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LOGISTIC REGRESSION

OBJECTIVES

After reading this chapter, you should be able to:

 1. Understand logistic regression.
a. Understand  log  odds  as  a  measure  of  disease,  and  how  it  relates  to  a  linear  

combination of predictors.

 2. Build and interpret logistic regression models.
a. Compute and interpret odds ratios derived from a logistic regression model.
b. Evaluate the effects of predictors on the outcome of interest on a probability scale.
c. Statistically compare logistic models using both Wald tests and likelihood ratio tests.

 3. Understand how logistic regression fits in the family of generalised linear models.

 4. Evaluate logistic regression models.
a. Understand covariate patterns, and how they impact the computation of residuals for 

logistic regression models.
b. Understand overdispersion, and how it relates to goodness-of-fit tests.
c. Compute residuals on the basis of one per covariate pattern, and one per observation.
d. Select  and  use  the  appropriate  test(s)  to  evaluate  the goodness  of  fit  of  a  logistic  

model.
e. Determine  the  effect  of  changing  the  threshold  (‘cutpoint’)  on  the  sensitivity  and 

specificity of the model.
f. Generate ROC curves as a method of evaluating the goodness of fit.
g. Identify and determine the impact of influential observations on a logistic model.

 5. Fit a model to a small dataset using exact logistic regression.

 6. Fit conditional logistic regression models for matched data.
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16.1 INTRODUCTION

As epidemiologists, we often find ourselves in a situation in which the outcome in our study is 
dichotomous (ie  Y=0 or  1).  Most  commonly,  this  variable  represents  either  the absence  or 
presence of disease or mortality. We can’t use linear regression techniques to analyse these data 
as a function of a set of linear predictors X=(Xj) for the following reasons.

(a) The error terms (ε) are not normally (Gaussian) distributed. In fact, they can only take on 
2 values.

if Y =1then =1−0∑  j X j

if Y=0 then =−0∑  j X j Eq 16.1

(b) The probability  of  the  outcome occurring  (ie p(Y=1))  depends  on the  values  of  the 
predictor variables (ie X). Since the variance of a binomial distribution is a function of 
the probability (p), the error variance will also vary with the level of X, and consequently 
the assumption of homoscedasticity will be violated.

(c) The mean responses should be constrained as:
0≤E Y = p≤1

However, with a linear regression model, the predicted values might fall outside of these 
constraints.

In this chapter, we will explore the use of logistic regression to avoid the problems identified 
above. The birth weight data used extensively in the previous two chapters will be the primary 
dataset used in this chapter, but the outcome will be ‘low birth weight’. Babies born weighing 
less than 2,500 gm will be classified as having low birth weight, and factors which influence the 
probability of this occurring will be investigated. Of the 5,000 observations in this dataset, 371 
were classified as low birth weight. Details of the dataset can be found in Chapter 31.

Table 16.1 Selected variables from the low birth weight dataset used in this chapter
Variable Description

low_bw birth weight  (1=birth weight <2500 gm, 0=weight ≥2500 gm)

smk smoking  (1=smoked during 2nd trimester, 0=non-smoker)

white mother's race (1=white, 0=all other races)

frace_c3 father's race (1=hispanic, 2=white, 3=black)

previs number of prenatal visits

16.2 THE LOGISTIC MODEL

One way of getting around the problems described in Section 16.1 is to use a logit transform of  
the probability of the outcome and model this as a linear function of a set of predictor variables,

1n[ p
1− p ] = 0∑  j X j

Eq 16.2
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where  ln(p/(1-p))  is  the  logit transform.  This  value  is  the  log  of  the  odds  of  the outcome 
(because odds=p/(1-p)), so a logistic regression model is sometimes referred to as a  log odds 
model.

Fig. 16.1 shows that, while the logit of p might become very large or very small, p does not go 
beyond the bounds of 0 and 1. In fact, logit values tend to remain between -7 and +7 as these 
are associated with very small (<0.001) and very large (>0.999) probabilities, respectively.

This transformation leads to the logistic model in which the probability of the outcome can be 
expressed in 1 of the 2 following ways (they are equivalent).

p = 1
1e− 0∑  j X j

= e0∑  j X j

1e0∑  j X j Eq 16.3

16.3 ODDS AND ODDS RATIOS

Let’s look at the simple situation in which the occurrence of disease is the event of interest (Y=0 
or 1) and we have a single dichotomous predictor variable (ie X=0 or 1). The logistic model is:

1n[ p
1− p ] = 01 X 1

Eq 16.4

so the odds of disease is:

odds = p
1− p

= e01 X

Eq 16.5

From this it is a relatively simple process to determine the odds ratio (OR) for disease that is 
associated with the presence of factor ‘X’.

Fig. 16.1 Logit and inverse logit functions
Note Dashed lines are at + 4.595 which is the logit of 1% and 99%
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if X =1 odds = e01

if X =0 odds = e0

The odds ratio is then:

OR = e01

e0
= e0 e1

e0
= e1

Eq 16.6

This can be extended to the situation in which there are multiple predictors and the OR for the 
kth variable will be eβk.

16.4 FITTING A LOGISTIC REGRESSION MODEL

In linear regression, we used least squares techniques to estimate the regression coefficients (or 
at least the computer did this for us). Because the error term has a Gaussian distribution, this 
approach produces maximum likelihood estimates of the coefficients. In a logistic model, we 
use a different maximum likelihood estimation procedure to estimate the coefficients. 

The key feature of maximum likelihood estimation is that it estimates values for parameters (the 
βs)  which are  most  likely to  have  produced the data that  have been observed.  Rather  than 
starting  with  the  observed  data  and  computing  parameter  estimates  (as  is  done  with  least  
squares estimates), one determines the likelihood (probability) of the observed data for various 
combinations of parameter values. The set of parameter values that was most likely to have 
produced the observed data is that of the maximum likelihood (ML) estimates. 

The  following  simple  example  demonstrates  the  maximum  likelihood  estimation  process. 
Assume that you have a set of serologic results from a sample of 10 students in a high school  
class and the parameter you want to estimate is the prevalence of the disease. Three of the 10 
samples are positive (these are the observed data).

The likelihood (L) of getting 3 positive results from 10 students if the true prevalence is P is: 

L P = 10
3 P31−P7

The log likelihood (lnL) is:

1nLP = 1n{10
3 }31n P 71n 1−P

In this situation, the maximum value of the lnL can be determined directly, but in many cases 
an iterative approach is required. If such a procedure was being followed, the steps would be:

(a) Pick  a  value  for  the  prevalence  (perhaps  your  first  guess  is  0.2).  The likelihood of 
observing 3 positive students out of 10, if the true prevalence (P) is 0.2, is:

L 0.2 = n
xP x 1−P n−x = 10

3 0.231−0.210−3 = 0.201
Eq 16.7

The lnL is -1.60.

(b) Pick another prevalence (perhaps your next guess is 0.35) and recompute the likelihood. 
This turns out to be 0.252 (lnL=-1.38).
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(c) Keep repeating this process until you have the estimate of the parameter that gives you 
the highest  likelihood (ie maximum likelihood). This would occur at  P=0.3 (but you 
already knew that, didn’t you?).

A graph of the relationship between lnL and prevalence (Fig. 16.2) shows the maximum value 
at P=0.3.

Of course, the computer doesn’t just 
pick values of parameters at random; 
there are ways of estimating what the 
parameter  is  likely  to  be  and  then 
refining  that  estimate.  Since  it  is 
possible  to  keep  refining  the 
estimates to more and more decimal 
places,  you  have  to  specify  the 
convergence  criterion.  Once  the 
estimates  change  by  less  than  the 
convergence criterion, the process of 
refining  the  estimates  is  stopped (ie 
convergence has been achieved).

16.5 ASSUMPTIONS IN LOGISTIC REGRESSION

As with linear regression, there are a number of assumptions inherent in fitting a logistic model. 
In a logistic model, the outcome Y is dichotomous:

Y i{10 p Y i=1= pi=1− p Y i=0
Eq 16.8

and 2 important assumptions are independence and linearity.

Independence It is assumed that the observations are independent from each other (the same 
assumption was made in linear regression). If the data come from people who are in some way 
clustered, or if multiple measurements are being made on the same individual, this assumption 
has  probably  been  violated.  For  example,  if  data  come  from  patients  in  multiple  clinics, 
variation between patients in the study population results  from the usual  variation between 
patients plus the variation that is due to differences between clinics. This often results in ‘over-
dispersion’ or ‘extra-binomial variation’ in the data. Some methods of checking this assumption 
will be presented in Section 16.12.4, and methods of dealing with the problem are discussed in 
Chapters 20–23.

Linearity As with linear regression, any predictor that is measured on a continuous scale is 
assumed  to  have  a  linear  (straight-line)  relationship  with  the  outcome.  Techniques  for 
evaluating this assumption are presented in Section 15.6.

Fig. 16.2 Log likelihood versus prevalence
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Note Because the logistic model models the expected probability of disease on the logit scale 
but the original data are binary (0/1 or no/yes), the logistic model does not have an error term. 
Consequently,  there  is  no  assumption  about  the  distribution  of  errors.  It  also  means  that  
coefficients in a logistic model represent the effect of a predictor on the logit of the outcome.  
Presenting effects on the original probability scale is discussed in Section 16.8.5.

16.6 LIKELIHOOD RATIO STATISTICS

Although  the  maximum  likelihood  estimation  process  produces  the  largest  possible  (ie  
maximum)  likelihood  value,  these  values  are  always  very,  very  small,  because  they  are 
describing  the  probability  of  an  exact  set  of  observations  given  the  parameter  estimates 
selected.  Because  of  this  (and  the  fact  that  the  estimation  process  is  simpler),  computer 
programs  usually work  with  the  log  likelihood which  will  be  a  moderately  sized  negative 
number. Most computer programs print out the log likelihood of the model that has been fit to  
the data. It is a key component in testing logistic regression models.

16.6.1 Significance of the full model

The test used to determine the overall significance of a logistic model is called the likelihood 
ratio test (LRT), as it compares the likelihood of the ‘full’ model (ie with all the predictors 
included) with the likelihood of the ‘null’ model (ie a model which contains only the intercept). 
Consequently,  it  is  analogous  to  the  overall  F-test  of  the model  in  linear  regressions.  The 
formula for the likelihood ratio test statistic (G2

0) is:

G0
2 = 21n L

L0
= 2 1nL−1nL0

Eq 16.9

where L is the likelihood of the full model and L0 is the likelihood of the null model. The 
statistic (G2

0) has an approximate χ2 distribution with k degrees of freedom (df) (k=number of 
predictors  in  the  full  model).  If  significant,  it  suggests  that,  taken  together,  the  predictors 
contribute significantly to the prediction of the outcome. 

Note When computing an LRT statistic, 2 conditions must be met.

 1. Both models must be fit using exactly the same observations. If a dataset contains missing 
values for some predictors in the full  model,  then these would be omitted from the full 
model but included when the null model is computed. This must be avoided.

 2. The models must be nested. This means that the predictors in the simpler model must be a 
subset of those in the full model. This will not be a problem when the smaller model is the  
null model, but might be a problem in other situations.

In Example 16.1, a logistic regression model for low birth weight has been fit with 3 predictor  
variables (-smk-, -white-, -frace_c3-). The likelihood ratio test evaluating the 3 predictors as a 
group is highly statistically significant G0

2=26.47,df=4, P0.001.

16.6.2 Comparing full and reduced models

In the preceding section, the LRT was used to compare the full and null models, but an LRT can 
also be used to test the contribution of any subset of parameters in much the same way as a  
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multiple partial F-test is used in linear regression. The formula is:

G0
2 = 21n

L full

L red
= 2 1nLfull−1nL red

Eq 16.10

where Lfull and Lred refer to the likelihood of the full and reduced models, respectively. As can  
be  seen  in  Example  16.1,  the  2  race  predictors  (-white-,  -frace_c3-)  are  highly  significant 
predictors of low birth weight. This test is sometimes referred to as the ‘improvement χ2’.

16.6.3 Comparing full and saturated models (deviance)

A special case of the likelihood ratio test is the comparison of the likelihood of the model under 
investigation to the likelihood of a fully saturated model (1 in which there would be 1 parameter 
fit  for each data point). Since a fully saturated model should perfectly predict  the data, the 
likelihood of the observed data, given this model, should be 1 (or 1nL sat=0). This comparison 
yields a statistic called the deviance which is analogous to the error sum of squares (SSE) in 
linear regression. The deviance is a measure of the unexplained variation in the data.

Example 16.1 Comparing logistic regression models 
data = bw5k

The log likelihoods from 4 different models were:

Model Predictors # of predictors Log likelihood

null intercept
β

0

1 -1321.85

full intercept, smk, white, 
frace_c3

β
0
, β

1
, β

2
, β

3
, β

4

5 -1308.61

reduced intercept, smk
β

0
, β

1

2 -1318.03

saturated 5000 ‘hypothetical’ 
predictors
β

0
, β

1
…β

n-1

5000 0

Overall likelihood ratio test of the full model:
G0

2 = 2(-1308.61 - (-1321.85)) = 26.47 with 4 df (P <0.001)
    Taken together, the 3 predictors are highly significant predictors of low birth weight.

Likelihood ratio test comparing the full and reduced models:
G0

2 = 2(-1308.61 - (-1318.03)) = 18.83 with 3 df (P <0.001) 
    The 2 race predictors (-white- and -frace_c3-) are highly significant predictors.

Likelihood ratio test comparing the saturated and full models:
G0

2 = 2(0 - (-1308.61)) = 2617.22 with 5000 df.
    Note This does not have a χ2 distribution.
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D=2 1n
Lsat

L full
=2 1n L sat−1n L full=−21nLfull

Eq 16.11

Note  The deviance  computed  in  this  manner  does not  have  a  χ2 distribution.  (See  Section 
16.12.2 for more discussion of deviance.)

16.7 WALD TESTS

An alternative approach to evaluating the significance of a single coefficient is to use a test that  
relates the coefficient to its SE. A Wald test is the ratio of the coefficient to its SE and it follows 
(asymptotically)  a  standard  normal  (Z)  distribution.  This  tests  whether  the  coefficient  is 
significantly different from zero. It is routinely computed by most computer programs and is the 
most  widely  used  test  of  the  significance  of  coefficients.  However,  the  estimates  of  the 
coefficient  and its SE are only estimates,  and consequently the normal approximation of its 
distribution  might  not  be  reliable  particularly  if  the  sample  size  is  small.  To  evaluate  the  
significance  of  variables  with  a  P-value  close  to  the  rejection  region,  it  is  best  to  use  a  
likelihood ratio test.

Just as with multiple partial F-tests in linear regression, multiple parameters in a logistic model 
can be tested with a multiple Wald test. For example, comparing the full and reduced models in  
Example 16.1 would be equivalent to testing the null hypothesis: 

H 0 :2=3=0

In this case, the test statistic is compared with a χ2 distribution, with the df equal to the number 
of predictors being tested. In Example 16.1, the Wald χ2 for comparing the full and reduced 
models has a value of 20.1 and 3 df. This is a slightly larger test statistic (although this is not 
always the case) than the likelihood ratio test ( χ2 =18.83), but it is still highly significant. 

16.8 INTERPRETATION OF COEFFICIENTS

The coefficients in a logistic regression model represent the amount the logit of the probability 
of the outcome changes with a unit  increase in the predictor.  Unfortunately,  this is  hard to  
interpret  so we usually convert  the coefficients  into odds ratios.  The following sections are 
based on the model shown in Example 16.2.

1n[ p
1− p ] = 01smk 2white3frace=hisp 4frace=black5previs 

16.8.1 Dichotomous predictor

Coefficients  for  a  dichotomous predictor  represent  the amount that  the log odds of disease 
increase (or decrease) when the factor is present. These can be easily converted into  OR by 
exponentiating the coefficient. For example, the OR for -smk- in Example 16.2 is:

OR = e1 = e0.527 = 1.695

If the outcome of interest is relatively rare, the OR provides a good approximation of the risk 
ratio (RR). If the data come from a case-control study that used  incidence density sampling, the 
OR is a good estimate of the incidence rate ratio (IR) in the original population (see Chapter 6).
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16.8.2 Continuous predictor

For a continuous predictor,  the coefficient  (eg β5) represents  the change in the log odds of 
disease for a 1-unit change in the predictor. Similarly, the computed OR represents the factor by 

Example 16.2 Interpreting logistic regression coefficients
data = bw5k

The tables below present results from a logistic regression of -low_bw- on -smk-, -white-, -previs-, and 
2 levels of -frace_c3-. The first table presents the effects of the predictors on the logit of the outcome  
(low birth weight), while the second shows the same results expressed as odds ratios.

Number of obs = 5000
LR chi2 (5) = 42.65
Prob > chi2 = 0.000

Log likelihood = -1300.5253

Predictor Coef SE Z P 95% CI

smk 0.527 0.183 2.88 0.004 0.169 0.886

white -0.321 0.180 -1.78 0.075 -0.673 0.032

frace = hisp -0.433 0.201 -2.15 0.031 -0.827 -0.039

frace = black 0.196 0.193 1.02 0.308 -0.181 0.574

previs -0.059 0.015 -4.01 0.000 -0.088 -0.030

constant -1.673 0.235 -7.11 0.000 -2.134 -1.212

Predictor OR SE 95% CI

smk 1.695 0.310 1.184 2.426

white 0.726 0.131 0.510 1.032

frace = hisp 0.648 0.130 0.437 0.962

frace = black 1.217 0.235 0.834 1.776

previs 0.943 0.014 0.916 0.970

Effect of  -smk- Smoking  increased the log odds of  low birth  weight  by 0.527,  or  alternatively,  it 
increased  the  odds  of  having  a  low birth  weight  baby  by 1.7  times.  Since  low birth  weight  is  a 
relatively rare condition, it would be reasonable to interpret the odds ratio as a risk ratio and state that  
smoking increased the risk of having a low birth weight baby by approximately 1.7 times (equivalent to 
a 70% increase).
Effect of -previs- Increasing the number of prenatal visits from 5 to 15 reduced the log odds of disease 
by: (15-5)*0.059=0.59 units. Alternatively, it reduces the odds of disease by the factor: (0.943) (15-5)=0.556. 
An increase of 10 in the number of prenatal visits reduces the risk of low birth weight by a factor of  
approximately 0.56 (equivalent to a 44% reduction).
Effect  of  -frace_c3- Compared  with  whites  (baseline  group),  babies  from  Hispanic  fathers  had 
decreased odds of being low birth weight (OR=0.65) while those with black fathers had increased odds 
(OR=1.22), although this latter difference was not statistically significant (P=0.308). Collectively, there  
were significant differences among the father’s race groups (P=0.0006, data not shown) and individually, 
Hispanics had significantly lower odds than whites (P=0.031) and blacks (P<0.001, data not shown).
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which the odds of disease are multiplied for each 1-unit change in the predictor. However, we 
are often interested in changes of multiple units of the exposure variable(s), such as from x1 to 
x2. For example, for a change from 5 to 15 in the number of prenatal visits, the log odds of 
disease changes by:

log odds x1 , x2= x2−x1∗5=15−5 ∗−0.059=−0.59 Eq 16.12

For this 10-unit change in -previs-, the odds of disease change by:

e−0.59=0.554, or OR(x1 , x2)=OR( x2−x1)=0.943( 15−5)=0.556 Eq 16.13

Note This effect of -previs- is based on the assumption that the relationship between -previs- 
and the log odds of low birth weight is linear. Methods for evaluating this assumption were 
discussed in Section 15.6.

16.8.3 Categorical predictor 

As in linear regression, predictors with multiple categories (eg ‘j’ categories) must be converted 
to a series of indicator variables (also called ‘dummy’ variables) with j-1 variables put into the 
model. The coefficient for each indicator variable represents the effect of that level compared 
with the category (ie the ‘baseline’) not included in the model. The coefficients are interpreted 
in the same manner as for any other dichotomous predictor. 

Note There  are  other  ways  of  coding  categorical  variables,  such  as  hierarchical  indicator  
variables, and these are used in the same way as described in Chapter 14.

When creating indicator variables, the choice of the baseline might be important. In general, we 
choose one that makes biological sense (ie makes some sense as a reference level) and one that 
has a reasonable number of observations so we are not comparing everything with a category  
for which the effect  can only be estimated very imprecisely.  When evaluating the statistical 
significance of coefficients for categorical variables, it is important NOT to pay much attention 
to the P-values of individual coefficients. This P-value indicates whether or not the chosen level 
is statistically different from the baseline level. However, because the choice of the baseline is  
arbitrary, any category has a range of possible P-values that could be computed. Instead, you  
should evaluate the statistical significance of all of the categories together with a multiple Wald  
test or a likelihood ratio test. 

In Example 16.2, the variable -frace_c3- was converted to a series of 3 dummy variables and 2 
of these (-frace_c3_1-, -frace_c3_3-) were included in the model. These represented Hispanics 
and blacks, respectively. Consequently, the coefficients represent the effects of these races on 
the log odds of low birth weight compared with whites (the category that was omitted).

16.8.4 Interpretation of the intercept 

Interpretation of the intercept (constant) in the regression model depends on how the data were 
collected.  The intercept  represents  the  logit  of  the probability of  disease  if  all  of  the  ‘risk 
factors’ are absent (ie equal to zero). This can be expressed as:

1n p0

1− p0  = 0
Eq 16.14
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where p0 equals the probability of disease in this ‘non-exposed group’. In a cross-sectional or 
cohort study,  p0 has real meaning because it represents the frequency of disease in the non-
exposed group. However, in a case-control study,  p0 will vary depending on how many cases 
and controls are selected for inclusion in the study. We don’t really know what the frequency of 
disease  is  in  the  non-exposed  group  because  we  didn’t  take  a  sample  from  that  group. 
Consequently, the value of the intercept cannot be meaningfully interpreted if the data came 
from a case-control study.

16.8.5 Presenting effects of factors on the probability scale

As has been presented above, the coefficients from a logistic model represent the change in the  
log odds of disease that is associated with a unit change in the factor of interest. These can be  
relatively easily converted to an odds ratio (by exponentiating the coefficient) but there is a 
limitation to the usefulness of this parameter.

We normally think about the probability of disease (rather than the odds) and the probability of 
disease is not linearly related to the factor of interest. Consequently, the effect of a unit increase 
in the factor usually does not increase the probability of disease by a fixed amount. The amount 
that a unit increase in the factor changes the probability of disease depends on the level of the  
factor and the levels of other factors in the model. 

In Example 16.3, you can see that the effect of an additional 10 prenatal visits has a greater  
impact (reduction) in the probability of a low birth weight baby among smokers compared with 
non-smokers. The impact is also much greater going from 5 to 15 visits compared with 25 to 35 
visits. It is helpful to generate some graphs of predicted probabilities to get a full understanding 
of the effects of key variables in your model. 

16.9 ASSESSING INTERACTION AND CONFOUNDING

Assessment  of  interaction  and  confounding  in  logistic  regression  models  is  similar  to  the 
process used in linear regression. Confounding is assessed by adding the potential confounding 
variable to the model and making a subjective decision as to whether or not the coefficient of 
the variable of interest  has changed ‘substantially’. In Example 16.4, it  appears  that smoking, 
mother’s race,  and father’s race have very little  confounding effect  on the impact of prenatal 
visits. 

Interaction is  assessed  by  adding  the  cross-product  term  (X1*X2)  and  determining  if  the 
coefficient  for  the  term  is  statistically  significant.  Estimation  of  ORs  in  the  presence  of 
interaction deserves some attention, though. If interaction is present, the OR for the variable of 
interest has to be determined at a pre-defined level of the interacting variable, because it will 
vary with the level of the interacting variable.

If the interaction is between 2 dichotomous predictors, the coefficients for the main effects and 
the interaction term have straightforward interpretations. The coefficient for each main effect 
represents  the effect  of  that  variable  in  observations  in  which  the  other  variable  is  absent. 
Interpretation is a little more complex when one of the predictors is continuous,, as is shown in 
Example 16.5. The effects of mother’s race and 0 or 11 prenatal visits is summarised in Table 
16.2.
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Table 16.2 Effect of being white and/or of having 11 additional prenatal visits on the log 
odds of having a low birth weight baby (compared with non-white and no prenatal visits) 
(from Example 16.5)

prenatal visits
0 11 

mother's race non-white 0 -1.091 
white -1.112 -1.387 

Higher-order interactions (eg 3-way interactions) might also be evaluated (see Section 15.7). 
Note: Interactions in logistic regression are assessed on a multiplicative scale (ie in the absence 

Example 16.3 Effects of factors on the probability scale
dataset = bw5k

In this example, a model containing -low_bw- on -smk-, -white-, -previs-, and 2 levels of -frace_c3-  
was  fit  and the predicted probability of low birth weight  computed as -previs-  rose from 0 to 40. 
Predicted probabilities were computed separately for smokers and non-smokers.

Predictor Coef SE Z P 95% CI

smk 0.527 0.183 2.88 0.004 0.169 0.886

white -0.321 0.180 -1.78 0.075 -0.673 0.032

frace = hisp -0.433 0.201 -2.15 0.031 -0.827 -0.039

frace = black 0.196 0.193 1.02 0.308 -0.181 0.574

previs -0.059 0.015 -4.01 0.000 -0.088 -0.030

constant -1.673 0.235 -7.11 0.000 -2.134 -1.212

The  effect  of  a  10-unit  increase  in 
-previs-  depends  on  whether  the 
person is a smoker or not (ie the effect 
is greater in smokers). It also depends 
on where on the scale of -previs- the 
increase  occurs  (going  from 0  to  10 
visits has a much bigger impact on the 
probability  of  low  birth  weight  than 
going from 30 to 40 visits). 

As  noted  in  Section  16.8.2,  this 
analysis  is  based  on  the  assumption 
that  the  relationship  between  -previs- 
and the log odds of low birth weight is 
linear.

Fig. 16.3 Effect of number of prenatal visits in 
smokers and non-smokers
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of interaction, the effect of one factor multiplies the log odds of disease by a constant amount, 
regardless of the level of a second factor). Methods for evaluating interaction on an additive 
scale have been published (Knol et al, 2007). (See Section 13.6.2 for a discussion of additive 
and multiplicative interaction.)

16.10 MODEL-BUILDING

In  general,  the  process  of  building  a  logistic  model  is  similar  to  that  of  building  a  linear  
regression model (see Chapter 15 for details). It might involve any of the following steps:

• laying out a tentative causal diagram to guide your thinking
• unconditional analyses of relationships between predictors and the outcome of interest 

using a ‘liberal’ P-value (eg unconditional logistic models)
• evaluating linearity of effects of continuous predictors
• evaluation of relationships (correlations) among predictor variables
• automated model-building processes (used with caution)

• forward selection
• backward elimination
• stepwise selection
• best subset regression

• manual model-building guided by a causal diagram (preferred method) including:
• evaluation of confounding
• evaluation of interaction.

One particular feature that must be kept in mind when fitting a logistic model is that data used 
to build logistic regression models may be binary (0/1) data (also called Bernoulli data), with 
one observation per study unit, or binomial (also called grouped data), with each observation 
containing the number of positive responses and the number of trials for study units with a  
certain  set  of  characteristics.  A  covariate  pattern is  a  unique  combination  of  values  of 

Example 16.4 Assessment of confounding
data = bw5k

First a  ‘full’ model  containing -smk-, -white-, -frace_c3-, and -previs- was fit,  and then the first  3 
factors were dropped from the model (leaving only -previs-).

Full model Reduced model 

Predictor Coef SE Coef SE

smk 0.527 0.183

white -0.321 0.180

frace = hisp 0.433 0.201

frace = black 0.630 0.164

previs -0.059 0.015 -0.062 0.015

constant -2.106 0.189 -1.849 0.164
When the 3 potential confounders were removed from the model, the coefficient for -previs- changed 
very little (5%), indicating very little confounding.  Of the 3 potential confounders, -white- is most  
strongly associated with -previs- (data not shown) and hence most likely to be a confounder, but it is  
only weakly associated with -low_bw-.
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predictor variables. For example, if the model contains only 2 dichotomous predictors, there  
will be 4 covariate patterns: (1,1) (1,0) (0,1) (0,0). The original binary data (n=number of study 
units)  can  be  converted  to  binomial  data  (n=4),  with  each  of  the  4  observations  having  4 
variables: 2 that define the covariate patterns along with variables for the number of positive  
outcomes and the number of study units within each covariate pattern. On the other hand, if the 
model contains many continuous variables, there might very well be as many covariate patterns  
as there are data points (ie each covariate pattern will have only one observation in it), and these 
data are referred to as binary data. This distinction becomes crucial when computing residuals 
and evaluating the fit of logistic regression models (see Section 16.12.1).

Example 16.5 Assessment of interaction
dataset = bw5k

First, -previs- was centred by subtracting its mean value (11) so the effect of -white- could be assessed 
at  an average  number  of  prenatal  visits.  Then the interaction between -white-  and -previs_ct-  was 
evaluated by adding their cross-product term.

Predictor Coef SE Z P 95% CI

white -1.112 0.360 -3.09 0.002 -1.817 -0.407

previs -0.099 0.022 -4.60 0.000 -0.142 -0.057

white * previs 0.074 0.029 2.54 0.011 0.017 0.131

smk 0.541 0.183 2.96 0.003 0.182 0.899

frace = hisp -0.445 0.203 -2.20 0.028 -0.842 -0.048

frace = black 0.187 0.194 0.96 0.336 -0.193 0.567

constant -1.259 0.282 -4.47 0.000 -1.811 -0.707

The effect of -white- and -previs- use can be summarised as follows:
white - assuming no 
prenatal visits

log odds goes down by: 1.112 units (P=0.002)

white assuming 11 
prenatal visits

log odds goes down by: 1.112-(11*0.074)=0.296 units (P=0.104, data not 
shown)

prenatal visits in non-
whites

log odds goes down by: 0.099 units for each additional visit (P<0.001)

prenatal visits in whites log odds goes down by: 0.099-0.074 = 0.025 units for each additional visit 
(P=0.204, data not shown)

With no prenatal visits, white mothers have a significantly reduced risk of a low birth weight baby  
(OR=e-1.112=0.33). However, less than 1% of mothers have no prenatal visits so this may not be a very  
valuable estimate. At an average number (n=11) of prenatal visits, the difference between white and 
non-white  mothers  is not very large (ORwhites=e-.296=0.74) and not statistically significant  (P=0.104). 
However, the beneficial effect of additional prenatal visits appears to be approximately 4 times larger  
in non-whites (log odds of low birth weight goes down by almost 0.1 units for each additional visit)  
than in whites (log odds goes down by 0.025 units for each additional visit). In whites, the beneficial  
effect of additional prenatal visits is not statistically significant.
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A  second  fundamental  difference  relates  to  the  process  of  evaluating  the  shape  of  the 
relationship  between  a  continuous  predictor  variable  and  the  outcome  of  interest.  The 
assumption is that the relationship between the continuous predictor and the log odds of the 
outcome (not the outcome itself) is linear. Methods of evaluating the linearity of relationships 
are presented in Chapter 15, and issues related specifically to binomial data are discussed in 
Section 15.6.1. For the low birth weight data,  the effect  of -previs- is clearly not linear (as 
incorrectly assumed in many of the previous examples). Consequently, all subsequent models 
will include both linear and quadratic forms of -previs- (see Example 16.6).

Finally, logistic models can be fit directly using maximum likelihood procedures specific for 
logistic regression models, or they can be fit within the framework of generalised linear models,  
which are described in the following section.

Example 16.6 Covariate patterns (and residuals)
data = bw5k

A logistic regression model of -low_bw- on -smk-, -frace_c3-, -white-, and both linear (centred) and 
quadratic forms of -previs- was fit.

Predictor Coef SE Z P 95% CI

smk 0.500 0.184 2.71 0.007 0.138 0.861

frace = hisp 0.443 0.203 2.19 0.029 0.046 0.841

frace = black 0.644 0.165 3.90 0.000 0.321 0.968

white -0.324 0.182 -1.78 0.075 -0.679 0.032

previs_ct -0.061 0.012 -4.93 0.000 -0.086 -0.037

previs_sq 0.007 0.001 5.63 0.000 0.004 0.009

constant -2.873 0.119 -24.08 0.000 -3.107 -2.639

It  turns out that there were 203 distinct covariate  patterns represented in this model.  The data for  
covariate pattern #79 (non-smoking, white mother, Hispanic father, and 3 prenatal visits) are shown 
below.

cov.
pattern

obs # birth 
weight

smok-
ing

father's 
race

mother's 
race

pre-
natal 
visits

pred.
prob.

Pearson
residual

(covariate)

Pearson
residual 
(observ)

79 3472034 low non-
smoker

hisp white 3 0.093 1.978 3.118

79 3753582 normal non-
smoker

hisp white 3 0.093 1.978 -0.321

There were 2 observations in covariate pattern #79 and an observed probability of a positive outcome  
of 0.5 (1 of the 2 babies was low birth weight). The predicted probability was 0.093 and the Pearson  
residual computed on the basis of one residual per covariate pattern was a moderately large positive 
value (1.978). However, when residuals were computed for each observation individually, there was 
one very large positive residual  value (3.118 for  the low birth  weight  baby)  and a  small  negative  
residual value  (-0.321) for the normal birth weight baby.
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16.11 GENERALISED LINEAR MODELS

Generalised linear models (GLM) were developed in the 1970s (Nelder and Wedderburn, 1972) 
to  provide  a  common  framework  for  a  wide  range  of  statistical  models,  including  both 
continuous and discrete distributions, with model-building and analysis similar to linear models 
based on the normal distribution (McCullagh and Nelder, 1989). There are 2 key components 
which need to be specified to fit a general linear model: the link function and the distribution 
of the observations.

Link function The cornerstone of GLMs is the link function: the idea that linear modelling of  
predictors should be allowed to take place on a different scale from that of the observations.  
The  link  function  makes  that  transition  between  the  observation’s  mean  and  the  linear 
modelling. This idea may have been triggered by realising the problems of linear modelling of 
the observation’s mean for bounded distributions. As noted in Section 16.1, modelling disease  
probabilities as a linear function of predictors may easily lead to predicted values outside the 
allowed range of probabilities (ie between 0 and 1). Consequently,  in logistic regression, we 
model the logit(p)=ln[p/(1-p)] as a linear function of predictors. In GLM terminology, the logit 
function is the link function. The logit function, which maps the unit interval (0,1) onto the  
entire real axis (-∞,+∞) is shown on the left of Fig. 16.1. Intuitively, this is like ‘stretching’ the 
interval. The graph on the right shows its inverse function, logit-1(s)=es/(1+es), where s=logit(p).

Distribution Data with a wide range of distributions can be modelled in the GLM framework, 
but the most commonly used distributions are: binomial (including binary), Poisson, negative 
binomial, Gaussian (normal), inverse Gaussian, and gamma.

In theory, the link function used with any specific distribution can be arbitrary, but in practice, 
it  is restricted to a few common choices  for each distribution of  Y.  Each distribution has a 
‘natural’ link function associated with it that is called the canonical link. For Gaussian (normal) 
data, the canonical link is the identity link because the outcome (Y) is  linked directly to the 
predictors. For binary/binomial data, the canonical link is the logit link but 2 non-canonical links 
that are occasionally used are the probit function (inverse cumulative probability for the standard 
normal) and the complementary log-log function. The statistical inference using logit and probit 
links is usually similar, but parameter estimates are scaled roughly by the factor π/√3 (ie logistic 
regression estimates are numerically larger than those from a probit regression). Table 16.3 lists  
the canonical links and some commonly used non-canonical links for several distributions. Also, 
for ordinal data (and a multinomial distribution), the logit is the most common link.

Poisson and negative binomial models are discussed in more detail in Chapter 18. The logit (or 
probit) links are also used for modelling ordinal and multinomial data (see Chapter 17). When

Table 16.3 Selected distributions of outcomes and links used in fitting models in a GLM 
framework

Distribution of Y Canonical link Selected non-canonical links

Gaussian (normal) identity log

binary/binomial logit probit, complementary log-log

Poisson log identity

negative binomial negative binomial log, identity
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choosing among link functions, we would usually use the most common one for the data type at 
hand, but if the model shows lack of fit, try some of the alternatives and choose the one that  
gives the best fit to the data. For the sake of completeness, we summarise the discussion by 
listing all the components of a generalised linear model:

(a) a link function
(b) a distribution of the outcome Y
(c) a set of explanatory variables (in a design matrix X), linked to the mean of the ith 

observation, μi=E(Yi), by the equation:

link i =01 X 1 i...k X ki Eq 16.15
(d) an assumption of independence between the outcomes.

One important feature of all GLMs with a non-identity link is that  all of the parameters are 
obtained on a transformed scale and, in order to give meaningful interpretations, we need to do 2 
things. First, predicted values need to be back-transformed to the original scale, using the inverse  
link function. Second, coefficients need to be converted to a more meaningful quantity. This is 
model-specific and, for the logistic model, exponentiating the coefficients produces odds ratios.

16.11.1 Estimation methods for GLMs

The standard estimation procedure for GLMs is maximum likelihood (ML) estimation. Due to 
similarities between different  GLMs,  generic  algorithms for ML estimation applicable for  a 
range of different GLMs were developed early on (the scoring method of Newton-Raphson 
estimation  (McCullagh and Nelder,  1989)). These algorithms were noted to depend only on 
assumptions about the distribution related to its mean (through the link function) and variance. 
This triggered an extension of GLMs to include partially specified models involving only the 
mean and variance but not the full distribution (and likelihood function). When a real likelihood 
function  no  longer  exists,  the  estimation  is  based  on  a  so-called  quasi-likelihood function 
(McCulloch et al, 2008). Examples of GLMs with different variance specifications than those 
derived from the distributions in Table 16.3 are discussed in Chapter 18 on negative binomial 
models, and in Chapter 20 on overdispersion models. 

16.11.2 GLM model evaluation 

One advantage of the GLM framework is that it has a wide range of statistics and techniques 
useful for assessing the fit of the model. These include GLM goodness-of-fit statistics (Pearson 
and deviance χ2) and the large number of GLM-defined residuals (including Pearson, deviance, 
Anscombe, partial, and score residuals) and other diagnostic parameters (eg Cook’s distance). 
Some of these are covered in the following sections.

16.12 EVALUATING LOGISTIC REGRESSION MODELS

There are 2 steps in assessing the fit of the model. The first is to determine if the model fits, in  
general, using summary measures of goodness of fit or by assessing the predictive ability of the  
model. The second is to determine whether there are any specific observations (or groups of 
observations) that do not fit the model or that are having an undue influence on the model. 
However,  before  proceeding  with either  of  these  2 areas,  it  is  important  to  understand  the 
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distinction between residuals computed on the basis of ‘covariate patterns’ (see Section 16.10) 
and those computed on the basis of ‘observations’.

16.12.1 Residuals and covariate patterns

The concept of  covariate patterns was introduced in Section 16.10.  Residuals from logistic 
models can be computed on the basis of 1 residual per observation or 1 residual per covariate  
pattern. To get a feeling for the difference between these 2 approaches, imagine a covariate 
pattern  ‘A’  with  2  observations,  1  disease  ‘+’  and  1  disease  ‘-’.  Further  assume that  the 
predicted value for the probability of disease in people with this covariate pattern is 0.5 (Table 
16.4).

Table 16.4 Residuals computed on 1 per observation and 1 per covariate pattern

Residuals

Observation Covariate 
pattern

Disease Predicted 
value

One per 
observation

One per 
covariate pattern

1 A 1 0.5 positive 0

2 A 0 0.5 negative

With 1 residual per observation, we have 2 residuals, of which 1 will be positive and 1 will be 
negative. With residuals computed on the basis of covariate patterns, the predicted value (0.5) 
exactly equals the observed value (0.5) so the residual is zero. For logistic models, residuals are 
normally computed on the basis of 1 per covariate pattern, and some of the desirable properties 
of the residuals only apply if there is a reasonable number of observations in each covariate 
pattern.

In the following, we will use j to represent the number of covariate patterns, mj to represent the 
number of data points in the jth covariate pattern, k to represent the number of predictors in the 
model (not including the constant) and n is the number of data points in the dataset.

All of the examples in this section are based on the model shown in Example 16.6 (with -smk-,  
-frace_c3-, -white-, and both linear (centred) and quadratic forms of -previs- as predictors). The 
values of the predictors in this model make up 203 distinct covariate patterns.

16.12.2 Pearson and deviance residuals

Computing  residuals for a logistic model is not as straightforward as it is following a linear 
regression  model  (ie observed  value-expected  value).  Various  types  of  residual  have  been 
proposed, but the 2 most commonly used are Pearson residual and deviance residual.

Pearson residuals are roughly analogous to standardised residuals in linear regression. They are 
based on the difference between the observed and expected values for a given covariate pattern, 
but  are adjusted based on the precision of the estimate of the observed value ( ie covariate 
patterns with a large number of observations will have a more precise estimate than those in 
which there are few observations). Pearson residuals are computed as:

r j=
y j−m j p j

m j p j1− p j Eq 16.16
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where  yj=the  number  of  positive  outcomes  in  the  jth covariate  pattern  and  pj=the  predicted 
probability  for  the  jth covariate  pattern.  Pearson  residuals  computed  on  the  basis  of  1  per 
covariate pattern and 1 per observation are presented in Example 16.6.

Deviance residuals represent the contribution of each observation to the overall deviance. The 
sum  of  deviance  residuals  computed  on  the  basis  of  individual  observations  (rather  than 
covariate patterns) is the deviance (-2*log likelihood) that was observed when comparing the 
full and saturated models (Section 16.6.3).

Both Pearson and deviance residuals may be standardised to have a mean of zero and unit 
variance.  Standardised  residuals  are  generally  used  for  graphical  examination  of  residual 
patterns and in particular, standardised deviance residuals are most likely to follow a Normal 
distribution  (Hilbe,  2009). Other  residuals  (Anscombe,  score,  and  partial  residuals)  are 
available within the GLM framework, but are beyond the scope of this text.

16.12.3 Goodness-of-fit tests

A variety of tests are available to provide an overall assessment of how well the model fits the 
observed data. All of these tests are based on the premise that the data will be divided into  
subsets and within each subset, the predicted number of outcome events will be computed and 
this will be compared with the observed number of outcome events. Two tests (the Pearson χ2 

and the deviance  χ2) are based on dividing the data up into the natural covariate patterns. A 
third test (Hosmer-Lemeshow test) is based on a more arbitrary division of the data.  Other 
measures of fit are also described.

Pearson and deviance χ2 tests
The sum of Pearson residuals squared is known as the Pearson χ2 statistic. When computed on 
the basis of 1 per covariate pattern, this statistic has a  χ2 distribution with (j-k-1) df provided 
that  j is much smaller than  n (ie on average, the  mj are large).  j,  being much smaller than  n, 
ensures that the observed probability of the outcome in each covariate pattern is based on a  
reasonable sample size. If  j=n (ie binary data), or almost so, the statistic does not follow a χ2 

distribution, so this goodness-of-fit statistic cannot be used.

The Pearson χ2 indicates whether or not there is sufficient evidence that the observed data do 
not fit the model (ie H0 is that the model fits the data). If it is not significant, it suggests that  
there is no reason to assume that the model is not correct (ie we accept that the model generally 
fits  the  data).  Note In  general,  goodness-of-fit  tests  do  not  have  a  lot  of  power  to  detect  
inadequacies in the model.

The sum of the squared deviance residuals computed on the basis of 1 per covariate pattern ( ie 
only applicable to binomial data) is called the deviance χ2. Note The term deviance χ2 is used to 
differentiate  this  deviance  from  the  deviance  computed  on  the  basis  of  1  per  observation 
(discussed in Section 16.6.3). As with the Pearson χ2, it has a χ2 distribution with (j-k-1) df. If 
either the Pearson χ2 or the deviance χ2 are significant, you should be suspicious that the model 
does  not  fit  the  data.  Example  16.7  shows the  Pearson  χ2 and  deviance  χ2 for  the  model 
presented in Example 16.6.

Hosmer-Lemeshow goodness-of-fit test
If you have binary data (or any situation where  j is not much less than  n), you can’t rely on 
covariate patterns to divide your data into subsets of sufficient size for a valid goodness-of-fit 
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test. One way to get around this problem is to group the data using some method other than  
covariate patterns and compare the observed and predicted probabilities of disease (if that is the 
outcome of interest) in each group. This is the basis of the Hosmer-Lemeshow test (Hosmer and 
Lemeshow, 2000).

There  are  2  ways  to  group  the  data.  The  first  is  on  the  basis  of  percentiles  of  estimated 
probability, and the second is on fixed values of estimated probability. For example, if you want 
10 groups, the first method would take the 10% of the data points with the lowest predicted 
probabilities of disease and put them in group 1, the next 10% in group 2  etc.  The second 

Example 16.7 Goodness-of-fit tests
data = bw5k

Goodness-of-fit tests were carried out on the model from Example 16.6.
Test χ2 df P

Pearson χ2  229.52 196 0.051

Deviance χ2  816.04 196 0.000

Hosmer-Lemeshow 15.48 8 0.050

As can be seen from the P values, there is quite a range of estimates, but all indicate there may be  
problems with the fit (P-values close to, or below, 0.05). It is also worth noting that, although there  
were only 203 covariate patterns for 5000 observations, almost 50% of the covariate patterns (101 of  
203) contained 4 or fewer observations. This suggests that the Hosmer-Lemeshow test might provide  
the most reliable evaluation.

A table of the observed and expected values from the Hosmer-Lemeshow test provides some insight  
into where the model does not fit the data very well.

Group p(D+)a
Cases

observed
Cases

expected
Contribution

to χ2
# of 

births

1 0.05 30 30.8 0.02 652

2 0.05 36 27.0 3.00 510

3 0.06 18 18.5 0.01 340

4 0.06 21 38.9 8.24 683

5 0.06 21 21.2 0.00 352

6 0.07 25 30.2 0.90 466

7 0.08 38 37.8 0.00 517

8 0.09 57 51.9 0.50 595

9 0.11 48 39.6 1.78 397

10 0.76 77 75.1 0.05 488
aupper end of predicted probabilities in group

In  general,  the  model  underestimates  the  number  of  low birth  weight  babies  at  higher  predicted  
probabilities (expected < observed in groups 7–10) and overestimates at lower predicted probabilities 
(expected > observed in groups 1 and 3–6). This suggests that there may be one or more important 
predictors of low birth weight missing. Group 4 had the largest contribution to the χ2 statistic.
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approach would take all data points for which the predicted probability of disease was less than  
0.1 and put  them in a group (regardless  of  how many data  points  fell  into that  group).  In  
general, the first approach is preferable because it avoids the problem of some groups having 
very small sample sizes.

Once the data are grouped, a 2*g table is set up (g is the number of groups and should not be <6) 
with the observed and expected number of cases included in each cell. The expected number of 
cases in the g=1 row of the table is simply the sum of the estimated probabilities for all subjects 
in the group. The observed number of cases is simply the number of observations with  Y=1. 
The observed  and  expected  values  are  compared  using  a  χ2 statistic  with  g-2  df.  A visual 
comparison of the observed and expected values will also identify areas where the model might 
not  fit  well.  Example  16.7  shows  the  Hosmer-Lemeshow  χ2 along  with  the  observed  and 
expected values.

16.12.4 Overdispersion and goodness-of-fit tests

Overdispersion occurs when there is more variation in a set of binomial proportions than would 
be expected based on the variance of the binomial function. One of the common causes of 
overdispersion is clustering of data, which is discussed in much more detail in Chapters 20 and 
22. However, consider the following simple example. Hypothetical data were computed for 10 
grade 2 school classes, each containing 20 individuals. Each individual was then given a 40% 
chance of being disease positive (regardless of the class they were in). The distribution of group 
prevalences is shown in the top row of Table 16.5 (labelled ‘not clustered’), and it has a mean 
of 0.40 and a standard deviation (SD) of 0.098. However, if the disease was highly infectious 
and  affected  all  of  the children in  4 classes  but  was  not  present  in  the other  6,  the mean  
prevalence would still be 0.4 but the distribution would look like that shown in the second row 
(labelled ‘clustered’) and the standard deviation of these values is 0.516. There is clearly much 
more variability in the class prevalences as a result of the clustering.

Table 16.5 Hypothetical data showing overdispersion as a result of clustering

Class 1 2 3 4 5 6 7 8 9 10 mean sd
Not 
clustered

0.5 0.3 0.4 0.6 0.45 0.3 0.35 0.4 0.35 0.3 0.395 0.098

Clustered 1 1 1 1 0 0 0 0 0 0 0.400 0.516

The example above shows overdispersion in terms of binomial data (class proportions). Indeed,  
the concept of overdispersion really only applies to grouped (binomial) data. Individual-level 
(binary) data cannot be overdispersed. (If the SDs of the above data are computed on the basis 
of the individual students, both sets of data have a SD of 0.49.) Nevertheless, clustered binary 
data may be ‘implicitly’ overdispersed because reformatting the data into a grouped data format 
makes the overdispersion obvious (Hilbe, 2009).

Overdispersion  can  arise  in  a  variety  of  ways,  and  can  be  classified  as  apparent  or  real.  
Apparent overdispersion can be caused by any errors in the logistic model. This can include 
omission of important explanatory predictors, outlying observations (potentially errors in the 
data?),  failure  to  account  for  important  interactions  in  the  model,  or  failure  to  satisfy  the 
assumption of linearity for continuous predictors. The solution to apparent overdispersion is to 
fix the model. 
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Real overdispersion occurs when the true variance in the observed proportions is greater than 
what would be expected from binomially distributed data. As noted, a common cause of real  
overdispersion  is  clustering.  Overdispersion  may be  detected  by  evaluating  the  Pearson  χ2 

dispersion parameter (and its affiliated Pearson χ2 statistic) or the Hosmer-Lemeshow goodness-
of-fit  test. However,  both have limitations when you are dealing with binary (or ungrouped 
binomial) data as can be seen in Example 16.8. (Note some references suggest that the deviance 
χ2 can also be used to evaluate overdispersion, but recent work (Hilbe, 2009) suggests that the 
Pearson  χ2 is preferred.)  Methods of dealing with overdispersion arising from clustering are 
presented in Chapters 20 and 22.

R2 (pseudo-R2)
A number of  pseudo-R2-type measures for estimating the amount of variation explained by a 
logistic regression model have been proposed and reviewed (Long and Freese, 2006; Mittlböck 
and Schemper, 1996; 1999). Details of the various methods are beyond the scope of this text. 
Unfortunately,  the various methods often give  widely varying  results so interpretation  of  a 
value requires specific knowledge of how the measure was computed and what it represents 
(Hoetker, 2007). For example, for the birth weight model, estimates from a variety of pseudo-R2 

measures range from 1.4% to 92.6%, but most are <5% (data not shown). In general, Hosmer  
and Lemeshow (2000) argue that the pseudo-R2 is equivalent to the likelihood ratio test for all 
of the parameters in the model (ie comparing the likelihood of the full model to one with only 
the  intercept).  It  does  not  compare  the  fit  of  the  model  with  the  observed  values,  and  
consequently is better suited for comparing models than for assessing the goodness of fit of a 
selected model.

16.12.5 Predictive ability of model

A second general  approach to assessing the overall  usefulness  of the model is  to assess its  
predictive ability (ie how good a job does it do in predicting the outcome?). This can involve 
computing the sensitivity and specificity of the model at various probability thresholds and/or 
generating a receiver operating characteristic (ROC) curve.

Sensitivity and specificity 
The ability of the model to correctly classify individuals can be assessed by computing the 
classification statistics after fitting a model. By default, these are computed by classifying every 
observation that  has  a  predicted probability  ≥0.5 as  positive and those with values <0.5 as 

Example 16.8 Detecting overdispersion
data = hypothetical

Some hypothetical data consisting of 100 observations (people) in each of 10 groups were constructed  
so that 5 of the groups had a high proportion of positive outcomes and the other 5 had a low proportion.  
A group-level predictor (X) which increased the logit of the outcome (Y) by 1.0 was then incorporated 
and the data generated. 

If these data are analysed as binary data, the Pearson  χ2 is 0.0 (P-value=1.0) and the overdispersion 
parameter is 1.002.  Both would suggest  no problem with overdispersion.  However,  if  the data are 
collapsed to binomial data and analysed as such, the dispersion parameter is 49.4 which clearly shows  
the serious problem of overdispersion. This highlights the limitations of goodness-of-fit statistics to  
detect problems with clustering when binary data are used to build the model.
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negative. However, this cutpoint can be lowered (to increase the sensitivity of the model) or 
raised (to increase the specificity) similar to the cutpoints for tests (Section 5.5.1). A graph of  
the sensitivity and specificity vs the potential cutpoint values (2-graph ROC curve—Section 
5.5.1) is helpful in selecting an appropriate cutpoint (Example 16.9). 

Receiver operating characteristic curves
An ROC curve for the model can also be generated to evaluate the performance of the model at 
all possible cutpoints. The closer the curve comes to the upper left corner of the graph, the  
better the ability of the model to correctly classify + and - responses. If the ROC curve is close 

Example 16.9 Predictive ability of a model—2-graph ROC curve
data = bw5k 

For the model presented in Example 16.6, the classification statistics based on a cutpoint of 0.07 (7%)  
are:

Classified (predicted) status

True status
T+

p(D+)>0.5
T-

p(D+)<0.5 Total

D+ 208 163 371

D- 1618 3011 4629

Total 1826 3174 5000

Sensitivity pr(T+|D+) 56.06%

Specificity pr(T-|D-) 65.05%

Positive predictive value pr(D+|T+) 11.39%

Negative predictive value pr(D-|T-) 94.86%

At a cutpoint of 0.5, the model fails to 
detect  any  of  the  low  birth  weight 
babies  (sensitivity=0%)  which  is 
clearly  unacceptable.  The  effect  of 
changing the cutpoint can be evaluated 
visually in the graph.

In this situation, reducing the cutpoint 
to 7% (the approximate prevalence in 
the data), the sensitivity and specificity 
are roughly balanced (56% and 65%, 
respectively). However, given the low 
prevalence  of  ‘disease’ (low  birth 
weight),  the  positive  predictive  value 
is quite low (11%) at this cutpoint.

Fig. 16.4 Use of a 2-graph ROC to show the effect of 
changing cutpoint
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to the diagonal line, it indicates that the model has very little predictive ability. The maximum 
area under an ROC curve is 1.0 (ie sensitivity=100% and specificity=100%) while the area will 
be 0.5 if the curve falls on the diagonal line (ie has no predictive ability at all). (See Section 
5.5.2 for a more complete discussion of ROC curves.) The predictive ability of the model for 
low birth weight is shown in Example 16.10.

16.12.6 Identifying important observations

Detecting observations which either do not fit the model well, or which might have an undue 
influence on the model, is an important component of evaluating a logistic regression model, 
particularly if any of the goodness-of-fit statistics indicate problems with the model.

Outliers 
Pearson residuals and deviance residuals represent the square root of the contribution of the 
covariate pattern to the Pearson and deviance  χ2 statistics, respectively. As with standardised 
residuals from linear regression, large positive or negative standardised residuals identify points 
which are not well fit by the model. If outliers are observed, it is important to try to determine:

(a) Why they are outliers (what are the characteristics of the observations that make them 
outliers?).

(b) If the data are found to be erroneous, they should be corrected, or failing that, deleted.
(c) If the data are correct, determine if they are having an undue effect on the model.

This last point can be evaluated by looking at other diagnostic parameters (leverage, delta-betas 
etc; see below) or by refitting the model with the outliers omitted. (Deleting the outliers should 
only be done for the purpose of evaluating their impact on the model and they must be put back 
in the dataset.) In general, outliers contribute to the lack of fit of a model but often do not have 

Example 16.10 Predictive ability of a model—ROC curve
data = bw5k 

An  ROC  curve  for  the  low  birth 
weight model is presented in Fig. 16.5.

The ROC curve does not deviate from 
the 45o line by very much, indicating 
that  the  model  has  limited  ability  to 
predict  low  birth  weights.  This  is 
confirmed by the area under the curve 
(AUC) which is only 0.623.

Fig. 16.5 ROC curve for model in Example 16.6
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an undue influence  on it.  An index  plot  of standardised  Pearson residuals  (1 per  covariate 
pattern)  is  shown in Example 16.11,  and  the effect  of  removing the  observations  with the 
largest standardised residuals is shown in the continuation of that example.

Hat matrix and leverage
Another quantity central to the discussion of logistic regression diagnostics is the hat matrix. It  
is used to calculate leverage values and other diagnostic parameters. The hat matrix is a square 
matrix of dimension  j*j  (j=number of covariate patterns) or  n*n (n=number of data points), 
depending on whether the data are binomial or binary. The diagonal elements of the hat matrix 
are the logistic regression leverage values (hj) (see Hosmer and Lemeshow (2000) for details).

As in linear regression, leverage measures the potential impact of an observation (or covariate  
pattern)  on  the  model.  Points  with  high  leverage  certainly  deserve  evaluation,  given  their 
potential impact.

Unlike leverage values in linear regression models, the leverage of a data point in a logistic  
model  is  not  exclusively  a  function  of  the  values  of  the  predictors.  Data  points  that  have 
extreme values of predictor variables (which would have high leverage in linear regression) 
might, in fact, have low leverage in logistic regression if the predicted value is very large or 
very small. Observations with extreme values of the predictor(s) will have leverage values that 
are:  highest  if  the predicted  probability lies  between 0.1 and  0.3 or  0.7 and 0.9,  moderate 
between 0.3 and 0.7, and low if the predicted probability is <0.1 or >0.9. The covariate patterns 
with the highest leverage are shown in Example 16.12.

Delta-betas 
Values of delta-beta provide an estimate of the effect of the jth covariate pattern on the logistic 
regression  coefficients.  These  values  are  analogous  to  Cook’s  distance  in  linear  regression 
models.

A single set of values of delta-beta can be calculated—1 value for each covariate pattern—and 
this represents the overall effect of the covariate pattern on the regression model. It is a measure 
of the distance between the observed set of regression coefficients and a similar set that would 
be obtained if the observations in the covariate pattern of interest were omitted when building the  
model. Alternatively, separate sets of delta-betas could be determined for each predictor variable 
to measure the effect of the covariate pattern on each coefficient in the model.

Values of delta-beta will depend on the leverage that the covariate pattern has, the predicted 
value, whether or not the model fits the data point well (ie is it an outlier?), and also on the 
number of  observations in the covariate  pattern.  Covariate  patterns  with a large  number of 
observations will naturally tend to have a large influence on the model, so we want to identify 
covariate patterns with a large influence but a small mj for further investigation.

If a particular pattern has a large delta-beta, it is important to determine why that is. As noted in  
our example (16.12), when mj is large, that covariate pattern is likely to have a big impact on 
the model. This is as it should be and need not concern us. However, if it is a covariate pattern 
with relatively few observations, then it is important to verify that the data are correct, and to 
determine if there is a logical explanation for the influence it is exerting.

Other parameters
Two other parameters which measure the overall influence of a covariate pattern on the model 
are the delta-χ2 and the delta-deviance. The delta-χ2 provides an overall estimate of the effect of 
the jth covariate on the Pearson χ2 statistic. The delta-deviance provides an overall estimate of 



454 LOGISTIC REGRESSION

Example 16.11 Identifying important observations 
data = bw5k 

From the model fit in Example 16.6, an index plot of standardised residuals with the covariate pattern 
identification number used as the marker label and the size of the circles proportional to the number of  
observations in the covariate pattern identifies two positive residuals >3.0 (#19 and #196). Both of 
these patterns had more low birth weight babies than expected (10 of 28 and 2 of 3, respectively) but  
there was nothing particularly unusual about the covariate patterns. There was 1 large covariate pattern 
with a negative residual <-2 (#107). Only 12 of 464 babies in this pattern had low birth weights but,  
once again, there was nothing particularly unusual about the pattern (non-smoking white mother, white  
father and 12 prenatal visits).

Refitting the model without the 3 covariate patterns with residuals >3 or <-3 produced these results.
full dataset (n=5000) cov. pattern #19, and #196 omitted 

(n=4969)

Predictor β SE β SE

smk 0.500 0.184 0.462 0.188

frace = hisp 0.443 0.203 0.416 0.204

frace = black 0.644 0.165 0.556 0.170

white -0.324 0.182 -0.298 0.184

previs_ct -0.061 0.012 -0.059 0.013

previs_sq 0.007 0.001 0.007 0.001

constant -2.873 0.119 -2.869 0.119

The effect of removing these outliers is that the coefficients for all predictors have moved toward the  
null  (ie either smaller positive or negative values).  This suggests  that the model  based on the full 
dataset might provide slightly  ‘liberal’ estimates of the effects of these predictors, but it should be 
noted that deleting these observations also increases the SEs. Removal of these observations also raises  
the P-value of the Hosmer-Lemeshow goodness-of-fit χ2 to 0.093. However, there is no justification for 
removing these observations, so the full model should be used.

Fig. 16.6 Index plot of standardised residuals
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the effect of the jth covariate on the deviance χ2. These 2 measures are overall evaluations of the 
fit of the model (ie they are based on the unexplained variation), so points that are outliers will 
tend  to  have  large  values  for  the  delta-χ2 and  delta-deviance.  However,  as  noted,  these 
observations can only be deleted if you are certain that the data are erroneous.

16.13 SAMPLE SIZE CONSIDERATIONS

There are 2 important issues related to sample size in logistic regression analyses.  The first  
relates to the power of the study to detect effects of interest. For a simple logistic regression 
model with a single dichotomous predictor, the formula for comparing 2 proportions in Eq 2.6 
will provide a reasonable estimate of the sample size. For multivariable models, the sample size 
adjustment shown in Eq 2.10 or Eq 2.11 can be used. The simulation approach described in 
Section 2.11.8 provides a very flexible method of addressing all sample-size issues.

The second issue relates to the adequacy of the obtained sample to support the fitting of a 

Example 16.12 Identifying influential observations
data = bw5k

Based on the model fit in Example 16.6, the covariate patterns with the largest leverage values are:
cov.

pattern
# of 

births p(D+) smoking
father's 

race
mother's 

race
prenatal 

visits
pred.
value leverage

143 1 0.000 non-
smoker

white white 40 0.760 0.180

107 464 0.026 non-
smoker

white white 12 0.057 0.182

141 7 0.143 non-
smoker

white white 30 0.186 0.209

None of the covariate patterns have a particularly large leverage value, and neither of the patterns with  
large positive residuals had high leverage. The covariate patterns with the largest overall delta-betas  
were determined.

cov.
pattern

# of 
births p(D+) smoking

father's 
race

mother's 
race

prenatal 
visits

pred.
value delta-beta

19 28 0.357 non-
smoker

non-
white

black 6 0.148 0.675

143 1 0.000 non-
smoker

white white 40 0.760 0.853

107 464 0.026 non-
smoker

white white 12 0.057 2.270

The covariate pattern with the largest delta-beta is pattern #107 (which also had the largest negative 
residual). It is not surprising that it has a large delta-beta as approximately 10% of the data are within  
this  covariate  pattern.  This  covariate  pattern is  quite  influential  for  the coefficients  for  -smk-  and  
-white-. If this pattern is omitted, the coefficients for both of these terms drop substantially. However,  
there is no reason to drop these observations as the data seem completely reasonable.

The observations that were previously identified as outliers (covariate patterns 19, 107, 196) are also  
the covariate pattern with the largest delta-χ2 and delta-deviance values (data not shown).



456 LOGISTIC REGRESSION

logistic model.  In  addition to considering the total  sample size, the number of positive and 
negative  outcomes  in  the  observed  data  influence  the  precision  of  the  estimates  of  the 
coefficients  in  the  model.  If  positive  outcomes  are  rare,  then  variances  might  be  over-  or 
underestimated, and hence parameter estimates and test statistics might be affected. It has been 
suggested that the dataset should contain a minimum of 10(k+1) positive outcomes where k is 
the number of predictors in the model (not counting the intercept) in order to adequately fit the 
model  (Hosmer and Lemeshow, 2000). The same rationale applies if negative outcomes are 
rare: there should be 10(k+1) negative outcomes in the dataset. It has recently been shown that 
in some situations this ‘rule of 10’ is conservative (Vittinghoff and McCulloch, 2007), but it is 
probably still useful as a general principle.

16.14 EXACT LOGISTIC REGRESSION

In  situations  in  which  your  dataset  is  very  small  or  severely  unbalanced,  ML (or  iteratively  
reweighted least  squares  (IRLS))  estimates of coefficients  (and their P-values)  may be biased  
because the estimation procedures rely on asymptotic properties. An alternative approach in these 
situations  is  to  use  exact  logistic  regression.  Exact  logistic  regression  constructs  a  statistical  
distribution which can be determined completely and estimates the coefficient  and P-value for 
each independent variable separately, while conditioning out the other predictors in the model.  
Consequently, the estimates are referred to as conditional maximum likelihood (CML) estimates. 
The procedure is very computationally intensive, and in practical terms, can only be used on small 
datasets  with  relatively  simple  models.  It  is  possible  to  simplify  the  estimation  procedure 
somewhat by identifying some predictors which need to be conditioned on, but for which you are  
not interested in the coefficients (eg confounders you want to control for). The details of exact 
logistic regression are beyond the scope of this text, so the reader is referred to (Mehta and Patel, 
1995) for more information. Hilbe  (2009) suggests that P-values comparable to those obtained 
from exact logistic regression can often be obtained in small datasets by using ordinary logistic  
regression with robust SE (see Sections 14.9.5 and 20.5.4). An example showing the application of 
exact methods to the birth weight data is shown in Example 16.13.

In small datasets, it is also often the situation in which a predictor may predict the outcome 
perfectly (eg all people in 1 age group are positive). In this situation, ML and CML estimates  
are unbounded and cannot be estimated. In these situations, some software implementations for 
exact logistic regression switch automatically to computing an estimate of the coefficient using 
a procedure called median unbiased estimation. This at least provides a reasonable estimate of 
the parameter of interest.

16.15 CONDITIONAL LOGISTIC REGRESSION FOR MATCHED STUDIES

In  our  discussions  of  procedures  to  control  confounding,  we  discussed  the  technique  of 
matching. The most common application of this technique is in matched case-control studies in 
which a case is matched with 1 or more controls on the basis of some factor such as age, race,  
city of residence etc. Because there might be 1 case and a variable number of controls, this is  
often referred to as 1-M matching, of which 1-1 matching is a special case. 

We could analyse  the data using regular  logistic regression procedures  by simply including 
dummy variables to represent the  j strata, where a case and its control(s) make up a stratum. 
Unfortunately, the generally desirable properties of maximum likelihood estimation of a logistic 
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regression model only hold if the sample size is large relative to the number of parameters 
estimated, and this wouldn’t be true in a matched study with j-1 dummy variables to indicate 
the strata in addition to the predictors  of interest.  With matched-pair data ( ie 1 case and 1 
control in each matched set), an unconditional logistic regression model including j-1 dummy 
variables produces estimates of the odds ratios of interest that are the square of their true value 
(eg 9 vs 3) (Hosmer and Lemeshow, 2000). This is clearly undesirable. 

Since  we  are  not  concerned  about  the  coefficients  for  the  j strata  variables,  we  can  use  a 
technique known as conditional logistic regression (also called conditional fixed effects logistic 
regression or McFadden’s Choice Model) to analyse matched data. (The conditional likelihood 
for the jth stratum is simply the probability of the observed data conditional on the number of 
observations in the stratum and the total number of cases in the study.) Instead of estimating a 
parameter for each matched set (stratum) in the data (as an unconditional fixed effects model 
with indicator variables for strata would do), a conditional model conditions the fixed effects 
out of the estimation. A conditional logistic model has the following structure.

logit  pi=1 X 1 i...k X ki  Eq 16.17

There are 3 limitations associated with the use of conditional models in terms of what can be 
estimated and which data contribute to the estimation. First, coefficients cannot be estimated for 
predictors  that  are  constant  within  all  matched  sets,  even  if  they  vary  between  sets. 
Consequently, there can be no analysis of the factors used for matching as they will be constant  
within a set. However, it is possible to include interaction terms between the matching variable 
and  a  predictor  which  varies  within  sets.  Second,  conditional  models  do  not  estimate  an 
intercept (it is conditioned out). Finally,  only sets in which a predictor varies within the set, 
contribute information to the estimation of the coefficient for that predictor. Example 16.14 
shows why this is true, using data from a matched case-control study of a Salmonella outbreak. 
One consequence of this is that if either the case or all the controls within a set have a missing 
observation, the entire set is excluded from the analysis because there is no within-set variation. 

Example 16.13 Exact logistic regression
data = bw5k (subsample)

An exact logistic regression model was fit to a subsample of the birth weight data consisting of 30  
randomly selected pregnancies which had pregnancy hypertension and 30 which did not. There were 7 
and 2 low birth weight babies in the 2 groups, respectively.  Only 2 predictors were included in the 
model: pregnancy hypertension (-phyper-) and mother’s race (-white-). For comparison purposes, the 
model was also fit using ordinary logistic regression with robust SEs.

Number of obs = 60
Exact logistic regression Robust SE

Predictor Coef P-value 95% CI Coef P-value

phyper 2.301 0.043 0.055 5.180 2.446 0.087

white -1.653 0.189 -4.322 0.584 -1.723 0.165

constant -2.184 0.001 -4.371 -0.749 -2.215 0.002

The coefficients  for  the  2  predictors  were  similar  in  the  2  approaches  applied,  but  exact  logistic  
regression did produce a lower (borderline significant) P-value for -phyper- than did the use of robust 
SEs. Pregnancy hypertension appears to increase the risk of the baby having a low birth weight (OR 
from exact logistic regression=e2.3=9.97).



458 LOGISTIC REGRESSION

It has been shown that the use of GEE methods (Chapter 23) may be a suitable alternative to 
conditional logistic regression in situations in which there are many sets with missing data or no  
within-set variation (Lin et al, 2007).

Hypothesis testing in conditional models can be done using Wald tests or (preferably) LRTs in 
much the same way as for ordinary logistic regression models. Example 16.15 shows simple 
and multiple conditional logistic regression models for the Salmonella data. 

If data that were collected in a matched-design study are analysed using an unconditional logistic 
regression  model,  1  of  2 effects  can  occur.  If  the  matching  was  done  on  variables  that  are 
confounders (ie matching was required to prevent bias), then the estimates from the unconditional  
analysis  will  be biased  toward  the  null  (ie a  conservative estimate).  If  the  matching  was  not 
necessary to avoid bias, then the coefficients from the unconditional analysis will not be biased,  
but will be less efficient (ie will have wider confidence intervals). Consequently, matching should 
be accounted for in the analysis if it was incorporated into the design of the study (Breslow and 
Day, 1980). If an ordinary logistic model with -slt_a- as the sole predictor is fit to the Salmonella 
data, the resulting OR is 3.21, reflecting the expected bias toward the null.

The evaluation of these models (ie regression diagnostics) is not as straightforward as it is for 
ordinary  logistic  models  (eg the  Hosmer-Lemeshow  goodness-of-fit  test  is  inappropriate). 
However, some diagnostic parameters are available. Leverage can be computed from the hat 
matrix  and  delta-χ2 and  delta-β statistics  can  be  computed  on  either  an  individual  basis 
(reflecting the influence of that individual) or a matched group basis (reflecting the influence of  
the matched group). Example 16.16 shows some diagnostics for the Salmonella outbreak data.

Example 16.14 Lack of information from groups with no within-group variation
data = sal_outbreak

An outbreak of Salmonella in Funen County of Denmark in 1996 was investigated (see Chapter 31 for 
description of dataset). The data consisted of 39 cases of Salmonella Typhimurium phage type 12 and 
73 controls matched for age, sex, and municipality of residence. Data on numerous food exposures 
were recorded and a small subset of those data are included in the dataset -sal_outbrk-.

The  following  table  shows  the  cross-tabulations  of  case-control  status  with  4  predictor  variables:  
recently  eating  pork  (-eatpork-),  recently  eating  beef  (-eatbeef-),  buying  meat  produced  at  
slaughterhouse A (-slt_a-) and buying meat that came through dealer A (-dlr_a-) for a single matched  
set.

eatpork eatbeef slt_a dlr_a

set + - + - + - + -

23 case 1 0 0 1 1 0 0 1

23 control 2 0 1 1 1 1 0 2

OR no info. 0 ∞ no info.

As can be seen, within set 23, the case and both controls had recently eaten pork, but not products from 
dealer A, so this matched set provides no useful information with regard to these predictors. While the 
OR for -eatbeef- and -slt_a- are extreme (0 and ∞, respectively), they do provide evidence of positive  
and negative associations with being a case respectively.
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Example 16.15 Simple and multiple conditional logistic regression
data = sal_outbreak

Simple (-slt_a- as the sole predictor) and a multivariable (-slt_a- and its interaction with -gender-) were 
fit using conditional logistic regression and the results shown below.

Conditional (fixed-effects) logistic regression 
Number of obs = 112

LR chi2(1) = 10.00
Prob > chi2 = 0.0016

Log likelihood = -35.820042
Pseudo R2 = 0.1225

casecontrol OR SE Z P>z 95% CI

slt_a 4.416 2.288 2.870 0.004 1.600 12.191

The odds ratio for -slt_a is 4.42 which is close to the estimate provided by a Mantel-Haenszel stratified  
(by matched set) analysis (OR=3.87).

Conditional (fixed-effects) logistic regression  
Number of obs = 112

LR chi2(2) = 11.24
Prob > chi2 = 0.0036

Log likelihood = -35.197693
Pseudo R2 = 0.1377

casecontrol OR SE Z P>z 95% CI

slt_a 2.895 1.784 1.730 0.084 0.866 9.683

slt_a * gender 3.609 4.456 1.040 0.299 0.321 40.587

As can be seen, the main effect of -gender- was dropped from the model because there is no within-
group variation in gender (it was one of the matching variables). The Wald test for the significance of  
the interaction term yields a P-value of 0.299 which is comparable to a LRT P-value of 0.265 (results 
not shown).
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Example 16.16 Conditional logistic regression diagnostics
data = sal_outbreak

Leverage,  delta-χ2 and delta-β statistics  were  computed  from  the  model  with  -slt_a-  as  the  sole 
predictor. The 3 sets with the largest delta-β values are shown below. 
match 
group casecontrol slt_a leverage

delta-
χ2

delta-
β 

group 
delta-χ2

group 
delta-β 

55 contr yes 0.007 0.821 0.006 4.545 0.133

55 case no 0.033 3.723 0.127 4.545 0.133

2 contr yes 0.001 0.450 0.001 9.012 0.184

2 contr yes 0.001 0.450 0.001 9.012 0.184

2 case no 0.022 8.112 0.183 9.012 0.184

9 contr yes 0.001 0.450 0.001 9.012 0.184

9 contr yes 0.001 0.450 0.001 9.012 0.184

9 case no 0.022 8.112 0.183 9.012 0.184

Two sets (2 and 9) had large delta-βs. These were sets in which the case did not consume products from 
slaughterhouse A, but both controls did. If these 2 sets are left out of the analysis, the OR for -slt_a- 
increases to 8.01.
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