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MODELLING SURVIVAL DATA

OBJECTIVES

After reading this chapter, you should be able to:

 1. Distinguish between non-parametric, semi-parametric, and parametric analyses of survival
time data.

 2. Carry out  non-parametric  analyses  using either  actuarial  or  Kaplan-Meier  lifetables  and
compare the survival experiences of groups of individuals using a variety of statistical tests.

 3. Generate survivor and cumulative hazard function graphs to display survival data.

 4. Understand  the  relationships  among  survivor  functions  S(t),  failure  functions  F(t),
probability density functions  f(t),  hazard functions  h(t), and cumulative hazard functions
H(t).

 5. Carry out a  semi-parametric  analysis  of  survival  data using a Cox proportional  hazards
model.
(a) Evaluate the model to:

 i. assess the validity of the assumption of proportional hazards,
 ii. assess the validity of the assumption of independent censoring,
 iii. evaluate other aspects of the model such as its overall fit, the functional form of the

predictors in the model, and check for outliers and influential points.
(b) Incorporate  time-varying  effects  into  the  model  to  evaluate  or  account  for  non-

proportional hazards.

 6. Carry out a parametric analysis of survival data based on an assumption that the survival
times have an exponential, Weibull, or log-normal distribution.

 7. Incorporate  frailty  effects  into  a  model  to  account  for  unmeasured  covariates  at  the
individual or group level.

 8. Analyse multiple failure-type (recurrence) data.

 9. Fit discrete time survival models when appropriate.
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19.1 INTRODUCTION

In  previous  chapters,  we have  looked at  statistical  models  for  evaluating  how much of  an
outcome occurred (linear regression), whether or not an event occurred (logistic regression),
which category of event occurred (multinomial models), and the number of events that occurred
(or the rate of event occurrence) (Poisson regression). However, we are often interested in how
long it takes for an event to occur (time-to-event data).  These data are often referred to as
‘survival’ data because the outcome of interest is often the time until death (eg time to death
following  heart  transplantation  (Ganesh et  al,  2005)).  However,  the  analytical  approaches
discussed  in  this  chapter  apply  equally  to  any  time-to-event  data (eg time  to  pregnancy
following an ectopic pregnancy (Ego et al, 2001)). The unit of analysis is often the individual,
but it may be a group of people (eg time to occurrence of an outbreak of an infectious disease in
a nursing home) or cells or organs (eg sperm survival (Aitken and Baker, 2006)). In general, we
will present the discussion in terms of individuals. The occurrence of the event of interest is
often referred to as a ‘failure’, even though in some cases the outcome is desirable (eg time to
conception in women in a fertility program). Some relatively recently published texts which
cover the analysis  of survival data include  Cleves et al (2008); Collett (2003);  Hosmer and
Lemeshow (2008); and Therneau and Grambsch (2000).

There are specific issues that affect how we quantify and express time to occurrence of an event
and how we evaluate the effects of factors (predictors) on that time. However, before discussing
these issues, let’s look at a simple hypothetical example (Example 19.1).

19.1.1 Features of survival data

Throughout this chapter, data from
the  Worcester  Heart  Attack  Study
(WHAS)  (Goldberg et  al,  2007;
Goldberg et al, 2010; McManus et
al, 2011) are used for the examples.
The primary outcome of interest is
a patient’s survival time following
admission to hospital  with a  heart
attack.  A  distribution  of  those
survival  times  (for  patients  for
whom  the  time  of  death  was
known) is shown in Fig. 19.1.

Here are three common features of
survival data.
1.  There  is  strict  left  truncation;
there are no values <0.
2. Survival data often have a highly
right-skewed  distribution, with
many individuals ‘failing’ early and
a small  number having long times
to ‘failure’.
3. Survival data are often  censored (ie the individual is lost to follow-up before the event of
interest (failure) is observed (see Example 19.1).

Fig. 19.1 Survival times in heart attack dataset
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19.1.2 Quantifying survival time

How should the time to recurrence  (ie time after  initial  diagnosis)  of  breast  cancer  among
patients  who  have  been  treated  be  quantified  and  expressed  (Example  19.1)?  For  many
individuals, we do not know the time to recurrence; all we know is that it did not recur in the
time period for which the individuals were followed. These ‘non-failures’ are called censored
observations and are a unique feature of time-to-event data.

Possible ways of quantifying and expressing time to recurrence follow (Example 19.1 data).

1. Mean time to recurrence The mean time to recurrence can only be computed using

Example 19.1 Hypothetical survival data
data = brstcan_hyp

Fig.  19.2  shows  the  time  from  first
occurrence  of  breast  cancer  to
recurrence  in  12  patients.  The  study
was carried out over a 5.5-year period,
with patients entering the study as they
were  diagnosed  and  treated  for  the
first occurrence. Once enrolled, not all
patients were followed for the rest of
the  study  period  because  some  died
(from other  diseases)  or  they  moved
away  from  the  study  location.  For
convenience,  all  patients  were
assumed  to  have  had  the  initial
diagnosis and treatment at the start of
a year  and events  (recurrence or loss
to study) occurred at the mid-point of
a  year.  In  reality,  this  would  not
normally be the case.

One  way  to  simplify  the  graphic
representation  of  these  12  people
would  be  to  express  all  recurrence
times as being relative to the time of
first diagnosis (Fig. 19.3).

Fig. 19.2 First diagnosis to recurrence

Fig. 19.3 Recurrence relative to first diagnosis
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data from individuals in which recurrence has been observed. Consequently, we can
only use data from 5 women  (mean survival=2.1 years).  The estimate will  have  a
downward bias because recurrence in women who had a long time to recurrence are
less likely to be observed. On the other hand, if the follow-up observation period is
long,  the mean suffers  from the fact  that  it  might  be heavily influenced  by a few
individuals  with  very  long  survival  times.  Time-to-event  data  often  have  an
asymmetrical distribution with a long right tail (ie right skew).

2. Median time to recurrence This can only be computed directly if at least 50% of the
individuals are observed to have the event  of  interest  and if  none of  the censored
observations were censored before the failure of the median individual (ie if they were
going to fail, they had a failure time at least  as large as the median). It  cannot be
computed for the data in Example 19.1. However, if it can be computed, the median is
not influenced by a few individuals having long times to recurrence in the same way
that the mean is.

3. Overall probability of recurrence The proportion of women having a recurrence of
the tumour could be computed, but it is not at all clear what constitutes a ‘negative’
individual (ie one who does not have a recurrence). Should the woman be required to
have  some  minimum  number  of  years  of  follow-up  to  be  considered  eligible  to
contribute to the denominator of the proportion?

4. n-year  survival  risk This  expresses  the  number  of  women  who  have  not  had  a
recurrence by the nth year. For each year (eg first, second) it can be computed based on
the women that were observed for that number of years. This approach is often used to
quantify survival of people diagnosed with various forms of cancer (eg 5-year survival
of breast cancer patients). The 2-year ‘survival’ in Example 19.1 is 0.78 (2 recurrences
among 9 women with either 2 complete years of follow-up or a failure at <2 years).

5. Incidence rate The number of recurrences relative to the accumulated person-years at
risk would be one way to use all of the available data. In some cases, the average time
to recurrence could be estimated from the incidence rate (see Section 4.5). However,
this  approach  assumes  that  the  incidence  rate  of  recurrence  remains  constant
throughout the follow-up period and this is often not the case with time-to-event data.
The  incidence  rate  in  Example  19.1  is  0.19  cases  per  person-year  (5  cases  in  26
person-years  of  follow-up  time—women who  no  longer  contribute  to  the  pool  of
person-years once they have experienced a recurrence).

The approaches outlined above identify 2 key problems to be considered when analysing time-
to-event data. First, many observations are censored; that is, the individual is not followed for a
length  of  time  sufficient  to  observe  the  event  of  interest  if  it  were  to  occur.  Second,  the
distribution of survival times is often not symmetrical, and might not even be unimodal. For
example, tumour recurrence might be common in the first year after first diagnosis and then
relatively rare for several years before becoming more common again as the person ages. These
issues are important when evaluating the effect of predictors on the time-to-event occurrence.

19.1.3 Censoring

Censoring is defined as the occurrence (or possible occurrence) of a failure when the individual
is not under observation. Censoring can arise in different ways as is summarised in Fig. 19.4.
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Right censoring occurs when a person is lost to a study, before the outcome of interest has
occurred. This might arise because the study ends before the event occurs or because it is lost to
follow-up during the study (eg the person moves to another city). Right censoring is the most
common form of censoring that needs to be dealt with in survival analyses.

Interval censoring might arise when an individual is only observed periodically throughout a
study period and the event of interest can only be determined by some form of testing carried
out at that examination. If examinations are conducted approximately every 6 months, and at
one examination (t4 in Fig. 19.4), it is determined that the event had happened in the preceding
6 months, all that is known is that the event occurred sometime between t3 and t4. The precise
time the event occurred is not known.

Left censoring is similar to interval censoring except that the ‘interval’ occurs at the start of the
study  (ie the event occurred in the individual before they entered the period of observation).
Consequently, the individual is not put in the study. Left censoring usually arises if the onset of
risk occurs before the start of the study. For example, if a study of tumour recurrence started 6
months  after  surgical  removal  of  an  initial  tumour  but  the  patient  was  found  to  have  a
recurrence at the 6-month examination, the individual would be left censored. (Note If multiple
failures are possible, the person might be put in the study and the left censoring then becomes
left truncation (see below).)

A related concept is that of truncation. While censoring relates to the possible occurrence of
outcome events  during  periods  when  the  individual  was  not  observed,  truncation  refers  to
periods of time in which nothing is known about the individual in terms of whether or not the
outcome occurred or what the predictors were. These periods of time might be referred to as

Fig. 19.4 Summary of censoring
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gaps.  In  cases  where multiple events are possible  (eg myocardial  infarctions),  you have no
knowledge of how many cases occurred during the gap. For events which can only occur once
(eg death), all that is known is that the event did not occur during the gap (or the person would
not  have  come  back  into  the  study).  Truncation  can  occur  throughout  a  study  (interval
truncation) or at the start of a study  (left truncation—also known as delayed entry). Right
truncation is the same as right censoring.

As noted above, the most common problem is with right censoring and it will be the only type
of censoring or truncation that  we deal  with in examples in this chapter.  A more complete
discussion of censoring and how the various forms are dealt with can be found in Chapter 4 of
Cleves et al (2008).

19.1.4 Evaluating the effect of factors on survival times

Because  time-to-event  data  are  continuous,  it  would be  tempting to  evaluate  the effects  of
factors on the time to the occurrence of an event using linear regression models. However, as
noted  above,  time-to-event  distributions  are  often  not  symmetrical,  and  might  not  even  be
unimodal. The assumption of normally distributed errors required for a linear regression model
would often be violated in these cases. (In extreme cases, a linear model might predict negative
survival times, which are impossible.)

Even if the distribution of the errors is (or can be made) approximately normal, the problem of
censored observations remains. In the case of cancer recurrence data, some individuals will be
lost to the study, either by withdrawing from the study (eg relocation to another city) or through
death from an unrelated cause. However, linear models may be used to analyse time-to-event
data,  provided there are few censored observations and the distribution of survival  times is
either normal or can be transformed to make them normal. Box-Cox transformation may help
with the latter problem.

19.1.5 General approaches to analysing survival data

There are 3 general approaches to analysing survival data:
1. non-parametric analyses.
2. semi-parametric models.
3. parametric models. 

These are discussed in much more detail later, but the essential features of each approach are
summarised here. 

In  a  non-parametric analysis,  we make  no  assumptions  about  the  distribution  of  survival
times, nor about the functional form of the relationship between a factor  (predictor) and the
survival time. Consequently, they are appropriate only for evaluating the effect of qualitative
(categorical) predictors.

In a  semi-parametric analysis, we make no assumption about the distribution of the survival
time, but merely use the survival time to order the observations in terms of time of occurrence
of the event. We then evaluate the probability of the event occurring at each of those time
points as a function of the predictors of interest. Because the time variable is used only to order
the observations, it makes no difference whether there was a large time interval or a small time
interval between successive events.
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In a parametric analysis, we replace the distributional assumption that the errors are normally
distributed (as required in a linear model) with a more appropriate distribution that reflects the
pattern of survival times. Because we specify a distribution for the survival times, the length of
the  interval  between  events  is  relevant  for  the  analysis.  Consequently,  if  the  assumed
distribution is correct, a parametric model may be more efficient than a semi-parametric model
(ie it makes better use of the available data).

19.2 NON-PARAMETRIC ANALYSES

As noted above, in a non-parametric analysis of survival data, we make no assumption about
either the distribution of survival times or the functional form of the relationship between a
predictor and survival. Hence, they can be used to compare survival experiences of groups of
individuals, but not to evaluate the effect of a continuous predictor on survival times. We will
look at 3 non-parametric methods for analysing survival data:

• actuarial life tables
• Kaplan-Meier estimator of the survivor function
• Nelson-Aalen estimator of the cumulative hazard function.

In the following section, we introduce the concepts of survivor and hazard functions. These will
be described more formally in Section 19.7.

19.3 ACTUARIAL LIFE TABLES

Life tables were originally developed to summarise long-term survival  data by dividing the
lifespan into short intervals in which the probability of dying was reasonably constant over the
time interval. (It certainly is not constant over an entire lifespan.) 

The requirements to create an actuarial life table are as follows.
• A clearly demarcated starting point to the period of risk  (eg birth, first diagnosis of a

disease, first exposure to a risk factor etc)
• A  well-defined  study  outcome  (death,  seroconversion,  pregnancy  diagnosis,  tumour

recurrence etc)
• Only one episode or event per individual (not multiple remissions or relapses)
• Losses to follow-up should be independent of the study outcome (individuals lost from

the study should have the same future experience as those that remain under observation)
• The risk of  the outcome remains constant  over calendar time  (no secular  (long-term)

changes in risk). This does not imply that risk stays the same in an individual over time.
Secular  changes  in  survival  rates  for  cancers  (eg due  to  better  therapies),  might  for
example, affect validity of studies of survivorship

• The risk of outcome must remain constant within the intervals used for constructing a life
table. Intervals of any length could be calculated to meet this requirement. In fact, the
intervals need not be of the same length.

19.3.1 Steps in constructing the actuarial life table 

Table 19.1 shows the columns required to build an actuarial life table, based on the data from
Example 19.1.
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Table 19.1 Actuarial life table

j tj-1 , tj lj wj rj dj qj pj Sj

1 0 < 1 12 1 11.5 1 0.087 0.913 0.913

2 1 < 2 10 2 9.0 1 0.111 0.889 0.812

3 2 < 3 7 3 5.5 2 0.364 0.636 0.516

4 3 < 4 2 0 2.0 1 0.500 0.500 0.258

5 4 < 5 1 1 0.5 0 0.000 1.000 0.258

where ...
j listing of time intervals (time intervals should be established a priori)
tj-1,tj time span covered in the interval
lj subjects at risk of failure at the start of the time interval     

lj = lj-1 – (wj-1 + dj-1)
wj subjects withdrawn during interval (censored observations)

Individuals  who  died  of  causes  other  than  the  condition  under  study  or  were
otherwise lost to follow up during that interval. Individuals who were still free of the
outcome when the study ended are counted as withdrawals in the last interval 

rj average number of subjects at risk during the current time interval      
rj = lj – (wj  /2)
Calculation  is  based  on  the  assumption  that  the  censored  observations  were
withdrawn, on average, at the mid-point of the interval

dj outcomes (failures) during the interval 
Number  experiencing  the  outcome  during  the  time  interval  (death,
seroconversion, relapse etc)

qj risk of event during interval     
qj = dj /rj

Probability  that  the  subject  will  develop  the  study  outcome  during  the  given
interval, conditional upon surviving without the outcome up to the start of the interval

pj probability of surviving the interval     
pj = 1–qj

Conditional  probability  of  surviving  the  time  interval,  given  survival  to  the
beginning of the interval

Sj cumulative survival probability to the end of the interval     
Sj = (p1)(p2)(p3)....(pj)
Probability of surviving without experiencing the event of interest from the start of  
follow-up through the end of the current interval in the life table

The risk of an individual experiencing the event of interest during the interval  (qj) divided by
the length of the interval is also known as the hazard. The cumulative survival probability (Sj)
is also known as the  survivor function.  These 2 quantities are key elements of all survival
analyses. An actuarial life table (based on 1-year intervals) for individuals in the heart attack
dataset who had had previous coronary artery bypass surgery is shown in Example 19.2.
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Example 19.2 Actuarial estimates of survival
data = mi (restricted to previous coronary artery bypass patients)

Data on survival of individuals who had previously had coronary artery coronary angioplasty and then
experienced a heart attack are shown below. An actuarial life table estimate of the cumulative survivor
function based on 1-year intervals is presented here.

Actuarial life table

Interval
Beg.
total Deaths Lost

Cum.
Survival SE 95% CI    

0   365 391 118 0 0.698 0.023 0.650 0.741

365   730 273 50 0 0.570 0.025 0.520 0.618

730  1095 223 38 0 0.473 0.025 0.423 0.522

1095  1460 185 18 49 0.420 0.025 0.370 0.469

1460  1825 118 21 3 0.344 0.026 0.295 0.395

1825  2190 94 11 38 0.294 0.026 0.244 0.345

2190  2555 45 6 0 0.255 0.027 0.204 0.309

2555  2920 39 3 34 0.220 0.030 0.165 0.281

2920  3285 2 0 2 0.220 0.030 0.165 0.281

The estimate of the cumulative probability of survival  up to day 3,285 (22%) is very close to the
estimate of the cumulative survival probability at the right-hand end of the graph (based on the Kaplan-
Meier survivor function) shown in Fig. 19.5. 

Fig. 19.5 Kaplan-Meier survivor function (95% CI)
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19.4 KAPLAN-MEIER ESTIMATE OF SURVIVOR FUNCTION

19.4.1 Overview and comparison to actuarial method 

The Kaplan-Meier (K-M)  (Kaplan and Meier, 1958) estimate of the survivor function is also
known as the product-limit estimate. It has 2 important differences from the actuarial estimate
described above.

1. The  K-M  method  does  not  depend  on  discrete  time  intervals  constructed  by  the
investigator. Each row in the table (hence each time interval) is defined by the time at
which the next subject (or subjects, in the case of 2 events happening at the same time)
experiences the event of interest.

2. Censored  observations  (losses  to  follow up  etc)  between  2  events  are  counted  as
individuals at risk only up to the time of the earlier of the 2 events.

The K-M method has the advantage that it avoids the assumption that withdrawals occurred
uniformly throughout the interval (ie the actuarial assumption) and that the risk is constant over
the arbitrarily selected interval. (The only remaining assumption about withdrawals is that they
have the same future experiences as those remaining under observation.)

19.4.2 Construction of the K-M life table 

An ordered  list  of  the event  times is  constructed from the sample,  with subjects  ranked in
ascending order of the time of the event of interest. Based on these, Table 19.2 can be filled out
(using the data from Example 19.1).

Table 19.2 Kaplan-Meier life table

j tj rj dj wj qj pj Sj

1 0.5 12 1 1 0.083 0.917 0.917

2 1.5 10 1 2 0.100 0.900 0.825

3 2.5 7 2 3 0.286 0.714 0.589

4 3.5 2 1 0 0.500 0.500 0.295

5 4.5 1 0 1 0.000 1.000 0.295

where:
j listing of time points
tj time of event
rj subjects at risk of event at time tj

rj = rj-1 – (dj-1 + wj-1)
Includes all subjects known to be alive and in the study (not censored) at the time of
the event at time tj, plus the number experiencing the event at time tj. When censored
times are tied with event times, the event is usually assumed to have occurred first

dj number of events at time tj
wj number of censored observations at time tj

Censoring between time tj and tj+1 is assumed to have happened at tj so the individuals
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will not be considered at risk at time tj+1

qj risk of event at time tj
qj = dj /rj

Also known as the instantaneous hazard, this is the probability of the event at time tj, 
conditional upon survival to time tj

pj probability of survival at time tj
pj = 1–qj

Sj cumulative probability of surviving up to and including time tj
Sj = (p1)(p2)(p3)....(pj)

Survivor  functions  are  usually  presented  graphically  as  step  functions  of  the  cumulative
survival over time. They start at one and monotonically descend (ie they never go up) as time
proceeds. Fig. 19.5 shows a Kaplan-Meier survivor function (and its 95% confidence intervals)
for individuals in the heart  attack data study who had had previous coronary artery bypass
surgery. A tabular listing of the survivor function would be far too long to be useful. Some
issues related to the presentation of survival plots have been presented  (Pocock et al, 2002),
including a suggestion that plots of failure functions (see Section 19.7) might be more useful.

19.4.3 The Kaplan-Meier function and estimator

The Kaplan-Meier estimator plays an important role in many procedures used for the analysis
of survival data. This section describes the estimator and resulting function in slightly more
technical detail.

Assume the following:
tj j=1,...,n are failure times
t* is the final failure time = max(tj)
dj the number of failures at time tj

rj the number of subjects at risk at time tj

Ik time (0, t*) is divided into many small intervals (Ik)
pk the probability of surviving through Ik if alive at the start of Ik 

As Ik gets very small, then pk=1 if there is no failure during the interval and pk=(rj-dj)/rj if tj falls
in the interval Ik. If there are ties between failures and censored observations, it is assumed that
the failures occurred first (ie the censored observations are included in the ‘at-risk’ group).

The Kaplan-Meier estimator of survival S(t) at time t is defined as:

S t =∏
j : t j≤t

r j−d j/r j for 0≤t≤t *
Eq 19.1

The Kaplan-Meier function is therefore a  piecewise constant (ie remains constant over time
intervals), non-increasing (ie it can be flat or go down, but never up) and right-continuous (ie
after an event, it remains constant up until, but not including, the next event) function on the
interval (0, t*). It only changes value at failure times (tj).

The most commonly used standard error (SE) of  S(t) is attributed to Greenwood (reported in
Collett (2003)).  Because survival probabilities often have a very skewed distribution, it is not
usual to compute a confidence interval  as an estimate  ±1.96(SE). Consequently,  confidence
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intervals are computed by estimating S(t) and its SE on either a natural log (ln) scale or a ln(-ln)
scale,  and then back-transforming the estimates to the original  time scale.  (Note the ln(-ln)
transformation maps probabilities (0,1) onto (-∞, ∞).)

19.5 NELSON-AALEN ESTIMATE OF CUMULATIVE HAZARD

In the 2 sections above, we introduced the concept of ‘hazard’ being the probability of failure at
a point in time, given that the individual had survived up to that time point. This is discussed
more formally in Section 19.7, but for now, we note that a cumulative hazard (Nelson-Aalen
estimate) can also be computed. The cumulative hazard is the expected number of outcomes for
one subject occurring up to a point in time  (assuming that the outcome could occur multiple
times in an individual). For example, in the heart  attack data,  the cumulative hazard at day
3,000 would be the sum of all the individual hazards  (computed at failure times) up to day
3,000.

The cumulative hazard can range from 0 to infinity (as the time period gets longer, the expected
number of outcomes keeps going up with no upper bound). A graph of the cumulative hazard is,
like  a  graph  of  the  survivor  function,  a  way  of  expressing  the  overall  failure  (survival)
experience of the population. Fig. 19.6 shows the cumulative hazard (and 95% CI) for the heart
attack data (once again restricted to patients who had previous bypass surgery).

Using the notation from Section 19.4.3, the Nelson-Aalen estimator of the cumulative hazard
H(t) at time t is computed as:

H t = ∑
j : t j≤ t

d j /r j for 0≤t≤t *
Eq 19.2

As with the Kaplan-Meier estimator of S(t), SE can be determined and confidence intervals are
computed on a ln scale and back transformed.

19.6 STATISTICAL INFERENCE IN NON-PARAMETRIC ANALYSES

19.6.1 Confidence intervals and
‘point-in-time’ comparisons

Although  the  formulae  have  not
been shown, SEs of the cumulative
survival estimates can be computed
from  actuarial  or  Kaplan-Meier
survivor  functions  at  any  point  in
time. These SEs can be used to test
the  difference  between  survivor
functions  (usually  on  a  log  scale)
for 2  (or more) populations at any
point  using  a  standard  normal  Z-
test. However, there are potentially
an  infinite  number  of  points  at
which  the  cumulative  survival
probabilities  could  be  computed.

Fig. 19.6 Nelson-Aalen cumulative hazard function 
(with 95% confidence interval)
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This  could  lead  to  a  serious  problem  of  ‘data  snooping’  or  multiple  comparisons  and
consequently,  ‘point-in-time’ comparisons are only valid if it  is possible to identify specific
times at which the comparison of survival probabilities is warranted. These should be specified
a priori (ie before  the  data  are  collected) and  if  multiple  time points  are  evaluated,  some
adjustment for multiple comparisons must be made. 

19.6.2 Tests of the overall survival curve 

There are several tests that can be used to determine whether the overall survivor functions in 2
(or more) groups are equal. They are all based on a series of contingency tables of observed and
expected events for each group at each time point at which an event occurred (assuming the test
is based on a Kaplan-Meier survivor function). The observed number of events at each time
point is compared with the expected number and a χ2 test computed. (Under the H0 that there is
no difference between the 2 groups, the expected number of events is a function of the amount
of follow-up time in each group.) Consequently, the tests can be viewed as the survival analysis
equivalent of the Mantel-Haenszel test for stratified data.

All of the tests assume that the ratio of risks of the event of interest for the 2 groups is constant
across all strata  (equivalent to the no-interaction assumption in a Mantel-Haenszel test). This
assumption is known as the ‘proportional hazards’ assumption (you will see more of this later).
If  the  survivor  functions  cross  over,  then  it  is  clear  that  this  assumption  is  violated.  The
differences among the tests depend on the weights used to combine the estimates derived at
each point in time. 

Log-rank test
The log-rank test is the simplest  as it  assigns equal weight  to each point  estimate  (weights
w(tj)=1).  Consequently,  it  is  equivalent  to  doing  a  standard  Mantel-Haenszel  procedure  to
combine the estimates (Example 19.3).

Wilcoxon test
This test weights the intervals according to the sample size (w(tj)=nj). Consequently, it is more
sensitive to differences early in the time period when the sample size is larger. Some advocate

Example 19.3 Log-rank test
data = mi (restricted to previous coronary artery bypass patients)

A log-rank test  for  equality of survivor  functions was  used to compare the survival  experience of
married and not-married individuals. Based on the follow-up time in each of the 2 groups, one would
expect to see 94.3 and 165.7 events in the not-married and married groups, respectively. However, we
observed  114  and  146  respectively,  indicating  an  excess  of  deaths  in  the  not-married  group.  The
resultant P-value for this comparison was 0.011.

Married
Events

observed
Events 

expected

no 114 94.34

yes 146 165.66

Total 260 260.00
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using both Wilcoxon and the log-rank test to see if differences in the survival curves occur early
or late in the time period studied. The Wilcoxon test is less sensitive than the log-rank test to the
assumption of proportional hazards, but will be unreliable if the censoring patterns vary across
the groups being compared.

Other tests
Other  non-parametric  tests  include  the  Cox  test,  the  Tarone-Ware  test,  and  the  Peto-Peto-
Prentice test. The first is based on a Cox regression procedure (see Section 19.8), while the
Tarone-Ware weights the stratum-specific estimates by the square root of the population at risk
at each time point. The Peto-Peto-Prentice test weights the stratum-specific estimates by the
overall  survival  experience  (an  estimate  of  S(t) just  before  the  time point  of  interest),  and
consequently reduces the influence of different censoring patterns between the groups.

Example 19.4 shows separate survivor functions for married and not-married individuals who
had previously had bypass surgery. The results from several of the tests for the overall equality
of the survivor functions are also presented.

19.7 SURVIVOR, FAILURE AND HAZARD FUNCTIONS

The  concepts  of  survivor  and  hazard  functions  were  introduced  when  we  looked  at  non-
parametric methods of analysis of survival data. Before proceeding with semi-parametric and
parametric analyses, we need to develop a more complete understanding of these and related
functions.

Example 19.4 Comparing survivor functions
data = mi (restricted to previous coronary artery bypass patients)

Fig. 19.7 shows the Kaplan-Meier survivor functions for married and not-married individuals.

Not-married  individuals  appeared  to  have  shorter  survival  times  (lower  cumulative  survival
probabilities). The statistical significance of the test results for the difference between these 2 survivor
functions are shown below. All statistical tests provide comparable results.

Test P-value

log-rank 0.011

Wilcoxon 0.010

Cox 0.012

Tarone-Ware 0.009

Peto-Peto-Prentice 0.011

Fig. 19.7 K-M survival curves, by marital status
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19.7.1 Survivor function 

The survivor function  (S(t)) is the probability that an individual’s survival time  (T) (or more
generally, the time-to-event occurrence) will exceed some specified time t. It can be written as:

S t = pT ≥t  Eq 19.3

As noted, survivor functions are non-increasing. They start at 1 and drop to 0 if all individuals
ultimately experience the event of interest.  Note By convention, cumulative functions will be
designated  by  upper-case  letters  and  density  functions  by  lower-case  letters.  The  survivor
function is a cumulative function in that it represents the cumulative probability of surviving up
to a point in time t.

19.7.2 Failure function 

The failure function (F(t)) is the probability of not surviving past time t. Consequently, it is:

F t =1−S t  Eq 19.4

19.7.3 Probability density function 

The probability density function  (f(t)) describes the distribution of survival times and is the
slope (derivative) of the failure function. Consequently, it represents the instantaneous rate at
which failures are occurring in the study population at a point in time. It is estimated by taking
the derivative of a smoothed estimate of the failure function with respect to time (Fig. 19.8).

19.7.4 Hazard function 

The hazard function (h(t)) is the probability of an event occurring at time t given that it had not
occurred up to time  t. With time divided into discrete intervals  (as in a life table), it can be
expressed as:

h t = p T =t∣T ≥t  Eq 19.5

With time on a continuous scale, the hazard function describes the instantaneous probability of
an event occurring at a point in time given that it did not occur previously. The hazard function
is:

h t = lim
 t 0

p t≤Tt t∣T≥t 
 t Eq 19.6

The hazard  function  can  also  be computed  as  the  ratio  of  the  probability  density  function
(which represents the rate at which failures are occurring at a point in time) and the survivor
function (which represents the probability of surviving up to that point in time). It can further
be expressed as:

h t =
f t 
S t 

= [−
d S t 

dt
S t  ]=−[ d

dt
ln S t ]

Eq 19.7
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Hazard functions are always non-negative (ie greater than or equal to zero) and have no upper
bound (their value will change with the time scale used).

19.7.5 Cumulative hazard function 

The  cumulative  hazard  (H(t)), also  known  as  the  integrated  hazard,  represents  the
accumulation of hazard over time. It can be computed as the integral of the hazard function but
is more conveniently found using the following equation.

H t =−1n S t  Eq 19.8

As noted, the cumulative hazard represents the expected number of outcomes of interest that
would occur in an individual (assuming that repeat occurrences were possible). For example, if
you were studying the survival of lung cancer patients who already have metastases, and at 3
years you find that the cumulative hazard=2.7 [H(t3)=2.7], then that would suggest  that in 3
years after initial diagnosis, we would expect to see 2.7 deaths. Obviously, only one death is
possible, but it provides an indication that the probability of the individual surviving to 3 years
post-diagnosis is very low.

19.7.6 Relationships among survivor, failure, and hazard functions

Some of the relationships between the survivor, failure, and hazard functions have already been
shown  in  previous  sections.  As  each  of  these  functions  determines  the  survival  time

Fig. 19.8 Survivor function (dashed stepped line). Failure function (solid 
stepped line). Smoothed failure function (dashed curved line) and tangent of  
smoothed failure function (short solid line) giving the slope at a single point
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distribution, if one of them is known, the others can all be computed. 

f t =
dF t 

dt
h t =

dH t 
dt

ht =
f t 
S t  Eq 19.9

Note f(t) and h(t) are derivatives of F(t) and H(t) which are step functions. Consequently, the
step functions are smoothed before the derivative is taken.

F t =1−S t  H t =−ln S t  S t =e−H t 
Eq 19.10

Note The  last  expression  for  S(t) (above) gives  the  Flemming-Harrington  estimate  of  the
survivor function when the Nelson-Aalen estimate is used for H(t). This estimate will be larger
than the Kaplan-Meier estimate of  S(t) computed directly, but will be close if the number of
failures is small relative to the number of individuals at risk.

While survival experiences for groups of individuals are usually shown by plotting the survivor
function, the hazard function plays a key role in semi-parametric and parametric analyses.

19.7.7 Examples of hazard functions 

A wide variety of hazard functions has been studied, but constant and Weibull functions are the
2 most commonly encountered in survival analyses. Other forms used include the log-normal,
log-logistic, gamma, and Gompertz. The names of these functions refer to the corresponding
survival time distributions (see Section 19.9).

Constant hazard 
A constant hazard is one which does not change over time. With a constant hazard  (λ), the
survivor function drops exponentially and survival times will have an exponential distribution.
The hazard h(t), density f(t) and survivor S(t) functions are:

h t = f t = e− t S t =e−t
Eq 19.11

The appropriateness of an exponential model can be assessed by plotting the cumulative hazard
H(t) (or equivalently -lnS(t)) against t. If the exponential model is appropriate, the line will be
straight. Fig. 19.9 shows a survivor
function  derived  from  a  constant
hazard of λ=0.01 per day.

Weibull hazard
A Weibull hazard function depends
on  2  non-negative  parameters:  a
scale  parameter  (λ) and  a  shape
parameter  (p). If  p=1, the resulting
survival  time  distribution  is  the
exponential  distribution.  If  p<1,
then the hazard function decreases
monotonically.  If  p>1,  then  the
function  is  monotonically
increasing with a value between 1
and  2  producing  a  curve  that
increases at a decreasing rate,  p=2

Fig. 19.9 Survivor function from a constant hazard 
(h(t)=0.01)
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produces a hazard function that increases linearly with time and p>2 produces a function that
increases at an ever-increasing rate. The hazard and survivor functions are:

h t = pt  p−1 S t =exp − t p
 Eq 19.12

Fig.  19.10 shows Weibull  hazard functions  for  several  values  of  p.  An increasing  Weibull
hazard function (p>2) might be appropriate for the hazard of death for people over 60 years of
age—the hazard  increases  and  does  so  at  an  increasing  rate.  A decreasing  Weibull  hazard
function (p<1) might be appropriate for the survival of individuals after cardiac surgery when
the hazard is highest right after surgery and then decreases (at least in the short term).

The suitability of the Weibull distribution or hazard can be assessed by evaluating the log-
cumulative hazard plot [ln(H(t)) versus ln(t)]. If the data fit a Weibull distribution, the line on
the graph should be approximately straight. The intercept and the slope of the line will be ln (λ)
and  p,  respectively.  Parametric  survival  models  based  on  exponential  and  Weibull  hazard
functions are described in Section 19.9.

Other hazard functions
One of the limitations of the Weibull hazard function is that the hazard can only increase or
decrease over time. Gamma, log-normal and log-logistic hazards can be used to deal with the
situation in which the risk first increases and then decreases  (or vice versa). Such a function
would be appropriate in a situation where the risk of death was high early in an illness, drops to
a  lower  level  and  then  increases again  over  time.  For  example,  a  new  infection  with
Mycobacterium tuberculosis might produce a high risk of death early after infection, followed
by a sharp reduction in the risk and then a gradually increasing risk of death from chronic
tuberculosis. Detailed descriptions can be found in survival analysis texts (Cleves et al, 2008;
Collett, 2003; Hosmer and Lemeshow, 2008; Therneau and Grambsch, 2000).

Fig. 19.10 Weibull hazard functions for various values of shape parameter (p)
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19.8 SEMI-PARAMETRIC ANALYSES

Non-parametric  analyses  are limited to evaluating the effect  of  one, or  a  small  number of,
qualitative variable(s) on survival times. However, we often want to simultaneously evaluate
the effects of multiple continuous or categorical explanatory variables. This requires that we
model the survival data using a multivariable technique. The most commonly used form of
multivariable analysis for survival data is the proportional hazards model (also known as the
Cox regression model)  (Cox, 1972). It is a semi-parametric model in that we do not have to
assume any specific functional form for the hazard, but we do model the ratio of hazards as a
linear function of the predictors.

19.8.1 Cox proportional hazards model

The proportional hazards model is based on the assumption that the hazard for an individual is a
product  of  a  baseline  hazard  (h0) and  an  exponential  function  of  a  series  of  explanatory
variables. 

h t =h0 t e
 X

Eq 19.13

where βX= β1X1 + β2X2 + ...+ βk Xk. Equivalently, it can be expressed as:

HR=
ht 
h0 t 

=e X

Eq 19.14

where HR is the hazard ratio. The first formulation emphasises that the hazard for an individual
is always a multiple  (eβX) of a baseline hazard (see Fig.  19.11; left panel), while the second
formulation shows that it is the ratio of the hazards which is assumed to be constant over time.
On the log scale, the log hazard is a constant  (βX) above or below the baseline log hazard as
shown below and in Fig. 19.11 (right panel).

ln h t =ln h0 t  X Eq 19.15

Two important features of this model are that no assumption is made about the shape of the
baseline hazard (h0) and that the model has no intercept. In fact, the intercept  (which in most
regression models reflects the value of the outcome when all covariates (predictors) are zero) is
subsumed into the baseline hazard which represents the hazard when all covariates are zero.

19.8.2 Hazard ratios

Based  on  Eq  19.14,  the  lnHR=βX.  Consequently,  exponentiating  the  coefficient  from  a
proportional hazards model produces a hazard ratio. Hazard ratios have interpretations similar to
odds ratios  and risk ratios.  They represent the effect  of a unit change in the predictor on the
frequency of the outcome (which in this case is measured as a hazard). Note You will sometimes
encounter hazard ratios referred to as relative risks (or risk ratios), but this is not a correct use of
the term and should be avoided. For example, if factor X1 has an HR=2, then a unit change in X1

will  double the hazard of  the  outcome.  If  X1 is  a  dichotomous  variable  and,  because we are
assuming that this HR is constant (over time), this means that, at any point during the risk period,
‘failures’ will be occurring at twice the rate in individuals with X1=1 than in individuals with X1=0.
This is not equivalent to a doubling of the risk over the full study period.
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Example 19.5 provides some examples of HRs derived from the Worcester Heart Attack Study
(WHAS). Patients admitted to 1 of 10 hospitals in the greater Worcester, Massachusetts area
with an acute myocardial infarction were followed for many years after discharge (the longest
follow-up period in the data provided was slightly over 8 years). A few factors that might affect
survival following the myocardial infarction, and which are used in examples in this chapter,
are described in Table 19.3. (Note The variables listed are just a small subset of the variables
recorded in the WHAS database.) The dataset (-mi-) is described more fully in Chapter 31. 

Table 19.3 Key variables in -mi- dataset

Variable Description

id patient id (1–2965)

hosp hospital id (1–10)

surv_mi survival time from day of admission to hospital (days)

died observation time ended in death or censoring (1=died, 0=censored)

sex gender (1=male, 0=female)

age age at admission (years)

white race (1=white, 0=other)

mar_c2 married (1=yes, 0=no)

card cardiac arrest during hospitalisation (1=yes, 0=no)

ptca coronary angioplasty during hospitalisation (1=yes, 0=no)

Fig. 19.11 Effect of a hypothetical factor on a baseline hazard shown on 2 
scales—hazard scale in left panel and on log hazard scale in right
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Example 19.5 Cox proportional hazards model
data = mi

A Cox proportional hazards model was fit to the heart attack data with sex, age, marital status, cardiac
arrest,  and  coronary  angioplasty  as  predictors.  The  first  table  presents  the  model  in  terms  of
coefficients.
No. of subjects = 2851
No. of failures = 1480 Number of obs = 2851
Time at risk = 3669144 LR χ2

(5) = 1298.51
Log likelihood = -10452.582 Prob > χ2 = 0.0000

Predictor Coef SE Z P 95% CI

sex 0.200 0.058 3.45 0.001 0.087 0.314

age 0.051 0.002 20.42 0.000 0.046 0.055

mar_c2 -0.208 0.057 -3.65 0.000 -0.320 -0.096

card 1.724 0.090 19.22 0.000 1.548 1.900

ptca -0.919 0.063 -14.67 0.000 -1.042 -0.796

Being male, and having a cardiac arrest while in the hospital both increased the log hazard of death (by
0.200 and 1.724 units, respectively). Being married reduced the log hazard by 0.208 units while having
coronary angioplasty while in the hospital reduced it by 0.919 units. For each additional year of age (at
admission), the log hazard went up by 0.051 units. As we rarely think in terms of log hazards, it is
more common to present the results as HRs.

Predictor HR SE Z P 95% CI

sex 1.222 0.071 3.45 0.001 1.091 1.369

age 1.052 0.003 20.42 0.000 1.047 1.057

mar_c2 0.812 0.046 -3.65 0.000 0.727 0.908

card 5.606 0.503 19.22 0.000 4.702 6.684

ptca 0.399

Here  it  appears  that  being  male
increased the hazard of death by 1.2
times.  The  interpretation  of  this
effect  is  that  at  any  point  after
admission to  hospital,  deaths  were
occurring  at  a  20% higher  rate  in
males  than  in  females.  Similarly,
for each additional year of age, the
hazard  of  death  rose  by
approximately  5%.  A  pair  of
Kaplan-Meier  survivor  functions
(one  for  each  gender)  shows  that
males had a higher hazard of death
and  that  this  effect  remained
relatively  constant  over  the  whole
study  period.  Graphs  for  cardiac
arrest  (yes/no)  or  coronary
angioplasty  (yes/no)  would  not
show such a constant effect (discussed in Section 19.8.10).

Fig. 19.12 K-M survival estimates, by sex 
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19.8.3 Fitting the Cox proportional hazards model

Obtaining  partial  maximum  likelihood  estimates  of  the  parameters  in  a  Cox  proportional
hazards model requires an iterative estimation procedure  (the Newton-Raphson procedure is
most commonly used). As with a non-parametric Kaplan-Meier estimation procedure,  a Cox
model is only evaluated at the times at which failures occur. In fact, fitting a Cox model with no
predictors produces exactly the same survival curve as a Kaplan-Meier estimation does. In both
procedures, it is not the actual times at which failures occur which are important, but the order
in which they occur.

The estimation is based on the partial (profile, conditional) likelihood function, which has a
different interpretation than the usual likelihood function (as described in Example 19.6), but is
used in the same way for statistical inference. 

19.8.4 Handling of ties

Because the order in which failures occur is critical for conducting the analysis, there must be a
way of handling the problem of 2 (or more) failures being recorded at the same time. Details of
various methods of dealing with ties can be found in texts on survival analysis but they fall into

Example 19.6 Partial likelihoods for a Cox model
data = hypothetical time to death following diagnosis of lung cancer in 20 people

Assume that you are studying the effect of age on survival in lung cancer patients and the data, sorted
by time to death, were as follows:

Person Time to death (mo) Age at diagnosis (yrs)

1 3 59.6

2 8 68.1

... ... ...

20 63 65.7

For the first person, a maximum likelihood procedure would ask the question ‘What was the probability
of this person dying at  3 months,  given that s/he was 59.6 years  old at the time of diagnosis?’ In
contrast, a partial likelihood procedure asks the question ‘Given that a death occurred at 3 months, what
was the probability that it was person #1 (given the age of the person)?’ This likelihood can be written
as follows.

 
L1=

h13

h13h2 3...h203
=

h 03e∗59.6

h0 3e∗59.6
...h0 3e∗65.7

=
e∗59.6

e∗59.6
...e∗65.7

The partial likelihood of the first failure being person #1 is that person’s likelihood relative to the sum
of all of the likelihoods.  For the second person, the partial likelihood is

L2=
h2 8

h2 8h38...h208
=

e∗68.1

e∗68.1...e∗65.7

The product of the partial likelihoods is the likelihood of the model. Note The analysis only depends
on the sequence of events (not the actual time) and that the baseline hazard has no effect because it is
common to all individuals.
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2 general approaches. The first is called a marginal calculation or continuous-time calculation
and is based on the assumption that the timing of the events was not really tied, but simply due
to  the  fact  that  the  timing  of  the  failure  was  not  recorded  with  sufficient  precision  to
differentiate  among ‘tied’  observations.  The second is called the  partial  calculation and is
based  on  the  assumption  that  the  events  were  actually  tied  and  treats  the  problem  as  a
multinomial problem. 

Exact  calculation  of  the  likelihood  function  under  either  assumption  is  computationally
demanding (particularly for partial calculations) and may be slow in large datasets with many
ties. Two approximate methods have been developed for marginal calculations. The Breslow
method is simplest and is adequate if there are not a lot of ties. The Efron method provides a
closer approximation to the exact calculation. An approximation attributed to Cox can be used
for  partial  calculations.  However,  for  a  moderate  dataset  such  as  -mi-,  exact  calculation
methods (marginal or partial) are feasible. In this case, the exact methods and the Breslow and
Efron approximations all produce very similar results (data not shown). Because of the general
superiority of the Efron method compared with the Breslow method, this approach will be used
in all subsequent Cox models in this chapter.

19.8.5 Baseline hazard

Although, as noted above, no assumption is made about the baseline hazard (h0) and the Cox
model does not estimate it directly, an estimate of it can be derived conditional on the set of
coefficients in the estimated model. This baseline hazard represents the hazard in an individual
for  whom  all  predictors  equal  zero.  For  it  to  be  meaningful,  it  is  important  that  X=0  is
reasonable for all predictors. If computed from the -mi- data using the model shown in Example
19.5 (with age rescaled to a baseline of 60 years), this would represent the daily hazard of death
in a 60-year-old, not-married female who had neither coronary angioplasty nor a cardiac arrest
while in hospital.

The  baseline  hazard  can  only  be
estimated  on  days  on  which
failures  occur,  and  the  estimate
will bounce around quite a lot from
day  to  day  (particularly  once  the
surviving  population  at  risk
becomes small). Consequently, it is
necessary  to  smooth  the  estimate
of the baseline hazard  and this is
shown  in  Fig.  19.13.  (Note
relatively  little  smoothing  was
applied  because  using  a  wider
bandwidth  masks  the  initial  high
hazard.) The initial daily hazard of
death in this ‘baseline’ person was
about 0.0015 (0.15% per day) but,
by  approximately  one  year  after
initial  hospitalisation,  it  had  dropped  to  approximately  0.0003  (0.03%  per  day), where  it
remained. It is important to note that this reflects the probability of death among the pool of
individuals remaining alive at any specific time. It does not necessarily indicate that the hazard

Fig. 19.13 Smoothed estimate of baseline hazard
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for  an  individual  remains  constant  after  one  year.  This  relatively  constant  hazard  is  being
observed in a population that is increasingly made up of individuals unlikely to ‘fail’ (die). This
issue of the nature of the population changing is discussed further  in Section  19.11 (frailty
models). 

19.8.6 Model-building

In  general,  model-building  procedures  for  Cox  models  are  similar  to  those  used  for  other
regression-type  models.  Wald  tests  and  likelihood  ratio  tests  can  be  used  to  evaluate  the
significance of individual predictors or groups of predictors. Confounding and interaction can
be assessed using methods presented for other regression-type models. Because the explanatory
variables  are related  to the logarithm of the hazard ratio,  it  follows that  interaction will  be
assessed on a multiplicative scale. There are,  however,  2 issues that are specific to survival
models:  stratified  analysis to  allow  for  different  baseline  hazards  in  different  groups  of
individuals in the study, and the possibility of including time-varying covariates.

19.8.7 Stratified analysis

Although we made no assumption about the shape of the baseline hazard, we have assumed that
it is appropriate for an individual with all Xj=0. Let’s consider the effect of gender on the hazard
of death in the MI data. As we obtained a significant  HR for -sex-, we would assume that it
multiplies the  h0 by the  HR and that this effect was constant over time. If we had reason to
believe that the shape of the hazard was different in males compared with females, we could
stratify the analysis on -sex- and allow for separate estimates of the baseline hazard in each
group. 

In  a  stratified  Cox  model,  different  baseline  hazards  (h0j(t))  are  assumed  across  groups  of
individuals to yield the following hazard function for the jth group.

h jt =h0 jt  e X

Eq. 19.16

The difference from the unstratified model (Eq 19.13) is only in the baseline hazards whereas
the regression term  eβX is unchanged.  Thus, the effects of predictors  on  HRs relative to the
baseline hazard are assumed to be equal across all strata. Stratum-level predictors cannot be
assessed in a stratified model because their effects will be absorbed in the baseline hazards.
However,  you  can include interactions between a covariate  (eg -mar_c2-)  and a stratifying
variable (eg -sex-). Example 19.7 shows a stratified (by sex) analysis of the -mi- data with an
-mar_c2- by -sex- interaction included. (Note Stratified analyses provide one means of dealing
with clustered data—by stratifying on the clustering variable.  Dealing with clustered data is
discussed further in Section 19.11.) 

19.8.8 Time-varying covariates

Until now, we have focused on exposure factors that do not change their value over time and
we  have  assumed that  the  effect  of  a  factor  was  constant  over  time  (proportional  hazards
assumption).  However,  survival  analysis  gives  us  the  opportunity  to  relax  both  of  these
conditions. The terminology used with time-varying covariates may be confusing, so we will
distinguish between time-varying predictors and time-varying effects.
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Given the long-term nature of many survival studies, it is conceivable that the values of some of
those predictors might change over time. These are time-varying predictors. For example, in the
heart attack data, the location of the patient (in the hospital vs discharged) changed.

On the other hand, a predictor may remain constant, but its effect may change over time. These
are time-varying effects. For example, having a cardiac arrest in the hospital might be constant
for virtually the entire follow-up period (assuming that arrests occurred soon after admission),
but the effect of that arrest on the probability of survival might change over time. It would be
reasonable  to assume that  it  would greatly increase  the hazard of  death in the time period
immediately after its occurrence, but that this negative effect might be reduced over time. If this
is true, the assumption of proportional hazards is violated.

Time-varying predictors
A  time-varying  predictor  representing  the  location  of  the  patient  (-disch-=in  hospital  vs
discharged)  can  be  computed  and  added  to  data  that  have  been  restructured  to  allow  for
multiple time periods for each individual. (In this case there are 2 time periods: in the hospital
vs discharged. Patients who die in hospital will have only 1 record.) This predictor can then be
used to determine how a patient’s hazard of dying changes when they are discharged from
hospital. Example 19.8 shows both the data restructuring and the Cox model for the evaluation
of -disch- as a time-varying predictor.

Events that occurred during hospitalisation (eg cardiac arrest, cardiac catheterisation, coronary
angioplasty)  could be analysed  in a similar manner to study their impact on survival while
hospitalised. For example, the effect of coronary angioplasty on survival (until discharge) could
be evaluated by splitting the time in the hospital into 2 periods (pre- and post-angioplasty) for
patients who had the procedure. No change would be made to the records for patients who did
not have angioplasty. The effect of angioplasty on time to death or discharge (which would now
be the censoring event) could then be evaluated.

Example 19.7 Stratified Cox proportional hazards model
data = mi

A stratified (by sex) model was fit with a sex by marital status (-mar_c2-) term included.

No. of subjects = 2851
No. of failures = 1480 Number of obs = 2851
Time at risk = 3669144 LR χ2

(5) = 1252.78
Log likelihood = -9419.3796 Prob > χ2 = 0.0000

Predictor Coef    SE Z   P 95% CI

mar_c2 -0.109 0.082 -1.32 0.186 -0.270 0.052

mar*sex -0.191 0.112 -1.70 0.089 -0.410 0.029

age 0.051 0.002 20.46 0.000 0.046 0.056

card 1.746 0.090 19.49 0.000 1.570 1.921

ptca -0.925 0.063 -14.76 0.000 -1.047 -0.802

The main effect of -mar_c2-, which is now the effect of -mar_c2- in females (sex=0), is completely
non-significant. The interaction terms produce a P-value of 0.089, which suggests that there is some
evidence that marital status may have different effects in males compared with females.
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Time-varying effects
A time-varying effect represents an interaction between a predictor and time (the effect of the
predictor depends on what time point you are looking at). Effects may change at discrete points
in time or may change continuously over time. A continually changing effect may change in a

Example 19.8 Time-varying predictor
data = mi

Data from the first 3 patients in the heart attack dataset are as follows.

observation period

patient time in hospital start end outcome

1 4 0 2918 0 = censored

2 5 0 2911 0 = censored

3 2 0 921 1 = died

Patients 1, 2, and 3 were hospitalised for 4, 5, and 2 days, respectively. All were discharged. Patients 1
and 2 were then followed for 2,914 and 2,906 additional days without dying from a heart attack. Patient
3 died 919 days after discharge (921 after admission). The data were restructured so each patient had 2
records, one for the time period in the hospital and one for the period after discharge. These data are as
follows.

observation period

patient start end outcome      location            

1 0 4 0 = censored 0 = hosp

1 4 2918 0 = censored 1 = discharged

2 0 5 0 = censored 0 = hosp

2 5 2911 0 = censored 1 = discharged

3 0 2 0 = censored 0 = hosp

3 2 921 1 = died 1 = discharged

A Cox model  fit  to  these  data  with  the  single  predictor  -disch-  (ie patient  had  been  discharged)
produces:

No. of subjects = 2931
No. of failures = 1522 Number of obs = 5582
Time at risk = 3789652 LR χ2 (1) = 244.60
Log likelihood = -11336.554 Prob > χ2 = 0.0000

Predictor HR SE Z P 95% CI

disch 0.094 0.014 -15.88 0.000 0.070 0.126

Although it appears that there were 5,582 observations, the number of subjects is correctly identified as
2,931. Once a patient was discharged, their hazard of death from a heart attack was reduced by a factor
of 0.09 (ie less than 10% of what it was prior to discharge). This is not surprising given that only stable
patients would be discharged.
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linear manner with time (eg effect drops by a given amount every 100 days), with ln time (eg
effect drops by a given amount for every one ln unit increase in time (equivalent to every 2.72-
fold increase in time), or with any other function of time. Evaluating how effects may or may
not change over time is an important part of validating a Cox proportional hazards model and is
discussed further in Section 19.8.10.

One approach to evaluating how effects  of predictors change over time is to fit  an Aalen’s
linear hazards model  (Hosmer and Royston, 2002). This model plots a cumulative regression
coefficient  for  a  predictor  against  time.  If  the effect  of  the predictor  remains  constant,  the
cumulative predictor will be expected to increase (or decrease) in a straight line over time. In
general this is true, although some curvature to this line has been observed even when hazards
are proportional. Example 19.9 shows Aalen’s linear hazards model applied to an evaluation of
the effect of coronary angioplasty on survival in the heart attack data.

19.8.9 Validating the model

Validation of a Cox proportional hazards model will be covered in the following 6 sections. The
components in the validation process include:

• evaluating the proportional hazards assumption (Section 19.8.10)
• evaluating the assumption of independent censoring (Section 19.8.11)
• evaluating the overall fit of the model (Section 19.8.12)
• evaluating the functional form of predictors (Section 19.8.13)
• checking for outliers (Section 19.8.14)
• detecting influential points (Section 19.8.15).

19.8.10 Evaluating the assumption of proportional hazards

 There are 3 general ways of evaluating the assumption of proportional hazards:
• graphical assessment
• the use of time-varying effects
• statistical assessment using Schoenfeld residuals.

Example 19.9 Aalen’s linear hazards model
data = mi

Aalen’s  linear  hazards  model  was  fit  to  the  heart
attack data with coronary angioplasty (-ptca-) as the
sole  predictor,  and  the  cumulative  coefficient  for
-ptca- was plotted against time (up to 2,000 days).

There was initially a very strong beneficial effect of
surgery  (negative  coefficient  indicates  reduced
hazard of death). This beneficial effect persists, but
becomes  much less pronounced (the change in  the
cumulative coefficient between 1,000 and 1,500 days
is much less than between 0 and 500 days). Fig. 19.14 Aalen's linear hazards model 

for coronary angioplasty (-ptca-)

-.8

-.6

-.4

-.2

0

A
al

e
n'

s 
cu

m
u

la
tiv

e
 c

oe
f.

0 500 1000 1500 2000

time (days after onset)



528 MODELLING SURVIVAL DATA

Graphical assessment 
For a categorical predictor, the assumption of proportional hazards can be tested by examining
the log-cumulative hazard plot (lnH(t) vs lnt) to check if the curves for the 2 (or more) study
groups are parallel. If they are not parallel, then the assumption has been violated. 

Fig. 19.15 shows a log cumulative hazard plot for the effect of cardiac arrest in the heart attack
data. (Note It is actually the -log of the cumulative hazard that has been plotted which explains
why the curves slope down (instead of up) as the cumulative hazard rises.) It is clear that the
curves are not parallel, suggesting that the proportional hazards assumption has been violated.
This seems reasonable because we would expect having a cardiac arrest to have a pronounced
effect in the short term, but a reduced effect as time passed.

Another  approach  to  graphical
assessment  is  to  compare  plots  of
predicted  survival  times  from  a
Cox  model  (which  assumes
proportional hazards) with Kaplan-
Meier  survivor  function  plots
(which make no such assumption).
If  the  2  sets  of  curves  are  close
together,  it  suggests  that  the
proportional  hazards  assumption
has  not  been  violated.  Fig.  19.16
shows  such  a  plot.  Clearly,  the
predicted  values  from  the  Cox
model  for  patients  who  had  a
cardiac arrest are not at all close to
the  observed  values  (K-M curve).
A  limitation  to  graphical
assessment  is  that  it  is  limited  to
evaluating  unconditional
associations or situations in which
the  predictor  being  evaluated  is
clearly the strongest  predictor in a
multivariable setting.

Time-varying effects
A term for the interaction between
the surgery and time (or the log of
the survival time) can be added to
the  model.  The  effect  of  surgery
can be allowed to interact with time
in a linear fashion or with ln(time)
(or  any other  function of  time for
that  matter).  The  advantage  of
adding  a predictor*time interaction
term is that if the assumption of proportional hazards is violated, the addition of the interaction
term can  solve the problem  (provided  the change in  effect  over  time can be appropriately
modelled). 

Fig. 19.16 Kaplan-Meier Cox plot
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Fig. 19.15 Log cumulative hazard plot
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In Example 19.10, a Cox model has been fit in which the effect of cardiac arrest (-card-) is
allowed to vary with ln(time). The negative effect of having a cardiac arrest disappears by about
day 400 and the effect  then becomes beneficial  (HR<1).  No beneficial  effect  was expected
beyond day 400 so allowing the effect to decay linearly with ln(time) may not be adequate.
Some special  procedures for integrating the use of fractional  polynomials into the fitting of
time-varying effects are discussed in Royston and Sauerbrei (2008).

Example 19.10 Assessing proportional hazards assumption—time-varying covariates
data = mi

A Cox model  with a single predictor (-card-) was fit  but the effect  of having a cardiac arrest  was
allowed to interact with time on a natural log scale. This was chosen because it was assumed that the
effect of an arrest would drop off rapidly soon after the attack and then more slowly as time went on
(instead of a linear, or straight-line, decay in effect).

No. of subjects = 2931
No. of failures = 1522 Number of obs = 2931
Time at risk = 3789652 LR χ2

(2) = 387.09
Log likelihood = -11265.31 Prob > χ2 = 0.0000

Predictor HR SE Z P 95% CI

main effect

card 3.437 0.164 21.00 0.000 3.116 3.758

ln(time) interaction effect

card -0.572 0.049 -11.79 0.000 -0.668 -0.477

Both the initial effect (labelled ‘main effect’) of -card- and the time interaction were highly significant
predictors of time to death. The significance of the ln(time) interaction term confirms that the effect of
a cardiac arrest does vary with time (ie  the proportional hazards assumption does not hold). In  the
presence of interaction, the effect of a cardiac arrest can be better understood by computing the HR at a
number of time points. The HR at time t is exp{3.437-(0.572*ln(t))}.

Time (days) ln(time) HR

1 0 31.1

7 2 9.9

55 4 3.1

403 6 1.0

2981 8 0.3

While a cardiac arrest dramatically increases the hazard of death when it occurs, the effect drops off
with time and is completely gone by 403 days (ie if you had a cardiac arrest while in hospital, the
apparent negative effect of that attack is gone approximately one year after discharge). (Note a model
with -card- interacting with ln(time) had a much higher log likelihood (indicating a better fit) than one
with an interaction with time on a linear scale (data not shown).) Other functions of time might also be
considered, although a model with -card- interacting with both log(time and log(time2) did not have
significantly better fit (data not shown).
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Schoenfeld residuals
Schoenfeld and scaled Schoenfeld residuals are based on the contribution that an observation
makes to the partial  derivative of the log partial  likelihood. Hence they are also sometimes
called ‘partial residuals’. There is a separate set of residuals for each regression coefficient in
the model, each set corresponding to the partial derivative for that parameter. These residuals
are only computed at observed survival times. Scaled Schoenfeld residuals are adjusted using
an estimate of the variance of the residual and these are better for detecting departures from the
assumed model. 

A graph of the scaled Schoenfeld residuals for a given predictor, when plotted against time (or
ln(time)) can provide a graphical assessment of the proportional hazards assumption. This is
particularly  useful  for  continuous  predictors  because  the  log  cumulative  hazard  plot  is  not
useful for those variables. This graphical assessment can be enhanced by adding a smoothing
line to indicate the overall trend. The residuals should hover around the ‘zero’ line, indicating
no trend in the residuals over time. If the residuals trend up or down, it suggests that the effect
of the predictor is varying over time. Fig. 19.17 (in Example 19.11) shows a plot of the scaled
Schoenfeld residuals for age against ln(time). The assumption of proportional hazards appears
to be reasonable for this predictor.

Schoenfeld residuals also form the basis of a statistical test of the assumption of proportional
hazards. The test checks for a non-zero slope of the scaled Schoenfeld residuals against time (or
a function of time) using a generalised linear regression. It provides an overall assessment and a
test for each predictor separately. Results of this test for the heart attack data are presented in
Example 19.11. The results clearly indicate that time-varying effects need to be added to the
model. (Despite this, for the sake of simplicity, all future models will not include time-varying
effects.)

19.8.11 Evaluating the assumption of independent censoring

One of the fundamental assumptions of survival models is that censoring is independent of the
outcome of interest. This means that censored individuals should have the same future survival
expectation as non-censored individuals  (ie if the individuals were not censored, they would
have the same survival distribution as the non-censored individuals). There are no specific tests
to  evaluate  the  independence  of  censoring  and  the  event  of  interest.  However,  sensitivity
analyses  can  be  used  to  look  at  the  extreme  situations  of  complete  positive  or  negative
correlations between censoring and the event of interest.

Complete positive correlation would mean that every individual that was censored would have
experienced  the  event  of  interest  immediately  if  it  had  not  been  censored.  This  could  be
evaluated by refitting the model after recoding all of the censored observations so that they had
the event of interest instead of being censored (at the time of censoring).

Complete negative correlation would mean that every individual that was censored would be
guaranteed a long ‘event-free’ existence if it had not been censored. This could be evaluated by
refitting  the  model  after  changing  each  censored  individual’s  time  at  risk  to  a  large,  but
plausible, value.

The above 2 analyses would provide the possible range of values that the coefficients of the
factors of interest could possibly take if the assumption of independent censoring was badly
violated. If  gross violation of this assumption does not drastically alter the estimates of the
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parameters of interest, you can be confident that the actual bias in the parameter estimates will
be small.

Example 19.12 presents the results of a sensitivity analysis designed to evaluate this assumption
in the heart attack data.

Example 19.11 Assessing the proportional hazards assumption—Schoenfeld residuals
data = mi

A Cox model  with  sex,  age,  marital
status,  cardiac  arrest,  and  coronary
angioplasty as predictors was fit to the
heart  attack  data  (without  any  time-
varying  covariates).  Schoenfeld  and
scaled  Schoenfeld  residuals  were
obtained. 

Fig.  19.17 shows a smoothed plot of
scaled  Schoenfeld  residuals  for  age
plotted against time on a log scale. It
is  difficult  to  detect any evidence of
non-proportionality from this graph.

The statistical test for non-zero slope
for  each  of  the  predictors  (against
ln(time)) resulted in the following.

Variable χ2 df Prob >χ2

sex 0.97 1 0.3237

age 9.93 1 0.0016

mar_c2 3.86 1 0.0495

card 192.37 1 0.0000

ptca 25.59 1 0.0000

global test  211.98 5 0.0000

The global test was highly significant, as were the tests for three of the predictors (-age-, -card-, and
-ptca-). It is clear that the assumption of proportional hazards was violated. Given the relatively large
sample  size  in  these  analyses,  statistical  tests  are  more  able  to  detect  departures  from  non-
proportionality than graphical procedures.

Note Although there is strong evidence of violation of the assumption of non-proportionality, for the
sake of simplicity, models without time-varying effects will be used in all subsequent examples.

Fig. 19.17 Scaled Schoenfeld residuals for age
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19.8.12 Evaluating the overall fit of the model

Four approaches to evaluating the overall fit and predictive ability of the model are: 
• to evaluate the distribution of the Cox-Snell residuals graphically
• to  use  a  goodness-of-fit  test  similar  to  the  Hosmer-Lemeshow  test  used  for  logistic

regression
• to evaluate concordance between the predicted and observed sequence of pairs of events
• to compute an overall r2 statistic.

Cox-Snell residuals are the estimated cumulative hazards for individuals at their failure  (or
censoring) times. If the model is appropriate, these residuals are a censored sample from a unit
exponential distribution (ie an exponential distribution with a mean of one and variance of 1).
Consequently, the range of these residuals is zero to +∞. Cox-Snell (CS) residuals can be used
to assess the overall fit  of a proportional hazards model by graphically assessing how close
these residuals are to having a unit exponential distribution. To do this, you:

• compute the CS residual
• fit a new proportional hazards model with the CS residuals used as the ‘time’ variable

(along with the original censoring variable)
• derive an estimate of the cumulative hazard function (H(t)) from this new model
• plot H(t) against the CS residuals.

If the residuals have a unit exponential distribution, the cumulative hazard should be a straight
line with an intercept of 0 and a slope of 1. In practise, these graphs have been of limited value.
Assessment  of the linearity  of  the graph is  a  subjective procedure  and substantial  apparent

Example 19.12 Evaluating the assumption of independence of censoring
data = mi

A Cox model with sex, age, marital status, cardiac arrest, and coronary angioplasty as predictors was fit
to the heart attack data. The model was then refit assuming complete positive and complete negative
correlations between censoring and death (see text for description of method). Negative correlation was
based  on  assigning  3,000  days  as  the  time  to  death  for  all  censored  individuals.  The  results  are
summarised in the table below.

Variable
Original 
estimate

Assuming complete
positive correlation

Assuming complete
negative correlation

sex 0.200 0.092 0.107

age 0.051 0.023 0.023

mar_c2 -0.209 -0.131 -0.145

card 1.751 1.094 1.049

ptca -0.924 -0.404 -0.497

Both sensitivity analyses  resulted in substantial  attenuation of all  coefficients.  However,  all  effects
remained  in  the  same  direction  and  remained  significant  (P-values  not  shown).  Given  that  the
sensitivity analysis represents 2 extreme (and completely improbable) situations, the effect of censoring
on the estimates is not a large concern, although methods to follow up some censored observations to
determine their reason for censoring would be warranted.
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departures from the 45o line can result from a few observations with long survival times (when
most of the observations are clustered at the lower left end of the line) (see Example 19.13). 

For censored  observations,  the estimated cumulative hazard is an underestimate of the true
cumulative hazard for an individual (by virtue of the fact that we don’t observe them for the full
period  until  they  have  the  outcome  of  interest).  Consequently,  Cox-Snell  residuals  are
sometimes  modified  by  the  addition  of  a  constant  (either  1  or  ln(2)=0.693) for  censored
observations. There is no evident rationale for choosing one adjustment over the other, but this
is only important if a substantial proportion of the observations are censored. 

Several goodness-of-fit tests similar to a Hosmer-Lemeshow test for logistic regression models
can be computed (May and Hosmer, 2004a). These tests all divide the data into groups and add
indicator variables for these groups to the models and assess the overall significance of the
indicator  variables,  with  significance  indicating  evidence  of  lack  of  fit.  An  omnibus  test
designed to detect all causes of lack of fit was proposed by Grønnesby and Borgan (1996). The
observed number of failures in groups defined by quantiles of risk from the fitted model are
compared with the expected number of failures which are based on martingale residuals  (see

Example 19.13 Evaluating overall fit of a model
data = mi

A Cox proportional hazards model was fit to the data with fixed effects for sex, age, marital status,
cardiac arrest, and coronary angioplasty. 

Cox-Snell residuals were computed and plotted (Fig. 19.18), as described in the text. It appears that
there is relatively good agreement between the plotted values and the expected (45o) line.

Goodness-of-fit tests
The  Grønnesby and Borgan  omnibus
goodness-of-fit  test  produces  a  P-
value of 0.20 (no evidence of lack of
fit), despite the fact that we know that
the  assumption  of  proportional
hazards  has  been  seriously  violated.
The Moreau,  O’Quigley and Mesbah
test,  designed  specifically  for
detecting  non-proportional  hazards,
fails  to  produce  a  result  with  this
model  as  a  result  of  collinearity
among predictors.

Concordance
Harrell’s  C  statistic  was  0.76
indicating  that  the  model  correctly
predicts  the  sequence  of  2  observed
failures 76% of the time (ie reasonable
predictive ability).

r2

The  r2 for the Cox model with sex, age, marital  status, cardiac arrest,  and coronary angioplasty as
predictors produced an estimated  r2 of 0.46 (46%) with a bootstrapped 95% confidence interval of
(0.42, 0.51). Collectively these predictors have moderate ability to predict time to death for heart attack
patients.

Fig. 19.18 Plot of Cox-Snell residuals
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Section 19.8.13). However, the validity of the test depends on choosing an appropriate number
of groups (May and Hosmer, 2004b). The number of groups should roughly equal the number
of failure events in the data divided by 40, with a minimum of 2 and a maximum of 10. Using
this strategy the test has reasonable power provided the sample size is greater than 200 with no
more than 50% censoring (in smaller samples, the power is low). However, this test fails to
identify the problem of non-proportional hazards in the heart attack data (Example 19.13). An
alternative  test  designed  specifically  to  evaluate  the  proportional  hazards  assumption  was
proposed  by  Moreau  et  al (1985).  It  requires  the  computation  of  time-dependent  indicator
variables  and  it  successfully  detects  the  problem  of  non-proportional  hazards.  These  tests
should not be used in situations in which there are time-varying covariates in the model. 

Closely  related  to  the  issue  of  evaluating  overall  fit  is  the  question  of  evaluating  overall
predictive ability.  Harrell’s C concordance statistic computes the proportion of all pairs of
subjects in which the model correctly predicts the sequence of events (ie which one would have
come first). It ranges from 0 to 1 with a value of 0.5 indicating no predictive ability at all (you
would expect to get 50% correct by chance alone).

For a linear regression model, we would use  r2 as a measure of predictive ability.  Recently,
Royston (2006) described several possible measures of explained variation for survival models
and proposed an r2 statistic for proportional hazard models. Comparable to the adjusted r2 from
linear regression, it is also possible to adjust the proposed r2 for the number of predictors in a
survival model. The r2 compares a fitted model with a null model and provides an estimate of
the amount of variation in survival times that is explained by the predictors. However, it cannot
be used to compare models with different hazard structures (eg a semi-parametric Cox model
with a parametric Weibull model—see Section 19.9 for hazard structures in parametric models)
because  the  null  models  are  different.  An estimate  of  the  r2 for  the heart  attack  data,  and
bootstrap 95% confidence intervals are shown in Example 19.13.

19.8.13 Evaluating the functional form of predictors

Martingale residuals can be used to evaluate the functional form of the relationship between a
continuous predictor and the survival expectation for individuals. These residuals represent the
difference between the observed final outcome for an individual and the cumulative hazard for
that individual at the final point in time.  (As such, they are more like typical residuals which
represent a difference between an observed and a predicted value.) Because they are based on
the estimated cumulative hazard, these residuals are similar to Cox-Snell residuals except their
range is from -∞ to 1. The values of these martingale residuals are:

• uncensored observation i: 1− H i t i

• censored observation i:     0− H i ti 

Consequently, residuals will be negative for all censored observations and for observations in
which H(ti)>1 (equivalent to S(ti)<0.37).

To  check  for  the  functional  form of  continuous  predictors,  martingale  residuals  should  be
computed  from  a  model  that  does  not  include  the  continuous  predictor  of  interest.  These
residuals are then plotted against the predictor. A smoothing function  (eg lowess smoothing)
can  be  used  to  better  visualise  the  relationship.  If  the  relationship  is  linear,  the  smoothed
martingale residual line should be approximately straight. Fig. 19.19 (Example 19.14) shows a
lowess smoothed graph of martingale residuals against age.
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19.8.14 Checking for outliers

Deviance residuals can be used to identify outliers (ie points that are not well fit by the model).
Deviance  residuals are  martingale  residuals  that  have  been  rescaled  so they are  symmetric
around 0 (if the fitted model is appropriate). The sum of the squared deviance residuals is the
deviance (D) of the model.

If  plotted with an observation number as  the plotting symbol,  they can be used to identify
outlying observations. Fig. 19.20 is
a  plot  of  deviance  residuals  from
the  model  with  sex,  log(age),
marital  status,  cardiac  arrest,  and
coronary angioplasty as predictors.
The  residuals  with  the  largest
absolute value (>3.5 or  <-3.5)  are
identified on the graph. These were
individuals  who  ‘beat  the  odds’.
They  were  all  elderly,  had
experienced  a cardiac  arrest  when
hospitalised,  but  had  not  had
coronary angioplasty.  Despite this,
they  had  relatively  long  survival
periods.

Example 19.14 Evaluating functional form of predictors
data = mi

Fig.  19.19  shows  a  lowess
smoothed  graph  of  martingale
residuals  against  age.  It  appears
that a linear relationship may not
be  appropriate.  Fractional
polynomials (see Section 15.6.4)
were used to further evaluate this
possibility, and it was determined
that a log-transformed version of
age would provide a better fit. A
model  using  log(age)  had  a
significantly  higher  log
likelihood  (-10442.75)  than  one
based on age (log L=-10446.45).
Consequently,  -age-  will  be
included  as  log(age)  in  all
subsequent models.

The apparent large drop in the residuals at the right side of the graph is probably an aberrant
‘end effect’ resulting from a small number of data points with high age values. (There is no
reason to believe that the hazard of death drops dramatically as age approaches 90.)

Fig. 19.19 Martingale residuals vs lactation number
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Fig. 19.20 Deviance residuals
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19.8.15 Detecting influential points

Score  residuals  and  scaled  score
residuals  can  be  used  to  identify
influential  observations.  The
former  have  a  ‘leverage-like’
property  while  the  latter  measure
the  impact  of  observations  on
coefficients in the model.

Score residuals are a variation of
martingale  residuals  but  are
computed  for  each  predictor
(covariate) in the model. They have
a  ‘leverage-like’ property  in  that
observations  that  are  far  from the
mean of  the  predictor  have  larger
(positive  or  negative)  residuals.
When  plotted  against  time,  they
typically  form a  ‘fan-shaped’  pattern  (with  the  centre  of  the  fan  at  the  mean  of  the  time
variable) and observations lying outside this fan should be considered as potentially influential.
Fig. 19.21 shows score residuals for coronary angioplasty (-ptca-).

Score residuals can be modified to compute a delta-beta like parameter for coefficients in the
model. This modification involves multiplying the score residual by the estimated variance of
the coefficient (from the variance-covariance matrix of the coefficients) and produces what is
called a scaled score residual. 

Fig. 19.22 shows a plot of the scaled score residuals for coronary angioplasty (-ptca-) against
time. Elimination of the 4 residuals with the largest  absolute values produced a substantial
(14%) increase in the coefficient for -card- suggesting that the estimate for this parameter may
not be very robust.

19.9 PARAMETRIC MODELS

As  noted  previously,  Cox
proportional  hazards  models make
no assumption about  the  shape  of
the baseline hazard, which can be a
real advantage if you have no idea
what  that  shape might  be,  or if  it
has a very irregular form. However,
these models achieve this flexibility
at  a  price.  Because  they  only use
information about the observations
at  times at  which  one or  more  of
the  subjects  fail,  they  do  not
efficiently  use  all  of  the
information  you  have  about  the Fig. 19.22 Scaled score residuals (delta-beta)
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observations. For example, because the Cox model is based solely on the rank ordering of the
observations, it makes no difference if 2 successive failures are one day apart or one year apart.
The length of the interval, which provides some valuable information in terms of survival times,
is  ignored.  Consequently,  if  you  can  correctly  specify  the  form of  the  baseline  hazard,  a
parametric model will be more efficient (ie use more of the available information).

A parametric model satisfying the proportional hazards assumption could be written in the same
way as a semi-parametric model:

h t =h0t e
 X

but  h0(t) is  assumed  to  have  a  specified  functional  form.  The  major  difference  between
parametric  and semi-parametric  models is  that  βX now includes an intercept  term  (β0).  (An
alternative method of writing these models is described in Section 19.10.)

Not  all  parametric  models  are  proportional  hazards  models.  (Models  which  are  not  are
discussed  in  Section  19.10.) Three  parametric  models  which  are  also  proportional  hazards
models are the exponential, Weibull, and Gompertz. Each of these will be discussed briefly.
When using any of these models, it must be kept in mind that in addition to specifying a correct
function for the baseline hazard, the assumption of proportional hazards must also be evaluated
and met.

19.9.1 Exponential model 

An exponential model is the simplest form of parametric model in that it assumes that h0(t) is
constant over time (ie in the baseline group, the rate at which failures are occurring remains
constant). Consequently

h t==c e X
 Eq 19.17

where c is the constant baseline hazard and λ is the time-constant value of h(t) for any given set
of predictor values.  The density and survivor functions of the exponential distribution were
given in Eq 19.11. As noted previously, the survival times will have a decreasing exponential
distribution. 

Interpretation of coefficients
Coefficients  for  predictors  in  an  exponential  model  can  be  interpreted  the  same  way  as
coefficients  from a Cox model.  The exponentiated coefficient  is  the  hazard ratio (Section
19.8.2). The intercept in the model is the estimate of the log of the (constant) baseline hazard.
In  Example  19.15,  an  exponential  model  is  fit  to  the  heart  attack  data.  If  this  model  was
appropriate (which it isn’t—more on that later), the baseline hazard would be estimated to be e -

8.61=0.00018. That is, on any given day, a person in the baseline group (55-year-old, not-married
female who had not had a cardiac arrest or coronary angioplasty) had approximately a 0.02% (1
in 5000) chance of dying on that day. 

Evaluating the assumption of constant hazard
The assumption that the baseline hazard is constant over time can be evaluated in several ways.
The first is to generate an estimate of the baseline hazard from a Cox model and plot it to see if
it approximately follows a straight, horizontal line. Fig. 19.13 showed that the baseline hazard
fell rapidly up to about one year and then levelled off. A second approach is to fit a model with
a piecewise-constant baseline hazard (Cleves et al, 2008; Dohoo et al, 2003). In this case, the
baseline hazard is allowed to vary across time intervals by including indicator variables for each
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of the time intervals in the model. The baseline hazard is assumed to be constant within each
time period, but can vary between time periods. This produces the results and step graph shown
in Example 19.16. It  is  clear  that  the hazard falls rapidly over the first  30–60 days,  and is
relatively flat after day 120. However, a model which assumed that the hazard declined in a
curved  manner,  might  be  a  reasonable  approximation.  A  third  approach  to  evaluating  the
assumption of constant hazard is to evaluate the shape parameter from a Weibull model (see
Section 19.9.2).

19.9.2 Weibull model

In a Weibull model, it is assumed that the baseline hazard function has a shape which gives rise
to a Weibull distribution of survival times. The Weibull hazard was discussed in Section 19.7.7
and shown graphically in Fig. 19.10. In addition, Eq 19.12 gives the formulae for the hazard
and survivor functions.

If a vector of covariates  (predictors) is added to a Weibull model, the formula for the hazard
function becomes:

h t = pt p−1e X
Eq 19.18

where βX does not include an intercept term (β0). Example 19.17 shows a Weibull model fit to
the heart  attack data. The estimate of the shape parameter  (p) is 0.56  (95% CI:  0.53, 0.58)
suggesting that the hazard is decreasing over time.

Evaluating the Weibull distribution
As  was  noted,  the  suitability  of  the  assumption  that  the  survival  times  follow  a  Weibull
distribution can be assessed by generating a log-cumulative hazard plot. If the distribution is

Example 19.15 Exponential regression
data = mi

An  exponential  survival  model  was  fit  to  the  heart  attack  data  after  log  transforming  -age-  (and
subtracting 4 so the ‘baseline’ individual is someone 55 years of age).

No. of subjects = 2851
No. of failures = 1480 Number of obs = 2851
Time at risk = 3669144 LR χ2

(5) = 1663.70
Log likelihood = -4576.9189 Prob > χ2 = 0.0000

Predictor    Coef        SE               Z              P        95% CI

sex 0.255 0.058 4.39 0.000 0.141 0.369

age_ln 4.093 0.185 22.18 0.000 3.731 4.454

mar_c2 -0.261 0.057 -4.59 0.000 -0.372 -0.149

card 2.061 0.089 23.16 0.000 1.887 2.236

ptca -1.069 0.062 -17.18 0.000 -1.191 -0.947

constant -8.612 0.088 -98.05 0.000 -8.784 -8.439

The HR for being married (mar_c2=1) would be e-0.261 = 0.77, suggesting that, at any given point in
time, a married person was 0.77 times as likely to die as a not-married person (if  this model was
correct).
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Example 19.16 Piecewise constant exponential regression model
data = mi

A model which allows the baseline hazard to vary between time periods but forces it to remain constant
within time periods is called a piecewise constant exponential model. Results from such a model and a
graph of the resulting baseline hazard are shown below.

No. of subjects = 2851
No. of failures = 1480 Number of obs = 18955
Time at risk = 3669144 LR χ2

(13) = 2766.26
Log likelihood = -4025.6408 Prob > χ2 = 0.0000

Predictor Coef   SE   Z     P       95% CI

sex 0.195 0.058 3.37 0.001 0.082 0.308

age_ln 3.630 0.183 19.88 0.000 3.272 3.988

mar_c2 -0.223 0.057 -3.92 0.000 -0.335 -0.112

card 1.801 0.089 20.26 0.000 1.627 1.975

ptca -0.936 0.062 -15.00 0.000 -1.058 -0.814

day0_15 2.708 0.112 24.12 0.000 2.488 2.928

day16_29 1.528 0.151 10.15 0.000 1.233 1.824

day30_59 0.825 0.154 5.36 0.000 0.523 1.126

day60_119 0.536 0.139 3.85 0.000 0.263 0.808

day120_479 -0.036 0.112 -0.32 0.748 -0.255 0.183

day480_839 -0.097 0.116 -0.84 0.402 -0.325 0.130

day840_1199 -0.221 0.124 -1.78 0.074 -0.463 0.022

day1200_1919 -0.126 0.117 -1.08 0.281 -0.356 0.103

constant -8.685 0.121 -72.05 0.000 -8.922 -8.449

The  coefficients  for  predictors  day
0_15 through day 1200_1919 show
how the log hazard changes relative
to  the  value  for  the  baseline  time
period (days 1920+). There was little
evidence of any statistical difference
between any of the periods from day
120  to  1919  compared  with  the
baseline time period.

Fig. 19.23 Piecewise constant estimate of baseline 
hazard
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Weibull, this graph will show a straight line. A rough evaluation can be obtained by generating
a simple plot of lnH(t) vs ln(t) for all of the data. Fig. 19.15 shows a plot of -lnH(t) vs ln(t) for
each of the 2 cardiac arrest groups in the heart attack data. The baseline hazard will be included
in the non-arrest group and that line was approximately straight suggesting that the Weibull
model might be appropriate.  The step graph of the baseline hazard  (Fig.  19.23 in Example
19.16) also suggests that the Weibull model may be appropriate. A Weibull model with a shape
parameter of 0.56 assumes the hazard monotonically decreases over time. 

19.9.3 Gompertz model

The Gompertz model is used less frequently than the exponential and Weibull models but has
been used to model mortality data. In a Gompertz model, the log of the baseline hazard varies
linearly with time so the baseline hazard is as follows.

h0t = ept

Eq 19.19

The baseline hazard increases exponentially if p>0 and decreases exponentially if p<0. If p=0,
the hazard is constant at λ (exponential model). A Gompertz model fit to the heart attack data
(results not shown) produces an estimate of  p of -0.00061 (95% CI: -0.0007, -0.0005) which
also suggests that the hazard is falling with time.

Example 19.17 Weibull model
data = mi

A Weibull model was fit to the heart attack data.

No. of subjects = 2851
No. of failures = 1480 Number of obs = 2851
Time at risk = 3669144 LR χ2

(5) = 1293.74
Log likelihood = -4128.7058 Prob > χ2 = 0.0000

Predictor Coef SE Z P   95% CI

sex 0.196 0.058 3.38 0.001 0.082 0.309

age_ln 3.489 0.180 19.36 0.000 3.136 3.843

mar_c2 -0.215 0.057 -3.77 0.000 -0.326 -0.103

card 1.835 0.089 20.55 0.000 1.660 2.010

ptca -0.933 0.063 -14.90 0.000 -1.055 -0.810

constant -5.228 0.126 -41.42 0.000 -5.475 -4.981

ln_p -0.586 0.022 -26.68 0.000 -0.629 -0.543

p 0.556 0.012 0.533 0.581

1/p 1.797 0.039 1.721 1.876

With  the  exception  of  the  exponential  model  (which  is  clearly  inappropriate),  the  effects  of  the
predictors are similar among the Cox, piecewise exponential, and Weibull models (and also similar in
terms of statistical significance). The shape parameter (p) from the Weibull distribution indicates that
the hazard is falling with time (ie p<1).
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19.10 ACCELERATED FAILURE TIME MODELS

As noted above, not all parametric models are proportional hazards models. However,  those
that are can be written in 1 of 2 ways: as a proportional hazards model (which is what has been
presented thus far), or as an  accelerated failure time model (AFT).  Other parametric models
(discussed below) can only be written in the AFT metric, because the predictors in these models
do not necessarily multiply the baseline hazard by a constant amount.

The general form of an AFT model is:

ln t= X ln or t=e X
 Eq 19.20

where lnt is  the natural  log of the time to the failure event,  βX is  a  linear  combination of
explanatory variables and lnτ is an error term with an appropriate distribution. Note The values
of  the  βs  in  this  representation  will  not  be  the  same  as  the  βs  in  a  proportional  hazards
representation.

From Eq 19.20 it can be seen that τ is the distribution of survival times when βX=0 (ie eβX=1). τ
is  assumed to have  a  specific  distribution (eg Weibull,  log-normal).  If  τ has  a  log-normal
distribution, then the log of survival times will have a normal distribution which is equivalent to
fitting a linear model to ln(survival times) (assuming you can ignore the problem of dealing
with censored observations).  Three specific distributions of survival  times (log-logistic,  log-
normal and generalised gamma) are discussed in Section 19.10.2.

Eq 19. 20 can be rearranged as follows:

=e− X t or ln  =− X ln t  Eq 19.21

The  linear  combination  of  predictors  in  the  model  (βX)  acts  additively  on  log(time)  or
multiplicatively on time (ie they accelerate or decelerate the passage of time by a multiplicative
factor) where e-βX is called the acceleration parameter because if:

• e-βX>1, then t<τ so time passes more quickly (ie failures expected sooner)
• e-βX =1, then t=τ so time passes at a ‘normal’ rate (ie no effect of predictors)
• e-βX<1, then t>τ so time passes more slowly (ie failures expected later).

As indicated above, the exponential and Weibull models can be written either as proportional
hazards  models  or  as  AFT  models.  The  relationship  between  the  coefficients  from  a
proportional hazards expression (βph) of a Weibull model and an AFT expression (βaft) is:

 aft=
−ph

p Eq 19.22

where p is the shape parameter from the Weibull model.

19.10.1 Coefficients in AFT models

A coefficient in an AFT model represents the expected change in the ln(survival time) for a 1-
unit change in the predictor. For example, assume you have a dichotomous predictor (X with a
coefficient  of  2).  If,  in  the  absence  of  X,  a  study  subject  is  expected  to  fail  at  t=5  days
(ln(t)=1.61), the presence of X would increase the expected ln(survival time) to 1.61+2=3.61 or
the survival time to 37 days. The presence of  X in a subject who was expected to survive 30
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days would result in an increase expected survival time from 30 to 222 days. As you can see, in
absolute time, factors have a greater impact at longer expected survival times.

An alternative interpretation is to exponentiate the coefficient to compute a time ratio (TR). A
coefficient  of 2 produces a  TR of e2=7.4 which means that  the presence of  X increases  the
expected survival time by a factor of approximately 7 times.

19.10.2 Specific survival time distributions

Log-logistic model
A  log-logistic  model assumes  that  survival  times  follow  a  log-logistic  distribution,  or
alternatively, log survival times follow a logistic distribution (a symmetric distribution similar
to a normal distribution). The hazard function for a log-logistic distribution is as follows.

h t =
e

 t t−1/
e

 Eq 19.23

where γ>0 is a scale parameter. h(t) decreases as a function of t if γ>1, otherwise it is increasing
and then decreasing with a peak at:

t=1 / −1

e 


=e− 
1 / −1



Eq 19.24

In the log-logistic model, -θγ is modelled as a function of the predictors (ie -θγ =βX). The pth

percentile (and median) of a log-logistic distribution are the following.

t p= p
100− p 



e− t 50=e−

Eq 19.25

Fig. 19.24 shows hazard functions for various values of γ (left panel) and a histogram of log-
logistic distributed survival times (based on 2000 simulated observations) when γ=0.25. (In all
cases the median survival time is set to 20 days.)

A log-logistic survival model expressed in AFT terms is shown in Example 19.18. Because log-
normal or log-logistic models can rise and then fall, one of these might be most appropriate if
there is an initial rise in hazard immediately after admission to hospital. A simple life table
based on the data from days 1–10 does not provide any clear evidence of this.

Log-normal model
In  a  log-normal  model,  the survival  times  are  distributed  normally on a log time scale,  or
alternatively, log times are distributed normally. The survivor function is:

S t =1−  ln t−

 
Eq 19.26

where  Φ is the cumulative distribution function of a standard normal (Gaussian) distribution
and μ and σ are the mean and standard deviation of log survival times. (The formulae for the
hazard functions for the log-normal and generalised gamma distributions can be derived from
f(t) and S(t), but are complex and beyond the scope of this text. See Cleves et al (2008); Collett
(2003) for details. 
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Fig. 19.24 Hazard functions (left) and survival times (right) for log-logistic 
distribution
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Example 19.18 Log-logistic model of heart attack data
data = mi

A log-logistic model was fit to the heart attack data and produced the following.

Predictor Coef SE Z P 95% CI

sex -0.279 0.110 -2.53 0.011 -0.495 -0.063

age_ln -6.002 0.323 -18.56 0.000 -6.635 -5.368

mar_c2 0.382 0.108 3.53 0.000 0.170 0.594

card -4.465 0.187 -23.85 0.000 -4.832 -4.098

ptca 1.673 0.112 14.94 0.000 1.453 1.892

constant 8.559 0.153 56.03 0.000 8.259 8.858

ln_gamma 0.310 0.022 13.94 0.000 0.266 0.354

gamma 1.364 0.030 1.305 1.424

The time ratio for -mar_c2- was e0.382=1.47 which suggests that, on average, time to death in married
people was approximately 50% longer than in not-married people. Using Eq 19.25, the median survival
time of the baseline group is:
  t50 = e constant = e8.559 = 5213 days
while the corresponding value for similar individuals who had experienced a cardiac arrest was:
  t50 = e8.559-4.465 = 60 days
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Generalised gamma model
A generalised gamma distribution is a 3-parameter  (μ, κ, σ) distribution for which the hazard
function can take a wide variety of shapes which include the Weibull, log-normal and gamma
distributions.  Consequently,  it  is  particularly  useful  for  evaluating  the  shape  of  the  hazard
function (see Section 19.10.3).

19.10.3 Choosing a parametric model

Selecting an appropriate parametric model involves both biological and statistical procedures.
The selection should be guided  by knowledge of  how failures  arise and insights  into what
would be expected in terms of a hazard function.

As noted,  the generalised gamma distribution provides some insight  into what might be an
appropriate distribution. 

• if κ=1, the distribution is Weibull and σ=1/p is the inverse shape parameter
• if κ=1 and σ=1, the distribution is exponential
• if κ=0, the distribution is log-normal.

For the heart attack data, a generalised gamma model produces estimates of κ=0.61 (95% CI:
0.47, 0.74,) and σ=2.07 (95% CI: 1.95, 2.20). Both are substantially different from 1, and their
confidence intervals do not include 1. This suggests that a Weibull model may be inadequate.
Example 19.19 shows the log-likelihood for each of the 5 parametric models, along with the
number of distribution parameters and the point estimate of the effect of -mar_c2-.

Example 19.19 Comparison of parametric models
data = mi

Five parametric models were fit to the heart attack data and compared.

# Parameters Time ratio for

Model Log L Distribution Predictors df AIC  -mar_c2-

exponential -4576.92 1 5 6 9165.8 1.30

Weibull -4128.71 2 5 7 8271.4 1.47

log-logistic -4117.91 2 5 7 8249.8 1.47

log-normal -4151.66 2 5 7 8317.3 1.40

generalised 
gamma

-4114.59 3 5 8 8245.2 1.47

While the generalised gamma model fits the best (largest log L and smallest AIC) the log-logistic may
be a suitable alternative. The Gompertz model is not shown because a time ratio cannot be computed
from this model, but it had a log L of -4479.2 and an AIC of 8972.4, suggesting it had a very poor fit.

The estimates of the time ratio for -mar_c2- were all quite similar except for the exponential model
(which had the worst fit of all the models shown).
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19.11 FRAILTY MODELS AND CLUSTERING

As noted in previous sections, predictors in survival models (semi-parametric and parametric)
act multiplicatively on the baseline hazard (ie the hazard for an individual is a multiple of the
baseline function). In a frailty model, an additional latent  (unobserved) effect  (ie the frailty)
acts multiplicatively on the hazard. The frailty is not measured directly, but is assumed to have
a specified distribution and the variance of the distribution is estimated from the data. 

There  are  2  general  types  of  frailty  model:  individual  frailty  and  shared  frailty  (Gutierrez,
2002). In an individual frailty model, the additional variance is unique to individuals and serves
to account for additional variability in the hazard among individuals in much the same way that
the negative binomial model accounts for more variability than a Poisson model. Shared frailty
models constitute one approach to dealing with clustered data, and are discussed starting in
Section 19.11.3.

19.11.1 Individual frailty models

Within a population described by an average hazard h(t), some individuals fail early and some
fail late. This variation in survival time may be attributed to 3 components. Part may be due to
differences  among individuals  in  terms  of  measured  covariates  and  this  variability  will  be
removed by including those covariates in the model. Part may be due to unmeasured covariates
which make some individuals more prone to fail early (ie ‘frail’ individuals). The final part is
that attributable to random variation and is explained by the survival time distribution that is
selected. The effect of frailty (unmeasured covariates) can be thought of as overdispersion—
more  variability  in  the  survival
times than would be expected based
on the chosen distribution.

The effect  of  individual frailty can
be seen in Fig.  19.25 which shows
the  empirical  hazard  for  a
population of 2,000 individuals. All
individuals in this population had a
constant  hazard  set  to  0.05
(exponential model), but individuals
were  assigned  individual  frailties
(gamma  distribution,  μ=1,  σ=1)
which made some individuals more
prone to fail than others. The graph
shows the estimated hazard from a
Weibull  regression  model  (shape
parameter  p=0.75).  Although every
individual had a constant hazard, the average hazard for the population clearly falls as the frail
individuals fail and the remaining population increasingly consists of more robust individuals.

An individual frailty model can be written as follows:

h t∣=h t Eq 19.27

Conditional on the frailty, the hazard at any point is multiplied by a factor (variable) α, which is

Fig. 19.25 Effects of individual frailties (see text)
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assumed to have a distribution with a mean of 1 and a variance of θ. Two commonly assumed
distributions of α are the gamma and the inverse Gaussian. 

A frailty effect can account for apparent changes in the hazard in a population over time. A
Weibull model fit to the data used to create Fig. 19.25 has a shape parameter of 0.75 suggesting
that the hazard is falling over time. If the model is refit with a gamma frailty added, the shape
parameter changes to 1.3, suggesting that, for individuals with  the same frailty, the hazard is
actually  rising.  It  is  impossible  to  separate  individual  frailty  effects  from the  distributional
assumptions of the model, so in practice, individual frailties have limited applicability unless
the expected distribution of survival times is known with certainty (O’Quigley and Stare, 2002).

Example 19.20 shows the addition of a gamma frailty to the Weibull model of the heart attack
data. 

The concept of individual frailty does not apply to Cox (semi-parametric) models because the
frailty effect represents variation in survival times in excess of what would be expected from
the  assumed distribution of  survival  times. However,  in a  Cox model,  there  is  no assumed

Example 19.20 Individual frailty model
data = mi

A Weibull model with a gamma individual frailty was fit to the heart attack data.

No. of subjects = 2851
No. of failures = 1480 Number of obs = 2851
Time at risk = 3669144 LR χ2

 (5)  =  1338.68
Log likelihood = -4106.2367 Prob > χ2  = 0.0000

Predictor Coef SE Z P 95% CI

sex 0.198 0.070 2.83 0.005 0.061 0.336

age_ln 4.032 0.224 18.02 0.000 3.594 4.471

mar_c2 -0.250 0.069 -3.61 0.000 -0.385 -0.114

card 2.729 0.174 15.64 0.000 2.387 3.071

ptca -1.096 0.076 -14.37 0.000 -1.245 -0.946

constant -5.825 0.173 -33.74 0.000 -6.163 -5.486

ln_p -0.430 0.033 -13.06 0.000 -0.495 -0.365

ln_theta -0.747 0.193 -3.88 0.000 -1.124 -0.369

p 0.650 0.021 0.610 0.694

1/p 1.537 0.051 1.441 1.640

theta 0.474 0.091 0.325 0.691

The shape parameter for the Weibull model was 0.65, indicating the hazard fell over time. However,
this estimate was somewhat higher than when individual frailties are not incorporated into the model
(p=0.56). The variance of the gamma frailty (theta) was estimated to be 0.474. Part of the decline in the
population frailty has been attributed to individual frailties (ie the population consisting of increasingly
robust  individuals  as  time  moves  on),  so  less  is  reflected  in  the  shape  parameter  of  the  Weibull
distribution.
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distribution of  survival times. Any ‘overdispersion’ would be incorporated into the baseline
hazard (h0) which has no specified form.

19.11.2 Clustering in survival data

Individuals within a group or cluster (eg  patients  within a hospital) have features in common
(eg procedures for handling specific conditions, level of nursing care) that lead to a lack of
independence among individuals within a cluster and could result in more similar survival times
(eg  patients  treated  at  one  hospital  may have  better  survival  probabilities  than  those  from
another). The general problem of clustering is covered in Chapters 20 through 24. However, in
terms of survival models, there are several approaches that can be used to deal with clustered
data.  If  the  number  of  clusters  are  limited,  fixed  effects  representing  the  clusters  can  be
included in the model. Stratified models (Section 19.8.7), in which the strata are the clusters,
can also be used to address the issue of clustering, but like the use of fixed effects models,
preclude the evaluation of cluster level predictors. Robust standard errors (Chapter 20) are a
general  approach that can be used to address the problem of lack of independence in many
types of model, but have some limitations (Lin and Wei, 1989). Shared frailty models are based
on the assumption that groups of individuals within a cluster have a common frailty and model
that frailty so they are analogous to random effects models (see Chapters 21 and 22).

19.11.3 Shared frailty models—introduction

Just as individual frailties can be considered to represent the effects of unmeasured covariates,
shared frailties represent the effects of unmeasured covariates that a group of individuals have
in common. These can represent the random effect of a grouping variable such as hospital. (See
Chapters  20–24  for  more  discussion  of  random  effects.) A  shared  frailty would  be  an
appropriate way of dealing with the lack of independence observed when we have multiple
failure times in an individual.  (The frailty would represent the common characteristics of the
individual that affect time to each event occurrence.)

A shared frailty model can be written as follows:

hi t∣ i=i ht  Eq 19.28

where αi represents the frailty for the ith group (and hi(t) and h(t) incorporate the effects of the
predictors). The survival probability, conditional upon the frailty, is written:

S i t∣i=S ti

Eq 19.29

Frailties can take on a variety of distributions, but the most commonly used ones are gamma,
inverse Gaussian and positive stable distributions. The statistical significance of a frailty can be
assessed with a likelihood ratio test, but the usual  χ2 reference statistic is not correct because
variances cannot be less than 0, so the P-value should be cut in half.

Example 19.21 shows the results of fitting a Weibull model with a gamma-distributed shared
frailty for hospital to the heart attack data.
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19.11.4 Shared frailty models—Cox models

A Cox model with a frailty term added can be written either as:

hi t |i=h0t e
 X

 i Eq 19.30
with the αi being the frailty on the hazard scale (frailties on the hazard scale are often assumed
to have a gamma distribution), or as:

hi t |i=h0t e
 Xi

Eq 19.31
with the δi (the shared frailty for the ith group) on the log-hazard scale.

Estimating shared frailties in a Cox model is not straightforward. Four possible approaches are
available:  using  a  penalised  likelihood function (see  Example  19.22),  using  an  expectation
maximisation (EM) algorithm, fitting a random effects Poisson model  (see below), or using
Bayesian methods. With the exception of the Poisson model approach, these methods will not

Example 19.21 Shared frailty Weibull model
data = mi

A shared frailty model (Weibull distribution with a gamma distributed frailty common to all patients in
a hospital) was fit to the -mi- data.

No. of subjects = 2851 Obs per group min = 12
No. of groups = 10 avg =  285.1
No. of failures = 1480 max = 1118
Time at risk = 3669144 LR  χ2

 (5)   = 1220.99
Log likelihood = -4122.4119 Prob > chi2 = 0.0000

Predictor Coef SE Z P 95% CI

sex 0.213 0.058 3.67 0.000 0.099 0.327

age_ln 3.384 0.182 18.63 0.000 3.028 3.741

mar_c2 -0.214 0.057 -3.76 0.000 -0.326 -0.102

card 1.897 0.090 21.16 0.000 1.722 2.073

ptca -0.951 0.064 -14.88 0.000 -1.076 -0.826

constant -5.271 0.135 -38.90 0.000 -5.536 -5.005

ln_p -0.581 0.021 -27.25 0.000 -0.623 -0.539

ln_theta -3.894 1.032 -3.77 0.000 -5.917 -1.872

p 0.559 0.012 0.537 0.583

1/p 1.787 0.038 1.714 1.864

theta 0.020 0.021 0.003 0.154

The  estimated  variance  of  the  gamma  frailty  distribution  was  very  small  (0.02)  suggesting  little
variation in survival times between hospitals. Although small, it was highly significant (LRT χ2=12.6,
P<0.001) which indicates that some hospitals had higher hazards of death than other hospitals. 

The coefficients for all of the fixed effects were very similar to those obtained from the Weibull model
without a shared frailty (see Example 19.17).
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be  discussed  further  except  to  state  that  the  penalised  likelihood  approach  is  the
computationally simplest and most commonly used method.

Shared frailty Cox model—Poisson regression
Poisson regression methods can be used to fit a standard Cox proportional hazards model and
doing so produces exactly the same results. While this is not necessary (or practical) for fitting
a standard Cox model, it  has an advantage for shared frailty models in that random effects
(equivalent to frailties) can be added to the Poisson model. This allows for the possibility of
having more than one level of random effect and those effects can take on either gamma or log-
normal distributions.

The procedure for fitting a Poisson model to survival data follows.
• Split each observation into multiple records according to the complete set of failure times

in the dataset (ie each record will represent the time interval between the 2 consecutive
failures). (Note This may create a long dataset and cause numerical problems.)

• Compute the length of time represented by each record (ie the interval between the 2 
failure times) and log transform it.

• Fit a Poisson model which includes fixed effects for each time interval represented in the 
dataset and the log of the interval length as an offset.

To avoid fitting the large number of fixed effects for the time periods, create a set of orthogonal
polynomials (see Section 15.6.3) for time and use them instead of the set of fixed effects.

Example 19.22 Shared frailty Cox model
data = mi

A shared frailty Cox model (with a gamma distributed frailty common to all patients in a hospital) was
fit to the heart attack data.

No. of subjects = 2851 Obs per group min = 12
No. of groups = 10 avg =  285.1
No. of failures = 1480 max = 1118
Time at risk = 3669144 Wald χ2

 (5)   = 1135.96
Log likelihood = -10437.755 Prob > chi2 = 0.0000

Predictor Coef SE Z P 95% CI

sex 0.212 0.058 3.65 0.000 0.098 0.325

age_ln 3.520 0.184 19.09 0.000 3.159 3.882

mar_c2 -0.221 0.057 -3.87 0.000 -0.332 -0.109

card 1.802 0.091 19.79 0.000 1.624 1.981

ptca -0.942 0.064 -14.76 0.000 -1.067 -0.817

theta 0.020 0.022

Once  again,  the  estimate  of  the frailty  variance  is  quite  small  (0.02),  but  highly  significant  (LRT
χ2=9.99, P=0.001)

The coefficients for the fixed effects are very similar to those obtained from the Weibull model with
shared frailty (Example 19.21) and also with the Cox model without a shared frailty (model used in
Example 19.14 although model not presented).
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To fit a shared frailty model, include time as the set of polynomials  (as described above) and
add a random effect for the group variable (eg hospital). Example 19.23 compares the results of
fitting a  proportional  hazards  model  using standard  Cox regression  and Poisson regression
procedures.

19.11.5 Frailty models—interpretation of coefficients

In a frailty model, the effects of predictors on the hazard or survival are  ‘conditional’ on the
frailty; that is they represent the effect of the predictor compared with an individual without the
factor, but from the same group.

As noted above, the effects of predictors (eg HR) are the effects ‘conditional’ on the frailty. For
proportional hazards models (eg Weibull), the HR at any time t represents the shift in the hazard
due to a  unit  change in the predictor,  conditional  on the frailty (ie assuming a comparable
frailty).  For  a  dichotomous  predictor,  it  represents  the  effect  of  the  factor  being  present
compared with an individual with exactly the same frailty but with the predictor absent. This is
analogous to a ‘subject-specific’ effect—see Section 22.4.1. 

Example 19.23 Cox model fit by Poisson regression
data = mi

Several  Cox  proportional  hazards  models  were  fit  to  the  heart  attack  data  with  the  same  set  of
predictors as used in previous examples. The models were:

• Cox proportional hazards model (no frailty)
• Poisson regression model with time intervals as fixed effects (no frailty)
• Poisson regression model with time as a 4th order polynomial (no frailty)
• Cox proportional hazards model with shared frailty (gamma distribution)
• Poisson regression model with time as a 4th order polynomial and random effect (gamma 

distribution).

The coefficient for -mar_c2-, its Wald test P-value, and the estimate of the variance of the gamma
distributions are presented.

Model  Coef SE P Variance

Cox - no frailty -0.221 0.057 0.000

Poisson - time as fixed effects - no frailty -0.220 0.057 0.000

Poisson - time as polynomial - no frailty -0.224 0.057 0.000

Cox - shared frailty -0.221 0.057 0.000 0.0198

Poisson - time as polynomial - shared frailty -0.225 0.057 0.000 0.0233

As can be seen, the standard Cox model and Poisson models produce very similar results. (The minor
difference is due to the fact that a very small number (18 of 880) of the risk sets generated by splitting
the data at failure times were dropped because they contained only censored observations—presumably
from the record of the failure being dropped due to a missing predictor value.) Expressing time as a 4 th-
order polynomial instead of a set of fixed effects produces results which are quite close and would
probably  be  considered  acceptable.  The  2  approaches  to  fitting  the  shared  frailty  model  produce
slightly different, but close results.
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In gamma frailty models, the population hazards  (analogous to marginal effects—see Section
22.4.1) are not proportional over time and the hazard ratio only represents the population effect
of the predictor at time 0. In general, the effect of the predictor on the population hazard will
diminish over time in favour of the frailty effect. In simple terms, the frailty of the individual
(or group) accounts for the fact that, over time, the population is increasingly ‘robust’ and the
predictor has less and less influence on the hazard. With gamma frailties, the population  HR
tends to 1 as time approaches infinity,  while,  for an inverse Gaussian frailty,  the  HR tends
toward the square root of the HR. This problem in interpreting the marginal effects of predictors
is not present if the model is expressed as an AFT model—time ratios remain the same.

19.12 MULTIPLE OUTCOME EVENT DATA

In all of the material presented in this chapter so far, we have assumed that there was only one
possible occurrence of the outcome of interest (ie death). However, in some instances, multiple
outcome events are possible, and these fall into 3 general classes.

• Multiple different failure events—These arise in situations where you want to evaluate
the effect of a predictor on multiple possible outcomes such as an evaluation of the effect
of smoking cessation on the time to a heart attack, the time to a stroke, and the time to
onset  of  chronic  obstructive  pulmonary  disease.  These  are  sometimes  referred  to  as
competing risks data

• Multiple  ‘same’  endpoints  (not  ordered)—These  arise  in  situations  where  multiple
possible  outcomes  of  the  same  event  are  possible,  but  there  is  not  necessarily  any
ordering to them (eg time to onset of glaucoma in each eye). One way of dealing with
these is to change the unit of observation to the eye, but in many cases, most of the risk
factors will be at the person level

• Multiple ‘same’ endpoints  (ordered)—These are also called  recurrence data.  They
arise  when it  is  possible for  the outcome event  to  occur  multiple  times  in  the  same
individual  (eg multiple heart attacks). The key feature to these is that there is a natural
ordering  to  them  (ie the  second  case  cannot  happen  before  the  first).  The  lack  of
independence among episodes must be accounted for (see below). This type of data is the
focus of this section.

19.12.1 Models for recurrence data

Event times within an individual are often correlated for 2 reasons. First, there is likely to be
heterogeneity among individuals, with some individuals more likely to experience the outcome
than others,  leading  to  clustering  of  events  within the individual.  As a result,  observations
within an individual are not independent. The second is that the probability of occurrence of
one  event  may  increase  or  decrease  the  probability  of  subsequent  events  (called  event
dependence). 

There are 2 general approaches to dealing with the problem of heterogeneity. One is to adjust
the  variance  estimate  using  robust  standard  errors  (see  Sections  19.11.2  and  20.5.4).  An
alternative is to fit a shared frailty model with the frailty representing the intrinsic susceptibility
of the individuals (Therneau and Grambsch, 2000). The former approach produces population
averaged  estimates  of  effect  while  the  latter  generates  subject-specific  estimates  (Cain  and
Cole, 2006; Kelly and Lim, 2000).
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The problem of event dependence can be dealt  with either  by including a covariate  for the
number of previous events in the model (see Anderson-Gill model below) or by stratifying the
data  according  to  the  number  of  events  (see  Prentice-William-Peterson  model  below).  The
former approach assumes there is a common baseline hazard function for all events. The latter
allows for the baseline hazard to vary for each event (ie a different baseline hazard for first
events compared with second etc). Models for repeated events data have been reviewed recently
along  with  a  proposal  for  a  conditional  frailty  model  which  addresses  both  the  issues  of
heterogeneity and event dependence (Box-Steffensmeier and De Boef, 2006) (beyond the scope
of this text). 

Three approaches to modelling recurrence data have been reviewed (Wei and Glidden, 1997). Two
of these will be summarised below, but the third (a marginal model (Wei et al, 1989)) is no longer
recommended  (Hosmer and Lemeshow, 2008) and will not be described. Details of structuring
data appropriately for these analyses is presented in Cleves (2000) and is summarised below. The
2 approaches are shown in Example 19.24 using data from patients in the WHAS dataset who had
one, or multiple, heart attacks. The number of people with 1, 2, 3, 4, 5, and 6 heart attacks were
2,230,  2,229, 361, 76, 24, and 8,  respectively.  Factors of interest  that  were investigated were
gender (-sex-), race (-white-), and number of previous heart attacks (-prev_mi-).

Anderson-Gill model
This model is a generalised proportional hazard model and is the simplest approach to analysing
recurrence  data.  The  risk  of  recurrence  is  assumed  to  be  independent  of  previous  events,
although the assumption of independence can be relaxed by including a time-varying predictor
for the number of previous occurrences. The model is fit by assuming each subject’s ‘at-risk’
time starts over again after each outcome is observed. If an individual is not considered to be at
risk for a defined period after the occurrence of a case, then the time not at risk can be excluded
(interval censored or gap). For example, after a heart attack, a person would presumably have to
be free of symptoms for some minimum period of time for a recurrence to be considered a new
attack.

Prentice-William-Peterson model—conditional risk sets model
This model is a proportional hazards model that is conditional on previous occurrences. It is
equivalent to carrying out a stratified analysis with the strata defined by the number of previous
outcome events. All first occurrences would be in the first stratum, the second stratum would
consist of second cases, but only individuals that had experienced a first case would be at risk
etc. Time at risk for each outcome can be measured either from the start of the study period or
from the time of the previous event. The choice of approach depends on whether you feel that
there  is  reason  to  ‘reset  the  clock’ each  time  an  event  occurs.  An example  of  the  former
approach is shown in Example 19.24. As noted above,  this approach allows for a different
baseline hazard in each risk set (stratum).

19.13 DISCRETE-TIME SURVIVAL ANALYSIS

Up to this point, we have assumed that failure times were recorded on a continuous basis, that
is, we knew exactly when each failure time occurred (at least to the unit of time measurement—
which was ‘days’ in the heart attack datasets). However, we are often faced with the situation in
which failures are known to occur in an interval, but the exact time is not available. These are
called  interval-censored  data.  Such  a  situation  would  arise  if  we  measured  time  to
seroconversion in individuals and they were tested only every 6 months. At some point, we
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would observe a serologic response and would know that seroconversion had occurred some
time during the preceding 6 months. Discrete-time survival analysis can be used to analyse such
data. In some cases, failure times may have been recorded on a continuous basis, but actual
failure times are uncertain and grouping them into intervals may improve data quality.

Discrete-time models may also be used for continuous time data if:
• the dataset is very large and not amenable to standard survival analysis methods, or
• there are many time-varying predictors, or
• there are time-varying effects which are not easily modelled as some function of time.

Example 19.24 Multiple failure event models
data = mi_mult

The structure of the multiple heart attack data for the Anderson-Gill and Prentice-William-Peterson
models  is shown in the table  below.  The Prentice-William-Peterson model  assumed that  the clock
‘restarted’ after each MI. Patient 19 had 1 MI at age 44 and was censored at age 52. Patient 20 had MIs
at 76, 77, and 78 years of age.

Anderson-Gill
Prentice-Williams-

Peterson

id sex white agemi mi
prev.

mi Start End Start End
 Risk
set

19 1 1 44 1 0 0 44 0 44 1

19 1 1 52 0 1 44 52 0 8 2

20 0 0 76 1 0 0 76 0 76 1

20 0 0 77 1 1 76 77 0 1 2

20 0 0 78 1 2 77 78 0 1 3

The results for -sex- and -prev_mi- from fitting a variety of models to the data are shown below.

sex prev. mi

Coef SE Coef SE

Anderson-Gill model

Cox – robust SE 0.365 0.039 0.443 0.042

Weibull – robust SE 0.344 0.034 0.443 0.033

Weibull – gamma frailty 0.358 0.036 0.445 0.021

Prentice-William-Peterson (PWP) model

Cox – robust SE  0.164 0.026 na na

Weibull – robust SE  0.133  0.025 na na

The  Weibull  model  which  used  robust  SE  (as  opposed  to  shared  (gamma)  frailty)  to  deal  with
heterogeneity produce lower  estimates  for  the effect  of  -sex-  and -prev_mi-  because they produce
population  averaged  estimates  instead  of  subject-specific  estimates.  Being  male  (sex=1)  generally
increased the risk of having multiple heart attacks. However, the effect was not as pronounced if the
clock was ‘reset’ so time at risk started over at 0 (PWP model) compared with when risk was evaluated
as years from birth (AG model). The hazard increased with each previous MI.  
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This last situation was evident in the heart attack data in which a cardiac arrest in the hospital
appeared to result in a high hazard of death immediately after its occurrence, but a rather rapid
elimination of that effect thereafter (see Example 19.9).

Discrete time—basis for analysis
Time is divided into intervals, denoted Ij. In each interval, the number of subjects at risk is  nj

and the number of failures is dj. The probability of failure during the interval (or discrete time
hazard) is then

h j=d j /n j Eq 19.32

Intervals can either be chosen to reflect the underlying biology of the situation or at convenient
points which balance the width of the interval and the number of failures in each interval. (Note
A general guide is to have a minimum of 5 failures in each interval and it is important to avoid
choosing  intervals  based  on  the  observed  data—ie  data  snooping.) Observations  which  are
censored during the interval may be considered to have been censored at the start of the interval
(ie not included in  nj), censored at the end  (ie included in  nj) or counted for 1/2 of the time
interval (as was done in an actuarial life table analysis). Table 19.4 shows the heart attack data
divided into intervals based on the expected effect of a cardiac arrest (ie short intervals to start
and much longer intervals later). It appears that the increased hazard associated with a cardiac
arrest has disappeared by day 60 and the two groups have comparable hazard thereafter.

Table 19.4 Heart attack data divided into intervals (by cardiac arrest category)

no cardiac arrest cardiac arrest

tj-1            tj             nj
1 dj hj

2 nj
1 dj hj

2

0 10 2757 140 0.508 206 119 5.777

10 20 2617 66 0.252 87 21 2.414

20 30 2551 36 0.141 66 6 0.909

30 45 2515 39 0.103 60 6 0.667

45 60 2476 31 0.083 54 1 0.123

60 90 2445 52 0.071 53 0 0.000

90 120 2393 49 0.068 53 1 0.063

120 180 2344 78 0.055 52 1 0.032

180 360 2266 126 0.031 51 3 0.033

360 720 2140 207 0.027 48 2 0.012

720 1440 1895 309 0.023 46 5 0.015

1440 2942 1078 252 0.016 25 4 0.011
1 observations censored during the interval considered censored at the start of the interval
2 estimated daily hazards multiplied by 100 for ease of reading

If the data are truly discrete-time data (ie collected only at specific times), the time periods are
defined by the data-collection periods, so intervals do not need to be created. If there are many
time periods (intervals), you may want to replace the fixed effects for each time period with
some form of polynomial model of time (eg orthogonal polynomials as was done in the Poisson
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model in Section 19.11.4). See  Singer and Willett (1993; 2003) for a review of discrete-time
methods.

Discrete-time—logistic regression
Once the data have been structured as described above, they can be analysed using logistic
regression according to the following model.

logit h j=0 j X Eq 19.33

where logit(hj) is the probability (hazard) of failing in interval Ij given being present at the start
of the interval, and  β0 is the logit(hazard) in the baseline time period for a baseline individual,
αj is the effect of the jth time period (compared with the baseline period) and βX represents the
predictors  in  the  model.  This  model  assumes  additivity  on  the  logit(hazard) scale  or
proportional odds for the hazard probabilities.  (Note This corresponds to a continuation-ratio
model (see Section 17.2.4) for the multinomial probabilities across all intervals.)

Discrete-time logistic regression models can easily be extended to include one or more random
effects  (shared  frailties)  using  procedures  for  modelling  multilevel  data  (see  Chapter  22).
Specialised software is required to fit individual frailty models to discrete time data (Jenkins,
1995).  Example  19.25 shows the results of such a model with the time intervals as shown in
Table 19.4 and a -card- by time interaction included.

Discrete-time—complementary-log-log regression
As noted above, the logistic model assumes that the log-odds of the outcome are additive, or
alternatively  that  the  odds  are  proportional.  This  is  the  same  as  saying  that  the  OR for  a
predictor  is  constant  across  all  time intervals  (although  this  assumption  can  be  relaxed  by
including interaction terms with the predictor). An alternative to logistic regression is to use a
complementary log-log model which is based on the assumption of proportional hazards (not
proportional  odds)  and  consequently  is  a  more  natural  fit  with  models  such  as  the  Cox
proportional hazards model.

The complementary log-log function transforms a probability as follows

cloglog p =ln [−ln 1− p] Eq 19.34

Fig.  19.26 shows  the  relationship
between  probability  and  both  the
complementary  log-log  and  logit
functions. At  p<0.2 the 2 functions
are  very  close,  but  become
substantially  different  at  large
values  of  p (and  may  produce
substantially  different  results  in
binary  regression  analyses).  As
noted,  the  main  advantage  of  a
complementary  log-log  model  is
that it is based on the proportional
hazards  assumption  and
consequently,  exponentiated
coefficients  can  be  interpreted  as
hazard  ratios  (as  opposed  to  odds
ratios).

Fig. 19.26 Complementary log-log and logit 
functions
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Example 19.26 shows the results from a complementary log-log model of the heart attack data.

Example 19.25 Discrete-time analysis—logistic regression
data = mi

A discrete-time analysis  using logistic regression was carried out on the heart attack data.  Cardiac
arrest by time period interaction terms were included. Not all time period and time period interaction
coefficients are shown.

Logistic regression Number of obs = 25902
Log likelihood = -3856.1672 LR χ2

 (24)  = 2393.55
Prob >χ2 = 0.0000

Predictor Coef SE Z P 95% CI

sex 0.236 0.070 3.37 0.001 0.099 0.373

age_ln 3.602 0.215 16.72 0.000 3.180 4.024

mar_c2 -0.236 0.069 -3.42 0.001 -0.371 -0.101

ptca -1.124 0.077 -14.63 0.000 -1.275 -0.974

card 3.495 0.184 18.96 0.000 3.133 3.856

period 0–9 -0.717 0.155 -4.62 0.000 -1.020 -0.413

period 10–19 -1.282 0.191 -6.72 0.000 -1.656 -0.908

period 20–29 -1.225 0.189 -6.48 0.000 -1.595 -0.854

... some output omitted

period 360–719 0.937 0.118 7.93 0.000 0.705 1.169

period 720–1439 2.038 0.115 17.73 0.000 1.813 2.264

per 0–9 * card -0.378 0.355 -1.06 0.287 -1.074 0.318

per 10–19 * card -0.889 0.516 -1.72 0.085 -1.900 0.122

per 20–29 * card -0.865 0.549 -1.58 0.115 -1.941 0.211

... some output omitted

per 360–719 * card -3.772 0.767 -4.92 0.000 -5.275 -2.269

per 720–1439 * card -3.111 0.553 -5.63 0.000 -4.194 -2.027

constant -3.740 0.134 -27.92 0.000 -4.002 -3.477

The coefficient for cardiac arrest (β=3.495) represents the effect of a cardiac arrest in the first time
period (0–10 days after admission to hospital). The -card- by time period interaction term for the period
120–180  days  (not  shown  in  table)  was  -3.408  indicating  that  the  effect  of  a  cardiac  arrest  had
dissipated by 120 days. The interaction terms remained at approximately that level for all subsequent
time periods.
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19.14 SAMPLE SIZES FOR SURVIVAL ANALYSES

Computation of sample sizes for studies with survival time as the outcome can be a complex
process. For studies where the primary focus is the comparison of survival times across 2 (or
more) groups,  as it often is in controlled trials, one approach is to compute the sample size
required to have a desired power in an analysis based on an unweighted log-rank test. If an
assumption of proportional hazards is likely not valid, basing the sample size on that required

Example 19.26 Discrete-time analysis—complementary log-log regression
data = mi

A complementary log-log model of the heart attack data that were used in Example 19.25
produced the following results.

Complementary log-log regression
Zero outcomes  = 24637 Number of obs = 25902
Non-zero outcomes  = 1265 LR Χ2 (26) = 2428.52
Log likelihood = -3858.094 Prob >Χ2 = 0.0000

Predictor Coef SE Z P 95% CI

sex 0.211 0.063 3.34 0.001 0.087 0.335

age_ln 3.314 0.199 16.64 0.000 2.923 3.704

mar_c2 -0.216 0.062 -3.47 0.001 -0.338 -0.094

ptca -1.013 0.071 -14.34 0.000 -1.151 -0.874

card 2.860 0.133 21.59 0.000 2.601 3.120

period 0–9 -0.693 0.150 -4.61 0.000 -0.988 -0.399

period 10–19 -1.248 0.187 -6.67 0.000 -1.615 -0.882

period 20–29 -1.194 0.185 -6.45 0.000 -1.556 -0.831

... some output omitted

period 360–719 0.877 0.111 7.93 0.000 0.660 1.094

period 720–1439 1.836 0.103 17.75 0.000 1.633 2.039

per 0–9 * card -0.065 0.287 -0.23 0.822 -0.626 0.497

per 10–19 * card -0.378 0.462 -0.82 0.413 -1.284 0.528

per 20–29 * card -0.448 0.495 -0.90 0.366 -1.418 0.523

... some output omitted

per 360–719 * card -3.177 0.723 -4.39 0.000 -4.594 -1.759

per 720–1439 * card -2.562 0.472 -5.43 0.000 -3.486 -1.638

constant -3.692 0.126 -29.29 0.000 -3.940 -3.445

The results are similar to those from the logistic regression analysis. However, the effect of -card- may
be underestimated in the first time period when the probability of death in cardiac arrest patients was
58%. A comparison of the log likelihoods suggests that the logistic model fits the data better.
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for a weighted version of the test  (eg Tarone-Ware or Harrington-Flemming tests) might be
more appropriate.

However, there are many factors which will influence the required sample size. Some of the
following have been discussed under sample size estimation in Chapter 2, and some are unique
to studies of survival time.

1. Sample  size  might  need  to  be  increased  to  account  for  multiple  predictors  in  the
analysis,  and/or  to  adjust  for  clustering  of  the  data  (ie non-independence  among
observations) (see Chapter 2).

2. As  pointed  out  in  Chapter  11,  multiple  comparisons  (often  arising  from  interim
analyses), losses in the follow-up process, and subgroup analyses are common features
of controlled trials which require adjustment to the sample size.

Example 19.27 Sample size calculations for a randomised controlled trial
data = hypothetical

Assume  that  you  are  about  to  start  a  randomised  controlled  trial  of  2  drugs  designed  to  prevent
recurrence of a certain type of cancer, following initial treatment of the condition. Untreated controls
will also be included in the study. Past experience has shown that as the risk of recurrence goes down,
the longer the patient remains in remission. In the absence of treatment, you expect the cumulative
probabilities of recurrence in each of 4 time periods to be as follows:

• end of year 1 30%
• end of year 2 50%
• end of year 4 60%
• later in life 65%.

Relative to untreated controls, you expect treatment A to have a HR of 0.75 and treatment B to have a
HR of 0.5. You consider the following 5 scenarios.

(a) no loss to follow, no cross-over of treatments, equal allocation of subjects to the 3 groups

(b) same as (a) except cumulative loss to follow up of 5%, 15%, 30%, and 40% in the 4 time periods

(c) same as (a) except cumulative loss to follow up of 10%, 30%, 60%, and 80% in the 4 time periods

(d)  same as  (c)  except  20% of  control  patients  and 10% of  treatment  A patient’s  cross-over  into
treatment B

(e) same as (d) except you initially allocate patients in the following ratio: control=1, treatment A=1,
treatment B=2.

For each scenario, you want to determine the sample size required to have an overall power of 80% for
detecting a difference among treatment groups.  The required sample sizes and expected number of
recurrences are:

Scenario

(a) (b) (c) (d) (e)

Total sample size 742 837 965 1379 1347

Expected number of recurrences 353 353 353 502 500

As expected,  the  sample  size  goes  up with  increasing loss  to  follow up (with  no increase  in  the
expected number of cases). Subjects switching treatments (d) increases the required sample size, while
changing the allocation of subjects was able to slightly reduce  the total sample size required.
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3. The shape of the baseline hazard function might not be known in advance of the study,
so  a  sample  size  estimate  based  on  a  non-parametric  test  (eg log-rank) would  be
appropriate.

4. The possibility of non-proportional hazards needs to be considered.
5. In controlled trials, cross-over might occur in which individuals could move from one

treatment group to another (eg treated to non-treated if the patient fails to comply with
treatment instructions).

6. Recruitment of individuals into the study may take place over time which might affect
the length of follow-up period for individuals recruited.

7. Survival analyses are often used in randomised controlled trials. In non-randomised
studies of therapeutic interventions, subjects with the new treatment are often matched
to those receiving a standard treatment within strata defined by covariates of interest.

A general discussion of sample size issues can be found in  Hosmer and Lemeshow (2008);
Mazumdar et al (2006). A review of some of the issues identified above and a description of a
software program for computing sample sizes for survival analysis studies has recently been
published (Barthel et al, 2006; Royston and Babiker, 2002) (see Example 19.27). 
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