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REPEATED MEASURES DATA

OBJECTIVES

After reading this chapter, you should be able to:

 1. Recognise and understand the unique characteristics of a repeated measures structure.

 2. Use descriptive and graphical tools to quantify and visualise the repeated measures structure 
of a dataset.

 3. Use simple univariate approaches to analyse repeated measures data.

 4. Use mixed models to analyse  repeated measures  data,  and understand the limitations of 
random-intercept mixed models for such data.

 5. Choose among a variety of correlation structures  that  might  be appropriate  for  repeated 
measures or spatial data.

 6. Understand the fundamental differences between mixed model and generalised estimating 
equation (GEE) approaches for analysis of clustered data.

 7. Use GEE procedures to analyse clustered data, in particular repeated measures data.
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23.1 INTRODUCTION

In this chapter, we describe methods for analysis of repeated measures data that, as discussed in 
Chapter 20, could be considered as a special type of clustered data. It is also one of the most 
commonly encountered data structures in epidemiology and the health sciences in general. A 
wide  selection  of  methods  and  approaches  exist  for  analysis  of  such  data,  and  the  choice 
between them depends on the characteristics of the data at hand as well as the objective of the  
analysis.  We cannot,  within  a  single  chapter  in  the  book,  cover  all  methods,  or  cover  the  
methods selected in full detail. Among the many excellent textbooks on repeated measures or 
longitudinal  data,  a  standard  (fairly  theoretical)  reference  is  Diggle et  al (2002),  and  also 
Fitzmaurice, 2004; Molenberghs and Verbeke, 2005; Verbeke and Molenberghs, 2001 provide 
extensive coverage in a blend of theory and practice. 

To illustrate the methods, we will revisit the blood pressure data (-bp-) studied in Chapter 21  
and explore analyses involving all patient visits post treatment (up to four visits, denoted 3–6) 
instead of the single visit considered in Chapter 21.

23.1.1 What are repeated measures data?

A longitudinal study can be characterised by having several measurements over time on the 
same  subjects (individuals, or sometimes other experimental units such as sample plots in a 
field),  as  opposed to  studies  with only one measurement  per  subject.  A longitudinal  study 
certainly involves  repeated measures (or measurements) on the same subjects, but the latter 
term is sometimes used in a slightly more general sense to denote consecutive measurements, ie 
measurements with a certain inherent ordering not related to time (eg measurements obtained 
across a range of doses or magnifications). If there is no ordering to multiple measures on the 
same  subjects,  we  might  think  of  these  as  clustered  within  the  same  subject  instead,  as 
discussed previously (Chapters 20–22). 

From  the  clustering  of  measurements  within  subjects,  we  already  know  that  it  is  usually 
unreasonable to consider the measurements as independent; by doing so we would ignore any 
subject  characteristics affecting our outcome. For example,  in growth curves (one particular 
example of repeated measures) a subject that is large relative to its fellow subjects at a young  
age would tend to remain relatively large throughout the growth period. The (time) ordering of  
the  measurements  introduces  another  type  of  association  between  measurements  because 
usually 2 measures  on the same subject  that  are taken close together  in time will  be  more 
strongly associated than measures taken further apart in time. Again in growth curves, the initial 
weight  (say)  should  be  more  strongly correlated  with  the  immediately  ensuing  growth 
measurements  than  the  last  ones.  Such  a  pattern  of  correlations  we  broadly  refer  to  as  
autocorrelation without stating specifically how the correlation is reduced by increasing time 
distance. It is because of this feature of repeated measures data that they cannot generally be 
treated  as  a  hierarchical  data  structure.  Specifically,  a  2-level  hierarchical  structure  (with 
measurements nested within subjects) does not take time ordering of the measurements into 
account  in  the  random  part  of  the  model.  Where  individuals  within  a  group  (eg family 
members) can be interchanged without altering the meaning of the data, observations over time 
on the same subject cannot. Despite the intuitive logic of autocorrelation, some outcomes may 
not show any autocorrelation, so we will need to assess for each dataset individually whether 
autocorrelation  or  a  simple clustering  within subjects  is  present  in  the  data,  or  perhaps  no 
clustering at all.
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As the range of methods that can be applied to a dataset depends on its structure, it is useful to 
introduce some terminology to describe repeated measures data. The most regular data type has 
the same number of measures taken for each subject (ie is balanced over time) with uniform 
(ie the time points are the same across subjects) and equally spaced (equidistant) time points. 
Protocols in clinical trials commonly require equidistant sampling or follow-up. The presence 
of missing data will make designs unbalanced, but are difficult to avoid. A unique feature to 
repeated  measures  data  is  that  observations  may  be  missing  because  the  subject  exits 
prematurely from the study (drop-outs). For example, the blood pressure trial was planned to 
be balanced with uniform but non-equidistant time points, because visits 3–5 were two weeks 
apart, whereas visit 6 was 6 weeks after week 5. In practice, some patients left the study before  
completing all visits (drop-outs), and the visits may not have taken place exactly at the planned 
intervals. Generally speaking, the most regular data types will not only allow a wider range of 
analytical approaches, but will also be easier to analyse.

23.1.2 Descriptive statistics and graphical displays

As the choice of analytical methodology for repeated measures data will also depend, to some 
extent, on the characteristics of the data at hand, it is crucially important to familiarise oneself 
with the data before plunging into a complicated analysis. Two obvious approaches for that are  
suitably chosen  descriptive  statistics  and  visualisations  of  the data,  and analysis  by simple 
(possibly simplistic) procedures such as those described in Section 23.2. To begin with, one 
should assess the distribution of time points within each subject to determine how regular these 
are  (eg balanced,  equidistant).  Next,  one should compute suitable means across  subjects  at 
different time points to get an impression of how time affects the outcome; these can be plotted 
against time in a mean plot. If time points are uniform, it is often also useful to compute the 
crude correlations between measurements at different time points. This will often require you to 
shift from long data format (each row corresponds to one measurement) to wide data format 
(each  row  corresponds  to  one  subject,  with  the  measurements  distributed  across  several 
columns). Finally,  it is recommended to construct one or multiple  profile plots showing the 
series of observations over time on the subjects. If there are too many subjects to display them 
all in a single plot, one may construct plots for suitably chosen groups (formed by predictor 
values) and/or select some subjects for display. Examples 23.1–2 illustrates the approach for the 
blood  pressure  dataset;  Example  23.1  is  restricted  to  patients  with  complete  records  and 
Example 23.2 specifically focuses on incomplete series of repeated measures.

23.1.3 Longitudinal versus cross-sectional study designs

Diggle et al (2002), Chapter 2 contrasted the longitudinal and cross-sectional designs and we’ll 
briefly review the main points. A cross-sectional study can be used to give information about  
differences between subjects in different subpopulations; in addition, a longitudinal study can 
give information about changes in subjects over time. This is particularly important if we want 
to assess the impact of predictors that change over time. In a cross-sectional study, these can 
only be estimated from between-subject regressions, and in order to interpret them as changes 
within an individual, we would need to assume that the within-subject regression has the same 
slope, ie that the predictor has no contextual effect (Section 21.4). 

In  addition, longitudinal designs can be substantially more powerful  statistically than cross-
sectional designs for inference about within-subject predictors. This is analogous to the gain of 
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a block design with treatments allocated within blocks,  eg a cross-over design. For between-
subject predictors, the cross-sectional design with its between-subject independence is the most 
powerful  if  the cost  of  sampling different  subjects  is  not  larger  than the cost  of repeatedly 
sampling the same subject, by the same reasoning as in Section 20.3.3. 

23.2 UNIVARIATE AND MULTIVARIATE APPROACHES TO REPEATED MEASURES DATA

In this section, we will briefly review some relatively simple statistical procedures to deal with  
repeated measures data in regular between-subject designs with independent subjects. That is, 
we assume balanced and uniform series on all subjects, and consider inference about predictors 

Example 23.1 Graphs and descriptive statistics for blood pressure data
data = bpwide

Initial explorations of the data will suggest a suitable scale for analysis. In Chapter 21, we established 
there was no need for transformation of the outcome, diastolic blood pressure (dbp) (at visit 3), so we  
present graphs and descriptive statistics on original scale. For this clinical trial to compare 3 treatments,  
it is natural to compute descriptive statistics separately per treatment group and visit,  including the  
initial visit prior to treatment. (Visit 2 was the visit at which the treatment was initiated.) The results are 
restricted to 256 (88.9%) patients with complete records.

Mean dbp (SD) Number of 
patients

Visit

treatment 1 3 4 5 6

Carvedilol 82 102.9 (4.8) 94.8 (8.4) 92.3 (8.4) 92.4 (8.8) 90.4 (8.8)

Nifedipine 84 102.1 (4.3) 92.8 (9.3) 91.9 (8.6) 89.5 (8.8) 90.1 (7.8)

Atenolol 90 103.0 (4.8) 91.4 (9.3) 91.1 (9.2) 88.4 (9.7) 88.6 (8.7)

The  table  shows  a  large  drop  in  blood  pressure  after  treatment  onset  in  all  treatment  groups.  
Differences between treatments groups are small but apparently consistent over time. The low SD at  
visit 1 is probably caused by the selection criteria for patients to be enrolled in the study. Fig. 23.1  
shows a profile plot for 15 selected patients and a mean plot comparing treatment groups.

(continued on next page)

Fig. 23.1 Profile plot (left) and mean plot (right) for patients in 3 
treatment groups: Carvedilol (solid), Nifedipine (long dashes) and 
Atenolol (short dashes)
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at the subject level; the blood pressure trial data is (apart from the missing values) an example 
of such a data structure if we allow ourselves to disregard any impact of the centres.  These 
methods are less commonly used than those in the following sections, in part because of their  
demands on the data structure and because they may not fully use the information in the data. 
Nevertheless, they may serve as reference points for more complicated analyses, and could in 
some situations suffice to draw conclusions about the study hypotheses.

23.2.1 Univariate methods

We  call  these  methods  ‘univariate’  because  they  essentially  avoid  modelling  the  repeated 
measures structure by reducing the within-subject series of measurements to one (or several) 
statistics computed for each subject. With one observation (the computed statistic) per subject, 
a  multivariable  analysis  involving  any  predictors  and  further  hierarchical  structure  for  the 
subjects follows the lines of previous chapters of the book. 

The most basic procedure is analysis by separate time points. In the blood pressure trial, there 
might be particular interest in comparing the treatments at the first and last post-treatment visit  
(visits 3 and 6). With the single categorical predictor treatment, the analysis would be a linear  
model corresponding to a 1-way ANOVA (Chapter 14). The analysis would not be wrong, but 
it  would  be  inefficient  because  all  the  preceding  measurements  are  not  used.  If  a  similar 
analysis was carried out for each of the time points, it might become difficult to combine the 
conclusions from the different analyses.  As the data from different time points were treated 
separately, we would not know how strongly correlated they were, and then we could not tell  
whether a few significances at different time points strengthen the evidence of predictor effects,  

Example 23.1 (continued)

The profile plot shows quite noisy curves with a downward trend, and no clear evidence of high within-
subject correlation which would manifest itself by subjects tending to remain high or low throughout  
the time period (this visual phenomenon is sometimes called ‘tracking’). The mean plot shows higher 
blood pressures for the new drug, Carvedilol, than the two other drugs, (even prior to treatment (visit 1) 
compared to Nifedipine), although the difference is smallest at visit 1. We also present in tabular form  
below the simple correlations (left), variances and covariances (right) of the 5 measures on the same  
patients (see Sections 20.1 and 23.2.3).

Correlations Variances/Covariances

Visit 1 3 4 5 6 1 3 4 5 6

1 1 21.62

3 0.311 1 13.16 82.61

4 0.333 0.570 1 13.51 45.28 76.29

5 0.245 0.511 0.624 1 10.52 42.96 50.39 85.41

6 0.149 0.477 0.518 0.607 1 5.86 36.75 38.34 47.54 71.86

For example, the correlation between measurements at the first and last visits is 0.149, and the variance  
of measurements  at  the first  visit  is  21.6 and,  as we already noted,  larger  than at  later visits.  The  
correlations with the initial dbp measurements are smaller than among the follow-up measurements,  
reflecting variation in  patients’ responses to  treatment.  As expected,  the data show autocorrelation 
because correlations drop down as time between visits increase, however only moderately so.
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Example 23.2 Incomplete series of records in blood pressure data
data = bp

The patterns of missing outcomes in repeated measures data is often informative for assessing whether  
missing data, and in particular drop-outs, could be associated with characteristics of either the outcome  
or predictors (which would create a risk for biased results, see Section 15.5). Among the 288 patients in  
the blood pressure trial, 32 patients had incomplete records, and their observation patterns are cross-
tabulated by treatment groups. The table gives counts of patients with different series of incomplete 
records across visits 3–6; for example, 8 patients in the Carvedilol group had records at visits 3 and 4 
only.

Visit Treatment group

3 4 5 6 Carvedilol Nifedipine Atenolol Total

0 1 1 1 0 0 1 1

1 0 0 0 5 2 1 8

1 0 1 1 1 0 0 1

1 1 0 0 8 3 1 12

1 1 1 0 4 4 2 10

1 1 1 1 82 84 90 256

Total 100 93 95 288

The table shows that most (30) of the incomplete series are due to drop-outs, which in turn are not quite  
evenly distributed between treatment groups: most occur in the Carvedilol group. The profile plot for 
20 of the incomplete  series in Fig.  23.2 shows similar  trend and variability as the profile  plot for  
complete  series  in  Fig  23.1.  The  main  concern  of  the  missing  data  seems  therefore  to  be  the  
overrepresentation  by  the  Carvedilol  group.  This  feature  of  the  data  should  be  investigated  
independently of the actual recorded data.

Fig. 23.2 Profile plot for patients with incomplete 
series of records in 3 treatment groups: Carvedilol 
(solid), Nifedipine (long dashes) and Atenolol (short 
dashes).
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or whether we essentially just saw the same evidence several times. On the other hand, running 
the analysis at multiple time points could increase our Type II error,  in particular if we fell  
victim to the temptation of selecting the time points with the ‘best’ effects.  This discussion 
shows the need for a formal rule for managing any selection of time points for analysis; one 
general applicable rule is the Bonferroni correction for performing multiple analyses (Section 
14.10.1) by dividing the significance level by the number of analyses performed or the number 
of time points considered for selection for analysis. This approach produces a valid analysis for 
separate  time points but it  is  a weak analysis,  in part  due to the (conservative)  Bonferroni  
correction. More importantly, the analysis does not use the longitudinal information in the data 
(the subjects at different time points could be different), and it does not describe or analyse the 
development over time. Example 23.3 demonstrates the approach applied to the blood pressure 
data.

Analysis by a summary statistic (also, response feature or derived variable) is a refinement of 
the time point method, performed in 2 steps. In the first step, you choose a single quantity to 
calculate from each subject’s profile, for example the drop in blood pressure from the first to 
last measurement. This again results in a single observation per subject on which we then carry 
out a between-subject analysis as above. The effectiveness of the approach depends on whether 
one can devise a good summary statistic that captures the relevant information inherent in the 
profiles; the choice is usually guided by inspection of profile plots. Some standard choices of  
summary statistics are: the subject mean or median, the within-subject slope, the gain (or drop),  

Example 23.3 Univariate methods for blood pressure data
data = bpwide

The subset of patients with complete records is used to illustrate univariate methods, while, for the  
purpose of illustration, disregarding the centres. The measurements at each time point were analysed by 
a linear model to compare the treatment groups while, for visits 3–6, adjusting for the initial blood 
pressure (in order to reduce between-subject variation). Analysis of pre-treatment outcomes is mostly  
of interest to ascertain that the randomization created comparable groups. Therefore, the Bonferroni  
adjustment should involve the 4 subsequent time points; thus, P-values less than 0.05/4=0.0125 could 
be considered as  significant.  In  addition,  2  summary statistics  were  explored:  the immediate  drop 
(difference between blood pressures at visits 1 and 3) and the slope for visits 3–6 expressing trends of 
longer term treatment benefit, and also motivated by the roughly linear profiles in Fig. 23.1. The table 
gives P-values for the effects of treatment and the initial blood pressure.

P-values Separate analysis at visit Summary statistic

Effect df 1 3 4 5 6 drop slope 3–6

treatment 2 0.377 0.038 0.501 0.011 0.252 0.036 0.917

initial dbp 1 n/a <0.001 <0.001 0.001 0.014 n/a 0.004

The analyses at separate time points showed significant treatment effect only at visit 5 (after Bonferroni  
correction). The group means were given in Example 23.1. As already noted there, the means for the  
Carvedilol group are higher than for the other treatment groups, with the differences being largest at  
visit 5. The regression coefficients for the initial dbp were all positive, but decreasing in magnitude at  
later  visits,  as  one  would  expect.  The  immediate  drop  in  blood  pressure  after  treatment  shows  a  
significant difference between treatments; if the initial blood pressure was included as a covariate in  
this analysis,  the  inference for  treatments  would  be equivalent  to that  for  visit  3.  Finally,  there  is  
absolutely no indication that the longer term trend differs between treatments.
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and the area  under  the curve (AUC).  Summary  statistics  should generally  be chosen to  have 
interpretations of practical and/or scientific interest. They are not (primarily) based on statistical  
considerations; for example, the use of the within-subject slope from a regression does not require 
that the curve is modelled well by a straight line (or a statistical assessment of linearity). The slope 
can simply be used as a measure of average increase even if there is some curvature. For growth  
curves, average gain (per time unit) is a standard growth measure, even if the growth may show 
some non-linearity. We also illustrate the use of summary statistics in Example 23.3. 

Advantages of the summary statistic approach are its simplicity and flexibility,  including its  
potential use for discrete data, and the direct access to features of interest that may be difficult 
to extract from complex models. Suitably chosen summary statistics can be both powerful and 
robust  towards model  assumptions and data irregularities  (Everitt,  1995; Senn et  al,  2000). 
Disadvantages are the subjective choice of the statistic, the loss of information by reducing each 
profile  to  a  single  statistic,  and  the  limited  information  provided  by  the  analysis  (eg no 
correlations  or  predictions).  Also,  it  is  difficult  to  incorporate  strong or  key within-subject 
predictors into the approach.

23.2.2 Repeated measures ANOVA

Treating the repeated measures within subjects as a hierarchical structure leads to models with 
subject  random  effects.  The  simplest  of  such  models,  the  random-intercept  model,  can  in 
regular  between-subjects  designs  be  analysed  with  the  ANOVA-based  approach  for  mixed 
models (Section 21.5.1), and is sometimes termed the ‘split-plot’ approach to repeated measures 
data,  referring  to  the  link  between  hierarchically  structured  data  and  a  split-plot  design 
explained  in  Section 20.2.1.  We saw in Chapter  21 that,  in  a  random-intercept  model,  the 
correlations are  the same (and positive)  between all  units within a  cluster  (eg Eq 21.4);  in 
Section 23.3.1, we will call this a  compound symmetry correlation structure. But we noted 
already in  the  introduction  that  we would  expect  autocorrelation  to  be  present  in  repeated 
measures data, so a random-intercept model induces the wrong correlation structure. In essence, 
the hierarchical  model  fails  because  it  does  not  take  into account  the time ordering  of  the 
repeated measures on each subject. For these reasons, the random-intercept model is by now 
considered inadequate for most repeated measures data analyses. It is, however, perfectly valid 
for data with only 2 repeated measures per subject, and may give a reasonable analysis for short 
series (with 3 or 4 time points) because compound symmetry may not be far off in such cases.  
As the random-intercept model provides the simplest analysis of the full dataset, it is often used 
as a starting point (or reference) for further more complex models. It could also be used for first 
decisions about the modelling that are unlikely to require an accurate correlation structure, eg a 
choice  of  transformation  of  the  outcome  (although  one  would  be  advised  to  reassess  the 
transformation with the final model).

As the first of several approaches to assess (test) the assumed correlation structure, we describe 
the repeated measures ANOVA method for regular between-subjects designs. The aim of this 
method is to assess, and possibly adjust, the impact of the assumed correlation structure on the  
test statistics of the ANOVA table; thus, it is essentially a method for correcting test statistics 
but does little to adjust other features  of the statistical inference such as standard errors  on 
estimates. For this reason, and because of the design requirements (which eg imply that missing 
values cannot be managed in any easy way),  the repeated measures  ANOVA approach has 
largely been superseded by extensions of the mixed modelling approach (Section 23.3). We 
mention it here mainly because of the insights it offers into the impact of wrongly assuming a 
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compound symmetry structure.  It  can be shown (in regular  designs)  that  a violation of the 
compound symmetry assumption affects only within-subjects effects (ie effects involving time) 
and makes the corresponding uncorrected test  statistics of the ANOVA table too liberal  (ie 
gives a P-value that is too small). Several correction factors exist to adjust (reduce) the degrees  
of  freedom of the  F-statistics  to  achieve  approximately correct  inference.  We illustrate  the 
procedure in Example 23.4. As already mentioned, the general consensus among statisticians is 
that the repeated-measures ANOVA approach offers no real advantages in return for its strong 
restrictions, and we therefore do not recommend it for general use.

23.2.3 Multivariate analysis

Multivariate  statistical  methods  apply  to  data  where  the  measurement  on  each  subject,  or 
experimental unit, consist of multiple records instead of a single record, as has been the case in 
previous chapters of the book. As an example, patients often undergo a panel of tests at check-
ups. If such multiple records are compiled into a vector of observations on each subject, we can 
think  of  multivariate  data as  consisting  of  vectors  of  observations  instead  of  single 
observations per measurement. A large body of theory and methods exist for multivariate data, 
but  we concentrate  on  how they  can  be  applied  to  repeated  measures  data  (Davis,  2002), 
Chapters  3–4).  Repeated  measures  on  the  same  subject  may  be  considered  as  a  single 
observation (vector), consisting of the entire set of values across time points. Let us introduce a  
bit of notation to support the idea:  Yij=measurement for subject  i at time j, where there are m 
time points j=1,...,m. Then, in a multivariate framework, the basic observation for subject  i is 
the vector Yi=(Yi1,...,Yim). Multivariate linear models extend the usual linear models (Chapter 14) 
by modelling the observation vector in terms of its mean (vector) and variance (matrix). The 
mean vector consists of the mean outcome at different time points, and the variance matrix 
consists of the variances at and the covariances between the different time points. It  is more 
common to  refer  to  the  latter  matrix  as  the  covariance  matrix (sometimes  also  variance-
covariance matrix), so we’ll use that term. Also, the covariances are more intuitive to interpret  
when rescaled as correlations (for the relation between covariance and correlation, see Eq 20.1). 
For a set of measurements (Y1,...,Ym) on the same subject (where, for simplicity, we suppress the 
subject  indicator  i),  the covariance matrix  cov(Y) and the correlation matrix corr(Y)  are the 
(mxm)-matrices holding all the covariances, or correlations, between pairs of measurements:

cov Y =var Y 1    
covY 1 ,Y 2 var Y 2  
covY 1 ,Y 3 cov Y 2 ,Y 3  var Y 3

⋮ ⋮ ⋮ ⋮
covY 1 ,Y m cov Y 2 ,Y m cov Y 3 ,Y m ⋯ var Y m


Eq 23.1

corr Y = 1    
corr Y 1 ,Y 2 1  
corr Y 1 ,Y 3 corrY 2 ,Y 3 1

⋮ ⋮ ⋮ ⋮
corr Y 1 ,Y m corrY 2 ,Y m corr Y 3 ,Y m ⋯ 1


Eq 23.2

The matrices are symmetric, so for clarity, the values above the diagonal have been left blank. 
In  Example  23.1,  we  displayed  the  covariance  and  correlation  matrices  for  the  5  repeated 
measures of diastolic blood pressure per patient in the clinical trial. 
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Multivariate  analysis  of  variance (MANOVA)  assumes  normally  distributed  multivariate 
outcomes with a mean modelled in terms of subject-level predictors and a covariance without 
any  specific  structure  (although  covariances  may  be  assumed  to  be  either  constant  or 
heterogeneous across predictor groups). Thus, the model defaults to heterogeneous variances 
across  time points  and  makes  no assumptions  about  the  correlation  structure.  The analysis  
provides estimates of means (with SEs), variances, and correlations, and these can be used to 
test hypotheses about the effects of between-subject predictors and time. Different test statistics  
exist for the same hypotheses (although for simple hypotheses they’ll coincide); Wilk’s lambda 
is a sensible overall choice, with reference  F-distributions. The standard test statistics offered 
by  MANOVA  software  do  not  include  hypotheses  related  to  time  (because  in  general  
multivariate analysis, there is no structure among the multivariate responses), so these may need 
to be set up manually by specifying suitable contrasts; for details consult Davis (2002; Chapter 
3–4).  The  multivariate  analysis  is  similar  to  analysis  by a  mixed  model  with  unstructured  
correlations (Section 23.3.2), which (with suitable statistical software) gives easier access to 
specific contrasts and tests. Example 23.4 gives results from both the multivariate and mixed-
model analysis for the blood pressure data.

One advantage  of  the multivariate  approach  is that  it  avoids  any problems with a wrongly 
specified correlation structure (as in the random-intercept model). However, this advantage also 
contains  the  potential  drawback  that  estimation  of  many  covariance  parameters  (all  the 
variances  and  correlations)  may be  ineffective  or  outright  impossible,  especially  with  long 
series of measurements. Davis (2002), Chapter 6 cites simulation studies with small/moderate 
number  of  subjects  that  have  shown the  multivariate  approach  to  provide  exact  and  better  
statistical inference than analysis by the mixed model. The main drawbacks of the multivariate  
approach as presented here are its strong requirements: normally distributed, balanced data with 
uniform  time  points,  no  missing  values  and  no  within-subject  predictors.  However,  one 
software implementation (MLwiN) relaxes all these conditions and also allows for additional 
hierarchical structure (Rasbash et al, 2008, Chapter 14).

23.3 LINEAR MIXED MODELS WITH CORRELATION STRUCTURE

Having noted in Section 23.2.2 the deficit  of the simplest linear mixed model, the random-
intercept  model,  for  repeated  measures  data,  we will  discuss here 2 ways  of extending the 
model to incorporate more realistic correlations for continuous repeated measures data. With 
both of these extensions (in Sections 23.3.2–3) the model would still be termed a linear mixed  
model, so the important details lie in the actual specification of the model. Also, the advantages 
of the linear mixed model, such as its flexibility to handle hierarchical structure and predictors 
at multiple levels as well as its likelihood-based inference and resulting robustness to missing 
values—as long as these are missing at random (Section 15.5)—will remain intact. These are 
some  of  the  distinct  advantages  of  the  linear  mixed  model  approach  over  the  simpler 
approaches reviewed so far. In this section, we will not revisit the entire analysis of the linear 
mixed model from Chapter 21 but concentrate on describing the 2 extensions of the model and  
their impact on the analysis.
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Example 23.4 ANOVA and MANOVA methods for blood pressure data
data = bpwide
We continue the illustration of methods by the blood pressure data from Examples 23.1 and 23.3, still, 
for the purpose of illustration, disregarding the centres. Here we show results from a random-intercept  
model, its repeated measures ANOVA adjustment, a multivariate (MANOVA) analysis and a mixed 
model with unstructured covariance matrix (Section 23.3.2). Due to the balancedness of the complete 
subset of the data selected, the parameter estimates for all models are the means for the treatment by  
visit combinations shown in Example 23.1. The table below gives P-values for fixed effects hypotheses  
for the categorical  predictors in 2 versions of the data,  including either all visits or only the post-
treatment visits (3–6). The assumed variance homoscedasticity of the random intercept and repeated  
measures  ANOVA  analyses  is  clearly  violated  when  all  visits  are  included.  For  visits  3–6,  the 
estimated within- and between-subject variances in the random-intercept model were 35.41 and 42.83, 
respectively,  corresponding to an  ICC of 0.55.  The repeated measures  ANOVA gave an estimated 
Huyhn-Feldt  correction factor  of  ε=0.98  (where ε=1 means  that  no adjustment  to  test  statistics  is 
required because of violations of the assumed correlation structure of the random-intercept model), and 
adjusted the  F-distribution degrees of  freedom by multiplication  with  this  factor;  for  example,  the  
adjusted  degrees  of  freedom for  tx*visit  were  (ε*6,  ε*759)=(5.9,  744).  With  ε  so  close  to  1,  the 
adjustment is minimal.

P-values Model / Method

Effect df
random 
intercept

rep. meas. 
ANOVA MANOVA

mixed, 
unstruct. 

Visits 1–6

  tx 2 0.084 0.084 0.070* 0.084

  visit 4 <0.001 <0.001 <0.001 <0.001

  tx*visit 8 0.060 0.060 0.045 0.043

Visits 3–6

  tx 2 0.061 0.061 0.068* 0.061

  visit 3 <0.001 <0.001 <0.001 <0.001

  tx*visit 6 0.245 0.246 0.124 0.119

*simultaneous test across all time points

The estimated error covariance matrix for the MANOVA and the mixed model were identical and very  
close to the values shown in Example 23.1 (not shown). Contrasting the correlations with the single  
estimated correlation (ICC) of the random-intercept model illustrates that the random-intercept model 
is appreciably off the actual correlation structure. However, the impact on test statistics was limited 
(though as some P-values traversed the significance level of 0.05, the impact of conclusions could be  
substantial if the P-values were interpreted too rigidly).  Note that the first  MANOVA test (in both  
settings)  is  for  a  different  hypothesis  (involving  all  time  points  simultaneously)  and  cannot  be  
compared with those of the other methods.

The conclusion about the comparison of treatments is that during visits 3–6 the treatment effects do not 
change  strongly,  and  overall  the  difference  between  treatments  is  close  to  significant.  It  is  not  
surprising that  the tx*visit  interaction  is  stronger  (and  significant)  when the pre-treatment  visit  is  
included where there should be no treatment effects (and Example 23.3 indicated this to be the case).  
One substantial weakness of the present analyses for visits 3–6 is that the pre-treatment dbp was not 
included;  this  weakness  pertains  in  fact  only  to  the  repeated  measures  ANOVA  and  MANOVA 
methods for, as Example 23.5 shows, the mixed models do allow for inclusion of this predictor. We  
could use multiple comparisons to explore the significant tx*visit effect in the first setting, but if the  
significance is mostly due to the inclusion of pre-treatment  comparisons,  it  seems more natural to  
pursue analysis for visits 3–6 only.
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23.3.1 Correlation structure

Before we proceed to the model extensions, we will distinguish more precisely than we have 
done so far between the different correlation structures of importance for the modelling. First, 
despite  our  usage  of  the  term  ‘correlation  structure’, we  really  mean  the  structure  of  the 
covariance  matrix,  because  the  variances  are  equally part  of  the  structure  we’re  modelling 
(however,  ‘covariance structure’ seems less intuitive than correlation structure).  Second, the 
correlation structure targeted by the modelling, and which violation may affect the inference, is 
that of the errors, not the structure of the observed data. The difference between the 2 is that, in 
the former, the fixed and random effects of the model have been estimated and adjusted for (ie 
eliminated from the correlations). We discuss the impact of fixed and random effects in turn.

If the fixed effects are strong, the crude and adjusted correlations can be appreciably different.  
We noted in Example 23.4 that the crude correlations were very similar to those estimated for  
the errors of the model; in these data, the fixed effects were indeed fairly small (within each 
time  point).  In  order  for  fixed-effects  predictors  to  account  for  some  of  the  anticipated 
autocorrelation in repeated  measures  data,  they must include a within-subject  predictor  that 
itself  shows autocorrelation.  One possible example,  for  studies  involving a substantial  time 
span, is the subject’s age, but one should be aware of the potential collinearity with study time 
upon inclusion  of  subject  intercepts.  Realistically,  though,  it  is  not  common that  the  fixed 
effects eliminate substantial parts of the autocorrelation. 

Random  effects  of  random-intercept  type  can,  as  we  have  seen,  only  induce  compound 
symmetry  correlations.  Random slopes  however  can  induce  autocorrelation  if  the  predictor 
involved is correlated with time. One obvious candidate for a random slope with potential to 
induce autocorrelation is therefore ...  time. Adding a random slope with time to a random-
intercept  model induces autocorrelation, and may therefore remove autocorrelation from the 
errors. Linear mixed models with random slopes for time are also called  trend models, and 
constitute one of the 2 extensions of the random-intercept model to deal with autocorrelation 
(Section 23.3). 

We  will  next  describe  a  range  of  correlation  structures  that  can  exist  either  for  repeated  
measures data or for the errors in a model of such data.  Table 23.1 lists some of the more 
common correlation structures for repeated measures in the case of m=4 repeated measures on 
the same subject. For simplicity, we show only the correlation matrix in all cases except the last  
one.  However,  if  variances  are  assumed  to  be  equal  (σ2),  the  covariances  are  simply  the 
correlations multiplied by σ2.

The first 2 correlation structures are well-known and included mainly to familiarise the reader 
with the display. Recall that the correlation ρ in the compound symmetry structure induced by 
a random-intercept model can be expressed in terms of the variance components  g

2 and σ2 as 
= g

2 /  g
2 2 (Eq 21.4). The alternative name, an exchangeable structure, refers to the fact 

that  since  correlations  are  the  same  all  over,  the  units  (here  the  time  points,  but  in  our 
hierarchical  models  the  individuals  within  a  cluster)  can  be  interchanged  (or  exchanged) 
without affecting the structure. 
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Table 23.1 Repeated measures correlation structures for four repeated 
measures/subject

Name Correlation structure Interpretation
uncorrelated or 
independent

uncorrelated (for normal data: 
independent) observations

compound symmetry, or 
exchangeable

hierarchical, mixed model (same 
correlation between all pairs of 
observations)

ar(1), or first order 
autoregressive

repeated measures or time-series 
model with power decay of 
correlations

arma(1,1), or first order 
autoregressive moving 
average

extended repeated measures or 
time series model with power 
decay

Toeplitz, or stationary repeated measures with 
unconstrained correlations at 
different spacings

unstructured repeated measures with entirely 
unconstrained correlations

unstructured with 
inhomogeneous variances, 
or non-stationary

repeated measures, 
unconstrained variances and 
correlations

The  simplest  structure  showing  the  desired  decay  in  correlation  with  increasing  distance 
between observation is first order  autoregressive,  or  ar(1),  in terminology originating from 
time series analysis (Section 14.11). It  involves 2 assumptions: that all pairwise correlations 
that are a certain number of time steps (or points) apart are correlated to the same degree, and 
that the correlations decay as powers of the number of time steps that separate 2 observations.  
The first assumption implies for example that the correlation in the observation pairs (1,2), (2,3) 
and (3,4) are all the same (and equal to ρ). The assumption is sometimes called homogeneous 
or  stationary correlations (discussed further below).  Note The decay of ar(1)  correlations is 
quite rapid; eg for ρ=0.5, observations 4 time steps are close to uncorrelated (0.54=0.0625). 

More complex correlation structures than ar(1) are often useful as well, in order to incorporate  
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either  a  slower  or  less  consistent  decay  of  correlations  with time distance.  The  arma(1,1) 
structure, also originating from time series analysis, and the Toeplitz structures accomplish this 
with  1  and  (m-2)  additional  parameters,  respectively.  The  choice  (and  nomenclature)  of 
correlation  structures  available  for  modelling  depends  on  the  statistical  software;  many 
additional and more complex structures exist, but the 3 homogeneous structures mentioned here 
are usually always available.  Homogeneous structures are most meaningful if the time points 
are equidistant. In some situations, when processes occur at different speeds in different stages 
of  the  time  period  considered,  one  could  perhaps  argue  non-equidistant  time  points  to  be 
‘biologically  equidistant’  (ie that  they  should  have  the  same  impact).  For  example,  if  one 
studies  the impact  of  the injection of  a  pharmaceutical  into animals  (or  humans),  one may 
choose to measure the response at follow-up times 1, 2, 5, 10, and 30 minutes post-injection. If 
the biological processes happen much more quickly in the initial phase after injection, it may 
still be meaningful to assume homogeneous correlations. Clearly such reasoning would require 
strong biological justification.

An unstructured correlation structure will let the data speak for itself; we already saw its use 
in the blood pressure data (Example 23.4). The drawback of this structure is that, with a long 
series  of  repeated  measures,  the  number  of  parameters  involved  grows  so  large  that  they 
become difficult to estimate and interpret. Another question is whether heterogeneous variances 
across  the  time  points  should  be  assumed.  All  correlation  structures  have  a  corresponding 
version with heterogeneous variances (but it may not be implemented in the software). There 
are often good biological reasons why variances should not be assumed constant over time; on 
the other hand, heterogeneous variance structures will also increase the number of parameters 
appreciably for a long series. 

One note of caution about correlation structures: you need to ensure that the time points are 
properly understood by your software, in particular if the data contain incomplete series (due to  
missing values). For example, it makes a difference with most correlation structures whether 
recordings were taken at  times (1,2,3,4),  at  times (3,4,5,6) or at times (1,2,5,6).  If  the time 
points are not uniform across subjects (with allowance for missing values), at least to a good 
approximation,  the correlation  structures  will  not  be  meaningful  across  the  dataset,  and 
modelling based on certain fixed correlation structures will be misleading. Such data structures 
therefore raise the need to incorporate into the matrices the actual recording times.

For  non-equidistant  repeated  measures  or  spatial  data,  denote  by  djj' the  distance  between 
observations  j and  j´. For longitudinal data where locations correspond to time points, the  djj' 

would be the (absolute) difference between the recording times of observations j and j´, and for 
spatial data the distances would be actual physical distances (eg between households). Table 
23.2 lists some examples of correlation structures defined from such distances. The structures 
are  isotropic when only the distances, not the actual locations for observations  j and  j´,  are 
used.  The  power  (or  exponential)  structure  is  the  extension  of  the  ar(1)  structure  to  non-
equidistant time points; the parameter ρ equals the correlation between 2 observations one unit 
apart.
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Table 23.2 Spatial (or non-equidistant repeated measures) correlation structures
Name Correlation structure Interpretation

power, or 
exponential

power decay with distance; note 
the relationship: ρ=exp(-1/θ)

power, or 
exponential, with 
nugget effect

power decay with distance, close 
observations not fully correlated

Gaussian
exponential-quadratic decay with 
distance

linear linear decay with distance

23.3.2 Linear mixed models with complex correlation structure

Recall that, in the linear mixed model from Chapter 21 (Eq 21.8):
Y=X Zu Eq 23.3

we assumed the components of  ε to be independent, and modelled the hierarchical structure 
using the random effects in the  Zu part of the model. In order to enable complex correlation 
structure,  in  particular  autocorrelation,  we  will  now allow  dependence  corresponding  to  a 
particular correlation structure within some sets of ε-values. In the repeated measures context, 
each set contains all the repeated measures for a subject, and in the spatial context, each set 
contains a particular group of observations for which we want to model a spatial correlation (eg 
households within a certain area).

In  such  mixed  models  with  correlation  structure,  both  the  random  part  Zu and  the  error 
correlation structure contributes to total (co)variance (not explained by the fixed effects).  If 
random effects  are  specified at  the same level  as the error  correlation structure,  eg subject 
random effects and within-subject correlation structure, the resulting model may be difficult to 
estimate  and  in  worst  cases  even  be  overparameterised.  To illustrate  the  problem,  random 
effects  (intercepts)  for  subjects  cannot  be  fitted  in  a  model  with  compound  symmetry 
correlation structure for subjects. This is because both parts of the model will lead to the same 
correlation structure, so only one of them is needed. Random effects for subjects can however 
be combined with an ar(1) structure; this produces a structure with autocorrelations that does 
not decay to zero but instead to the  ICC one could compute from the between- and within-
subject  variances.  Similarly,  a  Toeplitz  structure  cannot  be  combined  with  subject  random 
effects,  and, if  unstructured correlations are specified,  it  is pointless to include any random 
effects at the subject level (either a random intercept and random slopes). If the model in Eq 
23.3  has  no  random effects,  it  is  perhaps  misleading  to  call  it  a  mixed  model;  the  name 
covariance pattern model is also used (Hedeker and Gibbons, 2006, Chapter 6).

The  statistical  analysis  of  the  ‘extended’  mixed  models  evolves  along  the  same  lines  as 
previously  discussed,  only  with  additional  variance  parameters  to  be  estimated.  For  large 
structures (with many time points), parsimonious models for cov(Y) are recommended unless 
the number of subjects is very large, to avoid overspecification of the model and unexpected  
impacts of the covariance structure on the fixed-effects parameters. The choice of correlation 
structure  can  be  formalised  by  using  likelihood-ratio  statistics  to  test  nested  correlation-

corr Y j ,Y j =
 2

 20
2 

d jj

corr Y j ,Y j=exp−d jj
2 / 

corr Y j ,Y j={1−d jj  if d jj1
0 if d jj≥1

corr Y j ,Y j =d jj =exp−d jj /
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structure models against each other. For example, the compound symmetry and ar(1) models 
can be tested against both arma(1,1) or Toeplitz models, but the latter two cannot be tested 
against  each  other.  The test  of  a  compound symmetry  model  against  any  of  these  models  
allowing for autocorrelation is one of the best ways to assess whether the compound symmetry 
model is inadequate due to unmodelled autocorrelation. The fit of models with the same number 
of parameters can be compared by their log-likelihood values (the higher log-likelihood model 
is generally preferred). Model selection criteria such as the AIC (Chapter 15) are also applicable 
here.  A visual  assessment of  the  residual  autocorrelation  function may also be helpful  (for 
illustrative  examples,  see  Pinheiro  and  Bates,  2000,  Chapter  5.  Example  23.5  examines 
different correlation structures for the full blood pressure data. 

Mixed models with complex correlation structure are currently only available in a few software 
packages:  Stata  (Rabe-Hesketh  and  Skrondal,  2012),  SAS  (Littell et  al,  2006), R/S-Plus 
(Pinheiro and Bates, 2000) and SPSS.

Example 23.5 Linear mixed models with correlation structure for blood pressure data
data = bp

Several correlation structures were examined for the blood pressure measurements at visits 3–6, using 
additive fixed effects of treatment (-tx-), visit and initial blood pressure (-dbp1c-). While the interaction 
tx*visit turns out to be non-significant, expansion of fixed effects by interactions with -dbp1c- as well  
as refinement of the linear term for -dbp1c- could be explored, our present focus is on the random part  
of the model so we restrict ourselves to the simpler additive form. The model is now a 3-level model  
with centre random effects and within-patient correlation structure.

Covariance/ Covariance Estimated ρ -2 ln 

correlation structure parameters 1 visit 2 visits 3 visits likelihood

compound symmetry 1 0.491 0.491 0.491 7470.79

ar(1) 1 0.534 0.285 0.153 7492.69

non-equidistant power 1 0.588 0.345 0.070 7539.73

patient random effects 
with ar(1) errors

2 0.536 0.447 0.430 7459.96

arma(1,1) 2 0.534 0.463 0.401 7460.86

Toeplitz 3 0.537 0.449 0.425 7459.92

Note The within-patient correlations computed here do not incorporate centre clustering.

The  table  above  illustrates  how the  different  structures  adapt  to  the  data.  In  terms  of  statistical  
significance, the Toeplitz model is no better than the hierarchical model with ar(1) errors, which gives  
the best  fit  with  2 parameters  and is clearly preferable  to the structures  with  only one correlation  
parameter. The estimated correlations for blood pressure measurements 1, 2, and 3 time steps (visits)  
apart  demonstrates  the  deficiencies  of  the  one-parameter  models.  The  decay  in  correlations  with  
distance appears modest,  but it  is  clearly significant.  For the non-equidistant structure,  visit  6 was  
assumed to have taken place 6 weeks after visit 5, as described in Hall et al (1991), although we have 
elsewhere (in Chapters 21 and 31) described the post-treatment visits to be equidistant  (Brown and 
Prescott,  2006).  The correlations shown  in the  table  are  with  visit  3,  and  the very  low estimated  
correlation 3 visits apart is due to the added time gap. 

(continued on next page)
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23.3.3 Trend models

Let us first recap from Section 23.3.1 that trend models are characterised by having random 
slopes  of  time.  We already  argued  in  favour  of  these  random  slopes  because  they  would 
introduce autocorrelation into the model. It could also be said that models assuming all subjects  
develop in the same way over time are unrealistic for most longitudinal  data  (Hedeker and 
Gibbons, 2006, Chapter 4). With the inclusion of subject-random slopes for time, the model 
includes terms representing the development over time at the population level (the fixed effects  
for time) as well as the random effects representing the development over time at the individual 
level. 

We need to be a bit more specific when it comes to how time should be modelled. The simplest  
option is a linear effect of time but it is often too simplistic to assume a linear change across  
time; for example, linear trends may eventually level off towards a plateau or a minimum level. 
The choice of an appropriate form of the time effects follows the same principles as for other 
continuous predictors (Section 15.4). Ideally, for consistency, the same (linear or non-linear) 
relation with time would be used for the fixed and random effects. As was noted in Section 
21.3, with the need for some parsimony in our use of random slopes, it becomes attractive to 
consider models with time effects represented by only a few parameters. In some situations, a 
non-linear  monotone  transformation  (eg log  or  square-root)  of  the  time  scale  can  help  to 

Example 23.5  (continued)

For comparison with the results in previous examples and a subsequent analysis by GEE procedures  
(with discussion of the parameter estimates), we also present a table of estimates for the fixed effects  
and random parameters from the hierarchical model with ar(1) errors. The fixed-effects estimates and 
SEs were very close for the models with comparable fit. 

Coef SE z P 95% CI

tx = Nifedipine -1.225 0.974 -1.26 0.209 -3.134 0.684

tx = Atenolol -2.999 0.964 -3.11 0.002 -4.887 -1.110

visit = 4 -1.000 0.486 -2.06 0.040 -1.952 -0.048

visit = 5 -2.626 0.537 -4.89 <0.001 -3.679 -1.574

visit = 6 -3.093 0.552 -5.60 <0.001 -4.175 -2.011

dbp1c 0.469 0.086 5.47 <0.001 0.301 0.637

constant 94.68 0.89 - - 92.95 96.42

In addition, the estimated autocorrelation parameter and variance components (also with SEs) were:
=0.1930.061 , and c

2=4.762.50 , p
2=30.364.43 ,2=40.983.00 .

All  the models  considered above assume measurements  on different  patients within a centre to be 
equally correlated across all visits, but we could imagine correlations to be stronger for measurements 
taken at the same visit. We can allow for this in our models by adding random effects for centre by visit  
combinations, or centre by visit by treatment combinations, similar to our modelling in Example 21.5.  
Such added random effects would break the hierarchical structure, and instead we would have a cross-
classification of  measurements  within  both patients and centre by visit  combinations which  would 
make the models more difficult to fit. In the blood pressure data, however, very little variance can be 
explained by centre by visit interactions (results not shown), perhaps due to the short time series. 
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achieve an approximately linear relation. If the effects of time need multiple parameters, it is 
helpful  for  estimation  and  interpretation  of  variance  parameters  if  these  are  as  unrelated 
(‘independent’) as possible. For example, if a polynomial model is used, it is recommended to 
parameterise it by orthogonal polynomials (Hedeker and Gibbons, 2006, Chapter 5). If it is not 
possible to model time effects in a simple fashion, one may choose a simpler form (eg linear) 
for the random slopes while retaining a more complex form for the fixed effects. Modelling 
time  as  a  categorical  random  slope  predictor  (as  in  Example  21.5)  will  not  introduce  
autocorrelation into the model and is, therefore, usually less attractive.

For  further  details  about  trend  models,  we  refer  to  the  general  sections  on  random slopes 
(Section 21.3) and inference for mixed models (Section 21.5). In Example 23.6, we give the 
results of fitting random slopes for time at both the patient and centre levels.

23.4 MIXED MODELS FOR DISCRETE REPEATED MEASURES DATA

From the relative ease with which the linear mixed model could be extended to incorporate  
autocorrelation, one might expect things to be similar for discrete data, but that is not so. After 

Example 23.6 Linear trend models for blood pressure data
data = bp

The random-intercept model (with compound symmetry correlation structure) of Example 23.5 was  
extended with linear random slopes for visit (centred at visit 3) at both the patient and centre levels. In  
order to assess how patient-level random slopes would compare with the correlation structures explored  
in Example 23.5, the first model fit added only patient-level random slopes to the random intercept  
model.  The  second model  included  random slopes  at  both  levels  and  autocorrelated  errors.  Only 
parameter estimates (with SE) for the parameters of the random part of the model are shown.

Level Parameter
Patient-level random slopes

Estimate (SE)
Both level random slopes

Estimate (SE)

centre variance (intercept) 4.788 (2.528) 3.170 (2.605)

variance (slope) - 0.384 (0.263)

covariance - 0.157 (0.613)

patient variance (intercept) 39.209 (5.605) 31.885 (5.580)

variance (slope) 2.005 (0.870) 0.001 (0.012)

covariance -2.587 (1.775) -0.165 (1.255)

measurement variance 33.041 (2.036) 39.372 (2.835)

autocorrelation - 0.167 (0.061)

-2ln likelihood 7464.62 7452.43

By comparison  with  Example  23.5  we  see  that  for  compound  symmetry  errors,  the  patient-level 
random slope improves the correlation structure significantly but not as much as autocorrelation. In the 
presence of  autocorrelation,  the patient-level  random slope has no real impact  but the centre-level 
random slope is significant. We may interpret this by saying that patients at different centres are on 
different trajectories over time (in their blood pressure values). The autocorrelation remains significant  
and is only slightly reduced in magnitude by the added random slopes (from 0.193 to 0.167).
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explaining the challenges of adding correlation structure to a GLMM, we give pointers to some 
of the many different approaches that have been tried, describe in more detail the concept of a 
transitional model, and illustrate by the blood pressure data the impact this approach and the 
trend  model  (from the  previous  section)  has  on estimates  from a  random-intercept  logistic 
regression model.

23.4.1 Adding correlation structure to a GLMM

The linear mixed model approach of incorporating correlation structures into the model’s error 
component (ε) runs into the serious problem in GLMMs that the linear predictor (eg Eqs 22.1 
and 22.5) does not contain an error component. The reason is that a GLM(M) models the mean 
and variance on different scales: the mean on the scale of the linear predictor given by the link  
function (in short, the link scale), but the variance on the observation scale. As the error term is  
on observation scale,  it  is subject  to the restrictions related to the discrete outcome (see  eg 
Section 16.1). A second problem following from this is the separation of correlation into parts  
explained  on  different  scales;  recall  that  in  linear  mixed-models  correlation  could  be  split 
between the random effects and the error correlation structure (Section 23.3.2), but the situation 
is  more  complex  when  these  are  on  different  scales.  The  third  problem is  that  modelling 
clustering  on  the  link  scale  yields  parameters  with  a  cluster-specific  (SS)  interpretation, 
whereas modelling clustering on observation scale (eg in a beta-binomial model, Section 22.4.5, 
or by the generalised estimating equations, Section 23.5) yields parameters with a population-
average  (PA) interpretation.  If  clustering  is  modelled  on both scales,  it  is  not  clear  which 
interpretation the parameters will have. 

It is therefore more difficult to incorporate the correlation structures discussed for linear mixed 
models into a GLMM, and this is one of the reasons why no general  GLMM-type class of 
models  exists  for  repeated  measures  and  spatial  structures.  Instead,  models  are,  to  a  large 
extent, developed specifically for the most interesting data types: binary and count data. The 
literature  in  this  field  is  large,  technical,  and  largely  beyond  the  scope  of  this  book.  We 
introduce a few of the ideas that tie in with the GLMM framework.

The random-intercept model (Eq 22.1) includes a single random effect for each cluster. As this 
will not suffice to create a within-cluster correlation structure (Diggle et al, 2002, Chapter 11) 
expanded the model on link scale by including random effects at each time point (for each 
subject). In a binary model, with probabilities pij for subject i at time point j, the extension of Eq 
22.1 therefore takes the form:

logit  pij =01 X 1 ijk X kijuij , with uij~N 0,2 Eq 23.4

The  idea  is  now  to  assume  the  set  of  random  effects  on  each  subject,  (ui1,...,uim),  to  be 
autocorrelated,  eg according  to  the  ar(1)  structure  with  correlation  ρ (note  that  ρ is  the 
correlation between the random effects, not between the binary outcomes). In the special case 
ρ=1, the random effects will be perfectly correlated and thus identical, so that we’re back in the 
random-intercept model with a single random effect (ui). Unfortunately, the model is difficult to 
estimate (the MCMC methods of Chapter 24 were suggested as an option). The same random-
effects  structure has also been applied to autocorrelated count data,  eg in a times series  of 
counts (Davis et al, 2000).

Quasi-likelihood  or  pseudo-likelihood  estimation  software  may  allow  specification  of  a 
repeated  measures  or  spatial  model  for  the  adjusted  variate  computed  in  each  step  of  the  
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iteration (Section 22.5.2). This will lead to correlation structures of repeated measures or spatial 
type (Gotway and Wolfinger, 2003), although covariance parameters specified in this way may 
have no direct interpretation in the discrete model. Molenberghs and Verbeke (2005), Chapters 
8 and 22) discussed the approach (as implemented in SAS, Proc Glimmix), and it was also 
included among the methods assessed in recent simulation studies (Masaoud and Stryhn, 2010). 
Some of the conclusions were: (i) if only a correlation structure is used, the procedure yields  
estimates with a PA interpretation and is comparable to GEE estimation; (ii) if both random 
effects and a correlation structure is used, the estimates will be intermediate between PA and SS 
parameters, and thus be biased for both interpretations.

A GLMM with a correlation modelled at the original scale (Barbosa and Goldstein, 2000) and a 
multivariate multilevel logistic model (Yang et al, 2000) have been developed, but both require 
specialised  software  (MLwiN  macros),  and  do  not  appear  to  have  been  used  much.  A 
multivariate  model  for  discrete  outcomes  is  also available  in  MLwiN and can  be used  for  
repeated  measures  data  (Rasbash et  al,  2008);  without  additional  hierarchical  structure,  the 
parameters have a PA interpretation.

Repeated  measures  of  counts  have  been  modelled  with  random  effects  by  a  variety  of 
approaches (Nelson and Leroux, 2006), including also the extensions of the Poisson regression 
reviewed  in  Chapter  18  (ie zero-inflation  (Min  and  Agresti,  2005);  overdispersion 
(Molenberghs et al, 2007) and the transitional models to be described next (Li et al, 2007)).

23.4.2 Transition models

A  generally  accepted  classification  of  modelling  approaches  for  clustered  data  (including 
repeated measures) is into 3 types:  subject-specific, marginal,  and transitional (Diggle et al, 
2002, Chapter 7). Our discussion has until now focused on the first 2, but we will here outline 
the third approach and explain how it can be used to incorporate autocorrelation into a GLMM.  
To focus on the basic idea, we consider the simplest case of a binary outcome. 

In  random-effects  models,  we accounted  for  the within-subject  clustering  by modelling the 
probability of the event for subject i at time point j conditionally on the (latent) subject random 
effect ui, but it might seem more intuitive to model the probability conditionally on the previous 
event Yi,j-1, and perhaps further events before that. A one-lag transition model (conditioning only 
on the previous event) could be expressed using the notation of Eq 22.7 as:

logit  pij =X ijZuijY i , j−1 , Eq 23.5

where only the transitional term γYi,j-1 is new. Note, it is not a misprint that the outcome Y is 
present on the right hand side of the equation. The fixed-effect parameter γ equals the log OR 
for a comparison between subjects who at the previous time did and did not experience the 
event. The model in Eq 23.5 still includes subject random effects because the transitional term 
cannot be expected to account for all within-subject clustering. Conversely, even if we expect 
the  transitional  term  to  pick  up  autocorrelation,  there  may  be  still  be  some  unmodelled 
autocorrelation left in the data. A transitional term is sometimes used informally in this way to 
capture autocorrelation in the data (Thurmond et al, 2005).

In Eq 23.5, the probability of an event at time j is different for a preceding non-event (Yi,j-1=0) 
and a preceding event (Yi,j-1=1), so essentially the model fits an equation for both of these 2 
situations. If a disease event occurring after a non-event is interpreted as a new case, the former  
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situation  corresponds  to  incidence. The  probability  of  a  disease  event  following  an  event 
would then be interpreted as 1 minus the  cure rate. In other words, the model in Eq 23.5 is 
really for the 2 transitions: 0→1 (new case), and 1→0 (cure). With this interpretation, it may 
seem awkward that the impact of our predictors is assumed to be equal for both transitions; it 
means that the predictors have numerically exactly opposite effects for incidence and cure. In 
order to avoid this assumption (which should certainly not be considered the default), we can  
add interaction terms between  Yi,j-1 and the predictors.  Similarly,  we may want to include a 
random slope for  Yi,j-1. The regression parameters in models such as Eq 23.5 (with or without 
added interactions) are different than those in the marginal and cluster-specific equations (Eq 
22.7), and no general conversion formula exists between them (Diggle et al, 2002, Chapter 7). 
Another issue that distinguishes a transitional model from a usual random-effects model is that 
a  special  handling  is  needed  for  the  first  time  point  (j=1),  where  no  previous  outcome is 
available as a predictor. The values for j=1 may either be omitted, or if they are included, the 
predictors should contain a dummy variable for this time point and Yi0 should be set to zero. In 
both cases,  the model/data will not be quite the same as in the usual random-effects  model 
which will lead to further differences in the parameters. We demonstrate the transitional model 
in Example 23.7 in the next section.

23.4.3 GLMMs without explicit correlation structure

Although our focus has been on alternatives to the random-intercept model with subject random 
effects,  this simpler  model may still  be valid,  provided one is willing to accept  its  lack of  
autocorrelation. To detect violations of compound symmetry may require much more data than 
in the continuous case because the information content is lower in discrete data— something 
that certainly is true for binary observations. (Note We may think of the correlation structure as 
compound  symmetry,  although  strictly  speaking  the  within-subject  correlations  are  only 
constant when the fixed effects are constant (because the variance is a function of the mean), 
and in a repeated measures model one would usually have time as a fixed effect.) However, a 
recent simulation study on binary data (Masaoud and Stryhn, 2010) concluded that even with a 
repeated  measures  series  as  short  as  m=4,  biases  may result  from ignoring  autocorrelation 
generated by  eg the model in Eq 23.4. An earlier study cautioned against using the random-
intercept model in the presence of autocorrelation  (Heagerty and Kurland, 2001) based on a 
theoretical assessment of the bias in the estimates and a simulation study with  m=5 from the 
same model.

In Example 23.7, we illustrate how the 2 approaches discussed here for modelling correlation 
structure, random slopes for time (trend models, Section 23.3) and transitional models, affect 
the estimates of a moderately-sized binary repeated measures dataset. We use again the blood 
pressure data, and define a binary outcome (-highdbp-) at the threshold of (at least) 90 mmHg, 
which is in general use to classify diastolic blood pressure values as indicative of hypertension. 
With only 4 time points (visits) the series is fairly short, so the results may not be representative 
for longer binary series of repeated measures.

23.5 GENERALISED ESTIMATING EQUATIONS

The  previous  chapters  have  presented  mixed  models  as  an  approach  for  dealing  with  the 
problem of clustering (lack of independence among observations) in a dataset. As noted, these 
mixed models are very flexible and can handle any number of levels of hierarchical clustering 
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Example 23.7 Generalised linear mixed models for high blood pressure data
data = bp

Out of the 1,092 blood pressure records, 705 (64.6%) were 90 mmHg or larger and thus indicative of  
hypertension. Among the 288 patients, 133 (46.2%) had constant values of -highdbp- throughout the 
study, suggesting, in view of the short series, a moderately strong within-patient clustering. In the next  
table, we compare estimates from a random-intercept model, a simple transitional model (without any 
interactions), and a linear-trend model with a patient-level linear random slope for visit centred at visit  
3.  The effective  dataset  for  the transitional  model  excluded  8 patients  and 287 records where  the 
previous blood pressure value was missing or did not exist (ie at visit 3). Note that we don’t include the 
values at visit 3 by conditioning on pre-treatment values because the transition mechanism at treatment  
onset can hardly be considered as similar as during the follow-up period.

Model Random intercept Transitional Linear trend

Parameter Estimate (SE) Estimate (SE) Estimate (SE)

tx = Nifedipine -0.313 (0.310) -0.081 (0.265) -0.479 (0.329)

tx = Atenolol -0.519 (0.308) -0.256 (0.264) -0.619 (0.326)

visit = 4 -0.343 (0.231) - -0.218 (0.259)

visit = 5 -1.381 (0.235) -0.858 (0.229) -1.210 (0.300)

visit = 6 -1.339 (0.237) -0.647 (0.253) -1.101 (0.332)

dbp1c 0.128 (0.029) 0.086 (0.029) 0.148 (0.032)

constant 1.960 (0.309) 0.592 (0.451) 1.887 (0.352)

previous outcome - 0.962 (0.332) -

centre variance 0.289 (0.277) 0.202 (0.166) 0.351 (0.311)

patient variance 2.437 (0.548) 0.942 (0.690) 1.515 (1.030)

random slope variance - - 0.455 (0.249)

random slope covariance - - 0.214 (0.355)

The 2 extensions of the random-intercept model were both highly significant: the coefficient for Yi,j-1 in 
the transitional model is much larger than its SE, and the linear trend model improved the 2lnL by 9.6  
for 2 df. In the transitional model, the odds ratio for having the same outcome as at the previous time  
point was high (e0.96=2.6), and the between-patient variance dropped substantially. The estimates are 
conspicuously different between the 3 models. This is in part due to the moderately strong within-
patient clustering,  eg  in the random-intercept model, the (latent variable)  ICC equals (0.289+2.437)/
(0.289+2.437+3.29)=0.45 (Section 22.2.3). The estimates from random effects models are not directly  
comparable when the variances are high because of the scaling caused by the random effects (Section  
22.6). Estimates become comparable after scaling to PA scale; for example, for -dbp1c- we obtain:

0.128 /10.346∗0.2892.437=0.092 , and 0.086/10.346∗0.2020.942=0.073 ,

so these estimates are not quite as far off as it appears. The estimated intercept in the transitional model  
has a different interpretation and role in the model: it corresponds to tests whose predecessor was zero, 
whereas in the other models, it corresponds to any measurement. Due to non-constant variances created  
by the random slopes (the estimates here imply a marked increased in variance at later visits), it is more 
difficult  to  scale  the estimates  of  the  trend  model.  The conclusion  from the  example  is  that  both 
extensions of the random-intercept model affect the model quite strongly, and it is not clear which (if  
any) of them is preferable. We continue the analysis of this model in Example 23.10.
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as  well  as  more  complex  data  structures.  However,  some  unresolved  issues  remain.  As 
discussed in Section 23.4, the mixed model approach is not as successful with repeated and 
spatial structures for discrete data as it is for continuous data. Also, its assumption of normally 
distributed random effects  is  perhaps a limitation; in  practice,  you  will  encounter  data that 
clearly do not conform to that assumption. From a more philosophical point of view, one might  
argue  that,  in  our  analyses,  we  should  only  make  the  absolutely  necessary  distributional 
assumptions and for ‘nuisance effects’, rely on robust procedures that are less affected by the  
peculiarities of the data. This would follow the trend in modern statistics toward non- and semi-
parametric  procedures,  as  seen,  for  example,  in  survival  analysis.  Finally,  complex  mixed 
models are sometimes difficult to fit due to the size of the data or to numerical difficulties.

Generalised estimating equations were introduced in 2 papers by Liang and Zeger (1986) and 
Zeger  and Liang (1986) as  a  set  of  estimating equations to  obtain parameter  estimates  for 
discrete and continuous repeated measures data. The idea has proven not only durable but also 
extendable  to  other  data  structures  (eg hierarchically  clustered  and  spatial  data),  statistical 
inference  accompanying  the  estimates,  as  well  as  many  variants  of  estimating  equations 
(Hanley et  al,  2003).  A  fairly  recent  (statistical)  monograph  (Hardin  and  Hilbe,  2003) is 
devoted entirely to GEE methods, which today are one of the most popular approaches in the 
health and biological sciences. We will confine ourselves here to describing the original (and 
probably still most popular) GEE method to obtain population-averaged estimates for clustered 
data. To illustrate the methods, we will use the repeated measures blood pressure data and the  
hierarchically clustered diarrhea data from Chapter 22. 

23.5.1 Estimating equations

Let’s  initially  explain  the  meaning  of  an  ‘estimating  equation’.  When  using  maximum 
likelihood (ML) estimation, the parameters are chosen to maximise the log-likelihood function. 
In practice, maximising a function involves computing the (partial) derivatives of the function 
with  respect  to  its  parameters  and  equating  these  to  zero.  These  would  be  the  estimating 
equations for ML estimation (and the derivatives of the log-likelihood function is called the 
score function). Except for very simple cases, the equations do not have an explicit solution and 
must  be solved iteratively.  The approach  we are  going to  take  here  involves  GLMs and a 
partially specified  model,  so that  no likelihood function is available.  Specifically,  the GEE 
method requires  only assumptions about  the  marginal  mean and  variance  (and  information 
about the subjects, or more generally clusters, of the data). Nevertheless, estimation is based on 
iterative solution of similar generalised estimating equations. These equations involve the mean 
of  the  outcome across  clusters,  therefore  GEE yields  estimates  with  a  PA interpretation. 
Recall  however  from  Section  22.4.1,  that  a  distinction  between  SS  and  PA  estimates  is 
unnecessary for models with an identify link, such as a linear (mixed) regression models.

23.5.2 Statistical inference using GEE

The Liang and Zeger version of GEE is based on correlations in a working correlation matrix.  
Despite the fact that no assumptions about the form of the correlation of the data within the 
clusters are made, the estimating equations involve a working correlation matrix containing 
the estimated correlations among observations within a cluster, in each cycle of the iterations. 
This matrix can be given different forms (independent, compound symmetry,  autoregressive, 
unstructured etc as in Section 23.3.1) to tailor the estimating algorithm toward one’s perception 
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of the data structure. Because the matrix is not part of the model, its form is not as crucial as in  
a  fully  parametric  model.  Theoretically,  the  GEE  method  gives  asymptotically  unbiased 
estimates even if the working correlation matrix is misspecified; that might, however, lead to 
loss  in  efficiency  (Fitzmaurice,  1995).  Estimation  of  variance  (ie standard  errors  and 
correlations among estimates) can be either model-based or robust (or empirical) as described in 
Section  20.5.4.  The  latter  method  is  also  asymptotically  unbiased,  and  is  generally 
recommended because the GEE method loses its robustness to misspecification if model-based 
variance  estimation  is  used.  It  is  worth  noting  the  general  relationship  that  GEE  with 
independent working correlation structure and robust variance is exactly the same as ordinary 
clustered robust variance estimation (Section 20.5.4).

As to the choice of working correlation structure, you should first and foremost be guided by 
your understanding of the data. For hierarchically clustered data (eg  individuals in families), 
anything  but  a  compound  symmetry  (or  exchangeable)  correlation  structure  would  seem 
unreasonable. Particular caution should be exercised with negatively correlated binary data. In 
this  case,  an  ordinary  logistic  model  with  robust  standard  errors  has  been  recommended 
(Hanley et al, 2000). For repeated measures data, one would usually choose a structure that 
allows for autocorrelation. It might also be tempting to try an unstructured correlation to see  
what patterns the data show when not constrained by a particular structure.  However,  large 
correlation  structures  imply  estimation  of  a  large  number  of  ‘working  parameters’  and 
numerical  problems  might  be  encountered  especially  in  unbalanced  datasets.  Recently  a  
criterion (QIC), similar to Akaike’s information criteria has been developed to guide the choice 
of correlation matrix (Pan, 2001) and implemented in standard software (Cui and Qian, 2007). 
We first illustrate the GEE method in Example 23.8 by applying it to the multilevel  diarrhea 
data with a binary outcome.

A word of caution about the use of the GEE approach is appropriate when it comes to missing 
data (Section 15.5). It has long been recognised that GEE is not robust to missing data under the 
missing at random (MAR) assumption, but that addition of a weighting scheme to the procedure 
could resolve the problem  (Robins et  al,  1995;  Molenberghs et  al,  2007, Chapter  27).  The 
actual scheme depends on the structure of the missing values (eg whether these are drop-outs or 
intermediate missing values). An implementation of a weighting scheme for drop-outs has been  
published  (Jansen et  al,  2006),  but  such  adjustments  to  GEE do not  seem to  be  generally 
available in standard statistical software.

23.5.3 GEE for multilevel data structures

One apparent  drawback of the GEE method is its  limitation to a single level  of clustering. 
Except  for  the  alternating  logistic  regression (ALR)  version  of  GEE discussed  below,  the 
problem of extending GEE algorithms to account for more complex data structures has received 
relatively little attention in the literature (Chao, 2006; Teerenstra et al, 2010). The question of 
how to  best  set  up  a  classical  GEE  analysis  for  binary  repeated  measures  with  an  added 
hierarchical  level  (eg patients  clustered  in  centres)  was  discussed  on  the  basis  of  multiple 
simulation studies  (Masaoud, 2009). The recommendations were that, with moderate-to-large 
numbers  of  highest  level  clusters,  it  is  sufficient  to  cluster  at  the  highest  level  to  achieve 
approximately unbiased estimates and standard errors at all levels, and that other schemes such 
as ignoring the highest level clusters or modelling them by fixed effects were less successful. 
This finding agrees with the recommendation by Hardin and Hilbe (2003), Chapter 3 that for 
complete  datasets  with  a  number  of  clusters  above  30,  there  is  little  gain  in  using  more 
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complicated  correlation  structures  than  independence  (which  de  facto  is  ordinary  logistic 
regression with robust standard errors), and it also agrees with the common approach to survey 
data to adjust for clustering by primary sampling units and pay less attention to subsequent 
levels (Sections 2.10 and 20.5.5). As a higher-level working correlation structure cannot easily 
be set up to account for autocorrelation within subjects, an exchangeable structure must be used 
and a possible loss of power by misspecification of the structure must be accepted. In Example 
23.9, we compare different 3-level GEE approaches to analysis of a continuous outcome by 
reanalysing the blood pressure data from Examples 23.5–6.

For binary outcomes, an alternative to the standard GEE algorithms was developed by Carey et  
al (1993) and termed alternating logistic regression (ALR) because the estimation algorithm 
in each step of the iterations employs 2 (very different) logistic regression models to update the  
parameters. As this approach was favoured for binary data in a comprehensive review of GEE 
methods (Hardin and Hilbe, 2003), and it also has the ability to deal with 2 levels of clustering, 
we briefly describe the idea and demonstrate in Example 23.10 its use (together with other GEE 
implementations)  to  the  high  blood  pressure  model  of  Example  23.7.  The  standard  GEE 
procedure  describes  within-subject  clustering  in  terms  of  a  working  correlation  matrix; 
however, correlation is not the most obvious measure of association for binary outcomes. The 
ALR method instead describes the clustering in terms of odds-ratios for 2 subjects within the 
same cluster, and offers estimates (with SEs) of such quantities. As the estimating equation for  
the fixed effects is the same as for standard GEE, the robustness properties of GEE are retained. 
One drawback of the approach is that it is only implemented in a few statistical packages (SAS 
and  R/S-plus)  and  only  with  exchangeable  correlation  structures.  That  is,  in  the  repeated  
measures context, the odds-ratio parameter gives the ratio between odds of disease when it is  
known  that  another  observation  on  the  same  subject  is  disease-positive  versus  when  it  is 
disease-negative. A numerical illustration is given also in Example 23.10.

Example 23.8 Generalised estimating equations for family-level diarrhea data
data = brazil_smpl

For the simple family-level model  of Example 22.12,  a GEE analysis  with a compound symmetry  
structure within municipalities and robust standard errors gave a regression coefficient for cistern of:  
-0.612 (0.221). For comparison with the corresponding random-effects estimate (-0.668), we compute 
its PA counterpart  using Eq 22.2: βPA≈−0.668 /10.346∗0.469=−0.620. Thus,  the 2 estimates 
agree very closely; however, the SE is appreciably larger for the GEE estimate even before the SE of  
the GLMM estimate (0.162) is scaled towards zero. The most likely explanation for the disagreement is 
that the robust variance estimation included in GEE ideally requires at least 30 clusters to perform  
satisfactorily (and we only had 21 municipalities); indeed, the robust SE is also elevated for the random 
effects model (0.244). The discrepancy between the SEs is smaller when adjusting for clustering at 
communities  instead  (GEE  estimate:  -0.629  (0.183),  which  can  be  compared  with  the  values  of 
Example 22.1). When accounting for both levels of clustering by the ALR method, the SE (0.217) is  
intermediate between these two values but still markedly higher than from the GLMM.

The municipality-level working correlation matrix had a correlation of 0.073, which is substantially 
lower than the approximate ICC computed by the latent variable method as 0.469/(0.469+3.29)=0.125. 
This  disagreement  is  not  related  to  cluster  size  and  thus  perhaps  reflects  the  different  ways  of  
estimating correlation by the two approaches.
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Example 23.9 Generalised estimating equations for blood pressure data
data = bp

We analysed these data using linear mixed models for repeated measures in Examples 23.5–6. Because  
of the identity link function, the SS and PA parameters coincide. The difference of the GEE approach  
lies  therefore  entirely  in  the  estimation  method.  The  table  shows  parameter  estimates  from  GEE  
analyses  clustered  at  the  patient  level  with  compound  symmetry,  autoregressive  (ar(1)),  and  
unstructured working correlation matrices. The table also gives values of the working correlations 1, 2,  
and 3 time steps apart;  the values for  the unstructured correlation were obtained by averaging the 
corresponding values in the matrix. Some software implementations of GEE (eg in SAS) will fit time-
dependent correlation structures without excluding incomplete sets of repeated measures. Although this 
is generally preferable, for simplicity and in order to enable meaningful comparisons, the results here  
are without the 8 patients that only appeared at visit 3 and with gaps ignored for 1 patient.

Patient-level working correlation matrix structure Centre work. corr.

Model Comp. symm. Autoregressive Unstructured Comp. symm.

Parameter/Statistic Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

tx = Nifedipine -1.258 (0.999) -1.158 (1.006) -1.084 (0.993) -1.233 (0.945)

tx = Atenolol -2.958 (1.075) -2.918 (1.070) -2.803 (1.062) -2.989 (0.974)

visit = 4 -1.084 (0.504) -1.068 (0.505) -1.076 (0.505) -1.078 (0.446)

visit = 5 -2.740 (0.556) -2.702 (0.559) -2.717 (0.557) -2.784 (0.812)

visit = 6 -3.221 (0.553) -3.206 (0.554) -3.210 (0.552) -3.282 (0.900)

dbp1c 0.507 (0.108) 0.489 (0.109) 0.499 (0.106) 0.480 (0.120)

constant 94.19 (0.80) 94.15 (0.81) 94.08 (0.80) 95.20 (0.83)

ρ (1 visit) 0.508 0.557 0.559 0.131*

ρ (2 visits) 0.508 0.310 0.476 0.131*

ρ (3 visits) 0.508 0.173 0.417 0.131*

QIC 82005.78 82012.55 82007.53 83256.61
*correlation among all values within a centre

The estimates are in reasonable agreement with those of the linear mixed model in Example 23.5 (the 
comparison is made difficult by the slight differences in datasets). The GEE estimates also agree fairly 
well between methods for treatments and the covariate (dbp1c), and are very close for time (visits). The  
standard errors are almost identical for the 3 within-patient correlation structures, but substantially off 
when adjusting for clustering at centres. These results demonstrate that choice of working correlation  
structure is not always of minor importance for the fixed effects, even in a moderately sized dataset.  
The QIC  points,  perhaps surprisingly,  to  the compound symmetry structure  as  the preferable  one, 
despite the obvious autocorrelation in the unstructured working correlation matrix,  and the analysis  
clustered  at  centres  is  firmly  rejected.  Thus,  model  choice  by  the  QIC  statistic  leads  to  different  
conclusions than in the mixed model and the recommendations from simulation studies.

In summary, there is a fair agreement between the GEE and linear mixed models analysis, but some 
questions remain for GEE with respect to choice of working correlation structure and the handling of  
incomplete  series.  Both  analyses  showed  a  clearly  significant  difference  between  Carvedilol  and 
Atenolol (the former reducing blood pressures the least) and a non-significant tendency in the same 
direction for Nifepidine. As no clear tx by visit interaction was present, the analysis restricted to visits  
3–6 with the initial blood pressure as a covariate lead to more clear-cut interpretations than could be 
obtained from a joint analysis of data from all 5 visits (Example 23.4).
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23.5.4 Summary remarks on GEE and discrete mixed models

We expand here a bit on the summary Table 20.4 to specifically address the choice between 
GEE  and  discrete  mixed  models.  The  advantage  of  the  GEE  method  (and  many  of  its 
generalisations) is that it has robust theoretical properties with few model assumptions. It is also 
computationally  feasible  for  large  datasets  and  can  be  fit  with  a  wide  range  of  working 
correlation  structures.  It  is  one  of  the  few general  methods  for  use  with  discrete  repeated  
measures and spatial data; however, it does not provide much information about the random 
structure of the data,  and it cannot be used to model random structure in terms of random 
slopes. Its lack of likelihood-based inference and standard errors for correlation parameters are 

Example 23.10 GEE and ALR estimation for high blood pressure data
data = bp

Using the same dataset as for Example 23.7, we compare different versions of GEE to account for the 
repeated measures and additional clustering in centres. For comparison, an ordinary logistic regression  
is included as well. Incomplete series were handled in the same way as in Example 23.9.

Model
Ord. logistic 
regression

GEE: ar(1) at 
patients

GEE: cs at 
centres

Altern. logistic 
regression

Parameter Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

tx = Nifedipine -0.237 (0.165) -0.215 (0.221) -0.250 (0.206) -0.231 (0.198)

tx = Atenolol -0.390 (0.163) -0.394 (0.227) -0.407 (0.189) -0.374 (0.182)

visit = 4 -0.266 (0.196) -0.268 (0.167) -0.268 (0.191) -0.258 (0.183)

visit = 5 -0.990 (0.191) -0.983 (0.162) -0.996 (0.346) -0.975 (0.333)

visit = 6 -0.959 (0.192) -0.956 (0.175) -0.961 (0.392) -0.947 (0.382)

dbp1c 0.097 (0.015) 0.095 (0.019) 0.091 (0.019) 0.091 (0.019)

constant 1.341 (0.174) 1.336 (0.190) 1.414 (0.256) 1.350 (0.240)

We see immediately that the estimates show less variation across different analyses than in Example  
23.7. Two explanations can be offered: contrary to Example 23.7, the analyses correspond to the same  
models (fixed effects), and all the estimates are on the same (PA) scale. One major discrepancy remains 
regarding the SEs of some estimates where the robust standard errors that account for centre clustering  
produce much larger SEs. As already discussed in Example 23.7, this may be due to a relatively low 
number of upper level clusters (29 centres). The 2 ALR log-odds ratio parameters were estimated at:

within-patient:=1.342 0.195 , and between-patient (within centre):=0.045 .051

The interpretation of these values is that the odds of a high blood pressure at one test is e1.342=3.8 times 
higher when it is known that another test of the same patient was positive than when that other test was 
negative. By comparison, the odds is only e0.045=1.05 times higher when the same information is given 
about another patient at the same centre, indicating that only minimal centre clustering is present in the  
data (we reached the same conclusion in Example 23.7). The random-intercept model estimates from 
Example  23.7 agree well  with  the present estimates  after  rescaling to PA scale,  eg the previously 
computed PA value of 0.092 for the initial blood pressure (-dbp1c-).

For repeated measures with a short series and few missing values, the GEE procedures are relatively 
robust  to  the  specification  of  correlation  structure  and  thus  appear  as  an  attractive  alternative  to 
random  effects  models,  which  involve  modelling  choices  with  greater  impact  on  fixed  effects  
inference, as illustrated in Example 23.7.
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perhaps less of an issue, but GEE estimation may require additional analysis for data with a  
large proportion of missing values that cannot be assumed missing completely at random.

A general GLM(M) class of random-effects models that allow inclusion of autocorrelation and 
other complex correlation structures does not exist (disregarding the quasi-likelihood approach 
discussed in Section 23.4.1), but a range of specific methods are available for binary and count  
data.  The  choice  between  methods  may  require  a  considerable  effort  to  understand  their 
theoretical basis, and can also be difficult in practice,  eg in binary data with strong within-
subject clustering, as indicated in our examples. It is recommended to try multiple approaches 
in order to assess the robustness of the results to the particular choice of method. Modelling of  
time by random slopes (trend models) should probably be included among the methods used, 
unless  the time series  is  very short.  The ability  to  include  additional  hierarchical  structure 
remains one of the main advantages of mixed models. 
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