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MODELLING COUNT AND RATE DATA

OBJECTIVES

After reading this chapter, you should be able to:

 1. Understand the relationship between counts of disease events and incidence rates.

 2. Fit, evaluate, and interpret Poisson regression models.

 3. Be able to determine when a negative binomial model is likely to be more appropriate than a 
Poisson model, and to quantify and statistically assess overdispersion.

 4. Fit, evaluate, and interpret negative binomial regression models.

 5. Decide  when zero-adjusted models (hurdle,  zero-inflated,  zero-truncated)  might  be more 
appropriate than a Poisson or negative binomial model.

 6. Fit zero-adjusted models and interpret the results.
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18.1 INTRODUCTION

In previous chapters, we have looked at methods of analysing data measured on a continuous 
scale  (Chapter  14)  and  2  types  of  discrete  data:  binary/binomial  data  (Chapter  16)  and 
multinomial data (Chapter 17). Here, we are introduced to the situation in which the outcome 
we are measuring represents a count of the number of times an event occurs in an individual or 
group of individuals. It might be a:

a. simple count of events, such as the total number of births a woman has. In this chapter 
we  will  investigate  factors  that  relate  to  the  number  of  prenatal  visits  recorded  by 
pregnant women.

b. count of cases of disease over a period of time with the amount of person-time at risk 
having to be taken into consideration (eg  number of migraine headaches reported by 
participants  in  a  cohort  study  with  the  follow-up  time  for  each  person  taken  into 
account). This is a measure of the incidence rate (I) of disease. In this chapter, we will 
analyse this kind of data by taking the length of the gestation period into account so we 
will have the number of prenatal visits per week of gestation.

c.  count  of  cases  of  disease  with  the  size  of  the  population  at  risk  being  taken  into 
consideration  (eg  number of cases of a specific type of cancer in various cities over a 
year with the population size (people over a specified age) treated used to compute the 
person-years at risk). Hence, this is also a measure of the incidence rate (I) of disease. 

d. count of an outcome that is measured over a geographical area. For example, Poisson 
models are also used to investigate factors related to the number of events per unit area. 
Hammond et al (2001) investigated whether land use was predictive of the number of 
badgers  in  500  m2 grids  in  an  area  in  Ireland.  (Badgers  are  a  reservoir  for 
Mycobacterium bovis in Ireland, and so badger density has public health significance.) 
The study area was overlaid by a 500 m2 grid and the number of badgers caught in each 
grid  was recorded.  Land use within each  cell  of  the grid  was described  by a set  of 
categorical variables. The mean number of badgers per grid was 0.6 and the variance 
was 1.5.  A major finding was that, as the area of high-quality pasture within a grid 
increased, the number of badgers also increased.

18.1.1 Approaches to analysis

Let’s  say that  we  want  to  evaluate  the  effect  of  propranolol  on  the  incidence  of  migraine 
headaches.  We will assume that a controlled trial can be carried out with 3 medical clinics 
participating and individuals assigned to be on propranolol  or not.  The outcome of interest 
might be the total number of cases of migraine occurring in each person over the one-year 
follow-up period. Other factors that will have to be taken into consideration are the age and 
gender of the person and which clinic they are associated with (because either incidence rates or 
reporting rates of migraines can vary among clinics). While random assignment of people to 
treatment groups should balance the age, gender, and clinic factors across the study groups, you 
might still want to consider them in the analysis. Given the clinical trial design, we can assume 
that the population is closed, but the time at risk will vary among people because not all people 
will be observed for the full year. Note In this example, we are interested in the total number of 
cases of migraine. If we were interested in whether or not the study participant had any cases of 
migraine, we could create a binary variable for each person and fit a logistic model.
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There are a number of ways to approach the analysis of the data generated by this study.
a.  The  incidence  rate  of  migraines  could  be  computed  for  each  study  group  and  the 

difference between the 2 groups tested using the unconditional  Z-test we discussed in 
Chapter 6. This approach does not allow for the control of other potential confounding 
variables  (ie  age,  gender,  clinic),  so  it  would  rely  totally  on  random assignment  to 
control for these effects.

b. Alternatively, you could determine the incidence rate (I) of migraines within each person 
and use that value as the dependent variable in a linear regression with propranolol as 
the primary exposure (predictor) of interest, and age, gender, and clinic as extraneous 
variables. However, incidence rates rarely have anything close to a normal distribution. 
Consequently,  one  of  the  fundamental  assumptions  of  linear  regression  would  be 
violated (unless a suitable transformation of the dependent variable could be found). It is 
also possible that some combination of predictor variables may predict a negative I for 
the person. This approach looks worse than the preceding approach does.

c. The preferred approach is to use Poisson or negative binomial regression to model the 
incidence of migraines while adjusting for the amount of time each person was observed.

Numerous texts dealing specifically with the analysis of count data are available and include: 
Cameron and Trivedi (1998), Hilbe (2011), Long (1997), Long and Freese (2006).

18.2 THE POISSON DISTRIBUTION

The Poisson distribution is often used to model counts of ‘rare’ events:

pY =y =y e−

y ! Eq 18.1

where  y is the observed count of events and  μ is the mean number of events. An interesting 
characteristic of the Poisson distribution is that the mean and the variance are equal (ie μ).

The Poisson distribution can be thought of in 2 ways. 
a. If the times between events (eg cases of migraine headache) are independent and follow 

an exponential distribution with a mean value of t, then the number of cases of migraine 
(Y)  in  a  defined  time  period  (T)  will  follow a  Poisson  distribution  with  μ=T/t.  For 
example, if the mean time between migraines is 15 days, then the expected number of 
cases in a 30-day period will be 30/15=2 cases. The time between events is sometimes 
referred to as the ‘waiting time.’ A specific feature of the exponential distribution of 
waiting times is that, at any point in time, the time to the next event is independent of the 
time  that  has  passed  since  the  last  event.  This  property  is  referred  to  as 
‘memorylessness’. Using this formulation of the Poisson distribution, there is a natural 
connection  between  the  analysis  of  counts  of  events  (Poisson  regression)  and  the 
analysis of time to event occurrence (survival analysis—Chapter 19).

b. The Poisson distribution approximates the binomial distribution if the population (n) is 
large, consists of independent units, and the binomial proportion (p) is small (ie  events 
are ‘rare’).  In this case,  μ=np. For example, if the probability of the occurrence of a 
migraine on any given day is 1/15=0.067, then the expected number of cases in a 30-day 
period will be 30*0.067=2.

If the outcome follows a Poisson distribution and the mean is known, you can calculate the 
probability of a specific number of events occurring. For example, if the average number of 
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migraines experienced by an individual in a month is 5, the probability of getting 10 cases in a 
month is:

pY =10=510e−5

10 !
=0.018

This indicates that there is approximately a 2% chance of having exactly 10 migraines in a 
month (provided the mean for the population is not changing over time).

Poisson distributions with means of 0.5, 1.0, 2.0, and 5.0 are shown in Fig. 18.1. As this figure 
indicates, as the mean increases, the Poisson distribution approaches a normal distribution.

18.3 POISSON REGRESSION MODEL

The usual form of the Poisson regression model is:

E Y ==n Eq 18.2

where E(Y) = the expected number of cases of disease
n = exposure (eg person-time units at risk)
λ = represents a function which defines the disease incidence rate.

The exposure (n) adjusts for different amounts of time at risk (or, alternatively, different sizes 
of  populations  at  risk)  for  the  various  study  subjects  (people  or  groups  of  people).  (Note 
Throughout this text, the letter n is most commonly used to denote the number of people in a 
population. Here we are also using it to denote the amount of person-time at risk.) If n is equal 
for all subjects, it can be omitted, but you must remember that predicted counts will refer to the 

Fig. 18.1 Poisson distributions
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expected number of  cases  in  n people-time units at  risk.  For example,  in the badger study 
referred  to,  each count  related to the same 500 m2 grid size,  so no offset  or exposure was 
required. However, the predicted counts were counts per 500 m2.

One of the ways that λ can be related to the predictor(s) is:

=e01 X   or  1n =01 X Eq 18.3

Consequently, the Poisson regression model is:

E Y =ne01 X or 1n EY =1n n01 X

or ln E I =ln E Y 
n =01 X Eq 18.4

where lnE(I) is the log of the expected value of the incidence rate (I) of disease which is being 
modelled as  a linear  combination of predictors.  Note  This example assumes that  there is  a 
single predictor variable (X), but the model can be extended to include multiple predictors. 

The exposure (n) may be recorded and used on the original scale (ie the amount of people-time 
at risk). Alternatively, it may be converted to a log scale and used as such (referred to as an 
offset). In statistical terminology, an offset term in a model equation is a term whose regression 
coefficient is restricted to be 1 (ie absent).

As  with  logistic  regression,  Poisson  regression  models  are  fit  using  an  iterative  maximum 
likelihood estimation procedure.  The statistical significance of the contribution of individual 
predictors  (or  groups  of  predictors)  to  the  model  can  be  tested  using  either  Wald  tests  or 
likelihood ratio tests. An example of a Poisson regression analysis based on number of prenatal 
visits by pregnant mothers (birth weight dataset) is presented in Example 18.1.

18.4 INTERPRETATION OF COEFFICIENTS

The coefficients from a Poisson regression model represent  the amount the log of  I  (lnI) is 
expected to change with a unit change in the predictor. Assuming that there are 2 exposure 
groups (X=0 and  X=1), then the  incidence rate ratio (IR) associated with belonging to group 
X=1 (relative to group X=0) is:

IR=
1

0
=e01

e0
=e1

Eq 18.5

so the coefficients  from a Poisson regression can easily  be converted  into  IR estimates.  In 
general, the IR represents the proportional increase in I for a unit change in the predictor. For 
example, if the IR for maternal age in a study of prenatal visits was 1.05, that would suggest 
that the incidence rate of visits went up by 5% for each additional year of age (ie that it was 
1.05 times as high as the rate in the previous year).  Note  In general, eβ1 represents the ratio 
between mean counts in 2 groups.  However,  because Poisson regression is most commonly 
used  for  incidence  rate  data  in  epidemiologic  studies,  this  specific  use will  be emphasised 
throughout this chapter (even though in the example used, the outcome (prenatal visits) is not a 
disease).

The effect of a predictor on the absolute number of cases of disease (or other outcome event) 
depends on the values for other predictors in the model. For example, the IR for meduc=college 
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diploma  in  Example  18.1  was  e.072=1.075  (compared  with  no  high  school  diploma).  The 
predicted I for a ‘baseline individual’ (28-year-old, non-white, 1st parity mother without a high 
school diploma) was e-1.283=0.277 visits/week, while for a ‘higher frequency individual’ (white, 
38 years old) the rate was e(-1.283+.034+10*.004)=0.298 visits per week. If that individual also has a 
college diploma, the frequency of visits increases to e(-1.283+.034+10*.004+.072)=0.321 (a gain of 
0.023 visits per week). Over a 39-week gestation, this rate of visits would equate to 12.5 visits.

Example 18.1 Poisson regression model
data = bw5k

Both the count (total number during the pregnancy) of prenatal visits by expectant mothers and the rate 
(visits per week) were modelled using Poisson regression. The predictors were:

white: mother’s race (0=non-white, 1=white)
mage_28: mother’s age (centred on 28 years)
tbo_1: parity (scaled so 0 = 1st parity, 1=2nd, etc)
meduc_c4: mother’s education level (values 1-4 )

A more complete description of the dataset is in Chapter 31.

The model  of  the rate of  visits  with  the 4 predictor variables  and the time  at  risk included as an 
exposure variable produced the following results.

Number of obs = 5000
Log likelihood = -13820.24

95% CI for IR

Variable Coef SE Z P    Lower Upper

white 0.034 0.009 3.72 0.000 0.016 0.051

mage_28 0.004 0.001 4.43 0.000 0.002 0.006

tbo_1 -0.014 0.003 -4.19 0.000 -0.020 -0.007

meduc = HS dip. 0.056 0.014 4.13 0.000 0.029 0.082

meduc = some coll. 0.074 0.014 5.18 0.000 0.046 0.102

meduc = coll. dip. 0.072 0.014 5.02 0.000 0.044 0.100

constant -1.283 0.012 -103.16 0.000 -1.307 -1.258

All predictors were significant. Exponentiating the constant (e-1.283=0.28) suggests that a non-white, 28- 
year-old,  1st parity  mother  without  a  high  school  diploma  (ie the  ‘baseline  individual’)  would  be 
expected to have 0.28 visits per week (or approximately one visit every 4 weeks).

The  model  based  solely  on  counts  (no  accounting  for  gestation  length),  produced  very  similar 
coefficients (data not shown) except for the constant which was 2.373. This constant indicates that the 
‘baseline person’ (described above) would be expected to have e2.373=10.7 visits during the pregnancy.

The deviance and Pearson goodness-of-fit test statistics were:
df Χ2 P dispersion

Deviance 4993 6681.8 <0.001 1.34

Pearson 4993 6165.4 <0.001 1.23

Both values suggest that there are problems with the model (ie evidence of lack of fit).
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Note Although all of the predictors are statistically significant, it is clear that the impact they 
have on the expected number of visits is quite small.

18.4.1 Poisson regression and risk ratios

Logistic regression (Chapter 16) is the most widely used multivariable model for binary (0/1) 
data, and it produces estimates of effect expressed as odds ratios (OR). Risk ratios (RR) are 
more easily understood and may be preferred to  ORs in some situations. One multivariable 
approach to obtaining RR is to fit a generalised linear model with a binomial distribution and a 
log  link (see  Section 16.11).  However,  it  has  been  reported  that  these  models  may fail  to 
converge  (Barros and Hirakata, 2003; Zou, 2004). An alternative is to use Poisson regression 
(with no exposure or offset specified), even though the data are binary, to directly estimate RRs 
(Barros and Hirakata, 2003; McNutt et al, 2003). This approach produces estimates with very 
little bias but a conservative CI (ie the CI is too wide). It has been shown that using robust SEs 
(see Section 14.9.5) reduces the estimated SEs of the coefficients and results in a CI of the 
correct width (Greenland, 2004; Zou, 2004).

18.5 EVALUATING POISSON REGRESSION MODELS

18.5.1 Residuals

Raw residuals can be computed for each observation as the observed number of cases (obs) 
minus the expected number of cases (exp) predicted from the model. Residuals are computed 
on the basis of one per observation.

Pearson residuals can be computed as:

res=obs - exp
var

which for the i th observations is res i=
yi−i

i Eq 18.6

where  ‘var’ is the estimated variance of the observations. For a Poisson model, the estimated 
variance is equal to the expected number of cases (μ). 

Deviance residuals are based on the overall fit of the model (formula not shown). The sum of 
the squared deviance residuals gives  the deviance for the model which is defined as minus 
twice the difference between the log likelihood of the model and the maximum log likelihood 
achievable. Pearson and deviance residuals may be standardised to give them unit variance.

Anscombe residuals are similar to standardised deviance residuals  (Hilbe, 2011) but may be 
better  at  identifying  outliers  and  heterogeneity  in  the  data.  It  is  recommended  that  both 
standardised  deviance  and  Anscombe  residuals  be  plotted  against  predicted  values  when 
evaluating a Poisson model (Hilbe, 2011).

All of the above residuals may be further standardised, a process which makes the variance of 
the residuals more constant.

18.5.2 Assessing overall fit

As with logistic regression, χ2 goodness-of-fit tests can be computed as the sum of the squared 
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deviance or Pearson residuals. The resulting test statistic has an approximate χ2 distribution if 
there are multiple observations within each covariate pattern defined by the predictors in the 
model (Cameron and Trivedi, 1998). However, the values of the 2 test statistics could be quite 
different, and if either is indicative of a lack of fit, the model should be investigated thoroughly. 
As with all overall goodness-of-fit statistics, a significant result (indicating lack of fit) provides 
no information about what the cause of the lack of fit  is. However,  with Poisson models, a 
common cause is overdispersion (ie the variance of the counts is much larger than the mean). 
The Pearson and deviance goodness-of-fit test results for the prenatal visit data are presented in 
Example 18.1 (both are highly significant, indicating lack of fit).

The predictive ability of the model can be evaluated by comparing the distributions of observed 
and predicted counts. Fig. 18.2 shows the distributions of the observed and predicted counts 
from the model presented in Example 18.1. Their apparent similarity does not reflect the serious 
problems with the lack of fit for the model.

18.5.3 Overdispersion

The assumption behind a Poisson model is that the mean and the variance are equal (conditional 
upon the predictors in the model); that is, the mean and the variance of the number of events are 
equal for individuals with any specific covariate pattern (ie set of predictors) (also assuming 
equal quantity of exposure). Consequently, one could have an overall variance greater than the 
overall mean in the raw data, but still meet the assumption of equidispersion if the variance 
among individuals with any set of predictor values equals the mean for that group. However, as 
a simple rule, if the variance in the raw data is greater than twice the overall mean, one must 
suspect that overdispersion will be present.

Having a variance much larger than the mean is a common problem with count data. This is 
called  extra-Poisson variation or  overdispersion.  Overdispersion  can  arise  in a  variety of 
ways, see Hardin and Hilbe (2007), Hilbe (2011).

Apparent overdispersion
Apparent overdispersion can be caused by any errors in the model. This can include omission of 

Fig. 18.2 Comparison of observed and predicted 
counts of prenatal visits
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important explanatory predictors, outlying observations (potentially errors in the data?), failure 
to  account  for  important  interactions  in  the  model,  or  failure  to  satisfy the  assumption  of 
linearity for continuous predictors. The solution to apparent overdispersion is to fix the model.

Real overdispersion
Real overdispersion occurs when the true variance in the counts is greater than the mean, and it 
can also arise in a variety of ways. It may be that the variance of the counts is much larger than 
the mean value and that a model which allows for this greater variance is required. A common 
cause of real overdispersion is clustering of data (see Chapter 20) and potential solutions are 
discussed below. Alternatively, zero counts may either be more abundant or less frequent than 
expected (or completely absent). The solution to this problem is to use hurdle, zero-inflated or 
zero-truncated models (discussed in Section 18.7).

18.5.4 Evaluating overdispersion

The  amount  of  overdispersion  can  be  quantified  by  computing  a  dispersion  parameter  by 
dividing either the Pearson or deviance  χ2 by its df (with the Pearson  χ2 generally being the 
preferred value). Values of the dispersion parameter >1 indicate overdispersion and should be a 
concern if >1.25 in moderate sample sizes or >1.05 in large sample sizes. The Pearson and 
deviance  dispersion parameters  for  the prenatal  visit  data  were  1.23 and 1.34,  respectively 
(Example 18.1), reflecting some problem of overdispersion in these data.

The statistical significance of the amount of overdispersion can be assessed using the goodness-
of-fit tests described in Section 18.5.2. Two alternatives are the score test and the Lagrange 
multiplier test. The reader is referred to Hilbe (2011) for details.

18.5.5 Dealing with overdispersion

There are several ways of dealing with overdispersion, some of which are discussed in this 
chapter (see also Chapters 20, 22, and 23).

Scaled SEs of parameter estimates can be computed by scaling the SEs by the square root of 
either the deviance or Pearson dispersion factor (simulation studies have shown that the Pearson 
dispersion is preferred (Hilbe, 2011)). For example, in the model shown in Example 18.1, the 
SEs of  the  coefficients  would be  increased  by  √1.23=1.11,  resulting  in  a  SE for  white  of 
1.11*.0091=0.0101 (P=0.001). Alternative approaches to adjusting the SEs include the use of 
robust SEs (described in Section 14.9.5), bootstrap, or jackknife SEs (not described in this text).

One commonly used approach is to use negative binomial regression to fit a model in which 
the variance is allowed to be larger  than the mean. This is described in more detail  below 
(Section 18.6).

If the overdispersion is a result of clustering within the data, that clustering can be accounted 
for by adding fixed effects for the clusters to the model (see Section 20.5.2), by adding random 
effects for  the  clusters  (see  Section 22.4.3),  or  through  the  use  of  generalised  estimating 
equations (GEE—see Section 23.5). If the overdispersion is caused by clustering, methods for 
dealing with the clustering are preferable to using scaled SE or a negative binomial regression.
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18.5.6 Influential points and outliers

Outliers  may  contribute  to  overdispersion,  but  even  in  the  absence  of  evidence  of 
overdispersion, it is important to evaluate outlying observations. Outliers can be identified by 
looking for large values of Pearson, deviance, or Anscombe residuals. Influential points can be 
identified by looking for large values of Cook’s distance (see Chapter 14 for introduction to 
Cook’s  distance).  Examples  of  these  are  shown in  Example  18.2.  As  with  other  forms  of 
regression models, ill-fitting points must be checked thoroughly. If the data are incorrect, they 
must  be fixed or excluded. If  the data are correct,  evaluation of poorly fitting points could 
provide insight into reasons why the model does not fit well.

18.6 NEGATIVE BINOMIAL REGRESSION

Negative binomial regression models are models for count data in which the variance is not 
constrained to equal the mean. These models can be derived in 2 ways: from the 2 parameter 
negative binomial distribution, or as a Poisson-gamma mixture distribution. Each of these will 
be discussed below.

18.6.1 Negative binomial distribution

The  negative  binomial  distribution  is  the  probability  of  observing  y failures  before  the  rth 

success in a series of Bernoulli trials. It is computed as:

Example 18.2 Poisson regression—diagnostics
data = bw5k

Based on the model fit  in Example 18.1, the observations with the 3 largest  negative and positive 
Anscombe residuals are:

Prenatal 
visits 

Standardised 
residuals

obs mother 
race

 mother 
age (+28)

parity mother 
educ

obs. pred. dev. Pear. Ansc.

3397522 white 3 0 univ. deg. 0 12.5 -4.996 -3.533 -5.299

3719982 white 4 3 univ. deg. 0 12.3 -4.966 -3.512 -5.268

3476040 white 7 3 some col. 0 12.2 -4.941 -3.494 -5.241

430977 non-
white

-2 1 hs dip. 30
10.3 4.964 6.121 4.994

1771199 white 1 3 hs dip. 34 11.1 5.507 6.874 5.544

726794 white -3 7 some col. 40 11.1 6.706 8.694 6.765

Large negative residuals were associated with mothers who had no prenatal visits.  Extremely large 
positive residuals were found in mothers with 30 or more visits. There were 124 Pearson residuals that 
were >3 or <-3 (we would only expect approximately 1%=50).

(continued on next page)
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f  y : r , p= yr−1
r−1  pr 1− py

Eq 18.7

where  y is the number of failures,  r is the number of successes and  p is the probability of 
success on each trial. As r→∞ (simultaneously with p→1), the negative binomial distribution 
for  the  number  of  failures  approaches  the  Poisson  distribution.  The  distribution  can  be 
expressed instead in terms of the parameters μ and α, where μ=r(1-p)/p is the mean and α=1/r  
is the dispersion parameter. Two special cases are α=0 (the Poisson distribution) and α=1 (the 
geometric  distribution,  giving  the  waiting  time  distribution  until  the  first  event).  Fig.  18.4 
shows 4 negative binomial distributions with various combinations of parameters. Comparing 

Example 18.2 (continued)

The 4 observations with the largest Cook’s distance follow.
prenatal visits  Cook’s

obs mother 
race

mother 
age (+28)

parity mother 
educ

obs pred. Ansc. 
res.

distance

1733432 white 15 7 < hs dip. 0 11.1 -5.000 0.008

1771199 white 1 3 hs dip. 34 11.1 5.544 0.008

1394806 white 6 0 some col. 30 11.4 4.601 0.009

726794 white -3 7 some col. 40 11.1 6.765 0.055

One observation stood out as having a very large Cook’s D (726794). This mother had 40 prenatal 
visits, far more than any other individual in the dataset (the next highest was 34 visits).

The plot of Anscombe residuals vs predicted counts indicates that  extreme negative residuals were 
more  common  than  positive  ones.  The  plot  of  residuals  vs  Cook’s  distance  highlights  the  very 
influential points (#726794). Refitting the model without this point reduced the coefficients for the 2 
upper levels of mother’s education by 3.1–4.6%.

Fig. 18.3 Diagnostic plots for Poisson regression model
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these distributions with the Poisson distributions with means of 2 and 5, you can see the more 
prominent right tails on the negative binomial distributions. 

18.6.2 Poisson-gamma mixture distribution

If  the observed  counts  for  individuals  with similar  characteristics  are  expected  to  follow a 
Poisson  distribution,  but  the  individuals  exhibit  heterogeneity  caused  by some unmeasured 
characteristics,  the  observed  counts  will  be  more  dispersed  than  expected  from  a  Poisson 
distribution. This situation can be modelled directly by specifying a (‘mixture’) distribution for 
individual means. The standard choice is a gamma distribution (the gamma distribution is a 
flexible 2-parameter distribution which can take a wide variety of shapes), leading to Poisson-
gamma mixture distributions for the observed counts.  The negative binomial distribution of 
Section 18.6.1 can be derived in this way (with a suitably chosen gamma distribution). Focus in 
the development of these distributions has been on the way the variance depends on the mean. 
For example, if  the variance is a constant multiple of the mean, this gives rise to an NB-1 
model:

NB-1 var=1= Eq 18.8

where α is referred to as the dispersion parameter.

In the most commonly used form of the negative binomial distribution, in this context denoted 
as an NB-2 model, the variance exceeds the mean by a factor which depends on the mean such 
that individuals with higher average counts will have relatively larger variances:

NB-2 var=1=2
Eq 18.9

Fig. 18.4 Negative binomial distributions

0

.1

.2

.3

.4

.5

pr
op

or
tio

n 
of

 c
ou

nt

0 1 2 3 4 5 6 7 8 9 10 11 12
count

mean = 2.0, alpha = 1

0

.1

.2

.3

.4

.5

0 2 4 6 8 10 12 14 16 18 20 22 24
count

mean = 2.0, alpha = 2

0

.1

.2

.3

pr
op

or
tio

n 
of

 o
bs

er
va

tio
ns

0 3 6 9 12 15 18 21 24 27 30 33 36
count

mean = 5.0, alpha = 1

0

.1

.2

.3

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
count

mean = 5.0, alpha = 2



MODELLING COUNT AND RATE DATA 491

Note In either of the above 2 formulations, if α=0, then the variance once again equals the mean 
and the model is a simple Poisson model. 

18.6.3 Negative binomial regression modelling

As with the Poisson distribution, the usual form of a negative binomial regression model is:

E Y =n or E Y 
n

= Eq 18.10

where n is a measure of exposure (possibly constant) and λ is a function of the predictors, with 
the most usual form for λ being derived from a linear equation on a log scale, eg

=e01 X
or 1n =01 X Eq 18.11

Consequently, exponentiated regression coefficients from a negative binomial model in which 
the exposure was a measure of time at risk are interpreted as incidence rate ratios. 

Full  maximum  likelihood  (ML)  estimation  of  the  regression  coefficients  and  the  negative 
binomial  dispersion  parameter  is  available  for  distributions  with  a  tractable  form  of  the 
likelihood function, in particular NB-1 and NB-2.  Example 18.3 shows a negative binomial 
model (NB-2) fit to the prenatal visit data using full ML estimation. In situations in which the 
dispersion parameter is very large (ie highly overdispersed data such as infectious disease data
—see also Chapter 27), α may be underestimated if the sample size is small or zero counts are 
underrepresented (Lloyd-Smith, 2007). 

The generalised linear model (GLM) framework offers an alternative estimation approach (see 
Section 16.11 for an introduction to GLM models). GLM estimation of the Poisson model with 
a dispersion parameter (see Table 18.1, Section 18.6.4) yields estimates from a Poisson model 
with scaled SEs (Section 18.5.5), as opposed to a full ML estimation of the NB-1 model. An 
NB-2 distribution can be set up as a single parameter GLM with a log link, but the dispersion 
parameter α must be treated as a known constant. One solution to this limitation is to obtain an 
estimate of α using a full ML estimation, and then set α to this value when running the GLM 
procedure.  Example  18.4  compares  NB-2  models  estimated  using  a  full  ML  estimation 
procedure and the GLM framework. The value of the dispersion parameter (α) obtained from 
the ML estimation procedure was provided to the GLM estimation procedure. (Note The log 
link used to fit an NB-2 model is not the canonical link for the negative binomial distribution 
(see Section 16.11), but is the most commonly used link function.)

The advantage of the GLM framework is that it gives access to GLM goodness-of-fit statistics 
and the large number of GLM-defined residuals and other diagnostic parameters. Traditionally, 
GLM models have been estimated using an iteratively reweighted least squares algorithm, but 
maximum likelihood procedures are often now employed (when feasible). 

18.6.4  Alternative variance functions

In addition to the NB-1 and NB-2 models described above, other multiplicative extensions to 
the Poisson variance have been developed and these are summarised in Table 18.1.
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Table 18.1 Poisson variance
Model Variance Model Variance

Poisson var = μ NB-1 var = μ(1+α) = μ + αμ 

Poisson with a 
dispersion parameter

var = μ(θ) NB-2 var = μ(1+αμ) = μ + αμ2

Geometric var = μ(1+μ) = μ+μ2 NB-P var = μ+αμp

NB-H var = μ(1+αμ)
α =exp( β0 + β1 X1)

The NB-1 model and Poisson model with a dispersion parameter (discussed in Section 20.5.3) 
have the same variance  function (with  θ=1+α),  but  are  genuinely different  models  and are 
estimated  in  different  ways  (Section  18.6.3).  In  all  of  the  above models,  if  α=0,  then  the 
variance once again equals μ and the model is a simple Poisson model. The NB-P model is a 
generalisation of other NB models with μ raised to the power p.  (The reader is referred to Hilbe

Example 18.3 Negative binomial regression model
data = bw5k

The Poisson model from Example 18.1 was refit as a negative binomial model using full maximum 
likelihood estimation.

Number of obs = 5000
LR chi2(6) = 115.06

Prob > chi2 = 0.0000
Log likelihood = -13772.922 Pseudo R2 = 0.0042

Variable Coef SE Z P 95% CI

white 0.034 0.010 3.39 0.001 0.014 0.053

mage_28 0.004 0.001 4.03 0.000 0.002 0.006

tbo_1 -0.014 0.004 -3.80 0.000 -0.021 -0.007

meduc = HS dip. 0.056 0.015 3.79 0.000 0.027 0.085

meduc = some coll. 0.074 0.016 4.73 0.000 0.044 0.105

meduc = univ. deg. 0.072 0.016 4.57 0.000 0.041 0.103

constant -1.283 0.014 -94.15 0.000 -1.309 -1.256

gest  (exposure)

/ln_alpha -3.973 0.118 -4.204 -3.742

alpha 0.019 0.002 0.015 0.024

Likelihood-ratio test of alpha=0:  chibar2(01) =  94.63 Prob>=chibar2 = 0.000

As with the Poisson model,  all predictors remain significant and the coefficients are close to those 
obtained  from  the  Poisson  model.  The  likelihood  ratio  test  of  α is  highly  significant  (P<0.001) 
confirming  the presence of  overdispersion (relative  to  the Poisson model).  Since the overall  mean 
number  of  prenatal  visits  was  11.3,  the  value  of  (1+αμ)=1+(0.019*11.3)=1.21  (ie  moderate 
overdispersion). The variance of the Poisson model would be assumed to be 11.3, while for the NB-2 
model it would be μ+αμ2=11.3+.019*11.32=13.7.
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(2011) for  details.)  The  NB-H model  (heterogeneous  or  generalised  NB model)  allows the 
dispersion parameter to be modelled as a function of predictors. An example of an NB-H model 
is presented in Section 18.6.7.

18.6.5 Evaluating overdispersion

A likelihood ratio test which compares  the usual Poisson model with the negative binomial 
model  is  equivalent  to  a  test  of  α=0.  This  provides  a  formal  test  for  the  presence  of 
overdispersion in the model. Because α cannot be negative, this is a 1-tailed test. As can be seen 
in Example 18.3, the results of this test are highly significant (P<0.001), indicating a problem 
with overdispersion.

As the additional variance is now a function of both  α and  μ [var=(1+αμ)μ], the amount of 
overdispersion is  a function of  both values.  If  αμ>1, then  (1+αμ)>2,  which would indicate 
substantial overdispersion. For example, if α=0.5 and most counts are 0, 1, or 2 with a mean of 
1.0, then (1+αμ)=1.5, so there is only moderate evidence of overdispersion. However, if α=0.5 
and most counts range from 0 to 15 with a mean of 5.0, then (1+αμ)=3.5, which is indicative of 
serious overdispersion. Example 18.3 provides an example of a negative binomial model and an 
assessment of overdispersion.

18.6.6 Negative binomial regression diagnostics

Diagnostics  for  negative  binomial  models  (Example  18.5)  are  similar  to  those  for  Poisson 
models. Plots of standardised deviance residuals and/or Anscombe residuals vs predicted counts 
will identify particularly poorly fit observations.

Example 18.4 Comparison of maximum likelihood and GLM estimation of a negative 
binomial model
data = bw5k

The negative binomial model from Example 18.3 was refit  in the GLM framework and the results 
compared. The table compares the estimated coefficients and SEs.

Coef SE

Variable ML GLM ML GLM

white 0.034 0.034  0.010 0.010

mage_28 0.004 0.004  0.001 0.001

tbo_1 -0.014 -0.014  0.004 0.004

meduc = HS dip. 0.056 0.056  0.015 0.015

meduc = some coll. 0.074 0.074  0.016 0.016

meduc = univ. deg. 0.072 0.072  0.016 0.016

constant -1.283 -1.283  0.014 0.014

The coefficients and SEs were identical.
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Example 18.5 Negative binomial regression—diagnostics
data = bw5k

Based on the model fit in Example 18.3, the 2 goodness-of-fit tests give very discrepant results. The 
deviance  χ2 goodness-of-fit  test  was  highly  significant  (χ2  =  5626.7  on  4,993  df,  P  =  <0.001) 
suggesting significant lack of fit. On the other hand, the Pearson χ2 test was not significant (χ2=5102.1 
on 4,993 df, P=0.14) with a dispersion parameter of only 1.02. There are now only 74 observations 
(1.5%) with  residuals  more  extreme  than +/-3.  As before,  there  was  a  single  observation  (obs  = 
726794) with a very large Cook’s D. As was suggested in Chapter 15, you might omit this individual 
and  refit  the  model  to  determine  the  impact  of  this  observation.  As  with  the  Poisson  model, 
eliminating this observation reduced the coefficients for the 2 upper levels of mother’s education. The 
observations with the largest values of Cook’s D were as follows.

Prenatal visits  Cook's

obs mother 
race

mother 
age (+28)

parity mother 
educ

obs pred. Ansc. 
Res.

distance

1733432 white 15 7 < hs dip 0 11.1 -4.817 0.006

1771199 white 1 3 hs dip 34 11.1 5.338 0.007

1394806 white 6 0 some col. 30 11.4 4.425 0.007

726794 white -3 7 some col. 40 11.1 6.501 0.046

The plot of the Anscombe residuals vs predicted values shows a large number of extreme negative 
residuals but few large positive values.  The plot of Anscombe residuals vs Cook’s distance clearly 
highlights the influential role of observation #726794. As with the Poisson model, refitting the model 
with this observation excluded reduced the estimates of the effects of the 2 upper levels of mother’s 
education by 3.1% to 4.5%.

Fig. 18.5 Negative binomial diagnostic plots
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18.6.7 Generalised negative binomial models

In  Section  18.6.4,  it  was  shown that  the  variance  of  a  negative  binomial  model  could  be 
modified to allow it to be a function of one or more predictors. Example 18.6 fits this type of 
model to the prenatal visit data with the variance as a function of -meduc_c4-.

Example 18.6 Generalised negative binomial regression
data = bw5k

The Poisson model from Example 18.1 was refit  using a generalised negative binomial model with 
-white-, -mage_28-, -tbo_1-, and -meduc_c4- as predictors of the mean number of prenatal visits and 
-meduc_c4- as the sole factor influencing the variance.

Number of obs = 5000
LR chi2(6) = 100.74

Prob > chi2 = 0.0000
Log likelihood = -13734.796 Pseudo R2 = 0.0037

95% CI

Variable Coef SE Z P Lower Upper

previs

white 0.035 0.010 3.50 0.000 0.015 0.054

mage_28 0.004 0.001 4.03 0.000 0.002 0.006

tbo_1 -0.012 0.004 -3.50 0.000 -0.019 -0.005

meduc = hs dip. 0.056 0.016 3.42 0.001 0.024 0.089

meduc = some coll. 0.074 0.017 4.42 0.000 0.041 0.107

meduc = univ. deg. 0.072 0.017 4.29 0.000 0.039 0.105

constant -1.285 0.015 -85.28 0.000 -1.314 -1.255

lnalpha

meduc = hs dip. -0.663 0.212 -3.13 0.002 -1.078 -0.248

meduc = some coll. -1.648 0.403 -4.09 0.000 -2.437 -0.859

meduc = univ. deg. -3.523 1.620 -2.17 0.030 -6.698 -0.347

constant -2.823 0.132 -21.40  0.000 -3.081 -2.564

The results suggest that the effect  of -meduc_c4- appears to be that levels 2–4 all have higher than 
expected number of visits, but the variance in response decreases as the level of education rises (α at 
the lowest education level was e-2.823 = 0.059) but at the highest level was only e(-2.823-3.523) = 0.002. This 
fits well with the simple descriptive statistics (mean and variance) of -previs- by levels of -meduc_c4- 
which shows that the variance at the lowest level was 16.2 and at the top level was 12.2.

Model Obs ll(null) ll(model) df AIC BIC

NB-2 5000 -13830.45 -13772.92 8 27561.84 27613.98

NB-H 5000 -13785.16 -13734.80 11 27491.59 27563.28

Both the AIC  and the BIC  favour  the  NB-H model,  suggesting  that  the  effect  of  rising levels  of 
-meduc_c4- is to both increase the mean number of prenatal visits and to reduce the variation among 
individuals.
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18.7 PROBLEMS WITH ZERO COUNTS

The number of observations with a count of 0 in a dataset may be higher or lower than would 
be expected from a Poisson (or negative binomial) distribution. If there is an excess of zero 
counts,  you  can  fit  either  a  zero-inflated  model  or  a  hurdle  model  (each  discussed  briefly 
below). If zero counts are not possible (as is the case if the parity of mothers in a birth weight 
registry is modelled), then a zero-truncated model can be fit to the data. 

18.7.1 Zero-inflated models

One  occasionally  encounters  situations  in  which  the  distribution  of  outcome  events  might 
follow a Poisson (or  negative  binomial)  distribution, except  that  there  is  an excess  of zero 
counts in the data. This might be because there are 2 processes by which zero counts can arise. 
In our example, with the outcome of interest being the number of prenatal visits, zero might be 
recorded if the mother truly had no prenatal visits or if she misunderstood the question and did 
not recognize what prenatal visits were (even if she had some). Consequently, a count of zero 
might arise from either of the 2 situations.

Zero-inflated models deal  with an excess  of zero counts by simultaneously fitting a  binary 
model (usually a logistic regression model, but it could also be a probit or complementary log-
log model) and a Poisson (or negative binomial) model. The 2 models might have the same, or 
different, sets of predictors. The parameter modelled in the binary model is the probability of a 
zero count so coefficients have an opposite sign than they would in a usual logistic regression 
(if the same predictor is in the Poisson model, they often have opposite signs in the 2 models).

Whether or not a zero-inflated model fits the data better than the usual Poisson or negative 
binomial  model  can  be  assessed  using a  Vuong test  (V).  This  test  compares  2  non-nested 
models and is asymptotically normally distributed. If the value of V is <-1.96, one model (eg 
the usual Poisson or negative binomial model) is favoured. If V >1.96, the second model (ie the 
zero-inflated model) is favoured. If V lies between -1.96 and 1.96, neither model is preferred.

Example 18.7 shows the application of a zero-inflated negative binomial model to the prenatal 
visit data.

18.7.2 Hurdle models

Like zero-inflated models, a hurdle model has 2 components but it is based on the assumption 
that zero counts arise from only one process and non-zero counts are determined by a different 
process (Hilbe, 2011). For the prenatal visit, this would assume that all women who understood 
what prenatal visits were had at least 1, and that the values of zero were solely from women 
who did not understand the question.

Hurdle models use some form of binomial model (logit, probit, or complementary log-log) to 
model the odds of a non-zero count (vs a zero count) and some form of zero-truncated model 
(Poisson, negative binomial, or geometric) to model the distribution of non-zero counts. Zero-
truncated  models  are  described  in  Section  18.7.3.  Consequently,  there  are  9  possible 
combinations of models possible (eg logit-Poisson, probit-negative binomial etc).

Example 18.8 shows the use of a logit-negative binomial hurdle model for the prenatal visit 
data presented in Example 18.7. In contrast to the logit portion of the zero-inflated model, in a 
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hurdle model, the coefficients in the logit model reflect how the log odds of a non-zero count is 
affected by the predictor. Consequently, they often have the same sign as the coefficients in the 
count portion of the model.

The choice of whether to use an ordinary negative binomial model, a zero-inflated model or a 
hurdle model should be based on a combination of the fit of the models (log-likelihood) and the 
biology of the process being modelled. Is it reasonable to consider zeros arising from a second 
process? If so, would you expect zeros to arise from both processes (zero-inflated model) or just 
the second process (hurdle model)?

Example 18.7 Zero-inflated negative binomial model
data = bw5k

A zero-inflated negative binomial model was fit to the prenatal visit data. The same set of predictors 
that was used in Example 18.1 was included in the model, but only mother's education was included in 
the logistic portion of the model.

Number of obs = 5000
Nonzero obs = 4953

Zero obs = 47
Inflation model = logit Wald chi2(6) = 103.49
Log pseudolikelihood = -13560.19 Prob > chi2 = 0.0000

Variable Coef Robust SE Z P 95% CI

Negative binomial portion

white 0.032 0.010 3.31 0.001 0.013 0.050

mage_28 0.004 0.001 4.04 0.000 0.002 0.006

tbo_1 -0.012 0.003 -3.53 0.000 -0.019 -0.005

meduc = hs dip. 0.044 0.014 3.11 0.002 0.016 0.072

meduc = some coll. 0.063 0.015 4.21 0.000 0.034 0.093

meduc = univ. deg. 0.062 0.015 4.11 0.000 0.032 0.091

constant -1.266 0.013 -97.12 0.000 -1.291 -1.240

Logistic portion

meduc = hs dip. -1.097 0.426 -2.58 0.010 -1.932 -0.263

meduc = some coll. -1.049 0.446 -2.35 0.019 -1.923 -0.175

meduc = univ. deg. -1.048 0.365 -2.87 0.004 -1.764 -0.333

constant -3.909 0.232 -16.83 0.000 -4.365 -3.454

lnalpha -4.701 0.212 -22.18 0.000 -5.116 -4.286

alpha 0.009 0.002 0.006 0.014

The Vuong statistic  was  5.77,  suggesting  that  the  zero-inflated  model  was  clearly  superior  to  the 
regular negative binomial model (even though there were only 47 zeros in the dataset). The coefficients 
for -meduc_c4- in the negative binomial portion suggest  that higher levels of education resulted in 
more prenatal visits and anything over the lowest level (<high school diploma) resulted in a reduced 
probability of zero visits. The estimate of  α (0.009) was substantially less than that seen in Example 
18.3, suggesting that some of the overdispersion was attributable to the excess number of zeros.
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Example 18.8 Logit–negative binomial hurdle model
data = bw5k

A logit–negative binomial hurdle model was fit to the same data used in Example 18.7, except that all 
predictors were included in both the negative binomial and logistic portions of the model.

Number of obs = 5000
Wald chi2(6) =  14.92

Log pseudolikelihood = -13557.814                                                                             Prob > chi2 =  0.0209
Variable Coef Robust SE Z P 95% CI

Logit portion of the model

white 0.270 0.319 0.85 0.396 -0.355 0.896

mage_28 0.025 0.031 0.82 0.410 -0.035 0.086

tbo_1 -0.144 0.102 -1.42 0.156 -0.344 0.055

meduc = hs dip. 0.965 0.433 2.23 0.026 0.117 1.813

meduc = some coll. 0.845 0.466 1.81 0.070 -0.069 1.758

meduc = univ. deg. 0.682 0.449 1.52 0.129 -0.197 1.561

constant 0.536 0.355 1.51 0.131 -0.160 1.233

Negative binomial (count) portion of the model

white 0.032 0.010 3.31 0.001 0.013 0.050

mage_28 0.004 0.001 4.03 0.000 0.002 0.006

tbo_1 -0.012 0.003 -3.53 0.000 -0.019 -0.005

meduc = hs dip. 0.044 0.014 3.11 0.002 0.016 0.072

meduc = some coll. 0.063 0.015 4.21 0.000 0.034 0.093

meduc = univ. deg. 0.062 0.015 4.11 0.000 0.032 0.091

constant -1.266 0.013 -97.13 0.000 -1.291 -1.240

/lnalpha -4.703 0.212 -22.16 0.000 -5.118 -4.287

The coefficients for -meduc_c4- suggest that higher levels of eduction were more likely to result in a 
non-zero count and also to result in higher counts (negative binomial portion of the model).  Other 
factors were significant in the negative binomial portion of the model (ie they affected the number of 
prenatal visits), but not in the logistic portion (no effect on whether any visits were reported).

Log-likelihoods  were  computed  to  compare  the  zero-inflated  and  hurdle  models.  The  comparison 
slightly favoured the hurdle model, but the difference between the two models was small.  Note The 
AIC and BIC are unnecessary because the models have the same number of df.

Model Obs ll(null) ll(model) df AIC BIC

zinfl 5000 -13610.66 -13558.91 15 27147.83 27245.59

hrdl 5000 . -13557.81 15 27145.63 27243.39
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18.7.3 Zero-truncated models

In some situations, zero counts are not possible. For example, when analysing length of hospital 
stay,  zero days  is  not  a  possibility.  One approach  to this problem is to subtract  1 from all 
outcomes and model the revised outcome (which will contain zeros). An alternative approach is 
to  use  a  zero-truncated  model,  which  allows  for  a  defined  distribution  of  counts  but  the 
probability of a zero is eliminated from the likelihood function for the model. The probability of 
a zero count is computed from either the Poisson or negative binomial distribution, and this 
value is subtracted from 1. The remaining probabilities (eg probability of counts of 1, 2, 3 etc) 
are then rescaled based on this difference, so they total 1.

Example 18.9 shows a zero-truncated negative binomial model used to predict the number of 
babies born to mothers listed in the birth registry.

Example 18.9 Zero-truncated negative binomial model
data = bw5k

A zero-truncated negative binomial model was used to predict the number of babies born to mothers 
(-tbo-) listed in the birth registry. (This  is  based on the unreasonable assumption that  the birth 
recorded in the dataset bw5k was the last for each woman registered.) Three predictors: mother’s race 
(-white-), mother’s education status (-meduc_c4-), and marital status (-mar-) were included.

Number of obs = 5000
 LR chi2(5) = 171.36
Log likelihood = -7905.6451 Prob > chi2 = 0.0000

Variable Coef. Robust SE Z P 95% CI

white 0.030 0.028 1.10 0.273 -0.024 0.084

meduc = hs dip. -0.200 0.038 -5.30 0.000 -0.273 -0.126

meduc = some coll. -0.250 0.041 -6.16 0.000 -0.329 -0.170

meduc = univ. deg. -0.448 0.038 -11.66 0.000 -0.524 -0.373

married 0.275 0.031 8.96 0.000 0.215 0.335

constant 0.714 0.033 21.61 0.000 0.649 0.779

lnalpha -1.902 0.128 -2.152 -1.652

alpha 0.149 0.019 0.116 0.192

There was no significant difference between whites and non-whites. As education level went up, the 
total birth order declined and married women had higher -tbo- than non-married women. α (0.149) was 
clearly  greater  than  zero  (likelihood  ratio  test  of  α had  P<0.001)  indicating  that  a  zero-truncated 
negative binomial model was preferred to one based on a Poisson distribution.

Comparable results were obtained by subtracting 1 from the values of -tbo- and modelling this new 
outcome (which contained zeros) using an ordinary negative binomial model (data not shown).
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