points on either side of that value 
(usually done symmetrically)—this set of points will be the ‘neighbourhood’.

• compute an expected value of the outcome at xi—this can be computed as:
• a simple average of the y values of the observations in the neighbourhood (running 

mean smoother)
• the predicted value from a simple linear regression through the observations in the 

neighbourhood (running line smoother)
• the predicted value from a weighted linear regression through the observations in the 

neighbourhood (lowess smoother) so that  points close to  xi get  larger  weight—the 
most usual form of weighting is Cleveland’s tricube weighting (Cleveland, 1979)
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• the predicted value from a weighted polynomial regression through the observations in 
the neighbourhood (local polynomial smoother)—weight can be based on a variety of 
distributions (eg normal, Epanechnikov etc) (beyond the scope of this book).

• repeat the process for all values of x in the range of the dataset.

The size of the neighbourhood can be controlled by setting the bandwidth. A bandwidth of 0.8 
means 80% of all of the data goes into the neighbourhood used to estimate each point.  The 
larger the neighbourhood used for each point, the smoother the line will be, but the greater the 
danger of missing important features of the relationship. Fig. 15.3 shows a lowess smoothed line 
(bandwidth=0.8)  superimposed  on 
the scatterplot  of  birth  weight  vs 
gestation  length.  Fig.  15.4  shows 
running  mean,  running  line,  and 
lowess smoothed lines for the same 
data. 

Note All  smoothed  line  functions 
can  have  problems  reliably 
portraying  the  data  at  the  extreme 
values  of  the  distribution,  because 
the  neighbourhood  is  not 
symmetrical  about  xi and  may,  in 
fact,  contain  relatively  few  data 
points.  For  this  reason,  it  is 
important not to pay much attention 
to  the  position  of  the  line  at  each 
end.  This  can  be  facilitated  by 
adding an element to the graph that 
delineates  where  most  of  the  data 
fall (in this case, dashed vertical lines). Adding  95% CI to the smoothed line (Fig. 15.5) also 
shows the problem of predicting the nature of the relationship at the extremes of the predictor.

Smoothed lines on a logit scale
Skip  this  section  unless  you  are  familiar  with  logits  and  logistic  regression  (Chapter  16). 
Although scatterplots  of  a  dichotomous  outcome are  uninformative,  smoothed  lines  can  be 
computed on the logit scale. This is done by computing the smoothed value (probability) for all 
of the data points in the neighbourhood and then converting this value to the logit scale. Fig. 
15.6 shows a lowess smoothed curve for the relationship between gestation length and the log 
odds of a baby having low birth weight (relationship appears non-linear).

15.6.2 Categorising continuous predictors

The assumption of linearity can be avoided by categorising the continuous predictor into 2 or 
more categories. While this might provide some insight into the nature of the relationship, it is 
not  generally advisable for  3 reasons.  First,  categorisation involves the loss of information. 
Second,  it  is  unlikely that  biological  processes  have a step-function relationship (ie  sudden 
changes in the outcome at specific values of the predictor). Finally, the choice of the cutpoints 
is arbitrary and, if points are chosen based on the observed data, this may lead to biased results 
(Royston et al, 2006). However, if a continuous variable is categorised, it has been suggested 
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Fig. 15.3 Scatterplot of birth weight vs gestation 
length with lowess smoothed curve added
Note Vertical dashed  lines  mark  the  2.5th and  97.5th percentiles  of 
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that  5  categories  will  usually  suffice  to  control  the  confounding  effects  of  that  variable 
adequately (Cochran, 1968). A model containing a categorised variable can be compared with 
one with a continuous variable (linear effect) by using their AIC or BIC values (see Section 
15.8.1).

15.6.3 Polynomial models

Polynomials  arise  when  power 
terms (eg x2 or  x3) are  added to a 
linear model to allow the regression 
line to follow a curve rather than a 
straight  line through the data.  The 
complexity of the curve (ie number 
of bends) depends on the number of 
power  terms  included  in  the 
polynomial.  Quadratic polynomials 
are  the  most  commonly  used,  but 
fractional  polynomials  deserve 
careful  consideration  as  well. 
Polynomial  models have a  global-
influence  property in  that  the 
shape  of the line is  influenced  by 

Fig. 15.5 Lowess smoothed line estimates of the 
relationship between  birth weight and gestation 
length and its 95% CI
Note Vertical  dashed  lines  mark  the  2.5th and  97.5th percentiles  of 
gestation length
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Fig. 15.4 Smoothed line estimates of the relationship between birth weight and 
gestation length
Note Vertical dashed lines mark the 2.5th and 97.5th percentiles of gestation length.
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the full set of the data, not just the 
observations  within  the 
neighbourhood.  One  postulated 
advantage  of  global-influence 
models  is  that  they  may  perform 
better  on  future  data.  Their 
disadvantage  is  that  they  are  less 
sensitive to local disturbances in the 
data and hence localised effects may 
be  overlooked.  Caution  must  be 
used when interpreting results from 
polynomial  models.  They might  be 
heavily influenced  by points  at  the 
ends of the range of values for the 
predictor.  It  is  also  dangerous  to 
make  any  predictions  outside  the 
range of observed values.

Quadratic models
The most common way to fit a curve 
(rather than a straight line) through 

the data is to add a quadratic term (the predictor squared, x2). This fits a simple curve which 
bends  in  only  one  direction.  The  significance  of  the  quadratic  term can  be  used  to  check 
whether  the assumption of  linearity  is  acceptable  (provided  the  data do not  follow a  more 
complex pattern than suggested by the simple curve of a quadratic model). One issue to keep in 
mind is that the original value is often highly correlated with its squared term and collinearity 
might be a problem in the model. The usual way to avoid this problem is to centre the original  
variable before squaring it. Example 15.3 shows that the quadratic term for gestation length is 
highly significant, indicating that a linear model is not appropriate. If a more complex curve is 
required to fit the data, a cubic term (x3) can be added.

One way to ensure the new variables that are replacing the original variables are uncorrelated is 
to create  orthogonal polynomials. These are variables that are constructed from the original 
data, but are on a new scale with each variable having a mean of 0 and possibly also a standard 
deviation  (SD)  of  1.  The  correlation  between  any  pair  of  these  variables  is  0.  These  new 
variables can be used in place of the original ones in the regression model. Removal of the 
collinearity makes it possible to interpret the lower order terms, but the fact that they are not on 
the original scale makes this difficult (data not shown).

15.6.4 Fractional polynomials

While any set of variables might be orthogonalised, orthogonal polynomials are usually limited 
to power terms that have positive integer values (eg x2 and  x3). One way of exploring more 
flexible functional forms is to use fractional polynomials (FP). FPs are power terms that can 
take on both positive and negative integer values and fractional values. The most common set 
of values to consider is -3, -2, -1, -0.5, 0, 0.5, 1, 2, and 3 (where the power 0 refers to a natural  
log  transformation).  The  combination  of  FP  that  best  fits  the  data  (ie  the  model  with  the 
smallest log likelihood) can be determined. A 2-degree FP (ie 2 power terms selected—xp1 and 

Fig. 15.6  Lowess smoothed curve estimates of the 
relationship between the logit of low birth weight 
(<2500 gm) and gestation length
Note  Vertical  dashed  lines  mark  the  2.5th and  97.5th percentiles  of 
gestation length
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xp2) can fit a wide range of shapes, and it is usual to use 2 terms or less. (Note A 2-degree FP 
may choose the same value for p1 and p2 in which case the 2 power terms are: xp1 and xp1ln(x).)

The main advantage of FP models is that a 2-degree FP can fit  a wide range of non-linear 
functions  and  may well  be  the  most  parsimonious way to  obtain a  good fit  with  the  data. 
However, some issues which need to be kept in mind when using fractional polynomials are:

• FP can only be used with positive values of x, so an initial transformation of x may be 
required (if the software implementation does not do this automatically, or a particular 
scale is preferred).

• FP models use more df than an ordinary polynomial model (eg quadratic). For example, 
when comparing a quadratic model with a linear model, the difference is one df (required 
to estimate the second β). However, a 2-degree FP model uses 2 extra dfs compared with 
a 1-degree FP model, because the process involves estimating both the β for the second 
term as well as the second power value.

• Scaling the  x variable may be required to make the FP estimation procedure robust (to 
avoid numerical overflow or underflow in the estimation procedure). This may or may 
not be done automatically by the software implementation.

• Very small values of x may induce artifacts into an FP model.

The coefficients derived from an FP are impossible to interpret in a meaningful way. The only 
way to make sense of such a model is to display the function graphically (which is a good idea 
whenever there is a non-linear function of x in a model). However, if you want to control for the 
effect  of  a  factor  (ie  a  potential  confounder)  in  a  regression  model,  then  fitting  fractional 
polynomials can be a useful approach. A much more thorough discussion of the use of FP in 
regression modelling can be found in Royston and Sauerbrei (2008).

Example 15.4 shows the fitting of fractional polynomials to the birth-weight data used in the 
previous example. The best fitting model is based on power terms of -0.5 and ln(x). The shape 
of the FP model along with cubic, quadratic, and linear models is shown in Fig. 15.7.

Example 15.3 Quadratic model
data = bw5k

A quadratic model regressing birth weight on gestation length was fit after the gestation length was 
centred by subtracting the mean gestation length (39 weeks). The significance of the quadratic term 
suggests  that  the  quadratic  model  fits  significantly  better  than  a  simple  linear  model  (which  is 
consistent with the smoothed line plots).

Number of obs = 5000
F(2, 4997) = 1031.66

Source SS df MS Prob > F = 0.0000
Model 467800274 2 233900137 R-squared = 0.2922
Residual 1.1329e+09 4997 226722.309 Adj R-squared = 0.2920
Total 1.6007e+09 4999 320210.372 Root MSE = 476.15

bwt Coef SE t P>t 95% CI

gest_ct 94.483 3.577 26.42 0.000 87.471 101.495

gest_sq -6364.501 448.432 -14.19 0.000 -7243.624 -5485.378

constant 3365.579 7.032 478.60 0.000 3351.793 3379.365
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15.6.5 Splines

An alternative to fitting a polynomial model is to fit a piecewise linear function. Points at which 
the slope of the relationship is observed (or expected) to change (known as knot points) are 
identified and the relationship is assumed to be linear between these points. In the absence of 
any  evidence  for  the  selection  of  points,  they  may be  chosen  based  on  percentiles  of  the 
predictor. Fig. 15.8 shows a piecewise linear function, with knot points at the 25th, 50th, and 75th 

percentiles of birth weight vs gestation length.

One drawback to a piecewise linear function is that it is not usually biologically reasonable to 
expect sudden shifts in the nature of the relationship at the chosen knot points. Piecewise linear 
functions  are  also  called  linear  splines.  Generally,  spline  functions  are  pieced  together  by 
polynomials  between  the  knots.  Cubic  splines  allow  more  flexible  shapes  and  smoother 
transitions across the knots than linear splines. Details of cubic splines are beyond the scope of 
this text, but an example of cubic splines fit is also shown in Fig. 15.8 (using the same knot 
points as for the linear splines).

Example 15.4 Fractional polynomials
data = bw5k

Fractional polynomials (up to 2-degree) were fit to explore the nature of the relationship between birth 
weight and gestation length.

Number of obs = 5000
F(2,  4997) = 1074.38

Source SS df MS Prob > F = 0.0000
Model 481348094 2 240674047 R-squared = 0.3007
Residual 1.1194e+09 4997 224011.118 Adj R-squared = 0.3004
Total 1.6007e+09 4999 320210.372 Root MSE = 473.3

bwt Coef SE t P>t 95% CI

igest_1 374.0814 15.17498 24.65 0.000 344.3318 403.831

igest_2 -208.1388 9.116145 -22.83 0.000 -226.0105 -190.2672

constant 3340.234 7.239147 461.41 0.000 3326.042 3354.426
Deviance: 75783.64. Best powers of gest among 44 models fit: 3 3.

Fractional polynomial model comparisons:
gest df Deviance Res SD Dev dif P (*) Powers

not in model 0 77572.053 565.871 1788.413 0.000

linear 1 76041.390 485.607 257.751 0.000 1

m = 1 2 75911.085 479.321 127.446 0.000 -1

m = 2 4 75783.639 473.298 – – 3 3
(*) P-value from deviance difference comparing reported model with m = 2 model

The best  fitting 2-degree model  is based on the powers  gest3 and gest3*ln(gest).  This fits  the data 
significantly better than a one-degree model (power is -1). As expected, it also fits significantly better 
than either a linear model or a null model. The shape of the resulting function is shown in Fig. 15.7 
along with the fit from cubic, quadratic, and linear models.
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One final comment about the selection of a functional form of a predictor is in order. In keeping 
with the idea that  model-building should integrate  subject  matter knowledge with statistical 
considerations, it may not be appropriate to always use a  ‘best- fit’ functional form that has 
been chosen based on the statistical 
significance  of  one  form  over 
another.  In  some  situations 
(particularly  with  small  datasets), 
there  may  not  be  sufficient 
evidence to conclude with certainty 
that a non-linear form is preferable 
to a linear form. However, if there 
are  strong  biological  reasons  to 
believe  that  a  relationship  is  not 
likely  to  be  linear,  it  may  be 
appropriate to choose a polynomial 
function  anyway.  This  is 
particularly  important  if  the 
predictor  is  likely  to  be  a  strong 
confounder.  In  order to remove as 
much  confounding  effect  as 
possible,  it  may  be  preferable  to 
include  a  polynomial  function  of 
the predictor.

Fig. 15.7 Linear, quadratic, cubic, and fractional polynomial relationships 
between birth weight and gestation length
Note Vertical dashed lines mark the 2.5th and 97.5th percentiles of gestation length 
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Fig. 15.8 Piecewise linear and cubic splines of 
relationship between birth weight and gestation 
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15.7 IDENTIFYING INTERACTION TERMS OF INTEREST

It is important to consider including interaction terms when specifying the maximum model. 
There are 5 general strategies for creating and evaluating 2-way interactions. 
 1. Create and evaluate all possible 2-way interaction terms. This will only be feasible if the 

total number of predictors is small (eg ≤8).

 2. Create 2-way interactions among all predictors that are significant in the final main effects 
model (once you have completed the initial model-building (Section 15.8)).

 3. Create 2-way interactions among all predictors found to have a significant  unconditional 
association with the outcome.

 4. Create  2-way  interactions  only  among  pairs  of  variables  which  you  suspect  (based  on 
evidence from the literature  etc) might interact.  This will probably focus on interactions 
involving the primary predictor(s) of interest and important confounders.

 5. Only create 2-way interactions that involve the exposure variable (predictor) of interest.

Regardless of how the set of interaction terms is created, you could subject them to the same 
sort  of  screening  processes  described  above  to  reduce  the  number  included  in  the  model-
building process. If an interaction term is to be included in the model, then the main effects that 
make up that interaction term must also be included. Evaluation of a large number of 2-way 
interactions  could  identify  spurious  associations  due  to  the  fact  that  a  large  number  of 
associations are being evaluated. In this case, some form of adjustment for the fact that multiple 
factors  are  being  considered  (eg Bonferroni  adjustment)  should  be  undertaken.  Two-way 
interactions between continuous predictors are difficult to interpret, and, whenever significant, 
should be evaluated by fitting a range of possible values for both predictors with a graphical 
display of the results (see Example 14.11).

Three-way interactions might be considered, but they are usually difficult to interpret.  They 
should be included only if there is good reason (a priori) to suspect the existence of such an 
effect,  or  if  they  are  made  up  of  variables  with  significant  2-way interactions.  Three-way 
interactions might also unnecessarily complicate the model, because all of the main effects and 
2-way interactions among the predictors making up the 3-way interaction need to be included.

15.8 BUILDING THE MODEL

15.8.1 Specify the selection criteria

Once a maximum model has been specified, you need to decide how you will determine which 
predictors need to be retained in the model. Criteria for retention can be based on non-statistical 
considerations or the statistical significance of the predictor. It is essential that both be considered.

Non-statistical considerations
Variables should be retained in the model if they:

• are a primary predictor of interest
• are thought, a priori, to be confounders for the primary predictor of interest
• show evidence of being a confounder in this dataset because their removal results in a 

substantial change in the coefficient for one of the primary predictors of interest.  Note 
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Building an appropriate  causal  model before  starting the model-building process  will 
help ensure that the variable is not an intervening variable (see Section 13.11.6)

• are a component of an interaction term which is included in the model.

Statistical criteria—nested models
Nested models are based on the same set of observations; the predictors in one model are a 
subset of the predictors in the other model. By far the most common approach to evaluating the 
statistical significance of individual predictors is to use tests based on nested models. For a 
linear regression model, this would involve carrying out a partial F-test for the predictor, while 
in other types of regression model (eg logistic, Poisson) a Wald test (see Section 16.7), a score 
test (not covered in this text) or likelihood-ratio test (LRT—see Section 16.6) can be used. Of 
these, the  LRT has the best statistical properties  (Royston and Sauerbrei, 2008) although the 
tests  usually  produce  similar  results.  Consequently,  the  Wald test,  which  is  often  the most 
convenient, can be relied on unless the statistical significance of the predictor is questionable 
(eg P-value close to 0.05) or the estimated SE appears suspect (as may happen when estimation 
is difficult). When evaluating the significance of a categorical variable (included in the model 
as  a set  of indicator  variables),  the overall  significance of  all  the indicator  variables  in the 
model should be used, not the statistical significance of individual indicator variables.

Statistical considerations—non-nested models
A number of information criteria (IC) have been developed for comparing models that are not 
nested. The general formula for these criteria is:

IC=-2 lnLa∗s Eq 15.1

where a is a penalty constant, s is the number of parameters in the model (s=(k+1) for a linear 
regression  model  (where  k is  the  number  of  predictors)  and  lnL is  the  log-likelihood (see 
Section 16.4).

The most commonly used information criteria are the Akaike’s Information Criteria  (AIC) 
which has  a=2 and the  Bayesian Information Criteria  (BIC)—also known as the Schwartz 
Bayesian Criteria—which has a=log n. They are based on an overall assessment of the model 
and can be used to compare different models, regardless of whether they are nested. They can 
be used to compare linear regression models and discrete data models (eg logistic, Poisson). 
However,  some words  of  caution are  in  order.  First,  these  statistics  should not  be used  to 
compare nested models—test-based comparisons (eg partial F-tests or likelihood-ratio tests) are 
superior.  Second,  these  statistics  cannot  be  used  to  compare  models  which  are  based  on 
different sets of observations. Finally, these criteria should not be used to compare models in 
which the likelihoods are computed in different ways (eg comparing a Cox semi-parametric 
survival model and a Weibull parametric model would not be appropriate—see Chapter 19).

The  smaller  the  value  of  the  IC,  the  better  the  model.  If  2  models  have  comparable  log 
likelihoods, the more parsimonious model (ie fewer parameters) will have the smaller IC. The 
BIC has an advantage that guidelines for assessing the evidence of superiority of one model 
over  another  are  available  (Table  15.1)  (Raftery,  1996) (guidelines  based  on  a  Bayesian 
approach  to  statistics—see  Chapter  24).  However,  the  BIC  tends  to  strongly  favour  more 
parsimonious models. It  also suffers from the disadvantage that it depends on the value of  n 
(number of observations), but it is not always clear what value of n should be used if the data 
are clustered (ie you do not have n independent units). (Note Several variations in the formula 
for  the  BIC  exist  in  statistical  programs.  However,  regardless  of  the  formula  used,  the 
difference in the BIC between 2 models will be the same for each of the formulae.)
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Table 15.1 Guidelines for interpreting BIC values from non-nested models
Absolute difference in BIC Evidence for superiority of the better model

0–<2 Weak

2–<6 Positive

6–<10 Strong

≥10 Very strong

Two additional approaches, applicable to linear regression models, are based on the adjusted R2 

or a statistic called Mallows’ Cp.  The model which maximises the adjusted  R2 (see Section 
14.3.5)  is,  in  effect,  maximising  the  amount  of  variance  explained  by  the  model,  while 
precluding  the  incorporation  of  predictors  which  explain  only  a  very  small  amount  of  the 
variance. This approach is equivalent to finding the model which minimises the mean square 
error (MSE). (Note  Adding unimportant  terms to the model will actually increase the MSE 
because the df on which it is based becomes smaller.)

Mallows’ Cp is  computed  as  follows  (Mallows,  1973).  If  k predictors  are  selected  from a 
complete set of p predictors, then Mallows’ Cp for that model is: 

Cp=∑ Y − Y 2

2 −n2k
Eq 15.2

where Y and Ŷ are the observed and predicted values of Y for a model based on the k predictors, 
σ2 is the MSE from a model based on all (p) predictors, and n is the sample size. Mallows’ Cp is 
a  special  case  of  the  AIC.  Models  with  the  lowest  Cp are  generally  considered  the  best 
(Example 15.5).

15.8.2 Specifying the selection strategy

Once the criteria (both statistical and non-statistical) to be used in the selection process have 
been specified, there are a number of ways to carry out the selection.

All possible/best subset regressions
If the number of predictors in the maximum model is small, then it is possible to examine all 
possible combinations of predictors. Once all of the models have been fit, it is relatively easy to 
apply both the non-statistical and statistical criteria described above in order to identify some of 
the ‘better’ models. This approach is best applied in a context that a researcher is searching for 
a number of good models, such as early on in an investigation.

This process is modified slightly with best subset regression. In this procedure, the software 
identifies  the  ‘best’  model  (according  to  one  of  the  criteria  outlined  above),  with  a  given 
number of predictors. For example, it will identify the single-term model with the largest R2, the 
2-term model with the largest R2, the 3-term model with the largest R2 etc. The investigator can 
then identify the point at which increasing the number of predictors in the model is of little 
value in terms of improving the predictive ability of the model. Both nested and non-nested 
models can be compared using ‘all possible’ or ‘best subset’ selection procedures.

Forward selection/backward elimination/stepwise
When  a  forward selection process  is  used,  the  computer  first  fits  a  model  with  only  the 
intercept, and then selectively adds terms that meet a specified criterion. The usual criterion is 
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Example 15.5 Automated model selection for factors affecting birth weight
data = bw5k

Forward selection and backward elimination procedures were applied to the birth weight data using a 
selection threshold of P=0.05.  The predictors (and coefficients)  selected by each approach were as 
shown. (Forward or backward stepwise selection produced the same model as backward elimination.)

Description of predictor Variable name  Forward selection Backward elimination

gestation length gest 111.184 111.685

multiple birth multbrth -605.514 -606.543

mother's age mage 2.983

male child male 109.991 109.754

race = white _Imrace_c4_2 49.959 50.841

race = black _Imrace_c4_3 -120.192 -121.513

race = other _Imrace_c4_4 -101.136 -98.563

cigarettes in 2nd trimester cig_2 -15.777 -16.157

total birth order (parity) tbo 22.291 24.755

father's age = 24–29 _Ifage_c4_2 47.705 60.286

father's age = 30–34 _Ifage_c4_3 79.056 103.460

father's age = 35+ _Ifage_c4_4 70.113 104.679

# of prenatal visits previs 3.660 3.845

pregnancy hypertension phyper 69.057

constant _cons -1333.053 -1229.904

Model parameters

SStot 5.37E+008 5.36E+008

√ MSE 461.940 462.160

-2lnL 75528.640 75535.520

R2 0.336 0.335

adjusted R2 0.334 0.333

AIC 75558.650 75561.530

BIC 75656.400 75646.250

Cp 15.000 17.865

The two selection procedures produced slightly different models with forward selection identifying 2 
predictors  (pregnancy  hypertension  and  mother’s  age)  which  were  not  included  in  the  backward 
elimination. Mother’s age is not significant if father’s age is in the model, but is added prior to father’s 
age in the forward selection procedure. Pregnancy hypertension is borderline significant (P≈0.05) and 
whether the P-value falls just below or above the cutpoint of 0.05 depends on whether mother’s age is 
in the model. Because the models are quite similar, the root MSE and R2 are all quite close. The AIC 
(and Mallows’ Cp) would suggest that the larger (forward selection) model is superior while the BIC 
favours the smaller model (highlighting the BIC’s predilection for parsimony).

Note This example is provided for pedagogical purposes only, not as a recommended approach to model-building.
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having the largest Wald test statistic, provided it exceeds the value required to produce a P-
value below a specified value (such as 0.05). The term with the largest  Wald test statistic is 
added  first  and  then  the  process  is  repeated.  This  continues  until  no  term meets  the  entry 
criterion.

With backward elimination, the process is reversed. The maximum model is fit and then terms 
are  removed  sequentially  until  none  of  the  terms remaining  in  the  model  has  a  Wald test 
statistic  meeting  the  specified  criterion.  An advantage  of  backward  elimination  is  that  the 
statistical significance of terms is assessed after adjustment for the potential confounding effect 
of other variables in the model. With forward selection, this happens to a much more limited 
extent (only after confounders have been selected and incorporated into the model).

Stepwise regression is simply a combination of forward selection and backward elimination. 
Forward stepwise starts  with forward  selection but  after  the addition of each  variable,  the 
criterion for backward elimination is applied to each variable in the model to see if it should 
remain.  Backward stepwise starts with a full model and sequentially removes predictors but 
after the removal of each variable,  all  removed variables are checked to see if any of them 
would meet the forward selection criterion for inclusion.

In general,  backward stepwise regression is favoured over forward stepwise  (Mantel, 1970). 
However,  forward  stepwise  may have  to  be  used  when  there  are  a  very  large  number  of 
predictors or a large number of interaction terms are being considered. Backward stepwise with 
a P-value for variable removal of 0.157 has been suggested as a reasonable substitute for an all-
subset procedure using Mallows’ Cp or the AIC as a selection criterion (Sauerbrei et al, 2007).

In general, different selection procedures will often result in the same final model. However, in 
small datasets and those with large numbers of predictors, this may not be the case as can be 
seen in Example 15.5.

Caution in using any automated selection procedures
While the automated selection procedures described above are convenient, easy to apply and 
quickly reduce a large complex dataset to a succinct regression model, they must be applied 
judiciously,  and  should  be  considered  methods  of  data  exploration  rather  than  definitive 
approaches  to  building  a  model.  Some scientific  journals  will  no  longer  accept  regression 
models which have been built solely using automated selection criteria.

Some of the problems with automated model-building procedures are that they:
• yield R2 values which are too high (see more on validation in Section 15.9)
• are based on methods (eg partial F-tests) which were designed to test specific hypotheses 

in the data (as opposed to evaluating all possible relationships) so they produce P-values 
which are too small and confidence intervals for parameters which are too narrow (more 
on this below)

• can have severe problems in the face of collinearity
• cannot incorporate any of the non-statistical considerations identified above
• make the predictive ability of the model look better than it really is
• do not differentiate between exposures, confounders and intervening variables, and
• waste a lot of paper.

However, the most serious drawback in their use is that they allow the investigator to avoid 
thinking  about  their  data  and  the  questions  to  be  asked.  By  turning  the  model-building 
procedure over to an automated process,  the investigator  abdicates  all responsibility for the 
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results  of  their  analysis.  Most  seriously,  the  ability  to  evaluate  the  confounding  effect  of 
predictors which may not be statistically significant  is lost. Avoiding this problem involves 
combining an assessment of the statistical significance of predictors with some form of change-
in-estimate criterion (ie do estimates of other predictors change by a specified amount when the 
confounder is removed or added) (Rothman et al, 2008) (see also Chapter 13).

However, when faced with a large number of predictor variables, using a variety of automated 
selection procedures might be helpful in identifying all of the predictors which potentially have 
statistically significant associations with the outcome. 

Three  additional  points  must  be  kept  in  mind  when using  any automated  procedure.  First, 
groups of indicator variables formed by breaking down a categorical variable must all be added 
or  removed together.  Second,  if  any interaction  term is  included,  the main effects  of  both 
variables that make up the interaction term must be kept in the model. Third, the analysis will 
be based only on those observations for which all variables are not missing. If there are many 
missing observations in the dataset, the data used to estimate the model might be a very small 
subset of the full dataset.

P-values and automated selection procedures
It is important to note that if you allow an automated selection procedure to sift through all of 
your predictors and select a significant group, the actual level of significance of the selected 
predictors is less than the level that you set (eg 0.05). For example, if you select ‘significant’ 
predictors from a list of 10 unrelated variables (with α=0.05), then the probability of finding at 
least one predictor significant due to chance alone is:

*=1−1−0.0510=0.40 Eq 15.3 

There is a 40% chance that at least one predictor will be significant, even if none of them has 
any association with the outcome. This value (40%) is called the experiment-wise error rate.

Comparing predictions from competing models
If  2 models with different predictors have comparable predictive ability, it may be useful to 
compare actual predicted values from the  2 models. One approach to this is to use the Bland 
and  Altman limits  of  agreement  methods described  in  Section 5.2.5 (treating  the  predicted 
values from the 2 models as the diagnostic test results) (Royston and Sauerbrei, 2008).

15.8.3 Conduct the analysis

Once the issues described in the preceding sections have been addressed, the analysis should be 
relatively straightforward. However, it is inevitably an iterative process. As models are built 
and evaluated, the investigator gains insight into the complex relationships that exist among the 
variables in the dataset which allow for more refined, and biologically reasonable models to be 
built. In the process, investigators must incorporate their biological knowledge of the system 
being studied along with the results of the statistical analyses.

15.9 EVALUATE THE RELIABILITY OF THE MODEL

Evaluating any regression model is a 2-step process. The first step is to thoroughly evaluate the 
model using regression ‘diagnostics’  (eg evaluating the normality of residuals from a linear 
regression model). This assesses the  validity of the model, and procedures for doing this are 
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described in each chapter dealing with specific model types. The second step is to evaluate the 
reliability of the model. That is, to address the question of ‘how well will the model predict 
observations in subsequent samples?’  Note  The term reliability is used differently by various 
authors, but we will use it to describe how well the conclusions from a regression model  are 
likely to perform in terms of future predictions (Kleinbaum et al, 2007). Simply reporting the R2 

of  a  linear  model  or  computing  the  ‘% correctly  classified’  by  a  logistic  model  does  not 
evaluate reliability as these estimates will always overstate the true reliability of the model.

The 2 most common approaches to assessing reliability are  split-sample and  leave-one-out 
analyses.  A  split-sample  analysis involves  dividing  the  data  randomly  into  2  groups.  A 
regression model is built using the data from one of the 2 groups and the model is then applied 
to  the  second  group  to  obtain  predicted  values  for  the  remaining  observations.  For  linear 
regression models, the correlation between the predicted and observed values in the second 
group is called the cross-validation correlation. The difference between the R2 obtained from 
the  analysis  of  the  first  group’s  data  and  the  square  of  the  cross-correlation  validation 
correlation is called the  shrinkage on cross-validation. If  it is small (a subjective decision, 
although 0.1 is generally considered small), then the model is considered reliable.  For non-
linear regression models (eg logistic models), the same general approach can be used but some 
other measure of predictive ability (eg replace R2 with % correctly classified) needs to be used 
to compare the 2 sets of results.

If  only  a  small  dataset  is  available,  it  might  be  desirable  to  put  more  than  50%  of  the 
observations in the first group (the one used to build the prediction model). Alternatively, a 10-
fold cross-validation can be carried out in which the data are divided into 10 subsets, with 9 
being used to estimate the model, and that model used to generate predicted values for the 10th 
subset. This process is repeated with each subset being left out of the model estimation procedure. 
Example 15.6 shows split-sample validation of a model based on the birth weight data.

A  leave-one-out approach to validation is  based on fitting the model many times,  with one 
observation  left  out  each  time (until  all  have  been  omitted).  The  residuals  for  the  omitted 
observations  are  summed to provide an estimate of  the prediction error  which can then be 
compared with the prediction error from the model based on all observations. If the 2 values are 
close, it suggests that the model will predict future observations well.

An alternative approach to split-sample validation involves building separate regression models 
for each of the 2 halves of the dataset, and subjectively comparing the regression coefficient. 
Note This can be done for any type of regression model. If the coefficients are substantially 
different in the 2 models, then the model is not reliable. 

15.10 PRESENTING THE RESULTS

The standard method of presenting results from a regression model is to present the coefficients 
(don’t forget to include the intercept), their standard errors, and/or their confidence intervals. 
Assuming the observed effects are causal, the coefficients represent the change that would be 
expected in the outcome for  a unit  change in the predictor.  For dichotomous predictors  (or 
categorical  variables  that  have  been  converted  to  a  set  of  dichotomous  predictors),  the 
coefficient represents the effect of the factor being present compared with when it is absent. 
However, for continuous variables, assessing their impact is more difficult because they are all 
measured on different scales (and hence, a ‘unit change’ might represent either a small or large 
change in the predictor). Consequently, it is difficult to determine the magnitude of the impact 
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of each predictor on the outcome. In order to obtain a better understanding of the effect of a 
predictor, it would be helpful to have an idea of what constitutes a reasonable change in any 
predictor measured on a continuous scale. Two approaches to presenting results in order that 
the relative impact of different predictors can be compared are to:

• use standardised coefficients, or 
• compute predicted effects as a continuous predictor changes over its interquartile range. 

Each of these will be discussed briefly.  However, before proceeding it should be noted that 
there is evidence that non-numerical presentation of study results may be preferable, depending 
on the target audience  (Akl et al, 2007), but this type of presentation will not be considered 
further in this text.

15.10.1 Standardised coefficients

In linear regression models, standardised coefficients represent the effect on the (standardised) 
outcome that results from a change of 1 SD in the predictor. They can be computed by rescaling 
the coefficient by multiplying it by the ratio of the SD of the predictor to the SD of the outcome 
[β*=β(σx/σy)]. In the past, they have not only been used to evaluate the relative magnitude of 
effects for various predictors in a model, but to compare results across studies. However, there 
are 2 problems with this approach. First, the SD might not be a good measure of the variability 
of a continuous predictor variable. If the distribution is skewed to the right, a few large values 
might unduly inflate the estimate of the SD. More importantly, the SD of the predictor or the 
outcome might vary from population to population. If  standardised  coefficients  are used to 
compare  results  across  studies,  identical  results  from 2 studies  can  appear  different  due to 
differences  in  the  scaling  factor.  Consequently,  standardised  coefficients  are  no  longer 
recommended for general use.

Example 15.6 Cross-validation correlation
data = bw5k

The final model evaluating the effects of several factors on birth weight from Chapter 14 was used as a 
basis for this evaluation. The model was built using half of the data and the reliability evaluated by 
determining the models predictive ability in the second half of the data. The procedure for randomly 
selecting observations for the split dataset resulted in 2,466 observations being used to build the model 
and this dataset resulted in an R2 of 0.274. When this model was applied to the 2nd half of the data, the 
R2 rose slightly to 0.277, suggesting that the model is reliable. 

All Half

Variable β P β P

white 76.84 0.000 88.46 0.000

college 25.22 0.083 -2.91 0.888

cig_2 -15.43 0.000 -15.97 0.000

gest 124.26 0.000 122.07 0.000

constant -1552.32 0.000 -1450.81 0.000

While  the  overall  reliability  of  the  model  was  high,  the  coefficient  (and P-value)  for  -college-  is 
substantially changed when only half of the data are used, suggesting that this parameter may not be 
estimated reliably.
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15.10.2 Interquartile ranges

The effect of a predictor can be represented by computing the change in the outcome that would 
be expected to accompany a change in the predictor across its interquartile range (IQR) (ie from 
its 25th to 75th percentile). This avoids the problem of outlying observations having a big impact 
on the standard deviation. Although the IQR might also vary across populations (as the SD 
does),  the  problem  of  comparability  across  studies  can  be  avoided  by  supplementing  the 
ordinary coefficients with the estimates of effect based on the IQR, rather than replacing the 
ordinary coefficients with standardised ones. Example 15.7 shows the effects of the 4 predictors 
used in Example 14.13.

15.10.3 Predictors eliminated from a model

When  presenting  results  from  a  multivariable  model,  you  might  also  want  to  discuss  the 
potential effects of predictors not included in the model. Unless the P-value is very large, it is 
unwise  to  assume  that  the  effect  is  zero.  Some  investigators  will  discuss  unconditional 
associations  between  those  predictors  and  the  outcome.  An  alternative,  if  a  backward 
elimination procedure has been used in the model-building process, is to use the coefficient of 
the predictor at the last step before it was removed from the model. A third approach is to force 
the predictor back into the final model and use its coefficient from that model as an estimate of 
its effect (adjusted for other predictors in the model).

15.10.4 Scale of results

In linear regression models, transformation of the outcome is often necessary to ensure that the 
assumptions underlying the model are satisfied. However, this makes the interpretation of the 

Example 15.7 Effects of predictors
data = bw5k

Based on the final model evaluating the effects of several factors on birth weight from Chapter 14 , the 
effects of the various predictors was evaluated by computing the expected change in birth weight for 
each of the predictors.

Variable Coef Basis Estimated effect change Effect

white 76.84 dichotomous 0–1 76.84

college 25.22 dichotomous 0–1 25.22

cig_2 -15.43 arbitrary range 0–10 -154.30

gest 124.26 IQR 38–40 248.53

Of the 2 dichotomous predictors (-white- and -college-), being white had roughly 3 times the effect on 
birth weight as a college education did. As expected, a change in gestation length over the IQR had a 
large effect on birth weight. Because both the 25th and 75th percentiles of -cig_2- were 0, a moderate 
level of cigarette consumption (median consumption among smokers = 10 cigarettes per day) was used 
to evaluate the effect. The large negative effect of smoking is evident. Note It must be remembered that 
-gest-  is  an  intervening  variable  so  the  effect  of  smoking  is  the  direct  effect  (ie comparing  two 
gestations of the same length). If smoking also effects gestation length, its total effect will be different 
than the effect shown above.
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results more difficult and it is usually desirable to present results on a different scale than was 
used in the analysis. Back-transformations following linear regressions are discussed in Section 
14.9.6. Converting results from the logit scale to the probability scale after logistic regression is 
discussed in Section 16.8.5. This issue was not a problem in Example 15.7 because the model 
was fit using an outcome (birth weight) on its original scale (grams).
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