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MODELLING ORDINAL 
AND MULTINOMIAL DATA

OBJECTIVES

After reading this chapter, you should be able to:

 1. Select an appropriate model from the following based upon the objectives of your study and 
the nature of your data:
• multinomial logistic model
• proportional-odds model
• adjacent-category model
• continuation-ratio model.

 2. Fit all of the models listed above.

 3. Evaluate the assumptions on which the models are based,  and use one or  more tests to 
compare different models.

 4. Interpret OR estimates from each of the models.

 5. Compute predicted probabilities from each of the models.



462 MODELLING ORDINAL
AND MULTINOMIAL DATA

17.1 INTRODUCTION

In some studies, the outcome of interest might be categorical but have more than 2 categories 
(ie multinomial). These data could be recorded on either a nominal or ordinal scale. Nominal 
data arise when the outcome categories have no specific ordering (eg reason for death might be 
natural causes, accident, suicide, or homicide). Ordinal data arise when the outcome categories 
have  a  distinct  order  to  them  (eg  severity  of  disease  might  be  classified  as  absent,  mild, 
moderate, or severe). Clinical outcome data may be better analysed by treating the results as 
ordinal data rather than dichotomising the result (Norris et al, 2006; Valenta et al, 2006).

Nominal  data  can  be  analysed  using  log-linear  models or  multinomial  logistic  regression 
models. Log-linear models can simultaneously evaluate the effects of multiple predictors on 
multiple outcomes, but are limited to the evaluation of categorical  variables (predictors and 
outcomes).  Log-linear  models  are  used  less  frequently  than  regression-type  models  in 
epidemiology, so they will not be discussed further. 

An  overview  of  a  variety  of  regression  models  applicable  to  nominal  and  ordinal  data  is 
presented in Section 17.2. Each of the 4 models introduced in that section is described in more 
detail in Sections 17.3 to 17.7. All of the examples used in this chapter are based on the Apgar 
scores in the birth weight dataset). The Apgar scores were initially recoded into 4 categories (1–
6, 7, 8, and 9–10) for the purpose of Figs. 17.1–17.4, but were then recoded into 3 categories 
(1–6,  7–8  and  9–10)  for  all  subsequent  analyses.  The  main  focus  of  each  analysis  is  to 
determine the effect of the number of prenatal visits on Apgar scores while controlling for 3 
potential  confounders  (-white-, -gest-, and -male-). The original  dataset  (bw5k) is described 
more fully in Chapter 31, but the main variables used in this chapter are shown in Table 17.1.

Table 17.1 Main variables used in the evaluation of factors affecting Apgar scores
obs observation number

apgar_c4 Apgar score in 4 categories (0=1–6, 1=7, 2=8, 3=9–10)

apgar_c3 Apgar score in 3 categories (0=1–6, 1=7–8, 2=9–10)

previs_c3 number of prenatal visits in 3 categories (0=1–5, 1=6–11, 2=≥12)
(also dichotomised at <6, ≥6)

white mother's race (0=other, 1=white)

gest gestation length (weeks)

male gender of baby (0=female, 1=male)

17.2 OVERVIEW OF MODELS

An overview of the 4 models to be discussed in this chapter is presented here. In each case, we 
will assume that the outcome has  J categories, with  j being used to designate the categories 
from 1 to  J (ie j=1,...,J).  For  the sake of  simplicity,  we will  assume that  there  is  a  single 
dichotomous  predictor  in  the  model,  but  these  models  can  easily  be  extended  to  multiple 
predictors. A simple example, based on the data in Table 17.2, will be used to demonstrate most 
of the models. All models discussed in this chapter are presented as logistic models; they can be 
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fit as other binomial models (eg probit, complementary log log) but these are beyond the scope 
of this text. More details about these models can be found in Hilbe (2009), Long (1997), and 
Long and Freese (2006).

Table 17.2 Cross-tabulation of Apgar score categories vs number of prenatal visits 
(dichotomised at <6 and ≥6)

Category Apgar 
scores

<6 prenatal 
visits

≥6 prenatal 
visits

Totals

0 1–6 14 58 72 

1 7 7 92 99 

2 8 45 493 538 

3 9–10 235 4056 4291 

Total 301 4699 5000 

17.2.1 Multinomial logistic model

Nominal data can be analysed using a multinomial logistic model which relates the probability 
of being in category j to the probability of being in a baseline category (which we will refer to 
as category 1). The model can be written as follows.

ln p Y = j 
p Y =1 

=0
 j 1

 j X
Eq 17.1

A complete set of coefficients (β0 and β1) is estimated for each of the J-1 levels being compared 
with the baseline (these are designated as  β(j)). Graphically, the effect of the predictor can be 
seen in Fig. 17.1. 

Based on the data in Table 17.2, the odds ratio (OR) for a high prenatal visit baby (ie baby from 
a pregnancy in which there were ≥6 prenatal visits) being in category 1 (Apgar=7) (compared 
with category 0) is:

OR(1)=92∗14
58∗7

=3.17

Similarly, the OR for category 2 (Apgar=8) compared with category 0 (Apgar=1–6) is: 

OR(2)= 493∗14
45∗58

=2.64

and similarly for the OR for category 3.

Fig. 17.1 Multinomial logistic regression (Apgar scores in [ ])
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17.2.2 Proportional-odds model

The multinomial model does not make any assumptions about the ordering of the categories. An 
approach  for  analysing  ordinal  data  is  to  use  a  proportional-odds  model which  relates  the 
probability of being at or above a category to the probability of being in any lower category. 
The model assumes that this relationship is the same at each of the categories. The model can 
be written as follows.

ln p Y ≥ j
p Y  j

=0
 j1 X

Eq 17.2

Fitting  this  model  requires  that  J-1  intercepts  (β0)  be  estimated,  but  only  a  single  β1.  
Graphically, the effects of the predictor can be seen in Fig. 17.2.

Based on the data in Table 17.2, the  OR associated with being a high prenatal visit baby for 
categories 1, 2, or 3 (compared with category 0) is:

OR(1)=(92+ 493+ 4056)∗14
(7+ 45+ 235)∗58

=3.90

while the OR associated with being a high prenatal visit baby for categories 2 or 3 (compared 
with 0 or 1) (ie 8–10 vs 1–7) is:

OR(2)=(14+ 7)∗(493+ 4056)
(45+ 235)∗(58+ 92)

=2.27

Because the 2 ORs are not very close, the assumption of proportional odds may not be valid. 
This will be further investigated later in this chapter.

17.2.3 Adjacent-category model

If the categories are ordered, and in some sense ‘equidistant’, then a constrained multinomial 
model,  or  adjacent-category  model, can  be  fit  to  the  data.  This  model  is  based  on  the 
assumption that the predictor increases (or decreases) the log odds of a category occurring by a 
fixed amount as you go up through the categories. Consequently, the model can be written as 
follows.

ln p Y = j 
pY = j−1

=0
 j  J−1 1 X

Eq 17.3

Fig. 17.2 Proportional-odds model (Apgar scores in [ ])
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Fitting  this  model  requires  that  J-1  intercepts  (β0)  be  estimated,  but  only  a  single  β1. 
Graphically, the effects of the predictor can be seen in Fig. 17.3.

The estimate of β1 cannot be derived easily from the data in Table 17.2. Based on an adjacent- 
category model,  β1=0.409 (OR=1.51).  However, simple estimates of ORs comparing Apgar=7 
vs 1–6, Apgar=8 vs 7 and Apgar=9–10 vs 8 are 3.17, 0.83, and 1.58, respectively, suggesting 
that this model may not be appropriate for these data.

17.2.4 Continuation-ratio model

An alternative for analysing ordinal data is to use a continuation-ratio model which relates the 
probability of being in a category to the probability of being in any lower category. The model 
can be written as follows.

ln p Y = j
p Y  j

=0
 j1

 j X
Eq 17.4

A complete set of coefficients (β0 and β1) is estimated for each of the J-1 categories above the 
baseline. Graphically, the effect of the predictor can be seen in Fig. 17.4.

Based on the data in Table 17.2, the  OR associated with being a high prenatal visit baby for 
category 1 (compared with category 0) is:

OR(1)=92∗14
58∗7

=3.17

while the  OR associated with being a high prenatal visit baby for category 2 (compared with 
being <2) (ie 8 vs 1–7) is:

OR(2)= 493∗(14+ 7)
45∗(58+ 92)

=1.53

Fig. 17.3 Adjacent-category model (Apgar scores in [ ])
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Fig. 17.4 Continuation-ratio model (Apgar scores in [ ])      
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17.3 MULTINOMIAL LOGISTIC REGRESSION

In  multinomial  logistic  regression of  an  outcome  that  has  J  categories,  the  probability  of 
membership  in  each  of  the  outcome  categories  is  computed  by  simultaneously  fitting  J-1 
separate  logistic  models  (with  1  category  serving  as  the  baseline  or  reference  category). 
Consequently,  for a dependent variable with 4 levels (leaving the first level  as the baseline 
category),  we  estimate  3  sets  of  coefficients  (β(1),  β(2),  β(3))  corresponding  to  the  remaining 
outcome categories. Because β(0)=0, the predicted probability that an observation is in category 
0 is:

pY =0 = 1
1exp X 1 exp X 2 exp X 3 Eq 17.5

while the probability of being in category 1 is:

pY =1= exp X 1
1exp X 1exp X 2exp X 3 Eq 17.6

and similarly for categories 2 and 3.

17.3.1 Odds ratios

For any given predictor (eg -white-), there is a separate estimate of the effect of that predictor 
on  each  outcome  (relative  to  the  base  level).  Exponentiation  of  the  coefficients  from  a 
multinomial  regression  model  produces  odds  ratios  as  a  measure  of  effect.  Note  Strictly 
speaking, these effect measures are not odds ratios. They are actually the ratio of 2 relative risks 
(or risk ratios), with each relative risk describing the probability of the outcome in the category 
of interest relative to the baseline category. Consequently, it would be more appropriate to refer 
to them as relative risk ratios, and some computer programs do so. However, the term odds 
ratio is commonly applied and will be used in this chapter.

Example 17.1 shows a very simple model for Apgar scores (3 categories—all analyses from 
now on will  be based on the 3-level  Apgar  score  variables)  with -previs_c2-  as  the single 
predictor and the baseline level set to Apgar scores of 9–10. The odds ratios indicate that a high 
prenatal  visit  baby was 0.24 and 0.65 times as  likely to have  a score between 1 and 6 or 
between 7 and 8 (compared with 9–10) as a low prenatal visit baby.

Both of the  ORs in Example 17.1 suggest that frequent prenatal visits reduced the risk of a 
lower Apgar score and this effect  was clearly statistically significant  (see Section 17.3.3 for 
assessment of significance).

As with ordinary logistic regression, multinomial logistic regression can be extended to model 
the effects of multiple predictors that might be categorical or continuous in nature. Example 
17.2 shows a model for Apgar scores including additional potential confounders with results 
presented as coefficients.
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17.3.2 Interpretation of coefficients

Estimates (coefficients or ORs) from multinomial logistic regression models are interpreted in a 
manner similar to those from ordinary logistic regression. The OR for the predictor -previs_c2- 
in Example 17.1 suggests that, for mothers with ≥6 prenatal visits, the odds of having a baby 
with an Apgar score of 1–6 goes down by a factor of e-1.427=0.24 (76% reduction), while the 
odds of having a score of 7–8 goes down by a factor of e-0.428=0.65 (35% reduction). In Example 
17.2,  all  of  the  predictors  have  more  pronounced  effects  on  the  1–6  vs  9–10  comparison 
compared with the 7–8 vs 9–10 comparison. This was expected given the ordinal nature of the 
data, but nothing in the model guarantees this. This pattern would not be expected if unordered 
nominal data were being analysed.

Example 17.1 Simple multinomial logistic regression
data = bw5k

A simple multinomial logistic regression of Apgar scores (3 levels) was carried out with -previs_c2- as 
the sole predictor. The baseline (referent) level was babies with scores of 9–10. 

The first table presents the results in terms of coefficients of the logistic models.
Number of obs = 5000

LR chi2 (2) = 21.94
Prob > chi2 = <0.001

Log likelihood = -2263.01
Apgar score Coef SE Z P 95% CI

1–6

previs_c2 -1.427 0.305 -4.67 0.000 -2.025 -0.829

constant -2.821 0.275 -10.25 0.000 -3.360 -2.281

7–8

previs_c2 -0.428 0.160 -2.68 0.007 -0.741 -0.115

constant -1.508 0.153 -9.84 0.000 -1.809 -1.208

Having a high number of prenatal visits reduced the logit of the probability of having Apgar scores ≤6 
and 7–8 by 1.42 and 0.43 units, respectively. 

The second table presents the results in terms of odds ratios.
Apgar score OR SE 95% CI

1–6

previs_c2 0.240 0.073 0.132 0.437

7–8

previs_c2 0.652 0.104 0.477 0.891

Babies from high prenatal visit pregnancies were 0.24 and 0.65 times as likely to have Apgar scores of 
1–6 or 7–8, respectively, compared with low prenatal visit babies.
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17.3.3 Testing significance of predictors 

The significance of predictors can be assessed using either a Wald test or a likelihood ratio test 
(LRT). Overall tests of significance can be carried out (for all logistic models fit) as well as tests 
for  coefficients  within  individual  models.  Note,  however,  that  tests  of  significance  for  a 
predictor within a given logistic model (eg  for Apgar score=1–6) will change if the baseline 
category is changed. Consequently, overall tests of significance provide a better estimate of the 
significance of the predictor. All of the factors in the model in Example 17.2 had significant 
Wald tests (P<0.05).

Example 17.2 Multiple multinomial logistic regression
data = bw5k 

Prediction of Apgar score category (n=3) based on the number of prenatal visits (3 categories: 0–5, 6–
11, 12+), mother’s race (white vs other), gestation length (weeks) and baby gender. The Apgar score 
category 9–10 served as the baseline.

Number of obs = 5000
LR chi2 (10) = 108.2
Prob > chi2 < 0.001

Log likelihood = -2219.97

Apgar score Coef SE Z P 95% CI

1–6

previs_c3=1 -1.025 0.358 -2.87 0.004 -1.726 -0.324

previs_c3=2 -0.944 0.361 -2.61 0.009 -1.653 -0.236

white 0.429 0.253 1.70 0.090 -0.067 0.925

gest -0.216 0.032 -6.79 0.000 -0.278 -0.153

male 0.715 0.260 2.74 0.006 0.204 1.225

constant 4.271 1.142 3.74 0.000 2.032 6.510

7–8

previs_c3=1 -0.295 0.170 -1.74 0.083 -0.627 0.038

previs_c3=2 -0.336 0.170 -1.98 0.048 -0.669 -0.003

white 0.279 0.088 3.16 0.002 0.106 0.453

gest -0.103 0.017 -6.11 0.000 -0.136 -0.070

male 0.015 0.086 0.17 0.862 -0.153 0.183

constant 2.166 0.642 3.38 0.001 0.909 3.424

When compared with the highest Apgar scores, higher numbers of prenatal visits reduced the risk of 
lower scores with the effect  on the lowest  category of score (1–6) being most pronounced. Longer 
gestation lengths reduced the risk of both lower categories of Apgar score while being a male baby and 
having a white mother significantly increased the risks of having scores in the ranges 1–6 and 7–8, 
respectively.
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17.3.4 Obtaining predicted probabilities

Predicted probabilities of the occurrence of each outcome category can be computed from the 
multinomial logistic regression (see Eqs 17.5 and 17.6). These will, of course, vary with the 
values of the predictors for the individual. Table 17.3 shows those values for a selected number 
of babies based on the model in Example 17.2.

Table 17.3 Predicted probabilities from a multinomial logistic regression model
probability of score category

obs

Apgar 
score

category
prenatal 

visits
mother's 

race
gestation 

length
baby 

gender
0

(1–6)
1

(7–8)
2

(9–10)

655332 2 6–11 white 33 male 0.048 0.216 0.736

1358363 2 ≥12 white 29 female 0.055 0.279 0.666

2926875 1 <6 white 36 male 0.069 0.209 0.722

3464037 0 <6 non-white 25 male 0.284 0.289 0.427

3586653 2 ≥12 white 40 female 0.007 0.118 0.875

The  sum of  the  probabilities  for  each  individual  equals  1.  The  baby  with  the  very  short 
gestation (25 weeks) had a relatively high probability of a very low Apgar score (category 0), 
and did indeed have the lowest score category.

17.3.5 Assumption of independence of irrelevant alternatives (IIA)

The multinomial regression model is based on an assumption that the odds of 1 level of the 
outcome being observed is independent of what other alternatives are available. For the Apgar 
score data discussed, this would mean that if for any individual the odds of a score of 9–10 
were twice those of a score of 7–8, they should always be twice, regardless of how many other 
alternatives were possible. 

Two of the most  commonly used tests of this assumption are the  Hausman and McFadden 
(1984), and  Small-Hsiao  (1985) tests of IIA. Both are based on the principle of fitting a full 
model  and  comparing  the coefficients  from that  model  to  a  model  with 1  or  more  of  the 
alternatives deleted (partial model). The null hypothesis is that the coefficients from the full 
model are the same as from the partial  model.  If  the P-value of the test  is  >0.05, there is 
insufficient evidence to reject the null hypothesis (ie the assumption has been met). For the 
Hausman  test,  the  statistic  may  be  negative,  which  is  also  assumed  to  support  the  null 
hypothesis. 

Unfortunately, the 2 tests often give conflicting results, and recent simulation studies (cited in 
Long and Freese  (2006)) suggest that they may be of limited use in determining whether the 
assumption has been met. In the face of conflicting results, the best advice may be from the 
early statement of McFadden cited in Long and Freese that multinomial models should only be 
used when the alternatives ‘can plausibly be assumed to be distinct and weighted independently 
in the eyes of the decision-maker’. Given the semi-quantitative and partially objective nature of 
Apgar scores, it seems likely that the assigning of an Apgar score would be independent of the 
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range of choices available. Example 17.3 contains the results of these 2 tests and they support 
the notion that the assumption is satisfied.

It is also possible to statistically evaluate (using a Wald or likelihood ratio test) whether any of 
the outcome levels are not significantly different from other levels. If some are not, one might 
want to consider combining those levels (see Example 17.3).

17.3.6 Regression diagnostics

Specialised diagnostics for multinomial logistic regression are not as readily available as they 
are for ordinary logistic regression. One approach is to fit ordinary logistic models for pairs of 
comparisons (eg grade=1–6 vs 9–10 and 7–8 vs 9–10) and evaluate the regression diagnostics 
for those models. An overall goodness-of-fit test has recently been developed (Fagerland et al, 
2008) but, at the time of writing, was not readily available in standard software packages.

17.3.7 Models for outcomes with alternative specific data

In  the Apgar score example, none of the predictors vary across outcome alternatives (ie the 
gestation length of the baby was constant regardless of the Apgar score category). This is not 
always the case. Consider the situation in which a patient has to choose among 3 options for 
dealing with a recently diagnosed case of cancer. The options might include: treatment at their 
local hospital, treatment at a regional referral hospital or treatment at a specialised cancer clinic. 
Factors which might influence their decision might include age of patient, income level, and 
distance to various clinics. While the first 2 factors (age and income) are independent of the 
alternatives, the last (distance) varies with the alternatives being considered (eg the local clinic 
is closer than the other alternatives). Various approaches for dealing with this situation exist 
(one of which is conditional logistic regression—Section 16.15) and the reader is referred to 
Hilbe (2009), and Long and Freese (2006) for an explanation of how to structure the data and fit 
an appropriate model for this situation.

17.4 MODELLING ORDINAL DATA 

Ordinal data can arise in a variety of ways. For example, an observed continuous variable might 
be divided into categories. Alternatively, levels of an ordinal variable could represent categories 
of an unobserved (but hypothesised) continuous variable (eg  opinions ranging from strongly 
agree  to  strongly  disagree,  or  disease  severity  ranging  from  absent  to  severe).  Finally, 

Example 17.3 Evaluating assumption of independence of irrelevant alternatives (IIA)
data = bw5k

The P-values for the Hausman test of IIA were 0.969 and 1.000 if levels 1–6 or 7–8, respectively, were 
left out. Both values strongly support the notion that the assumption of IIA had been satisfied. The 
Small-Hsiao test of IIA produces different estimates each time it is run (due to a random element in the 
calculations) and the results are somewhat unstable but generally support the null hypothesis that the 
assumption was met. 

A likelihood ratio test of whether or not any of the levels could be combined produced P-values <0.001 
for all pairwise combinations of levels, suggesting that no pairs of outcome levels could be combined.
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categories might represent total values of a composite variable made up of a series of scored 
variables (eg  a hygiene score that represents the sum of scores from several questions about 
hygiene in an operating room).

While the multinomial models described above can also be used to analyse ordinal data, they 
ignore the fact that the categories fall in a logical, ordered sequence. There are a number of 
ways  to fit  ordinal  models.  We will consider 3 of them: proportional-odds models (Section 
17.5), adjacent-category models (Section 17.6), and continuation-ratio models (Section 17.7).

17.5 PROPORTIONAL-ODDS MODEL (CONSTRAINED CUMULATIVE LOGIT MODEL)

This is the most commonly encountered type of ordinal logistic model. In a  proportional-odds 
model, the coefficients measure the effect of a predictor on the log odds of being at or above a 
specified level compared with the log odds of being below the specified level. It is based on the 
assumption that the coefficients do not depend upon the outcome level, so only a single coefficient 
for each predictor is estimated. A graphic representation of this model is presented in Fig. 17.2.

A proportional-odds model assumes that the ordinal outcome variable represents categories of 
an underlying continuous latent (unobserved) variable. Assume that the value of the underlying 
latent variable (or ‘score’) (Si) is a linear combination of predictor variables. 

S i=1 X 1 i2 X 2 i⋯k X kii Eq 17.7

where εi is a random error term from a continuous distribution.

The latent  variable (S)  is  divided by cutpoints (τj) so that  the  ith individual  is  classified as 
category 0 (1–6) if Si≤ τ1 and is classified as category 1 (7) if τ1< Si≤τ2, and so on.

The probability of observing outcome j in the ith individual is:
p outcomei= j = p  j−1S i j  Eq 17.8

If  the random term (εi) is  assumed to have a logistic  distribution (with a mean of 0 and a 
variance of π2/3), then

pS i j=
1

1eS i− j Eq 17.9

Note  Assuming the latent  variable has  a normal distribution gives  rise  to an ordinal  probit 
model, but those are not discussed in this chapter.

The  model  fit  by assuming a  logistically  distributed  latent  variable  can  also  be  written  as 
(presented with a single predictor X for simplicity):

logit p Y≤ j =0 j X

where the β0j are intercepts and β is the effect (slope) of the predictor. Thus, the model is one in 
which the log odds of the outcome can be viewed as being represented by a series of parallel 
lines with different intercepts.

0 [1-6] 1 [7] 2 [8] Y
Sτ

1
τ

2
τ

3

3 [9-10]
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Example 17.4 presents a proportional-odds model for the Apgar score data.

17.5.1 Predicted probabilities

The probabilities of each Apgar score category for the 5 selected babies (and the values of their 
predictor variables) are shown in Table 17.4. The first observation listed in Table 17.4 is a male 
baby from a white mother who had 6–11 prenatal visits during her 33-week gestation. For this 
baby, the latent variable (S1) is:

S i=4.292

Consequently, the probability of this baby being in category 0 (Apgar score=1–6) (from Eq 
17.9) is:

p(Y=0)= 1
1+ e4.292−(0.868)=0.032

Similarly, the probabilities of this baby being in categories 7–8 and 9–10 are 0.245 and 0.724, 
respectively.

Example 17.4 Proportional-odds model 
data = bw5k

A proportional-odds model was fit to the Apgar score data with the same predictors as used in Example 
17.2 and 17.3.

Number of obs = 5000
LR chi2 (5) = 90.90
Prob > chi2 < 0.001

Log likelihood = -2228.53

Coef SE Z P 95% CI

previs_c3=1 0.441 0.157 2.81 0.005 0.134 0.748

previs_c3=2 0.464 0.157 2.96 0.003 0.157 0.771

white -0.297 0.085 -3.51 0.000 -0.463 -0.131

gest 0.128 0.016 8.12 0.000 0.097 0.159

male -0.091 0.082 -1.11 0.269 -0.252 0.070

cutpoint 1 0.868 0.605 -0.318 2.055

cutpoint 2 3.328 0.601 2.150 4.506

According to this model, the odds ratio associated with having ≥12 prenatal visits, compared with <6 
visits is:

e0.464=1.59

This suggests that having ≥12 visits (compared with <6) increases the odds of being at or above any 
given  Apgar  category  compared  with  being  below  that  category  by  1.59  times.  In  other  words, 
compared with babies with 0–5 prenatal visits, babies with ≥12 visits were approximately 1.5 times as 
likely to have an Apgar score ≥7 as <7 and also 1.5 times as likely to have a score ≥9 as <9. It measures 
the overall increased chance of a higher score that is associated with having many prenatal visits.
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Table 17.4 Values of predictor variables, latent variables (Si) and predicted probabilities of 
each of the Apgar score categories from the proportional-odds model

probability of score

obs

Apgar 
score

category
prenatal 

visits
mother's 

race
gestation 

length
baby 

gender S
0

(1–6)
1

(7–8)
2

(9–10)

655332 2 6–11 white 33 male 4.292 0.032 0.245 0.724

1358363 2 ≥12 white 29 female 3.892 0.046 0.316 0.637

2926875 1 <6 white 36 male 4.237 0.033 0.254 0.713

3464037 0 <6 non-white 25 male 3.121 0.095 0.457 0.448

3586653 2 ≥12 white 40 female 5.305 0.012 0.110 0.878

The effect  of a single predictor (-gest-) on the predicted probability can best be viewed by 
generating smoothed curves of the probability of each Apgar score category against -gest-. Fig. 
17.5 shows a graph of lowess smoothed probabilities (smoothed with a bandwidth of 50%) of 
each category against the gestation length. Note As the probability of each outcome depends on 
the value of all  predictors  in the model,  the smoothed curves  shown in Fig.  17.5 represent 
average probabilities of the category as -gest- changes. As can be seen, the probability of a baby 
having a low Apgar score (either 1–6 or 7–8) goes down as the gestation length goes up. On the 
other hand, the probability of a high score (9–10) goes up substantially.

Fig. 17.5 Smoothed mean probabilities of Apgar score categories (based on 
proportional odds model)
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17.5.2 Evaluating the proportional-odds assumption 

A rough assessment of the assumption of proportional odds can be obtained by comparing the log 
likelihood of the ordered logit model (L1) with one obtained from the multinomial logit model (L0) 
using a likelihood ratio test. If there are k predictors (not counting the intercept) and J categories 
of outcome, the multinomial model will fit  (k+1)(J-1) parameters, while the proportional-odds 
model will fit  k+(J-1), so the difference in degrees of freedom is k(J-2). Consequently, -2(L1-L0) 
should have an approximate χ2 distribution with k(J-2) degrees of freedom. Note This is only an 
approximate test because the proportional-odds model is not nested within the multinomial model. 
However, it gives a rough assessment of the proportional-odds assumption.

In  our  example,  the log likelihoods of  the multinomial  and proportional  odds models  were 
-2220.0 and -2228.5, respectively so the LRT is:

LRT=−2 −2220.0−[−2228.5 ]=17.0

The χ2 statistic has k(J-2)=5 df which yields a P-value of 0.004. Consequently, there is strong 
evidence that the proportional-odds assumption does not hold. As an alternative to comparing 
the ordinal  logistic  model  with  a  multinomial  model,  the  comparison  can  be  made with  a 
generalised ordinal logistic model (described below—Section 17.5.3). This comparison yields a 
χ2 of 16.7 (P=0.005).

An alternative approximate LRT based on fitting J-1 separate binary models has been developed 
(Wolfe  and Gould,  1998).  The models  are  fit  first  assuming the  βs  are  constant  across  all 
models (proportional-odds assumption) and the sum of these log likelihoods is compared with 
the sum of those obtained by fitting the models without the assumption of constant βs. For the 
Apgar data model, this test produces a χ2 value of 16.8 (P=0.005).

The likelihood ratio tests described above are omnibus tests which evaluate the assumption of 
proportional odds over all predictors. A Wald test which will provide an overall assessment as 
well as an evaluation of the assumption for each predictor separately is available (Brant, 1990). 
The results of this test for the model fit in Example 17.4 are presented in Table 17.5.

Table 17.5 Brant (Wald) test of proportional-odds assumption
Variable      Χ2 P df

all 19.49 0.002 5

previs_c3=1 2.81 0.094 1

previs_c3=2 1.75 0.186 1

white 0.13 0.717 1

gest 6.15 0.013 1

male 6.37 0.012 1

The P-value of the overall Wald test is comparable to the approximate likelihood ratio tests 
described  above.  The  proportional-odds  assumption  is  most  clearly  violated  for  -gest-  and 
-male-. Other  tests of the proportional-odds assumption are available but  there are no clear 
guidelines for choosing one test over another. In general, if any of the tests discussed above 
yields a significant result, the assumption should be investigated further.
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17.5.3 Dealing with non-proportional odds

In the event that 1 or more predictors appears to violate the assumption of proportional odds, 
there are a number of potential approaches to dealing with the problem. A generalised ordinal 
logistic regression model is 1 in which a complete set of coefficients is estimated for each 
cutpoint in the ordinal model (eg 1–6 vs 7–10 and 1–8 vs 9–10). Consequently, it is no more 
parsimonious than the multinomial  model, but it  does take into account the ordering of the 
categories. The log-likelihood of this model can be compared with that of a model assuming 
proportional odds to see if the assumption is valid (see Section 17.5.2).

If  the  proportional  odds  assumption  appears  to  hold  for  some  predictors,  but  not  all,  it  is 
possible to fit  a  partial  proportional-odds model in which the assumption of proportional 
odds is removed for selected predictors. For our example, -gest- and -male- were the predictors 
which most clearly violated the proportional odds assumption (Table 17.5). If the coefficients 
for these 2 predictors are allowed to vary across cut-points, but the remainder are constrained to 
be constant (proportional  odds), the log-likelihood for the model is -2221.861 which, when 
compared with the proportional odds model, yields a likelihood ratio test χ2 of 13.3 (P=0.001), 
providing clear evidence that the proportional odds model is superior. There is no evidence that 
the generalised ordinal  model is superior to the partial  proportional  odds model (χ2 of 3.32 
(P=0.345).

Two other approaches for dealing with non-proportional odds are the stereotype logistic model 
and the heterogeneous choice logistic model. These are beyond the scope of this text and the 
reader is referred to Hilbe (2009) and Long and Freese (2006) for details.

17.5.4 Regression diagnostics

As with multinomial models, regression diagnostics for ordinal models are not well developed. 
Hosmer and Lemeshow  (2000) suggest  fitting ordinary logistic models to data based on the 
cutpoints  in  the  ordinal  data  (eg  1 model  which  compares  1–6 with 7–10,  and  one  which 
compares  1–8 with 9–10).  Residuals  from these  models  can  be evaluated  using techniques 
described in Chapter 16.

17.6 ADJACENT-CATEGORY MODEL

In  an  adjacent-category logistic  regression model,  each coefficient  measures  the effect  of a 
factor on the logit of the probability of being in a specified level compared with the probability 
of being in the level below. For any given predictor, this results in the estimation of a single 
effect that expresses how the predictor influences the log odds of the outcome moving up to the 
next  (adjacent)  category.  This  model  is  also  known  as  a  constrained  multinomial  model, 
because  it  is  estimated  as  a  multinomial  model  with  the constraint  that  the  coefficient  for 
categories  n levels apart be  n times the coefficient for adjacent categories. (Alternatively, the 
OR for categories n levels apart will be the OR for adjacent levels raised to the power n.) This 
model is based on the assumption that, as you go from one level to the next, the OR is constant. 
A graphic representation is shown in Fig. 17.3.

Example  17.5  presents  an  adjacent-category  model  based  on  the  multinomial  model  fit  in 
Example 17.2. A likelihood ratio test can be used to compare this ‘constrained multinomial 
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model’  with  the  usual  multinomial  model.  If  the  test  is  significant,  it  suggests  that  the 
multinomial model is superior. The LRT for the model in Example 17.5 had a χ2 of 6.76 with 5 
df  (because  5  fewer  coefficients  were  estimated)  with  a  P-value  of  0.239,  suggesting  that 
adjacent-category model would be a valid (and simpler) alternative to the multinomial model.

17.7 CONTINUATION-RATIO MODEL

In continuation-ratio models, the log OR measures the effect of a factor on the odds of being in 
a specified level compared with the odds of being in any of the lower levels. This type of model 

Example 17.5 Adjacent-category model 
data = bw5k

An  adjacent-category  model  was  fit  using  the  same  predictors  presented  in  Example  17.2.  The 
constraint  that  coefficients  for  categories  2  levels  apart  be  twice  those  of  the  adjacent  categories 
reduces the number of parameters which need to be estimated. 

Number of obs = 5000
LR chi2 (5) = 110.09
Prob > chi2 < 0.001

Log likelihood = -2223.35

Coef SE Z P 95% CI

1–6 baseline

7–8

previs_c3=1 0.398 0.130 3.07 0.002 0.144 0.652

previs_c3=2 0.413 0.130 3.17 0.002 0.158 0.668

white -0.259 0.075 -3.48 0.001 -0.405 -0.113

gest 0.107 0.013 8.52 0.000 0.082 0.131

male -0.120 0.072 -1.67 0.095 -0.261 0.021

constant -1.935 0.462 -4.19 0.000 -2.841 -1.030

9–10

previs_c3=1 0.796 0.259 3.07 0.002 0.288 1.304

previs_c3=2 0.826 0.260 3.17 0.002 0.316 1.337

white -0.518 0.149 -3.48 0.001 -0.811 -0.226

gest 0.213 0.025 8.52 0.000 0.164 0.262

male -0.240 0.144 -1.67 0.095 -0.523 0.042

constant -4.284 0.924 -4.63 0.000 -6.096 -2.472

Note It is easier to think about an adjacent category model as you move up the outcome scale, so for 
this example the Apgar score category=1–6 has been set as the baseline (referent) level.

Note The coefficient for  each predictor for  score=9–10 is twice that for score=7–8 because it is  2 
categories away from 1–6. For example, for each additional week of gestation, the log odds of being 
7–8 goes up by 0.107 units and the log odds of being 9–10 goes up by 0.213 units. 
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is useful in situations where the dependent variable represents the number of attempts required 
to achieve an outcome (eg number of applications to a medical school required for admission). 
The individual must pass through all lower levels to reach the current level (you can’t have your 
3rd application until  you  have  had  your  1st and 2nd);  hence  the term  ‘continuation-ratio.’ A 
graphic representation is shown in Fig. 17.4.

This model can be fit as a series of simple logistic models in which the dependent variable (Y) 
is recoded to be 1 for the level of interest, 0 for all lower levels and missing for all higher 
levels.  For  example,  a  continuation-ratio  model  evaluating  the  effects  of  predictors  on  the 
probability of medical school admission for up to 4 attempts would require 3 separate logistic 
regressions. The data would be recoded as shown in Table 17.6.

Table 17.6 Coding of data for a continuation-ratio model of effect of predictors on number 
of attempts before gaining admission to medical school

number of attempts

1 2 3 4

Y1 0 1 missing missing

Y2 0 0 1 missing

Y3 0 0 0 1

In this example, the coefficient for a predictor represents the effect of the factor on the log odds 
of  being  admitted  on  the  jth attempt,  conditional  on  not  being  admitted  on  any  previous 
attempts.

The model contains the same number of parameters  as the multinomial  model presented in 
Section 17.3. Consequently, the model is no more ‘parsimonious’, but it results in estimates of 
the OR which have different interpretations than those from a multinomial logistic regression 
model.  A  constrained  continuation-ratio  model  can  be  fit  with  the  OR  for  each  predictor 
constrained to be equal for each increment in the outcome. A likelihood ratio test, comparing 
the constrained and unconstrained models, can be used to evaluate the assumption of equal 
ORs.

The OR from the separate logistic models for the Apgar score data are not presented because it 
does not make biological sense to fit these data with a continuation-ratio model (ie movements 
between categories are not sequential events).
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