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MIXED MODELS FOR CONTINUOUS DATA

OBJECTIVES

After reading this chapter, you should be able to:

 1. Write an equation for a model that contains both fixed and random components.

 2. Compute the variance for each level of a multilevel model.

 3. Determine how highly correlated observations are within a cluster.

 4. Determine if predictors have the same (fixed), or different (random slopes) effects across 
clusters.

 5. Compute the variance of the outcome (a complex function) in models containing random 
slopes.

 6. Determine whether the between-cluster and within-cluster regressions for predictors have 
different slopes (ie whether contextual effects are present in the data).

 7. Evaluate the statistical significance of fixed and random effects in a model.

 8. Evaluate residuals from a multilevel model.

 9. Determine the optimum Box-Cox transformation for the outcome in order to normalise the 
residuals from a model.
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21.1 INTRODUCTION

Mixed models (for continuous data) contain 2 types of parameters or effects:
• fixed, or mean effects, such as ordinary regression coefficients in a linear regression

model (Chapter 14),
• random, or ‘variability around the mean’ effects, explaining some of the error term.

Mixed models can be used to take into account that the data have a hierarchical, multilevel, or
nested structure, and are sometimes referred to by these terms. Although other methods exist for
analysing hierarchically structured data, the use of mixed models has gained prominence with
advances in computing power. Multilevel models, a special type of mixed model, have been
advocated as an appropriate framework for many epidemiological analyses (Diez-Roux, 2000;
Greenland, 2000a), and we elaborate on this issue in Section 21.3.4. Mixed models also apply
to many other data structures, but our focus in this chapter is on hierarchical data (we discuss
repeated measures and spatial data in Chapters 23, 25, and 26). Mixed models are also known
as  variance  component  models.  Variance  components  are  the  technical/mathematical
constructs used to decompose the variance (variation, variability) in a dataset into (a sum of)
several components that can each be given a useful interpretation. 

The blood pressure dataset (bp—described in more detail in Chapter 31) is used to illustrate the
methods  numerically.  It  contains  data  from  a  multicentre  trial  to  compare  treatments  for
hypertension (Hall et al, 1991). Within each centre, patients were randomly allocated to one of
3 treatments, of which one (Carvedilol) was a new drug, whereas the other 2 (Nifedipine and
Atenolol) were standard drugs. Pre-treatment blood pressure measurements were taken at the
first  visit  to  the  centre,  treatments  were  administered  at  the  second  visit  and  follow-up
measurements were obtained at visits 3–6 (at weeks 3, 5, 7, and 9), and thus constitute repeated
measures per patient (individual). The data structure may be considered as 3-level hierarchical:
1,092 records within 288 patients within 29 centres. Our outcome of interest is the diastolic
blood pressure (-dbp-). In this chapter, we include only a single measurement per individual—
obtained at the first post-treatment visit (week 3). The data have been analysed extensively in
Brown and Prescott (2006). For a 2-level structure, these authors considered week 9 data for
each patient, with the last measurement carried forward for patients who dropped out of the
study  (one  simple  method  of  dealing  with  missing  data,  see  Section  15.5).  Records  were
available at week 3 for all patients but one, so patient dropout is not a serious concern here.
Obviously,  any  inferences  about  treatment  effects  should  not  be  based  on  analysis  of  a
subdataset such as the present one (the full dataset is considered in Chapter 23). Table 21.1 lists
the variables of the bp data used in the examples. 

21.2 LINEAR MIXED MODEL

Linear mixed models extend the usual linear regression models (Chapter 14) of the form:

Y i=01 X 1 i k X ki i , i=1, ,n Eq 21.1

In our example,  we will take as our outcome  Y—the blood pressure—and as our regressors
X1,...,Xk—the continuous and dummy variables  necessary to represent  the chosen predictors.
Further,  the  errors  ε1,...,εn are  assumed  independent  and  ~N(0,σ2).  This  equation  (and  its
assumptions) would be meaningful if we considered one visit per individual and there was no
clustering in centres (eg we might have data from only one centre). 
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Table 21.1 Selected variables from the dataset bp

Variable
Level of

measurement Description

centre 3:centre centre identification

patient 2:patient patient identification

visit 1:visit visit number: 3,4,5,6

tx 2:patient drug: 1 (Carvedilol), 2 (Nifedipine), 3 (Atenolol)

dbp 1:visit diastolic blood pressure (mm Hg)

dbp1 2:patient diastolic blood pressure before treatment (at visit 1) (mm Hg)

It is worth noting that, in this model, the observations Y1,..., Yn are independent and all have the
same variance:

var Y i=var i=
2

So far,  the residual  variance  is  the only variance  component.  However,  in reality we have
recordings in several (29) centres, and we would like the centres to enter our model as well,
because  we  know  that  there  might  be  some  variation  of  blood  pressures  across  centres.
Previously, we have discussed including groups (here, centres) in the model by adding a set of
(29-1=28) indicator variables and estimating a separate  β  for each of them. A  mixed model
with a random group effect is written:

Y i=01 X 1 i... k X kiugroupi i Eq 21.2

The model  is  often termed a  random intercept  model,  for  reasons  we’ll  explain  later  (in
Section 21.3.4).  Note  For the sake of simplicity,  a single index notation will be used for all
multilevel  data.  The  subscript  i denotes  the  individual  (lowest  level)  observation.  In  the
equation above, ugroup(i) refers to the group containing the ith individual (eg u7 for individuals in
group (centre) 7). As there are 29 groups,  u would have one of 29 values:  uj,  j=1,...,29. An
alternative notation uses multiple indices such as uj + εij where j refers to the group and i to the
ith individual in the jth group.

The explanatory variables and the β-parameters are unchanged from Eq 21.1 to Eq 21.2. These
are usually termed the fixed effects, in contrast to the last 2 terms which are random effects.
The only new term in Eq 21.2 is ugroup(i), a random group effect for the group of the ith individual.
Random simply means that it is modelled as a random variable, in contrast to a fixed parameter
(according to a ‘frequentist’ or non-Bayesian view; see Chapter 24 for the alternative Bayesian
approach). Let’s defer the question as to why we model group as a random term for now, and
first look at the assumptions for u and ε:

u j ~ N 0, g
2  , i ~ N 0, 2

where all uj and εi are independent.

Thus, we assume the impact of each group to be a random fluctuation with mean zero (and
consequently centred at the mean determined by the fixed effects) and standard deviation σ g.
Therefore,  the parameter  g

2 can be interpreted as the random variation in blood pressures
between groups (centres). Furthermore, we could calculate:
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var Y i=var ugroup i var i= g
2


2

Eq 21.3

In effect, we have decomposed the total variance to a sum of the variance between groups and
the  error  variance  (or  the  variance  within  groups).  The  σ2s  are  the  variance  components;
Example 21.1 shows how they might be interpreted.  Note The variation accounted for by the
fixed effects is not included here; one way of saying this is that Eq 21.3 is for the unexplained
variance.

Random effects modelling of groups can be motivated in different ways. Strictly speaking, it
corresponds  to  effects  (groups)  in  the  model  being  randomly  selected  from  a  population.
Sometimes, in a study, this could be the case, but it might be reasonable to assume that the
groups are generally representative of the population even if they were not randomly selected.
In our example, the 29 centres were presumably not randomly selected from a larger set of
centres, and some of the centres originally intended for inclusion in the study did not recruit
patients after all and were hence omitted. Consequently, the population these centres could be
representative of is probably not well-defined. With random effects, the focus shifts from the
individual group to the variability between groups in the population  g

2 . In a study with only a
few groups  of  particular  interest  (possibly  because  they  were  individually  selected  for  the
study),  one  might  prefer  to  model  groups  by  fixed  effects  (ie  β-parameters)  instead  (as
discussed in Section 20.5.2).

Mixed models can be used to take into account more general hierarchical data structures by
inserting random effects for all levels above the bottom level (which is already present in the
model as the error term). For example, a 3-level structure with individuals in groups in regions
would lead to random effects for both groups and regions, and we then split the variation into 3
terms: varY i=r

2
 g

2


2 .  In mixed models, the predictors might reside at any level of the
hierarchy. As a particular example, the split-plot design (Section 20.2.1) could be analysed by a
mixed model with random effects for the whole-plots. In epidemiology, we often work with
datasets  in  which  predictors  explain  variation  at  several  levels  (Section  20.2.2);  the  mixed
model analysis fully takes this into account. Example 21.2 shows some of the possible changes
to a linear  mixed model when fixed effects  are included.  Finally,  the one exception to the
‘random effects for every level’ rule is that the top level may be modelled by fixed effects, if
(and only if) there are no predictors at that level. This situation often occurs when the top level
(eg centre or region) is not a random sample of a larger population and does not have a large

Example 21.1 Variance components and random effects 
data = bp

When restricting analysis to records from visits at week 3, this dataset contains one observation from
each of 287 individuals visiting one of 29 centres. In a 2-level random effects model for -dbp- with no
fixed effects (a ‘null’ or ‘empty’ model’), the variance components were estimated at:

 g
2
=3.43 and 

2
=81.40

Thus,  the  total  (unexplained)  variance  was  3.43+81.40=84.83.  It  is  often  useful  to  compute  the
fractions  at  the  different  levels;  here  we  have  3.43/84.83=4.0%  of  the  variance  between  groups
(centres) and 96.0% within groups. We can also give a direct interpretation of  g

2
: 95% of the group

effects should be within an interval of ±1.96 σg= ±3.63. As the overall mean (β0) was 93.41, this means
that most group mean -dbp- values in the population lie between 89.8 and 97.0.
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number of elements. Some ‘final’ remarks on fixed vs random effects have been collected in
Section 21.5.7.

21.2.1 Intra-class correlation coefficient

The model assumptions allow us to examine the dependence or correlation between observations
from the same group. In a linear model, all observations are independent, but in mixed models this
is no longer so. The correlation between observations within the same group (in our example,
centre) is described by the intra-class correlation coefficient (ICC or ρ). For a 2-level model (Eq
21.2), the ICC equals the proportion of variance at the upper level, from Example 21.1:

=
 g

2

 g
2 2

=
3.43

3.4381.40
=0.040

Eq 21.4

Example 21.2 Mixed model estimates for 2-level blood pressure data
data = bp

A linear mixed  model  with  tx  and initial  blood pressure  (-dbp1-) was  fit  to  the 29-centre,  2-level
diastolic blood pressure data at visit 3. The initial blood pressure was centred by subtracting the median
(102). The reference level for -tx- was the new drug, Carvedilol.

Coef SE Z P 95% CI

dbp1 centred 0.558 0.107 5.21 <0.001 0.348 0.768

tx = Nifedipine -1.35 1.24 -1.08 0.279 -3.78 1.09

tx = Atenolol -3.42 1.24 -2.77 0.006 -5.85 -1.00

constant 94.39 0.937 - - 92.56 96.23

Note that, because of the random group (centre) effects, the constant refers to the blood pressure in an
average group, not to the value of an average individual across the population of groups. As groups
differ in size, these means are not necessarily the same. For example, if the lowest blood pressures were
obtained at the largest  centres (some indication of this exists in the data),  then the patient average
would typically be lower than the centre average. The individual and group averages are analogous to
weighted  and  unweighted  averages  in  multistage  sampling  (Section  2.8).  The  other  regression
coefficients are interpreted in the usual way.

In addition, the estimated variance components (also with standard errors (SEs)) were:
 g

2=2.222.65 and  2=73.866.45

In a linear regression model, adding predictors always reduces the unexplained variation. Intuitively,
one would expect a similar effect in a mixed model at the levels affected by added predictors. Here, by
comparison with Example 21.1, both variance components are reduced, and the proportion of variance
at the group level has dropped to 3%, despite the fact that none of the added predictors reside at the
group level. Some group-level differences in initial blood pressure are present, though (we discuss this
further in Example 21.6). In general, it is not unusual that adding fixed effects to hierarchical models
redistributes the variation across the levels and may increase some of the variance components and,
sometimes,  even  the  total  variation  (the  sum  of  all  variance  components).  No  simple  intuitive
explanation  can be offered;  see Chapter  7  in  Snijders  and Bosker  (1999) for  details  and ways  of
defining measures of the variance explained by fixed effects.



592 MIXED MODELS
FOR CONTINUOUS DATA

Thus, a low ICC means that most of the variation is within the groups (ie there is only little
clustering), while a high  ICC means that the variation within a group is small relative to that
between groups. 

Generally,  in  mixed  models  with  homogeneous  variances  and  independent  random effects,
correlations are assumed to be the same between any 2 observations in a group, and can be
computed  by  a  simple  rule.  Recall  (Eq 20.1)  that  the  correlation  is  the  ratio  between  the
covariance of the 2 observations in question and the product of their standard deviations. As all
observations have the same variance, the denominator of this ratio is always the total variance,
ie the sum of all variance components. The numerator is obtained by noting which random
effects are at the same level for the 2 observations in question, and summing the respective
variance components. For the 2-level model, this rule gives Eq 21.4 for observations in the
same group and zero correlation for observations in different groups. If region was added as a
third level  to  the model  (ie groups  were  clustered  within regions),  the correlation  between
individuals in the same group (and hence within a region) would be:

individuals in same group=
r

2
 g

2

 r
2 g

22

Eq 21.5

Similarly, the correlation between individuals in different groups in the same region would be: 

individuals in same region, but different groups=
 r

2

 r
2 g

2  2

Eq 21.6

Example 21.3 shows similar computations for a 4-level hierarchical structure in hospital data.
The correlation in Eq 21.6 referred to individuals in different groups but an intuitively more
appealing value might be the correlation  between groups—more precisely,  between group
means. The correlation between means of 2 groups of size m is 

groups of size m in same region =
r

2

 r
2 g

2 2/m Eq 21.7

When  m  is large, the contribution of  σ2/m to the formula is small and might be ignored (see
Example 4.7 of Snijders and Bosker (1999) for further discussion).

21.2.2 Vector-matrix notation

Notation involving vectors and matrices allows us to write the linear and linear mixed models in
a compact and clear form. The linear regression model (Eq 21.1) can be written:

Y =X 

where  Y,  β, and  ε are (column) vectors and  X is the so-called design matrix, comprised of a
column of 1s followed by the k columns containing the values of the k predictors of the model.
(Technical Note  Our usage of  Xji for the element in the  ith row and jth column of  X contrasts
usual  matrix  notation,  but  is  of  no  serious  consequence  because  we  do  not  pursue  any
computations  with  matrix  notation.)  Similarly,  linear  mixed  models  such  as  Eq  21.2  can
generally be written as:

Y =X Zu Eq 21.8
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where  u is a vector  of all random effects  (except for  ε) and  Z is  the design matrix for the
random part of the model. Our assumptions for the model (in this chapter) are that all random
variables are normally distributed with mean zero, and that all the errors are independent, have
the same variance, and are independent of the random effects.

Before we further develop the mixed models for hierarchically structured data,  let’s briefly
indicate how mixed models can be set up for cross-classified data structures (Section 20.2). In
the simplest cross-classified structure, every observation is classified according to 2 groupings,
eg doctors and nurses in hospital data. We denote the 2 groupings by A and B. If both doctors
and nurses  are  taken  to  represent  a  population,  the natural  model  has  2 random effects  in
addition to the error term, as follows: 

Y i= X iuA i vB i  i Eq 21.9

where (Xβ) represents  the fixed effects,  and the random effects  for groupings A and B are
drawn  from  normal  distributions  with  variances  A

2
and  B

2 , respectively.  In  the  context  of
analysis of experimental design data, this model is known as a 2-way random effects ANOVA
model (Dean and Voss, 2000) (and more commonly written in a 2-index notation with i and j
representing the units (or categories) of factors A and B). ICCs can be computed by the same
principles as above, eg the ICC for observations at the same level of grouping A is computed
as:

= A
2
/ A

2
 B

2


2


Example 21.3 Intra-class correlations in a 4-level mixed model

Krogstad et al (2005) used 4-level mixed models to investigate how the variation of nurse evaluations
of aspects of hospital work was distributed across individuals (2,606), wards (124), departments (36),
and hospitals (15). Answers were combined across multiple questions using exploratory factor analysis
into indices, scaled into 0–100 ‘satisfaction scores’, at a total of 9 domains. The multilevel models did
not include fixed effects,  so the model  for  a score  Yi computed from answers  by nurse  i could be
written:

Y i=0uward i vdepartment i whospital i i

The variance components reported for the domain ‘workload’ were:
hospital : h

2=0, department: d
2=18.6, ward :w

2=84.6, individual :2=351.5

The authors reported variances as zero (eg the between-hospital variance above) when the data showed
no statistical evidence of variation at the corresponding level. For each domain, proportions of variance
at the different levels as well as the ICC for observations within wards were computed and used to
discuss the implications of similarities and differences across the hierarchical levels in the responses for
different domains. In risk factor studies, the amount of unexplained variation at a certain hierarchical
level might indicate the potential for improvement by interventions at that level.

From the listed estimates, we could compute a total variance of 454.7 and the following correlations
between observations (scores by individuals):
individuals within the same ward: ρ=(0+18.6+84.6)/454.7=0.227
individuals in different wards of the same department: ρ=(0+18.6)/454.7=0.041
individuals in different departments of the same hospital ρ=0/454.7=0

The  last  calculation  was  only  included  for  demonstration  purposes,  but  some  domains  showed
appreciable correlation within hospitals, most notably the physical layout of workplace (ρ=0.176).
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21.3 RANDOM SLOPES

21.3.1 Additive and non-additive modelling

As a prelude to extending the mixed model (Eq 21.2) with a random slope, we consider in more
detail  one  implication of  the  model  assumptions.  Let’s  focus  on a  quantitative  explanatory
variable, such as the initial blood pressure in Example 21.2. Assume these values to be in X1,
and assume the model has a linear term for X1 with a positive regression coefficient (β1), and no
interaction terms with  X2 (treatment). Then the predicted blood pressures from the model for
different treatments as a function of X1 will be parallel lines, as outlined on the left in Fig. 21.1.
Each line represents the predicted value for individuals in a specific treatment group (assuming
here for the sake of illustration that more than 3 treatment groups exist). If an interaction term
between treatment and initial blood pressure was added, this would produce non-parallel lines
(for different treatment groups), as outlined on the right. 

Exactly the same interpretation is valid for individuals in different groups: in an additive model
(Eq 21.2) the regression lines corresponding to different centres are parallel, and the random
group effects can be read as the vertical distances between the lines. This is because Eq 21.2
assumes the impact on the blood pressure of a difference in initial blood pressure (eg  1-unit
increase)  to be the same for  individuals in all  groups (parallel  lines).  Fig.  21.1 was indeed
drawn based on estimates for 5 centres in the models of Examples 21.2 and 21.4.

21.3.2 Random slopes as non-additive group effects

An assumption  of  additive  group  effects  (parallel  lines)  might  not  be  biologically  obvious
because other factors related to the groups, such as group management factors or heterogeneity
in individuals between groups (inherent in the group effects), could influence the relationship.
Adding an interaction between groups and X1 means that slopes vary among groups. If group
was included in the model  as  a  set  of  fixed effects,  the interaction  term would result  in  a

Fig. 21.1 Schematic graphs of additive and non-additive modelling of a 
continuous predictor for a continuous outcome
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specific effect being estimated for each group. With group as a random effect, the slopes are
assumed to vary according to some distribution (in addition to the intercepts varying between
groups). A model with random slopes for a single fixed effect (X1) is written as:

Y i=01 X 1 iugroup ibgroup i X 1 ii Eq 21.10

where in addition to the previous assumptions, we assume for the random slopes that the bgroup ~
N(0,1

2
). The parameter  1

2
 is interpreted as the variation in slopes (for predictor  X1) among

groups. The regression parameter  β1 is now the overall or average slope for  X1, which is then
subject to random fluctuations between groups. As a rough rule, with probability 95%, the slope
in a given group would lie in the interval  β1±2σ1. The choice of whether the slopes should be
modelled  as  random  or  fixed  effects  usually  follows  the  choice  for  the  random  effects
themselves.  That is,  if  groups are  modelled as random, any slopes varying between groups
should  also  be  random.  (Note The  random  group  effect,  ugroup,  and  its  variance,   g

2,  now
represent the variation between groups at  X1=0; for this to be meaningful it is necessary that
zero is a meaningful value of X1; otherwise it must be centred.)

We have not yet specified the assumptions about the relationship between bgroups and the other
random variables, and it is usually undesirable to assume random effects at the same level to be
independent.  In  our  example,  the  2  random  effects  at  the  group  level  (ugroup and  bgroup)
correspond to the intercept and slope for the regression on  X1 at the group level. Recall that
slope  and  intercept  are  often  strongly  negatively  correlated  (although  centring  the  variable
might remove this correlation). Consequently, we usually estimate a correlation or covariance
between the group intercept and slope. It is useful to display the 3 parameters: g

2
,  1

2
 and the

covariance σg1, in a 2X2 matrix as follows:

 g
2

 g1

 g1  1
2 

and the correlation between the group intercepts and slopes is computed as σg1/(σgσ1). Example
21.4 shows the effect of adding a random slope to the model for the blood pressure data.

21.3.3 Caveats of random slopes modelling

As intuitively appealing as the random slopes might appear, we must raise a few warning signs
in their use. When the main interest is in the fixed effects, it is wise policy not to build models
with too many variance parameters. In our experience, it is rarely useful to have more than one
or 2 random slopes at each level in a model, and random slopes should usually only be included
for statistically significant and clearly interpretable predictors; see also Section 21.3.4 below for
a different perspective.

One reason why random slopes should be used cautiously is that the variance of the model is
no longer constant. To illustrate, we compute the variance components for the random slopes
model of Eq 21.10:

var Y i = var ugroupivarb groupi  X 1 i2cov ugroup i  , bgroupi X 1 ivar i

=  g
2
 X 1 i

2
 1

2
2 X 1i  g 1

2

Eq 21.11
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This equation involves the values of the explanatory variable X1. In consequence, the variance is
no longer the same for all observations but a function of X1. Also, there is no longer a unique
decomposition of variance in the model. For moderate magnitudes of 1

2 and σg1, one might
arrive at approximately the same decomposition of variance within the most relevant range of
X1.  It  is  always  recommended to plot the resulting variance function from a random slopes
model and, if possible, convince yourself that it makes biological sense. Fig. 21.2 shows the
variance function of the random slopes model for the bp data.  The dependence of the total
variance on  X1 is weak, because the major portion of the variance is at the individual level;
nevertheless, it may be biologically plausible that more extreme values of initial blood pressure
are associated with larger variability.

Example 21.4 Random slopes of -dbp1c- for blood pressure data
data = bp

Adding a random slope of -dbp1c- (the centred -dbp1-) to the model of Example 21.2 gave almost the
same regression coefficient (0.537) but with a substantially increased SE (0.156), and the random effect
parameters (with SEs) were:

  g
2

 g 1

 g 1  1
2 = 1.7732.429 −0.1380.460

−0.1380.460 0.2850.171  and 
2
=67.736.13

The value of  1
2 suggests that 95% of the slopes for -dbp1c- lie roughly within 0.54±1.05=-0.51,1.58.

The correlation between intercepts and slopes is fairly small −0.138/1.773∗0.285=−0.19  so the
centring of -dbp1c- largely removed the correlation. The value of 1

2
is less than twice as large as its

SE and σg1 seems totally non-significant, so it is not obvious whether the random slopes add much to
the model. We will later see how to compute a statistical test for the random slopes (it is significant).
Note finally that a model with random slopes for any predictors at the group level (we don’t have such
predictors in the bp data, but we could imagine centre descriptors or demographics related to centre
location) would not be meaningful; random slopes are possible only for variables at a lower level than
the random effects themselves in order to be interpreted in the way we have done.

Fig. 21.2 Variance function for model which included a random
slope for initial blood pressure
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Random slope models have been introduced for continuous predictors (where the relationship
between  Y and  X is  a  regression).  However,  interactions between categorical  variables  and
random effects are possible as well, although not interpretable as random slopes. Hence, the
more general term random coefficients may be used instead of random slopes. As before, an
additive model assumes the impact of each categorical predictor to be the same in all groups,
and one might want to allow it to vary between groups. It’s simplest to specify such models for
a dichotomous predictor: treat its 0-1 representation as if it was a continuous variable. If the
variable  takes  several  (j)  categorical  values,  one  might  create  (j-1)  indicator  variables  and
proceed  in  the  same  way.  Be  aware  that  such  models  quickly  grow  to  contain  a  lot  of
covariance  terms,  and  that  they  could  produce  very  different  variances  for  the  different
categories. In such cases it might be useful to restrict the covariances to zero. 

Example 21.5 shows the effects of adding random slopes for the treatment in the bp data. We
also discuss the alternative approach of modelling the treatment by group combinations as an
additional  hierarchical  level  in  the  model,  nested within groups.  This  leads to  independent
random terms (‘deviations’) for each treatment in every group, and the variance associated with
the hierarchical level measures the magnitude of these deviations from the average treatment
effects.

Example 21.5 Random slopes of -tx- for blood pressure data
data = bp

Adding a random slope (of -tx-, represented by 2 indicator variables  relative to Carvedilol)  to the
model from Example 21.2 produces treatment effects of -1.23(1.52) and -3.11(1.35) (for Nifedipine and
Atenolol, respectively), and the variance parameters (with SEs):


 g

2
 g 1  g 2

 g1 1
2

 12

 g 2 12  2
2 = 3.966.64 −4.768.48 −3.187.75

−4.768.48 14.1614.73 6.9911.00
−3.187.75 6.9911.00 6.5812.41  and 

2
=70.796.63

The interpretation of the random slope for the treatment contrast between Nifedipine and Carvedilol is
that the former drug is associated with a reduction in mean blood pressure of 1.23 units, but that this
reduction varies across centres with a standard deviation of √(14.16)=3.76, and hence is very variable
across  centres.  The 3 variance contributions at  the group (centre) level  of this  model  are 3.96 for
Carvedilol,  3.96+14.16+2*(-4.76)=8.60 for  Nifedipine,  and 3.96+6.58+2*(-3.18)=4.18 for  Atenolol.
We see how the covariance is part of the variance calculation, so it should not be assumed to be zero
when dealing with random slopes for  categorical predictors.  The data thus seem to indicate larger
variance for the Nifedipine drug. As we will see later, and one might expect from the large SEs for the
variance parameters, the random slopes in this case do not offer any significant model improvement. 

Instead of modelling -tx- effects as random slopes, we can incorporate differences in -tx- effects across
groups  by  introducing  an  intermediate  hierarchical  level  at  treatment  by  group  combinations
(effectively, a random interaction between the treatment factor and groups). This model extension only
involves one additional parameter, the treatment by group variance  g*tx

2 , which can be interpreted
as the amount of variation in -tx- effects across groups beyond the overall fixed -tx- effect. Extending
our model from Example 21.2 in this way yields the estimates (with SEs):

The  estimates  indicate  that  the  majority  of  the  unexplained  group  level  variation  is  related  to
differences in -tx- effects across groups; again, the improvement over the 2-level model in reality is
modest (and non-significant).

 g
2=0.96 3.05   g*tx

2 =4.604.83  2=70.776.67
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21.3.4 Random slope models as hierarchical models

So far we have used the term ‘hierarchical’ only to describe the data structure. A hierarchical
model has a more specific meaning than a model for hierarchically structured data, namely as a
model with multiple hierarchical  levels (see Chapter 24 for the Bayesian context). In social
science and psychology applications, random slope models are often referred to as hierarchical
models  (Raudenbusch and Bryk,  2002).  We will  outline the rationale behind the modelling
approach by slightly rewriting the random slopes model of Eq 21.10 as:

Y i=1∗0u groupi iX 1 i∗1b groupi

This model representation elucidates that every predictor can be included in the model in 3
ways (in a 2-level hierarchy): as a fixed effect, or as random effects at each of the 2 levels in the
model. In the equation, the constant (1) corresponds to the intercept, and the term ugroup is often
termed a  random intercept (at the group level), thus the name  random intercept model for
models such as Eq 21.2. A random slopes model is characterised by the fact that at least one
predictor (in addition to the constant) has a higher level random effect. (Note Random effects of
predictors at their own or lower levels correspond to heterogeneous variance models, discussed
in Section 21.5.8.) It  is common in hierarchical  modelling to include (higher level) random
effects  of  all  predictors  by  default,  the  rationale  being  that  effects  at  different  levels  are
conceptually relevant. An argument has been made for the use of random coefficient (ie random
slope)  models  in  epidemiology  (Greenland,  2000a) as  a  way  to  adjust  for  unmeasured
confounders  and  achieve  more  realistic  assessments  of  the  population-level  associations
between predictors and outcome. One potential problem with (multiple) random slopes models
is a lack of identifiability of variance parameters at the higher levels (where the number of units
is  typically  not  very  large).  Bayesian  approaches  (Chapter  24)  to  this  problem  have  been
proposed (Gustafson and Greenland, 2006), but at the current state of the methodology the best
practical  approach  may still  be  a  parsimonious modelling of  variance  (as  advocated  in  the
previous section).

21.4 CONTEXTUAL EFFECTS

Our discussion of hierarchical models introduced the idea that a predictor may be modelled
with effects at multiple levels. Contextual effects add another facet to the picture, under certain
conditions, by allowing for fixed effects of a predictor at higher levels than where it is recorded.
The term ‘contextual effect of a predictor’ originates from social sciences and captures the idea
that  although the predictor  is  recorded at  an individual level,  its  effect  mostly (or  entirely)
relates to the group or context to which the individual belongs (Snijders and Bosker, 1999). We
describe first a contextual effect of a predictor in a random intercept model (Eq 21.2), and then
consider the extension to a random slopes model. The predictor X1 is said to have a contextual
effect if the following conditions are both satisfied:

i. X1 varies both between and within groups, 
ii. the between-group and within-group regressions of Y on X1 have different slopes. 

Two situations where condition i. is  not satisfied are: when X1 is a group-level predictor, and
when  the  group  averages  X 1group are  constant  between  groups  (eg in  the  blood  pressure
clinical  trial  with  treatment  groups  almost  equally  represented  within  each  centre).  For
condition  ii.,  the  within-group  regression  of  Y on  X1 refers  to  a  regression  equation
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corresponding to different individuals within a single group. Furthermore, the between-group
regression is a regression of group mean outcomes Y group on group predictor means X 1 group.
Fig. 21.3 illustrates situations where the between-group and within-group regressions of  Y on a
continuous predictor X1 coincide (left-hand panel) and are completely different (right-hand panel).
The within-group regressions are indicated by solid lines (without showing individual data points),
and the between-group regression is obtained by fitting a straight line to the dotted points (group
means of Y and X1) and is represented by the dashed line. In the right-hand panel, the within-group
slope is positive whereas the between-group regression would have a negative slope.

We can allow for a contextual effect of X1 in Eq 21.2 by including the group means X 1 group

as an additional fixed effects predictor (while retaining the predictor X1), ie:

Y i= 01 X 1 i2 X 1group i ugroupi i , Eq 21.12

where X 1groupi  is the X1 mean for the group to which subject i belongs. A contextual effect is
(significantly)  present  when  the  estimate  of  the  regression  coefficient  β2 is  statistically
significant. If a contextual effect is present, we recommend (in order to reduce collinearity and
to obtain more  easily  interpretable  estimates)  to  reformulate  model  21.12 by replacing  the
original predictor X1 by its within-group centred version, Z 1i= X 1 i−X 1groupi, as follows:

Y i= 01 Z 1 i 2 X 1groupiugroupii , Eq 21.13

Eqs 21.12 and 21.13 represent the same model, and the coefficients for X1 and Z1 are identical
(β1), whereas 2=12. The parameter 2 is the slope of the between-group regression of Y on
X1 (ie between the corresponding group means, as explained above; dashed lines in Fig. 21.2)
and the parameter β1 in models 21.12 or 21.13 is the slope of the within-group regression of Y
on X1 (solid lines in Fig. 21.2). Example 21.6 shows how these models can be fit to the blood
pressure data.

As demonstrated  in  the  example,  contextual  effects  may also be  incorporated  into random
slopes models, by adding the group-averages of the predictor into the model equation in the
same way as we did in Eqs 21.12 and 21.13. One should be aware that the 2 parameterisations

Fig. 21.3 Schematic graphs showing no contextual effect (left) and a strong 
contextual effect (right) of the predictor X1 
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above lead to different models, depending on whether X1 is included as X1 or Z1 (for both fixed
effects and random slopes). The validity of using the group-mean centred predictor Z1 has been
discussed in the literature (eg Hox, 2002, Section 4.3); a practical approach is to explore both
models and compare their fit to the actual data.

In summary, it is important to realise the presence of contextual effects for a problem, because
the within- and between-group regressions may represent different effects, and therefore often
have  different  interpretations.  In  the  presence  of  a  contextual  effect,  the  single  regression
coefficient in model 21.2 is a complex function (under certain conditions: a weighted average)
of the 2 slopes  β1 and 2 and difficult to interpret (see Section 3.6 of  Snijders and Bosker,
1999 for details). Failure to account for contextual effects may lead to conclusions based on
either ecological or atomistic fallacies (Chapter 29).

Example 21.6 Contextual effects for blood pressure data
data = bp

We illustrate the modelling of contextual effects of the initial blood pressure (-dbp1c-) in the blood
pressure data although they fail to provide a convincing demonstration of the utility of such effects.
Even though our previous analyses demonstrated significant effects of -dbp1c-, both overall and as a
random slope, and some differences in the -dbp1c- values between centres do exist, it is hardly obvious
why such differences would  have predictive power  for  between-centre differences.  In  addition,  the
group sizes are very variable, ranging from 1 to 39, leaving group means with variable precision and
hence  a  between-group  regression  difficult  to  establish.  Stryhn et  al (2006) presented  results  for
contextual effects of 2 predictors at the herd level in veterinary observations on cows in herds.

Model
Random
intercept Contextual

Random
slopes

Contextual
+ random slopes

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

β(dbp1c) 0.558 0.107 0.520 0.115 0.537 0.156 0.500 0.165

β(gdbp1c) - - 0.297 0.320 - - 0.229 0.339

σ2(centre) 2.218 2.652 2.146 2.628 1.773 2.429 1.747 2.446

σ2(dbp1c) - - - - 0.285 0.171 0.282 0.170

σ2(patient) 73.86 6.45 73.94 6.46 67.73 6.13 67.94 6.15

In the table, the estimates for the intercept and -tx- effects have been omitted, and the variable -gdbp1c-
contains the group means of -dbp1c-. The lack of significance of the contextual effects in both the
random intercept and random slopes models is indicated by the estimates of -gdbp1c- being smaller
than their SEs. In the random intercept model with contextual effects, the within- and between-group
regression slopes are estimated at 0.520 and 0.817 (computed as 0.520+0.297), respectively, but the SE
of the between-group slope is large (0.298; computed by fitting Eq 21.13). The added contextual effect
did  not  substantially  change  the  within-group  regression  coefficient.  In  models  with  a  significant
contextual effect, however,  the within-group slope may change dramatically and even become non-
significant,  in  which  case  the  apparent  individual-level  regression  in  the  random intercept  model
changes in interpretation to a group level regression. It is also possible to have a significant between-
group regression without a strong impact on the within-group regression; see Stryhn et al (2006) for
examples of such scenarios.
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21.5 STATISTICAL ANALYSIS OF LINEAR MIXED MODELS

In mixed models there are several methods of analysis, and the principal estimation procedure,
which  is  based  on  the  likelihood  function  (Section  21.5.1),  does  not  have  closed-form
expressions for the estimates but involves running several steps of an estimation algorithm. This
requires  some  extra  attention  to  the  statistical  software  by  the  researcher  to  ensure  that  it
employs the desired estimation procedure and to ensure that it is capable of analysing the data
at hand. Statistical software differ in the range of models that can be analysed, in their ability to
handle large data structures (many units at any level beyond the lowest one) and in their user
interface. Specialised hierarchical or multilevel software has been developed to deal with huge
data  structures;  a  good  source  of  information  is  the  website  of  the  Centre  for  Multilevel
Modelling at the University of Bristol, UK (http://www.cmm.bristol.ac.uk). As of early 2012,
the main software options (with corresponding texts providing theory, examples and code) were
(in unstructured order): Stata (Rabe-Hesketh and Skrondal, 2012), S-Plus/R (Gelman and Hill,
2006; Pinheiro and Bates, 2000), SAS (Littell et al, 2006), as well as the 2 multilevel packages
MLwiN (with a wealth of material at the above-mentioned website) and HLM (Raudenbush and
Bryk, 2002).

In most ways the mechanics of the analysis of linear mixed models is similar to the analysis of
linear models, because the actual estimation procedure is taken care of by the software program,
which also outputs  many of  the  same quantities  (eg estimates  and  SEs,  tests  of  individual
parameters and confidence intervals, as already shown in Example 21.2).

21.5.1 Likelihood-based analysis

Parameter estimation in normal linear mixed models is based on the likelihood function derived
from the normal distribution assumptions. Roughly speaking, the likelihood function for any set
of parameters gives the ‘probability’  of the observed data under that set of parameters (see
Section 16.4). Then it is intuitively reasonable to seek the set of parameters that maximises this
probability—the  maximum  likelihood  estimates.  Because  of  the  complicated  form  of  the
likelihood function, closed-form formulae for the maximum likelihood estimates generally do
not exist. Therefore, parameter estimation employs an iterative procedure in which tentative
estimates are gradually improved from their starting values to final convergence. As with all
iterative procedures, caution must be exercised so that convergence is achieved. The estimation
software  should  take  care  of  this,  but  any  messages  that  the  iterative  procedure  has  not
converged are true causes for alarm. If the iterative procedure fails to converge, it sometimes
helps to provide sensible starting values of the variance parameters; however, most commonly
it signals a misspecified model. The advanced user may also attempt to tune the estimation
procedure by some of the settings that control the algorithm. For example, without going into
the technical details, several current estimation procedures perform initial iterations by an EM
algorithm before switching to Newton-Raphson optimisation, and it could be useful to change
the default number of iterations of the EM algorithm before the switch.

Two variants of maximum likelihood estimation are available for mixed linear models: genuine
maximum likelihood (ML) (also known as full information maximum likelihood or FIML)
and  restricted maximum likelihood (REML) estimation. From a theoretical  point of view,
REML  estimates  are  unbiased,  whereas  ML  estimates  often  have  smaller  variance;  the
weighting of these properties is not straightforward, but in practice the difference is usually
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negligible.  Both  variants  give  ‘asymptotically  correct’  values  (ie when  the  number  of
observations at all levels of the hierarchy grows very large) and enable a full mixed model
statistical inference. Therefore the choice between the 2 is essentially a technicality and a matter
of taste; in the authors’ experience, REML is the more commonly used. All results shown in
this chapter are based on REML estimation unless explicitly stated otherwise.

Before proceeding with the statistical inference based on the likelihood function, it is worth
mentioning  an  estimation  approach  based  on  the  ANOVA  table  (Dean  and  Voss  (2000),
Chapter 17). It is simpler to implement and is offered by more software packages. By and large,
this approach is obsolete by today’s standard,s but in balanced datasets it will give the same
estimates  for  the  variance  components  and  similar  statistical  tests  for  fixed  and  random
parameters as the REML analysis. A dataset is balanced when every combination of predictor
values (‘treatments’) occurs the same number of times in the data. While this is frequently the
case in experimental, factorial designs, it is rarely so in observational studies (in particular, if
the  data  contain  continuous  predictors).  The  idea  of  the  method  is  to  compute  variance
components as linear functions of the mean squares of the ANOVA table, suitably chosen to
make  the  variance  component  estimates  unbiased.  Therefore,  closed-form  expressions  are
available and they require little calculation beyond the ANOVA table. Thus, the method is an
add-on to a fixed effects analysis rather than a ‘real’ mixed models analysis, and herein lies its
drawback: not all aspects of the statistical inference are managed correctly, eg correct standard
errors are not readily available. 

One particular example of an ANOVA-based method is still in common usage—estimation of
the ICC for a 2-level structure from a one-way ANOVA using the formula:

≈
MSM−MSE

MSMm−1MSE Eq 21.14

where  m is the (average) number of observations per group. If the groups are all of the same
size (balanced data), this gives the same value as computing the  ICC from likelihood-based
(REML) variance components using Eq 21.4. When the data are unbalanced, the likelihood-
based estimate is preferred. For the 2-level bp data analysed in previous examples, the above
formula yields ρ=0.034; Eq 21.4 gives a value of 0.040.

21.5.2 Inference for fixed part of model

The reader may have noted a Z (standard normal) reference distribution for tests and confidence
intervals in Example 21.2, in place of the usual  t-distribution in linear models (Chapter 14).
This  reflects  that  the  statistical  inference  is  no  longer  exact  but  is  approximate,  and  the
approximations are only ‘asymptotically exact’. When the number of observations grows very
large  (at  all  hierarchical  levels),  the  reference  distribution  approaches  a  standard  normal
distribution—thus one option for the reference distribution. However, with small or moderate
numbers of observations at some of the hierarchical levels, a standard normal distribution might
be too liberal (or ‘anticonservative’) as the reference, because it overestimates the degrees of
freedom.  Some  software  programs  offer  a  finite  sample  approximation  (eg Satterthwaite
approximation) based on a t-distribution with degrees of freedom reflecting the design and the
parameter  under  consideration;  Schaalje et  al (2002) studied  the  performance  of  several
approximate reference distributions available in SAS Proc Mixed. With a reference distribution
in place, tests and confidence intervals are computed in the usual manner, eg a 95% confidence
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interval of β1±t(0.975,df)SE(β1).

Approximate tests computed from the estimate and its SE are usually termed Wald tests  (see
Section  6.5.2),  and  a  multiple  version  exists  for  tests  involving  several  parameters,  eg for
several  indicator  variables  of  a  categorical  variable.  Tests  based on comparing the attained
value of the likelihood function (Note It is invalid to use the restricted likelihood from REML)
in models with and without the parameter(s) of interest are possible as well, but usually offer
little advantage over Wald tests, and we leave them to the next section.  Pinheiro and Bates
(2000), Section 2.4.2),  recommend against  the use of likelihood-based tests with chi-square
reference distributions because of their overestimated degrees of freedom (as discussed above).
Example 21.7 illustrates the inference for fixed effects in the blood pressure data.

21.5.3 Inference for random part of model

Even though the software usually outputs both variance parameters and their SEs, the latter
should not be used to construct Wald-type confidence intervals or tests, because the distribution
of the estimate can be highly skewed.

Variance parameters can be tested using likelihood-based (likelihood ratio) tests, although we
usually retain random effects corresponding to hierarchical levels despite their non-significance
(unless the variance is estimated to be zero). To illustrate, a likelihood ratio test in Eq 21.2 for
the hypothesis H0: σg=0 is calculated as G2=-2(lnLfull-lnLred) where the full and reduced models
refer to the models with and without the group random effects, and L refers to values of the
likelihood function. Either ML or REML likelihood functions might be used, provided both
models  contain  the  same  fixed  effects.  Generally,  the  value  of  G2

 is  compared  with  an
approximate  χ2-distribution with the degrees of freedom equal to the reduction in number of
parameters between the 2 models. Snijders and Bosker (1999), Section 6.2 note that reference
χ2-distributions are conservative when testing a variance parameter  being equal to zero,  and
recommend halving the P-value obtained from the χ2-distribution to take into account that the

Example 21.7 Inference for fixed effects for blood pressure data
data = bp

A multiple Wald test for the combined effect of -tx- gives χ2(2)=7.75 and a P-value of 0.02; thus, there
are moderately significant differences between treatments (in this subdataset). Analysis by SAS Proc
Mixed or R (nlme library)  yields  finite  sample reference  t-distributions with  about 260 degrees of
freedom for the coefficients for -tx- and -dbp1c- which corresponds roughly to the residual degrees of
freedom at the individual level. With such large degrees of freedom there is no difference between t
and z distribution inference. Only one pairwise comparison between drugs is not already included in the
listing of Example 21.2: the contrast between Nifedipine and Atenolol is estimated at 2.08 (1.26) with a
P-value  of  0.10.  Thus  only  the  difference  between  Carvedilol  and  Atenolol  attains  statistical
significance.

The  finite  sample  reference  distribution  for  the  group  means  -gdbp1c-  in  Example  21.6  is  t(63),
reflecting that it is a group-level predictor but that most of the unexplained variance resides at the
individual  level.  This  is  because  the  Satterthwaite  approximation  involves  a  weighted  degrees  of
freedom from the 2 estimated variance components. In this case, change to a t reference distribution has
only minimal impact on the inference and does not affect our conclusions. In situations with a fairly
small  number  of  groups  and  a  large  proportion  of  unexplained  variance  at  the  group  level,  the
difference between z and t distribution inferences can be appreciable.
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alternative hypothesis is one-sided (Ha: σg>0). Most software packages apply this correction by
default  for  testing  a  random  intercept  variance.  The  same  procedure  (halving  the  P-value
obtained  from  a  nominal  χ2-distribution)  applies  to  tests  for  random  slopes  (Berkhof  and
Snijders, 2001). If there is only a single random slope in the model, the test for the random
slope involves 2 parameters (the variance and covariance), so the nominal degrees of freedom is
2. Example 21.8 demonstrates these calculations for the blood pressure data. If the comparison
is to a random slopes model instead of a random intercept model (eg for testing one out of 2
random  slopes  present  in  the  same  model),  the  reference  distribution  becomes  more
complicated (see  Fitzmaurice et  al (2004),  Section 8.5 for  recommendations and a table of
critical values for some settings). The choice of the random part of the model may also be based
on  model  selection  statistics  such  the  AIC  (Section  15.8.1).  The  penalty  for  the  model’s
parameters now include the variance and covariance of the random part. Use of the BIC is not

Example 21.8 Inference for random effects for blood pressure data
data = bp

The table  below gives  values  for  twice  the log likelihood function  (based on REML) for  various
models in this chapter and likelihood-ratio test statistics for model comparisons (comparing all models
with  the  random intercept  model  presented  in  Example  21.2).  Note  that  P-values  were  computed
manually by halving the tail probabilities of the respective chi-square distributions. 

Model 2lnL AIC G2 df P-value

no group random effect -2050.73 2060.73 1.08 1 0.150

random intercept (Ex 21.2) -2049.65 2061.65 - - -

random slope of -dbp1c- (Ex. 21.4) -2040.41 2056.41 9.24 2 0.005

random slope of -tx- (Ex. 21.5) -2047.74 2069.74 1.91 5 0.431

random -tx- by group interaction 
(Ex. 21.5)

-2048.35 2062.35 1.30 1 0.127

The table shows no formal statistical evidence against the hypothesis of no (random) variation between
groups (centres), but as the group variance component was non-zero there is no pressing need to adopt
a model without group effects. The table also shows a strong random slope for -dbp1c-, no indication
of  random  slopes  for  -tx-  effects,  but  some  gain  from  introducing  a  treatment  by  group  level
interaction. The different conclusions about the 2 versions of -tx- related random effects may be due to
the more parsimonious modelling, involving only one additional variance parameter, by the group by
treatment interaction. Based on these results, one might want to explore a model with both a random
slope of -dbp1c- and the random -tx- by group interaction, but we stop here.

The 95% confidence interval for  g
2 for the model of Example 21.2 was (0.213,23.1). It is asymmetric

around the estimate  (2.218)  because  variance  is  estimated  on  a  transformed  scale.  The  estimation
command does not offer profile-likelihood intervals or to fix parameter values. To illustrate the profile-
likelihood  method,  to  assess  whether  a  given  value  (say  0.5)  belongs  to  the  confidence  interval,
estimate the model with  g

2 fixed at 0.5, obtain this model’s 2lnL value (-2050.23) and check whether it
is within 3.84 of the full model’s value (-2049.65). In this case it is, therefore the value 0.5 belongs to
the 95% confidence interval. Repeat the process with other values than 0.5 to determine the interval.
The profile-likelihood CI obtained by this method was (0,10.6), which is remarkably different from the
above interval. The strict lower bound of any CI for a variance parameter is 0, and this value should be
the lower limit of a likelihood-based 95% CI whenever the variance parameter is non-significant (based
on a LRT). 
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recommended for covariance selection unless one works in a Bayesian framework (Fitzmaurice
et al (2004), Section 7.5). 

For random effect parameters, symmetric confidence intervals are usually inappropriate. If your
software can display the variance estimates on the scale at which they are estimated (behind the
scenes, so to speak), it is better to compute a confidence interval at that scale and transform its
endpoints; this may also be the default method in your software. Two alternative methods are
suggested in the literature: bootstrapping (Goldstein, 2003, Section 3.6) and profile-likelihood
intervals  (Longford, 1999). Bootstrapping is a general statistical technique primarily aimed at
estimating standard errors and calculation of confidence intervals in situations too complex for
analytical  methods  to  be  manageable;  however,  bootstrap  confidence  intervals  require
specialised  software  (eg MLwiN).  In  brief,  a  profile-likelihood  confidence  interval  (with
approximate 95% coverage) includes the values (σ*) of the parameter, for which twice the log-
likelihood with the parameter under consideration fixed at the particular value (ie σ=σ*), drops
less than 3.84 (the 95% percentile in χ2(1)) from twice the log-likelihood value of the model. If
your software allows you to fix a variance in the model, a crude search for such parameter
values is simple to carry out. Example 21.8 illustrates the inference for random parameters in
the blood pressure data.

21.5.4 Prediction

Even though the random effects in a mixed model are not parameters in the usual sense, it is
possible to give estimates (more precisely, predictions) of their values. These carry the names
best linear unbiased predictors  (BLUPs), referring to their inherent statistical properties, or
empirical Bayes estimates (Greenland, 2000b), referring to an interpretation of the way they
are  computed.  The prediction  may be  useful  eg for  the  purpose  of  ranking  the  units  with
random effects (centres, or schools in education studies, or hospitals in human public health
studies), or for identification of extreme values (discussed in the next section). The statistical
inference  for  rankings  and  comparison  of  predictions  for  2  units  (eg for  the  purpose  of
significance testing) has been described  (Goldstein and Spiegelhalter,  1996). Because of the
assumed common (normal) distribution of the random effects (in Bayesian terminology a prior
distribution,  see  Chapter  24),  the  predictions  are  more  regular  (ie less  variable)  than  the
estimates  one  would obtain from a  fixed effects  model;  this  phenomenon is  referred  to  as
shrinkage (towards the overall mean). The amount of shrinkage depends on the magnitude of
the variances  and the group sample size: small groups are shrunk more towards the overall
mean, and the shrinkage is weaker in datasets with a high ICC (because, if the between-group
variation is large, the other groups contribute relatively little information about the level of any
specific group). Under simplified assumptions  (Snijders and Bosker (1999), Section 4.7), the
empirical Bayes estimate is a weighted average of the group mean and the overall mean, and
the weight of the group mean (called the shrinkage factor) equals  g

2 / g
2 2 /m , where m is

the group size. It  is seen that this formula qualitatively has the behaviour just described; for
example, if m is large, the weight is close to one, and the predicted value is close to the group
mean (ie no shrinkage).

21.5.5 Residuals and diagnostics

Residuals and diagnostics play a similar, crucial role for model-checking in mixed models as
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they  do  in  ordinary  linear  models.  The  mechanics  and  interpretations  are  analogous  (see
Sections 14.8 and 14.9), but the additional model assumptions (for the random effects) should
be evaluated critically together with the other assumptions. Accordingly, mixed models contain
additional ‘residuals’—one set of residuals per random effect in the model. (Note Be aware that
residuals at the different hierarchical levels contain different numbers of observations;  eg the
blood pressure dataset has only 29 group-level residuals.) The residuals include not only the
effects  for  the  hierarchical  levels  but  also  the  random slopes,  ie in  a  model  with  random
intercepts and slopes, there are 2 sets of residuals at the corresponding level. These residuals
are,  in  reality,  predicted  values  of  the  random variables  in  the  model  (as  discussed  in  the
previous section). In the usual sense, residuals are differences between observed and expected
values; however, there are no observed group values here, so the term predicted values seems
preferable.  Influence  diagnostics  are  also  computed at  each  hierarchical  level  and for  each
random  effect.  Recent  advances  in  software  for  multilevel  analysis  have  given  access  to
residuals  and  diagnostics  in  many  major  software  packages,  although  some  differences  in
implementation exist, in particular with respect to the definition of standardised residuals (see
Skrondal and Rabe-Hesketh (2009) for a detailed discussion of this topic).  A case study of
model-checking using residuals and diagnostics  (Langford and Lewis, 1998) recommended to
first inspect the residuals at the highest hierarchical level, and then gradually work downwards.
Thus, before looking at individual patients being influential, or not fitted well by the model, we
examine the same questions for the groups (centres). This is because several of the individuals
being flagged could stem from the same group, so the ‘problem’ might be with the group rather
than with the individual. Example 21.9 presents group-level residuals and diagnostics for the
blood pressure data.

21.5.6 Box-Cox transformation for linear mixed models

In  Section  14.9.3,  we  discussed  the  Box-Cox  method  of  choosing  the  ‘best’  power  (λ)
transformation of our data to match the assumptions of a linear model. We assumed the method
to be implemented was available in software and did not go into details with how the optimal λ
was  calculated.  A  Box-Cox  analysis  is  however,  to  our  knowledge,  not  readily  available
elsewhere  for  mixed  models,  so  we  give  the  necessary  details  to  enable  the  analysis  for
transformation  of  the  outcome.  The  Box-Cox  transformation  in  principle  takes  all  model
assumptions into account, but in our experience it is most sensitive to the assumptions at the
lowest level.

Recall that we confine the analysis to a set of ‘nice’ λ-values, eg for a right-skewed distribution,
we might search for the best value among λ=1, 1/2, 1/3, 1/4, 0, -1/4, -1/3, -1/2, -1, -2. Among
these,  λ=1 corresponds to no transformation,  λ=0 to natural  log transformation, and  λ=-1 to
reciprocal  transformation.  Finding  the  approximate  optimal  λ-value  involves  the  following
steps: 
 1. compute the mean of the ln(Y)-values and denote this value by ln Y ; also denote the total 

number of observations as n,
 2. for each candidate λ-value, compute for each observation i the transformed value

Y i


={Y i

−1/ for ≠0

ln Y i for =0

and analyse these Y(λ)-values by the same mixed model as the untransformed values, and 
record the model’s attained log-likelihood (lnL(λ)) value using ML estimation (not REML),
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Example 21.9 Residuals and diagnostics for blood pressure data
data = bp

We present here group-level residual plots and a listing of the residuals and diagnostics for the 7  most
‘interesting’ groups (centres): with the 2 most extreme negative and positive residuals, and with the 3
largest  values of Cook’s  distance.  The analysis  of individual-level  residuals  and diagnostics follows
similar lines as in Chapter 14. The computations were done mostly using Stata software; the leverages
and DFITS values were computed by the MLwiN software which also gave slightly different standardised
residuals (not shown). In the table, group size is the number of individuals included per group.

centre
number

group
size

raw 
residual

standardised
residual

Cook’s
distance leverage DFITS

36 22 -1.892 -2.085 1.42 0.392 0.343

2 10 -1.077 -1.534 0.27 0.529 0.282

7 18 -0.854 -0.992 6.93 0.426 0.160

31 36 -0.784 -0.755 3.33 0.312 0.104

1 39 -0.020 -0.003 1.63 0.302 0.002

3 8 1.075 1.684 1.13 0.571 0.325

24 1 0.497 1.971 0.13 0.830 0.470

The quantile plot of the standardised residuals did not indicate any serious deviations from the normal
distribution, nor did the residual plot reveal any concerns. The residuals and diagnostics for individual
groups point to different groups. The highest values of leverage were attained by very small groups;
centre 24 with only a single patient also had the largest positive standardised residual and the largest
value of DFITS, but analysis without this group led, as expected from the small group size, to only
minor changes in the parameter estimates (details not shown). The 2 largest groups, with 36 and 39
patients, had relatively small residuals (and hence also small values of DFITS), but large values of
Cook’s distance, and in particular centre 1 had an appreciable impact on parameter estimates (one -tx-
effect  dropped by about  40%).  The largest  impact  on parameter  estimates  was  from centre  7,  the
omission of which would be associated with a decline in the slope for -dbp1c- by 20% and the contrast
between Carvedilol and Nifedipine dropping down to almost zero. Such large impacts of single groups
are noteworthy and relevant for the discussions of the internal and external validity of a study.

Fig. 21.4 Quantile plot (left) and residual plot (right) for group-level residuals
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 3. compute the value of the profile log-likelihood function as:

pl=ln Ln −1 ln Y  Eq 21.15
and plot the function to identify approximately the λ where pl(λ) is maximal. This is the 
optimal power transformation of the outcome. An approximate 95% confidence interval for 
λ consists of those λ-values with a value of pl(λ) within 1.92 of the optimal pl-value.

We demonstrate the procedure in Example 21.10 using the blood pressure data.

Recall (from Chapter 14) that the optimal Box-Cox value does not guarantee ‘well-behaved’
residuals  (at  all  hierarchical  levels),  and that  transformation could shift  problems from one

Example 21.10 Box-Cox analysis for blood pressure data
data = bp

The data contain n=287 observations and the mean (natural) logarithmic blood pressure (-dbp-) 4.5285.
The following table and graph (which includes additional λ-values) give a Box-Cox analysis:

λ 2 1 0.5 0 -0.5 -1

ln(L) for Y(λ) -2329.30 -1026.06 -376.90 270.61 916.45 1560.64

pl(λ) from Eq 21.15 -1029.62 -1026.06 -1026.74 -1029.08 -1033.07 -1038.72

The table and figure indicate the optimal value of  λ to be very close to 1, indicating that no power
transformation will improve the compliance with the distributional assumptions. The 95% CI for  λ is
wide  and would  include  both 0  and 2.  Our  discussion in  Example  21.9 indicated the  group-level
residuals to be acceptable, and the individual-level residuals also looked reasonably good (not shown),
so there does indeed not seem to be any need for a transformation.

Fig. 21.5 Profile-likelihood function for Box-Cox 
analysis of blood pressure data
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model assumption to another (eg from skewed residuals to heteroscedasticity). Therefore, even
after transformation, all the residuals should be examined. If well-behaved residuals at some
hierarchical level cannot be achieved by transformation, one might turn instead to models with
non-normal  random effects;  such  models  are  available  within  the  Bayesian  framework  for
hierarchical  models  (Chapter  24),  or  rely  on  the  robustness  of  the  linear  mixed  model
procedures to model misspecification (Section 21.5.8).

21.5.7 Model specification: fixed versus random effects

In this section, we will discuss a test to compare estimates based on fixed and random effects,
and summarise the choice  between these 2 models.  In  econometry,  it  is  a  commonly used
procedure to assess the adequacy of a random effects model by a ‘Hausman specification test’.
The  Hausmann  test  is  a  general  procedure  for  comparing  2  estimates  where  one  is
asymptotically valid under more general conditions. The rationale for preferring a fixed effects
model would be that one of the (implicit) assumptions of the random effects model, that the
random effects are independent of the predictors (X), is invalidated (the predictor in question is
then termed ‘endogenous’). However, Skrondal and Rabe-Hesketh state this to be unnecessary
because the test  is  really for a  contextual  effect  of one of the predictors,  and if the test  is
significant one should instead insert the missing contextual effect into the random effects model
(Rabe-Hesketh  and  Skrondal  (2012),  Section  3.7).  Moreover,  the  Wald  test  for  contextual
effects discussed in Section 21.4 remains valid. To illustrate, a Hausman specification test for
the  model  of  Example  21.2  gave  χ2(3)=0.63,  which  is  absolutely  non-significant  in  a  χ2

distribution with 3 df. We already established in Example 21.6 that -dbp1c- does not have a
contextual effect, and nor does -tx- because of its randomisation within groups.

In  our view,  random effects  for  hierarchical  levels  are  usually preferable,  but  fixed effects
modelling is occasionally a useful approach to account for clustering in groups,  particularly
when:

i. there are no group-level predictors, 
ii. the number of groups is reasonably small, and 
iii. there is more interest in the specific groups than assuming they represent a population.

A more technical comparison of fixed and random effects modelling can be found in  Rabe-
Hesketh and Skrondal (2012), Section 3.8.

21.5.8 Robustness against model misspecification

In addition to endogeneity (discussed above), the most obvious violations of the assumptions of
(standard)  linear  mixed models  are  heteroscedasticity  and  non-normality  of  random effects
(including  the  error  term).  Recent  research  has  examined  the  robustness  of  estimation
procedures  based  on  (standard)  linear  mixed models  to  such  model  misspecifications.  One
obvious idea is to adjust linear mixed model estimates by robust variance estimation (Section
20.5.4). Now the purpose is not to account for clustering (the mixed model already does that),
but  to achieve  robustness  against  heteroscedasticity  and non-normal  error  distribution  (Hox
(2002), Section  11.2).  It  is  known  that  estimates  of  regression  coefficients  are  robust  to
misspecification of the random effects distribution (McCullagh et al (2008), Section 12.3), so
variance  adjustment  may be all  that  is  needed.  Although robust  variance  estimation cannot
guarantee  against  strong violations of model assumptions,  they may constitute a substantial
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improvement, in particular for SEs of variance parameters  (Verbeke and Lesaffre, 1997) and
also may be used as a diagnostic tool (ie large differences between robust and model-based SEs
are taken to indicate problems with model specification  (Maas and Hox, 2004)). The robust
standard errors are usually implemented to follow the hierarchical structure (clustered at the
highest level), so their efficiency depends on a reasonable number of clusters (sample sizes are
discussed in the next section). Adding robust standard errors to the linear mixed model analysis
of Example 21.2 leads to moderate to strong changes in SEs (at most 15% changes in SE for
fixed effects, except for a 54% increase for -dbp1c-; a doubling of the SE of the error variance
but no impact on the group-level variance; results not shown). The strong increase for -dbp1c-
may indicate model misspecification (previous examples demonstrated clear improvements in
fit by adding random slopes for -dbp1c-). Generally speaking, the robust standard errors will
give  a  more  cautious  analysis,  at  the  cost  of  some  loss  of  power.  Non-parametric  and
semiparametric specifications of the random effects distribution have been studied but are not
readily available in standard software and also have their drawbacks (McCullagh et al (2008),
Section 12.4). Bayesian modelling can incorporate other random effects distributions than the
normal, eg a t-distribution (Chapter 24).

One of the strong points of linear mixed models is that they allow heteroscedasticity to be built
directly into the model. We have already seen that random slopes models are heteroscedastic (ie
the variance depends on the predictors). Such modelling may be preferable to adjustments by
robust standard errors because it provides extra information about the data that perhaps can lead
to  better  understanding  of  the  causal  mechanisms  and  can  also  be  used  to  obtain  better
predictions  (Fitzmaurice et al (2004), Section 11.3). Direct modelling of heterogeneity of the
lowest level variance is also possible within the multilevel framework and supported by many
software  implementations.  It  is  recommended  to  compute  descriptive  statistics  for  the
standardised residuals across the levels of all categorical  predictors and to plot standardised
residuals against quantitative predictors as part of routine model-checking. If some differences
in variation appear,  a heteroscedastic model may be explored. Example 21.11 illustrates the
procedure in blood pressure example with the -tx- and -dbp1c- predictors.

21.5.9 Sample size

A frequently  asked  question  is:  how many units  are  needed  at  each  hierarchical  level  for
multilevel analysis? A simulation study on the impact of the number of units at the highest
(second) level on the parameter estimates (Maas and Hox, 2004) provided the following guide:
“If one is only interested in the fixed effects, 10 groups can lead to good estimates. If one is
also interested in contextual effects, 30 groups are needed. If one also wants correct estimates of
the standard errors,  at  least  50 groups are needed.” For the cluster size,  Rabe-Hesketh and
Skrondal (2012), Section 3.8 stated that a cluster size of 2 suffices if there are many clusters.

Calculation of the required sample size to achieve a desired accuracy or a desired power for a
hypothesis test is a difficult problem for multilevel models because of the complexity involved
in the effects at multiple levels. The variance inflation inherent in the design effect (Section
20.3.3)  only  applies  to  a  group-level  predictor.  For  a  2-level  setting,  the  PinT  shareware
program (Snijders and Bosker, 1999) has been a standard reference in multilevel analysis for
years. Recently, the simulation-based approach to power calculation (Section 2.11.8) has been
extended to complex multilevel designs, including cross-classification, by William Browne and
co-workers (MLPowSim, available at the Multilevel Modelling website).
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