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CONCEPTS OF INFECTIOUS 
DISEASE EPIDEMIOLOGY
Chapter contributed by Graham Medley and Ian Dohoo

OBJECTIVES

After reading this chapter, you should be able to:

 1. Understand why infectious disease data are fundamentally different from other forms of data
previously dealt with in this text.

 2. Know the terms used to describe infection and disease processes and understand the basic
principles of disease transmission.

 3. Understand the principles of modelling infectious disease transmission including  SIR and
SEIR models.

 4. Understand the concepts of effective contact rate and basic reproductive number R0.

 5. Be aware of the variety of possible dynamics demonstrated by infectious disease models.

 6. Understand how mathematical models are used to design control strategies.
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27.1 INTRODUCTION

In previous chapters, we have examined methods for analysing data in which we assumed the
observations were independent (Chapters  14–19), or had some dependency (Chapters  20–26).
This dependency could be a function of the observations sharing a common environment, being
repeated measures on the same individual, or being spatially related.  Infectious diseases are
different in that the dependency among individuals is related to the state of other individuals in
the population. Individuals  are thought  of  as susceptible or infected,  and the probability of
transmission  depends  on  the  rate  of  contact  among  individuals,  and  the  probability  of
transmission occurring if contact is between a susceptible individual and an infected individual.
Consequently,  the  risk  of  a  susceptible  individual  becoming  infected  is  dependent  on  the
number of other individuals who are infected. If no individuals are infected, then the risk of
infection  to  those  susceptible  is  zero.  This  implies  that  the  appropriate  level  of  study  for
infectious disease is a population—the epidemiology of infectious disease is about the patterns
of transmission among connected individuals.

Infectious diseases have a number of other unique characteristics which must be considered
when analysing these data.

• Systems of infectious disease  are  dynamic.  The rate  at  which new infections arise
changes  over  time as  the  numbers  of  infectious  and  susceptible  individuals  in  the
population  changes.  Changes  in  the  present  will  affect  changes  in  the  future.
Consequently,  the  epidemiology of  infectious  disease  has  to  be viewed  over  time;
longitudinal studies are far more informative than cross-sectional studies.

• The dynamics of the infection process are non-linear. In practical terms, this means
that the system does not respond proportionately to changes, whether they are intrinsic
to the infection process or are introduced externally. In terms of intrinsic dynamics,
epidemics are exponential (the doubling time is constant)—the number of infections
increases non-linearly. Vaccination is an example of an external process; vaccinating
50%  of  a  population  with  an  effective  vaccine  will  reduce  the  incidence  of  new
infections by more than 50%.

• Pathogens  must  transmit  to  survive,  which  means  that  they  require  susceptible
individuals  in  a  population,  ie those  who  can  be  infected.  Immunity  reduces  the
susceptibility of individuals after they have been infected, which provides a negative
feedback on the pathogen population. A consequence of this is that infectious disease
has a natural balance at the endemic state (ie when the incidence and prevalence are
constant), which results in the phenomenon termed ‘herd immunity’.

• There  is  heterogeneity  among  individuals.  However,  with  infectious  disease  this
heterogeneity  is  magnified  in  populations  due  to  non-linear  dynamics.  Two
populations  with  exactly  the  same  starting  conditions  (ie population  structure  and
environment,  number  of  infectious  individuals  etc)  could  have  different  disease
outbreaks because transmission of the agent among individuals is a stochastic process,
and small differences occurring by chance can result in big differences in the outcome.

• Threshold effects are present. If  one infected individual passes the infection to less
than one other individual  (on average), the infection will die out. The number of new
infections arising from one individual in a fully susceptible population is called the
basic reproductive number (R0).
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• Infectious agents  are continually evolving.  For example,  pathogenicity of an agent,
susceptibility to drugs, etc will change over time. Given the relatively short life cycle
for many agents, this evolution may take place quite rapidly.

• Interventions targeted at  a  proportion of a population will  have an effect  on those
individuals not targeted.

The combination of these characteristics means that infectious diseases behave differently than
non-infectious  diseases.  They  regularly  emerge  into  human  populations  causing  explosive
epidemics (eg bubonic plague, HIV, SARS). On the other hand, successful interventions (eg
vaccination, medication) can have equally dramatic impact on important public health problems
in a relatively short period (eg smallpox, polio). More recently, it has become evident that there
are epidemiological and evolutionary ‘tussles’ going on between pathogens and interventions,
as  diseases  are  controlled  but  then  reemerge  (eg tuberculosis,  Staphylococcus  aureus),
hopefully to be controlled again.

Because infectious disease has one necessary and sufficient cause (but might have other factors
involved in causality), it is possible to completely remove the risk of the disease. Infection and
disease caused by a pathogen can be (Dowdle and Hopkins 1998):

• Controlled so  that  the  incidence  and  prevalence  of  disease  is  reduced  from  an
endemic level through active effort.

• Eliminated from a defined population, but intervention is still required because the
pathogen exists outside the defined population and might be reintroduced.

• Eradicated from all populations. The only human example to date is smallpox.

It  is  also  important  to  distinguish  between  microparasitic and  macroparasitic infections.
Microparasites  are  those  infectious  agents  that  are  too small  to  count  individually,  so that
modelling the parasite population explicitly is not practically possible. Thus, when modelling
such  infections,  it  is  necessary  to  consider  the  state  of  the  host  (eg susceptible,  infected,
immune) leading to  compartmental  models.  Macroparasites  are those infections for  which
there  is  sufficient  information  and  reason  to  consider  modelling  the  parasite  population
explicitly using intensity models where the principal outcome is a measure of the number of
parasites (eg parasite burden, tick count). 

At a modelling level, the distinction between microparasite  and macroparasite  is pragmatic.
Some infectious agents (eg Malaria sp.) may be treated as either, largely depending on the data
available and the problem being addressed. This chapter will focus on compartmental models
for microparasitic infectious diseases. For information on macroparasitic infections, the reader
is referred to Anderson and May (1991) and Cox (1993).

Microparasite infections tend to be associated with the following biological characteristics.
• The agents are generally small and (relatively)  antigenically simple (eg viruses and

bacteria).
• The agents generally multiply rapidly within the host resulting in either death of the

host or the production of immunity. Pathogenicity tends to be high. Immunity tends to
be strong and long lasting. The duration of infection (ie before death or immunity) can
be short.

• Sexual  reproduction  (recombination)  is  relatively  rare  and  not  obligatory;  strain
variation, for example, in pathogenicity is often considerable.
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• If the duration of infection is short, the prevalence of infection is low, and persistence
of  infection  within a population requires  continual  supply of  susceptible  hosts  (eg
through births or antigenic change).

In contrast, macroparasitic infections tend to have the following characteristics.
• The agents are large and (relatively) antigenically complex (eg nematodes, lice, ticks).
• The agents have complex life cycles involving multiple hosts or free-living stages, and

multiply at different rates within the different life-cycle stages.
• The agents have the capacity (and often requirement) for sexual reproduction, and may

additionally have asexual multiplication stages.
• Immunity to the agents is often relatively ineffective.
• The agents often have apparent low pathogenicity individually, but the disease impact

increases with the numbers (burden) within a host (eg gastrointestinal parasites). The
burden of infection is key to the impact that these agents have on the host.

• At  the  population  level,  macroparasitic  infections  are  characterised  by  a  high
prevalence of infections with the number of agents present within the host dependent
on external factors that affect the life cycle of the agent (eg weather).

These are biological characteristics or general tendencies rather than fixed rules. Examples of
archetypal  microparasite  and  macroparasite  are  measles  and  Ascaris,  respectively.  Many
bacterial  and  protozoan  infections  are  somewhere  between  the  two.  For  example,  bacteria
causing gingivitis may have low pathogenicity (rarely kill the host), generate little immunity in
the host, and may be prevalent at quite high levels. Nevertheless, they would be modelled using
compartmental  models  because  it  is  not  possible  (or  necessary)  to  quantify the  number  of
bacteria present.

27.2 INFECTION VS DISEASE

Infection and  disease must not be confused. While infection is necessary for disease, not all
infected  people  will  become  diseased  (ie develop  clinical  signs  and  symptoms).  The  time
courses of infection and disease, sometimes known as the natural history,  are shown in Fig.
27.1.

The  states  of  infection  are  as  follows.  A  susceptible individual becomes  infected  by
transmission of the agent from an infectious individual who then enters a latent period when
the infectious agent is present but the individual is not capable of transmitting the infection.
This latent  period could be short (eg a few days for influenza) or long (eg many years  for
tuberculosis). (Note For non-infectious diseases, the term ‘latent period’ refers to the time from
the  onset  of  detectable  changes,  eg lesions  present  or  changes  in  biochemical  parameters
evident, to the onset of clinical signs. This is also referred to as the subclinical, clinically silent
or asymptomatic disease period). The latent period is followed by an infectious period during
which the host is capable of transmitting the agent. Again, this may be short (eg approximately
2 weeks for measles, mumps, and rubella) or long (years for hepatitis B). The lengths of the
latent and infectious periods cannot normally be observed directly in humans. However, in a
veterinary context experimental infections are very informative  (Charleston et al, 2011). The
infectious period ends when the host is removed from the population or becomes non-infectious
through an intervention (eg treatment,  quarantined),  death, or the development of immunity
which either eliminates the agent from the host or sufficiently suppresses replication to effectively
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prevent transmission. For some infections, immunity may be long lasting (eg smallpox), while for
others the individual may quickly return to a susceptible state (eg gonorrhoea).

The states of disease are as follows. On infection, a susceptible individual enters the incubation
period and remains there until signs of disease develop or immunity develops (in which case
the individual  may never  be  symptomatic).  The length  of  the  incubation period  cannot  be
observed directly unless the timing of infection is known. The symptomatic period ends when
the host recovers (with or without treatment) or dies.

Note that the periods of infection and disease are relatively artificial thresholds in a continuous
process,  and that  there is considerable variation in the time course of infection and disease
between individuals. This variation may be related to environmental factors (eg nutrition), host
genetics, agent genetics (eg strain), dose of infection etc. Consequently, estimating the duration
of  these  periods  is  not  straightforward.  Methods  for  estimating  the  incubation  period  from
outbreak data have recently been reviewed (Cowling et al, 2007). 

The relationship between the  latent period and the  incubation period is important from an
epidemiological perspective. If the latent period is shorter than the incubation period, there will
be asymptomatic individuals who are shedding the agent, which curtails the opportunity to treat
or isolate them (eg influenza, SARS), and means that disease data lags behind infection (eg
HIV).  This  has  important  implications for  implementation of  control  measures  that  require
diagnosis of infection.

Fig. 27.1 Time courses of infection and disease processes
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27.3 TRANSMISSION

27.3.1 Routes of transmission

From the  viewpoint  of  the  agent,  it  must  transmit  in  order  to  survive  because  no  host  is
immortal. There are a number of routes whereby transmission of an agent from an infectious
individual to a  susceptible person can occur.  Again,  it  is  important  to remember that  these
routes  are  not  defined  by  the  agent.  It  can  be useful  to  distinguish  between  the  route  of
transmission and the mode of transmission. The route is the epidemiological important aspect,
and the mode is  important in terms of intervention  (Medley and Nokes, 2010).  For example,
that HIV infection can pass from mother to child is epidemiologically important (regardless of
how the transmission is achieved), but whether the mode is transplacental and/or transmammary
has  important  implications  in  terms  of  interventions  to  prevent  the  transmission.  Here  we
concentrate on the route of transmission.

• vertical transmission— from a mother to her offspring  (eg HIV, hepatitis B)
• horizontal transmission

• indirect transmission
• vector borne—often by arthropod vectors (eg malaria, Yersinia 

pestis (bubonic plague). 
• environment—either environmental contamination (eg Legionella) 

or via other fomite (eg transmission of hepatitis B by reused 
intravenous needles).

• direct transmission
• close contact—transmission requires close contact between 2 

individuals (eg respiratory syncytial virus).
• casual contact—less intimate contact is required for transmission 

(eg respiratory infections such as influenza and measles).
• sexual transmission—requires sexual contact (eg human papilloma 

virus (HPV) or gonorrhoea).
• air/water borne transmission—can occur over long distances by 

the agent being carried by wind or water movement (eg cholera).

Zoonoses are diseases that are caused by pathogens that primarily (or exclusively) exist in non-
human hosts, but which will cause disease if transmitted to humans,  eg rabies,  Borrelia spp.
Zoonotic diseases can be transmitted by any of the routes listed above. The rest of this chapter
will focus primarily on non-zoonotic diseases with direct transmission, particularly those spread
through close or casual contact, or sexual transmission. 

Transmission depends on contact among individuals in the population, and transmission given
that contact is made. Contact is defined as those encounters between individuals that could (but
not necessarily would) result in the transmission of the agent if one individual was infectious
and the other susceptible. The  contact rate (c) is defined as the number of contacts that an
individual makes with other people in one time period. The probability of transmission (p) is
defined as the proportion of contacts which result in transmission if one of the individuals is
infectious and the other susceptible. It depends on the characteristics of the agent, the nature of
the contact and the degree of infectiousness of the infected person. The product of the contact
rate and probability of transmission (cp) is the effective contact rate. Table 27.1 presents a list 
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Table 27.1 Infectious disease parameters

Parameter Description Assumption/Calculation

S, I, R, N the numbers of susceptible, infectious, removed, and 
total number of people in the population (respectively)

At the start: S=996, I=4, 
N=1000

c rate of contacts an individual makes with other people
in one time period

10/person/day

p probability of transmission on contact if one person is 
infectious and one is susceptible

0.15

cp rate of ‘effective’ contacts 1.5/person/day

I/N proportion of population that is infectious 4/1000=0.004

λ=cp(I/N) rate at which susceptible people become infectious
- equivalent to our usual definition of I—(incidence 
rate) (see Section 27.4)
- also called the ‘force of infection’ or ‘transmission 
rate per susceptible’

1.5x0.004=0.006 new inf. 
per person per day 
(or 0.006 per person-day)

i=λS incidence=rate at which new infections are occurring 
in the population 
- this is the population incidence rate (designated i to 
differentiate it from I (used above and elsewhere in 
this book)

0.006x996≈6 new inf. per 
day

d duration=duration of the infectious period 5 days

cpd rate of effective contacts per infectious period 1.5x5=7.5/person/period

s=S/N proportion of the population that is susceptible
Note In a completely susceptible population S0=N so 
s0=1

996/1000≈1

R0=cpd R0=basic reproductive number=# of new cases that 
arise from an infectious individual in a completely 
susceptible population.

R0=1.5x5=7.5

Rt=cpdst Rt=effective reproduction number=# of new cases 
arising from each infectious individual at time t.
Note st=St/N
Note at t=0, s=1, so Rt=R0

Note The calculations in this table pertain to the first day of the hypothetical outbreak. On the second day, there will
be 10 (6+4) infected people so λ becomes 1.5*0.01=0.015 and i increases to 0.015*990=14.85.

of parameters and definitions used throughout this chapter, along with a simple set of 
calculations, based on the first day of a hypothetical outbreak, showing their relationships.

27.3.2 Patterns of transmission

The nature  and  frequency of  contacts  is  heavily  determined  by  the  social  structure  of  the
population. Mixing is considered homogeneous if everybody has an equal chance of contacting
everybody  else,  and  everybody  has  the  same  average  experience.  Mixing  is  considered
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heterogeneous if either a person is more likely to contact others with certain characteristics, for
example,  age  or  occupation,  or  if  some  individuals  have  higher  contact  rates  than  others.
Heterogeneity in contact patterns and contact rates is particularly important as some people are
both more likely to be infected and more likely to infect. This group is termed a core group.
The core group differs depending on the route of transmission and natural history of the disease.
So, for example, the core group for gonorrhoea are people with a high rate of change of sexual
partners, whereas the core group for measles is children in their first years at school.

For  sexually  transmitted  infections,  the  highly  variable  (variance  >>  mean)  distribution  of
sexual contacts is particularly important (Johnson et al, 2012). For transmission through more
casual contacts, social (including family) structure is important. In particular, households and
schools play pivotal roles for most close contact infections. This is partly because children have
a greater frequency of closer contact with other children than adults have with other adults, and
partly because children are more susceptible to infection since they are without the immunity
generated  by previous  exposure.  For  examples  of  transmission  patterns  generated  by close
contacts see Grenfell et al (2004); House and Keeling (2009) and Mossong et al (2008). 

27.4 MATHEMATICAL MODELLING OF INFECTIOUS DISEASE TRANSMISSION

Mathematical models are the lingua franca of infectious disease epidemiology because of their
inherent  time  dependence  and  non-linearity (Grassly  and  Fraser,  2008).  Because  infectious
disease involves at least 2 species (host and pathogen), and frequently involves more (multiple
hosts and multiple pathogens),  the study of infectious disease  epidemiology and population
dynamics is embedded in the methodology of population ecology. Parasitism is an ecological
process of the same standing as herbivory and predation: influenza viruses use humans as a
niche. In this section we outline the basics of these models. For a more in-depth analysis and
practical treatment see Anderson and May (1991) and Keeling and Rohani (2007).

Mathematical models can be conceptualised as a collection of assumptions that are combined
together  to give a quantitative framework describing the numerical  changes  expected if the
assumptions hold. The assumptions are a mixture of explicit and implicit, and the quality of the
model is largely determined by the accuracy of the assumptions.

Mathematical models of disease transmission may be developed and used for 3 reasons (Green
and Medley, 2002).

• Conceptual models may be used to better understand the effects of interventions in
disease control processes. For example, Fraser et al (2004) used conceptual models to
evaluate the effects of control programs based on active surveillance, and McLean and

Terminology/Acronyms

Throughout  this  chapter,  I  is  used  to  denote  the  number  of  infectious
individuals in a  population. (It  does not represent  an incidence rate  as used
elsewhere in the book). The term R is used to denote the number of ‘removed’
individuals. R is also used for the reproductive number, but in this case it will
always have a subscript R0 or Rt.
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Blower (1993) used them to develop a framework for understanding the impact of
vaccination.

• Conceptual models may be combined with data derived from experimental research to
develop  predictive  models  of  disease  transmission  within  populations  having  set
characteristics.  These  can  then  be  used  to  estimate  the  effects  of  disease  control
interventions, although this use is more common in veterinary medicine (Charleston et
al, 2011).

• Conceptual models may be combined with observed data (eg from naturally occurring
outbreaks) to gain insights into the epidemiology of the disease in those populations,
and  to  estimate  parameters  such  as  R0,  for  example: Cauchemez et  al,  2004;
Finkenstadt et al, 2002. 

Generally,  disease models may be  deterministic or  stochastic. The former produce a single
outcome for a given set of parameters. The latter incorporate the chance nature of events (such
as  transmission)  and  produce  a  probability  distribution  of  possible  outcomes  (Keeling  and
Rohani, 2007). The mean of the stochastic model is not always the same as  the result from a
deterministic model, and the former may show that the outcome has a bimodal distribution; for
example  when  a  highly  infectious  individual  is  introduced  into  a  susceptible  population,
deterministically the early outcome is an exponentially increasing epidemic, but the stochastic
outcome is bimodal with a peak of probability at no epidemic (if the initial invasion happens to
fade out by chance) and a peak of probability at an epidemic level. In this case, the mean of the
stochastic process is not the same as an estimate derived from the deterministic model.

The simplest model for microparasites is the  Susceptible-Infectious-Recovered (SIR) model
as shown in Fig. 27.2. In an SIR model, the population is divided into three compartments into
which every individual fits into one, and only one, of them. Susceptible individuals (S) are
assumed  to  become  infected  (and  immediately  infectious)  at  a  defined  rate  (λ).  Infected
individuals  (I)  are  assumed  to  recover  (and  be  immune)  at  a  defined  rate  (γ).  Recovered
individuals (R) are assumed to remain in that state for the remainder of their lives. The total
population size is N=S+I+R. 

An  SIR model can  be used to  define the key parameters  required  for  modelling infectious
diseases. These are all listed in Table 27.1 along with a simple example of their calculation.
This  example  assumes  that  an  infectious  agent  is  introduced  into  a  closed  population  of
completely susceptible people. The concept of a closed population is common; the assumption
is that people neither leave nor enter (ie immigration and emigration have zero rates) and there
is no contact with any other people. The following specific assumptions complete the model.

• There are 1,000 people and they mix homogeneously (N=1000).
• The contact rate among people is 10 contacts per person per day (ie each person has 10

contacts with other people on a daily basis) and is homogeneous within the population.
• A new infectious agent is introduced into the population and it initially infects 4 

people.
• The probability of transmitting the disease during any one contact is 15% (0.15).

Fig. 27.2 A simple SIR model with two rates: transmission and recovery
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(S)

Infectious
(I)
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λ γ
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• People are infectious for 5 days, at which point they recover and develop sufficient 
immunity to protect from further infection.

27.4.1 Incidence rates

There are 2 incidence rates presented in Table 27.1. λ corresponds to the usual incidence rate (I)
described in Chapter 2. In the example population, there are 1,500 effective contacts happening
each  day,  but only 0.4% of them involve infectious people,  so the chance  of an individual
susceptible  person becoming infected  on this  first  day is  only 0.006 (equating  to  6 people
becoming infected on that day). From the perspective of a susceptible person, λ represents their
chance of becoming infected in a short time. This is sometimes referred to as the  force of
infection.

As noted, the incidence rate (i) in Table 27.1 is the population incidence rate and represents that
rate at which new infections are occurring in the whole population. As the proportion of the
population that is susceptible declines, i will fall, even though λ might remain high.

27.4.2 Basic reproductive number

As noted  in  Table  27.1,  the  basic  reproductive  number  (R0) represents  the number  of  new
infections which arise, on average, from one infected individual when the entire population is
susceptible (ie at the beginning of an epidemic) with: 

R0=cpd Eq 27.1

R0 is a product of the rate of effective contacts (cp) and the duration of the infectious period (d).
It  is  a  key  parameter  for  understanding  infectious  diseases.  If  R0 >1,  then  the  infection  is
expected to spread because each infected individual generates, on average, more than one new
infection. If R0<1, then the infection is expected to die out. However, as noted, transmission is a
stochastic process and there is no guarantee that disease will spread if R0>1, or that there will
not be additional cases with R0<1. In addition, R0 is an average value for a population and there
may very well be clusters of individuals (core groups) within a population in which the R0 could
be much higher or lower than the average.

As the infection  spreads  in  the population and  some individuals  move from susceptible to
infectious  and  then  to  recovered,  the  population  is  no  longer  completely  susceptible.  The
effective reproduction number at time t (Rt) can be computed as:

Rt=cpds t=R0 s t
Eq 27.2

where  st=S/N (the proportion of the population that is susceptible at time t). This chapter will
focus on R0 as a measure of transmissibility of infection among individuals within a population
but it can also be conceptualised in terms of transmission between groups of individuals,  eg
households (Fraser, 2007).

27.4.3 Differential equations

The natural  history of  infection for  the  SIR model  shown in Fig.  27.2.  combined with the
assumptions  for  transmission,  can  be  written  as  a  system  of  differential  equations,  which
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describe the instantaneous rate of change of the 3 proportions (S,  I, and  R) in the population
(see Table 27.1 for definition of parameters).

 
Ṡ=− S =−cp SI

N
İ= S−dI

Ṙ=dI

Eq 27.3

The differential equations provide rates of change for each compartment (symbolised as  S, I,
and  R with a dot over each of them), given the state of each compartment. In order to solve
them, we require ‘initial conditions’ or a starting point. Generally it is impossible to derive an
analytical solution for such equations, (ie equations of the form St=S0e-λt) because λ depends on
I which depends on S etc.

This class of problem is known as an ‘initial value problem’. Given the model assumptions,
parameter values, and initial conditions for S, I, and R at t=0, what would be the values of S, I,
and R at t>0? These equations must be solved numerically. This process follows on from what
is presented in Table 27.1—taking a small step in time, one can calculate the new numbers of
susceptible, exposed, infected,  and recovered people, and then repeat  this process.  To solve
these  equations  accurately  requires  a  small  step  size;  this  is  only  feasible  using  computer
software,  and  there  are  many  packages  available  for  solving  such  systems  of  ordinary
differential equations (eg MatLab, Berkeley Madonna, Mathematica, Maple). 

27.5 METHODS OF CONTROL OF INFECTIOUS DISEASE

There are 3 ways in which infectious disease can be controlled.
• General  or mass reduction in  contact  rate,  c,  or  the probability of transmission on

contact,  p, by changing behaviour.  This intervention reduces the basic reproduction
number reducing the rate of transmission. Examples include educational interventions
to  reduce  the  rate  of  sexual  partner  change  and  advocating  the  use  of  condoms
(sexually transmitted infections), or compulsory closing of schools to reduce contact
between children (influenza).  Note that  this intervention is not targeted at  infected
individuals.

• Immunisation of susceptible individuals. Generally  immunisation works by changing
the immunological state so that individuals are (less) susceptible to infection. Note that
this intervention does not change the basic reproduction number: the rate of contact,
probability of transmission, and duration of infectiousness are unaltered. Immunisation
has been used successfully to control many pathogens (eg pertussis), eliminate some
(eg polio from the Americas) and eradicate one (smallpox).

• Targeted  interventions on  infected  individuals  to  prevent  transmission.  This
intervention reduces the duration  over which an individual is able to infect. Infected
individuals  that  are  diagnosed  can  be  treated  to  remove  infection,  curtail
infectiousness, or reduce their contact with susceptible individuals through quarantine.
This has the effect of reducing the duration of infectiousness, d, and reduces the basic
reproduction number. Note that although quarantine is a reduction in contact, because
it is targeted at infected individuals only, it is not the same as a general reduction in
contact. This intervention (unlike the others) requires that infected individuals are first
identified, for example, through clinical diagnosis and contact tracing of known cases.
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27.5.1 Mass reduction in contact

These interventions reduce the effective contact rate, which has a linear impact on R0 ie halving
effective contact halves R0. However, the amount of infection and disease changes non-linearly
with R0 so that reducing R0 from 10 to 5 has very little impact, but reducing R0 from 3 to 1.5
will halve the prevalence of infection. The ideal outcome of such an intervention would be to
reduce R0 to below 1, at which point the disease would die out.

Changing contact rates in the general population is popularly seen as the best way of controlling
disease: most epidemics are accompanied by exhortations to wash hands, wear condoms, or
avoid travel. These messages are important in that they empower susceptible individuals with a
means  to  reduce  their  risk  of  infection,  but  as  public  health  interventions  against  directly
transmitted infection they are largely ineffective; the majority of transmission occurs within the
core group (Woolhouse et al, 1997). The basic reproduction number in the population outside
of the core group might already be less than 1, so changing behaviour of this group does not
have a great impact. If  such interventions are to be effective, then they need to dramatically
change the behaviour of the core group; ie stop them being a core group. But this often presents
particular  problems in terms of compliance and stigmatisation, and the degree of behaviour
change required to have impact.

However,  such  interventions  can  be  highly  effective  when  they  are  targeted  at  specific
transmission routes. For example, insecticide impregnated bednets have been highly effective at
reducing transmission of malaria (Alonso et al, 1993; Trape et al, 2011). 

27.5.2 Immunisation

Vaccines are often used to prevent transmission of infection and/or the development of disease
in populations. If a vaccine only prevents the development of disease and has no impact on the
spread  of  the  infection (eg tetanus toxoid),  then it  will  have  no effect  on the  transmission
dynamics of the agent. We will focus on a vaccine having an effect on the transmission of the
agent. If a vaccine is 100% effective at preventing infection and is applied to all individuals in
the population, then no new infections will occur. However, vaccines are rarely 100% effective,
and it is often not possible to vaccinate all individuals in a population.

If a proportion (f) of a population is vaccinated with a vaccine which is fully protective, the
effective reproductive number (Rt) is:

Rt=R01− f  Eq 27.4

Rt will be less than 1 when f >1-1/R0 , so in this case, the infection will be expected to die out. If
you have an estimate of the expected R0 for an agent in a given population, you can estimate the
vaccine coverage that you will need to prevent the spread of infection (sometimes called the
critical percentage (denoted  fcp)). For example, if  R0 is 5, then  fcp=1-1/5=0.8 or 80% of the
population needs  to  be vaccinated  with a  100% effective  vaccine  to  prevent  the spread  of
infection. This is the principle which underlies the concept of  herd immunity, which states
that  you  do  not  need  to  vaccinate  every  individual  in  a  population in  order  to  prevent  an
epidemic.
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If a vaccine only protects a proportion of individuals (h) (but fully protects those individuals),
then Rt=R0 (1-hf) so the proportion of individuals which needs to be vaccinated becomes:

f cp=
1−1 /R0

h
Eq 27.5

A vaccine that only changes the immune status of susceptible individuals does not alter the
basic reproduction number. However, imagine a vaccine which only reduced the duration of
infectiousness by a factor z. If it is given to a fraction f in the of the population, then its impact
is  to  change the  basic reproduction  number  to  cpd(1-f+zf).   The proportion required  to  be
vaccinated to reduce the new R0 to 1 is:

f cp=1−
1−1/ R0

1−z
Eq 27.6

Vaccine-induced immunity might also have a time limited effect (McLean and Blower, 1993).
These  concepts  are  important  not  only  for  understanding  and  modelling  the  effect  of
vaccination,  but for planning field trials  to assess  effectiveness  of  vaccination (see  Section
11.10).

27.5.3 Diagnosis and prevention of transmission

The third approach to controlling disease is to intervene directly to prevent its spread from
people  who  are  already  infected.  This  requires  that  infections  can  be  diagnosed  and
transmission curtailed. Infections can be diagnosed either through clinical signs and symptoms
(ie when  it  becomes  disease)  or  laboratory-based  assays  to  detect  infection.  On  detection,
infectious cases  have  to  be either  cured  through chemotherapy (antivirals  or  antibiotics)  or
through isolation or quarantine. The effect of such interventions is to curtail the period over
which infection is transmitted. As a simple example, suppose that all cases of infection show
unmistakable clinical symptoms part way through the infectious period, and that transmission
can be stopped at this point. If q is the proportion of the infectious period that remains with this
intervention, then the new infectious period can be written  dq, so that the basic reproduction
number becomes cpdq so that q < 1/R0 if infection is to be eliminated. For example, if R0 is 5,
then in order to eliminate transmission it has to be stopped at or before 20% of the time into the
infectious  period.  Frazer  et  al (2004) used examples  of  SARS  and  HIV  to  point  out  the
importance of the relative length of the time between onset of infectiousness and symptoms to
the duration of infectiousness for controlling infections when diagnosis is by clinical means
only.

The  principal  complication  of  this  method  of  control  is  that  diagnosis  and  transmission
intervention  have  to  be  prompt  (relative  to  d).  If  a  diagnostic  method  requires  3  days  to
complete (eg culturing pathogens from clinical samples), then infected individuals will have 3
days  of  unstoppable  transmission.  Additionally,  the  diagnostic  methods  are  never  100%
sensitive,  and  transmission  interventions  are  never  100%  effective.  Consequently,  for  this
approach to work, it usually has to be imposed on individuals who are not known to be infected,
but for whom there is some level of risk greater than the general population of being infected.
Direct contacts of known infections are more likely than the general population to be infected
and  might  be  presumed  infected,  leading  to  contact-tracing  as  a  means  of  curtailing  the
infectious period (ideally to zero). The transmission interventions that can be imposed depend
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on  public  acceptability,  economic  costs,  and  health  risks,  weighed  against  the  size  of  the
presumptive risk.  For diseases  where  there  is  no vaccine  available (which includes all  new
infections), interruption of transmission is the only method of control available. The most recent
examples have been SARS (Lipsitch et al, 2003) and influenza (Eames et al, 2010).

The  combination  of  two  processes  (diagnosis  and  transmission-intervention)  poses  some
problems for management of such interventions, since both have to be sufficiently funded if the
whole intervention is going to work (Robotham et al, 2007). Cooper et al (2004) modelled the
role  of  isolation  capacity  on  methicillin  resistant  Staphylococcus  aureus (MRSA)  and
demonstrated that if the intervention capacity is fixed (eg if there are a limited number of beds
in an isolation ward), then there is a chance of catastrophic failure, ie when the isolation ward is
full, control fails.

27.6 ESTIMATING R0 AND OTHER PARAMETERS

27.6.1 Limitations of R0 

As  noted  above,  if  R0>1,  the  infection  is  expected  to  spread  in  a  susceptible  population.
However,  disease transmission is a stochastic process (there is an element of ‘chance’ as to
whether  or  not  transmission  will  occur).  If  an  infection  is  introduced  into  a  homogeneous
susceptible population, the probability of an outbreak (transmission of the infection past the
initial time period) is:

p outbreak =1−1 / R0
I 0 (assuming R01) Eq 27.7

where I0 is the number of infectious individuals introduced into the population (at t=0) (Keeling,
2005). Thus, with  R0=7.5 and a single infection introduced, the probability of an outbreak is
87%, but if 4 infections are introduced, this rises to >99%.

However, even if the infection does spread from the initial infectious individuals, the size and
timing of the resultant epidemics can vary greatly. Similarly, if R0<1, there is no guarantee that
additional cases will not be observed in the population. Fig. 27.3 shows a range of possible
epidemic curves for values of  R0  ranging from 0.5 to 2.0. For each value of  R0, 20 outbreaks
were simulated and 5 selected to represent the range of possible outcomes. Each outbreak was
based  on  a  population  of  100 susceptible  individuals  with  one  infectious  individual  being
added;  duration  (d)  is  1  day.  The  solid  line  represents  the  expected  course  of  action
(deterministic  simulation).  Even at  R0=0.5,  some limited outbreaks  occur.  At  R0=2.0,  some
outbreaks die out quite quickly while in others, most of the population becomes infected. 

27.6.2 Estimating the probability of transmission

Estimation of the contact rate (c) and the probability of transmission (p) is difficult. In outbreak
situations, the  secondary attack rate (SAR)  is a measure of the probability of transmission.
(Note SAR is actually a risk not a rate.) The SAR is defined as the probability that a susceptible
individual will become infected from the first (primary) case in a population. It is the number of
secondary  cases  (infections  derived  from  the  primary  case)  divided  by  the  number  of
susceptible individuals exposed.
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SAR=
number of secondary cases

number of exposed individuals
Eq 27.8

SARs are usually calculated using data from small-scale outbreaks (eg an outbreak in a single
household) in situations in which it is clear at what time the index case arose. The problem in
computing the SAR is deciding which cases are secondary (for an example using tuberculosis,
see Brooks-Pollock et al  (2011)). This requires knowledge about the expected (and minimum
and maximum) incubation period of the disease and the latent period of the infection, both of
which might be unknown or imprecisely known (Fraser et al, 2009). The time of infection of
the primary case (t0) is estimated based on the expected incubation period and the latent period.
Secondary cases are defined as those that occur between t0 plus the minimum incubation period
and t0  plus the maximum incubation period. This is shown graphically in Fig. 27.4. Since data
on timing of disease onset is rarely completely accurate, methods that use data on total numbers
of cases within a household can be useful.

An alternative approach to estimating  p is to use a  binomial model of disease transmission.
Rather than basing the probability of transmission on the number of exposed individuals,  a
binomial model relates the number of new cases to the total number of contacts with infectious
individuals. Consequently,  it may be appropriate when susceptible individuals have multiple
contacts with potentially infectious individuals. The probability of transmission during any one
contact is p so the probability of avoiding transmission is q=(1-p). The probability of avoiding
infection from n potentially infectious contacts is qn so the probability of becoming infected is
1-qn=1-(1-p)n.  These  models  can  be  extended  over  time  by  assuming  that  the  binomial
transmission probability is applicable in discrete time units. These are called  chain binomial

Fig. 27.3 Examples of 6 simulated outbreaks based on R0 values of 0.5, 1.0, 1.5, 
and 2.0 in panels (a) to (d), respectively

0

10

20

30

C
as

es

0 5 10 15
Day

(a) 0.5

0

10

20

30

C
as

es

0 5 10 15
Day

(b) 1.0

0

10

20

30

C
as

es

0 5 10 15
Day

(c) 1.5

0

10

20

30

C
as

es

0 5 10 15
Day

(d) 2.0



768 CONCEPTS OF INFECTIOUS
DISEASE EPIDEMIOLOGY

models and include Reed-Frost and Greenwood models. The former assumes that exposure to
2 or more infectious individuals in the same time period are independent events, whereas the
Greenwood  model  treats  them  as  a  single  exposure.  Although  conceptually  appealing  for
understanding disease transmission, binomial models have largely been superseded by methods
that include the possibility of infection from outside of the population under surveillance and
other complications (Brooks-Pollock et al, 2011; Longini et al, 1982).

27.6.3 Estimating R0 from the exponential phase of an outbreak

During the early stages of an outbreak, the number of new cases occurring is not limited by the
availability of susceptible individuals. This phase is referred to as the exponential phase and
the doubling time (td=time it takes for the number of new cases to double) is related to R0   as
follows:

t d=ln2 d /R0−1≈0.7 d / R0−1 Eq 27.9

where  d is the duration of the infectious period. This assumes that the outbreak is growing
exponentially,  which  in  turn  depends  on  the  number  of  susceptible  individuals  not  being
depleted (Anderson and May, 1991). From this, if an estimate of td can be derived from the data
and an estimate of d is available from experimental research, then:

R0=0.7d / t d1 Eq 27.10

One approach to estimating td is to fit an exponential regression model, with time as the only
predictor, to the data from the exponential phase of an outbreak and:

t d=ln 2 / and R0=d1 Eq 27.11

Fig. 27.4 Estimation of a secondary attack rate based on knowledge about 
expected latent and incubation periods
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where  β is  the slope from the  regression.  If  the  infection  process  involves  both latent  and
infectious periods, d is replaced by the generation interval which is the sum of the infectious
and latent periods. Estimates of  td (or  R0) using this approach are sensitive to the choice of
distribution for the duration of the generation interval (Wallinga and Lipsitch, 2007). 

At the peak of an outbreak, where the epidemic curve switches from increasing to decreasing
(ie the number of new infections in a time period switches from rising to declining) then Rt=1
(ie one new infection per existing infection. Because Rt =R0 *st=1, then:

R0=1/ st
Eq 27.12

where  st is  the proportion of  the population susceptible at  the time of  the peak (called the
critical proportion susceptible). However, given the variability in the form of outbreaks (see
Fig. 27.3), this approach is not used.

27.6.4 Estimating R0 from time series

As noted above,  R0  is specific for a given agent in a specified population at a point in time.
Nevertheless,  estimates of  R0  from some populations can provide some insight into what to
expect in new situations. However,  given the range of possible outbreaks scenarios that  are
consistent with a single value of R0 , estimation of R0 from a single outbreak will be of limited
value.

The methods outlined above are limited by rather strict assumptions. These assumptions are
needed to overcome the complication that exact data on all relevant events and timing of events
are  not  available,  and  are  generally  unknowable.  If  the  date  of  infection  and  onset  of
infectiousness was known for all individuals, then estimation of R0 and all attendant parameters
would be relatively straightforward. Modern computational resources mean that methods have
become feasible which test different values for missing observations to see how they affect the
estimates of R0.  A detailed discussion of these techniques, mostly based on the Markov Chain
Monte Carlo (MCMC) approach, is beyond the scope of this chapter, but the interested reader is
referred  to  the  following  papers  as  an  introduction  to  the  literature: Auranen  (2000);
Cauchemez et al (2004); Cooper et al (2008); Gibson and Renshaw (1998); and Jewell et al
(2009). 

27.6.5 Estimating R0 for endemic diseases

So far, we have considered the situation where an infection is introduced into a population and
gives  rise to an outbreak or  epidemic. These instances  attract  the most political  and public
attention. However, most infections are endemic (ie they survive continuously in a population).
Even if there are fluctuations in the incidence over time, the continual existence of the infection
means that each infection produces, on a long-term average, one other infection (ie Rt=1 and
therefore  st=1/R0). Note that this is the same situation as at the peak of an epidemic. For a
disease to remain endemic, there must be a supply of susceptible individuals—the reason that
epidemics (c) and (d) in Fig. 27.3 became extinct was that there were no susceptible individuals
left in the population. 

The two principal sources of susceptible people are birth and loss of immunity. The endemic
state  is  at  a  dynamic  equilibrium created  by the tension between supply and loss  (through
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infection) of susceptible individuals.  A simple numerical  example illustrates this. Imagine a
population  in  which  10  susceptible  individuals  arise  every  day.  If  there  are  more  than  10
infections  every  day,  then  the  total  susceptible  population  will  fall,  which  will  mean  that
eventually the amount of infection will reduce. If there are less than 10 infections every day,
then the number of susceptible individuals is increasing, and eventually the amount of infection
will increase. Because the change in the number of infections is positively correlated with the
number of susceptible individuals, there is an equilibrium rate of infection (in this example 10
per day), at which the numbers of susceptibles and infections exactly balance. The proportion of
the population susceptible at this steady state is termed the critical proportion susceptible, and
denoted s*. From Eq. 27.12, it is easy to see that:

 s*=1 /R0
Eq 27.13

Although  it  is  theoretically  possible  to  use  this  relationship  to  estimate  R0 for  an  endemic
infection, in practice it requires knowledge about risk behaviour and the core group, which is
usually  lacking  (for  an  exception  see  Johnson  et  al (2012)).  However,  for  childhood viral
infections such as measles, mumps, and rubella (MMR), the core group is defined by age, and
this approach is naturally used to estimate R0. At endemic equilibrium, the average age at which
individuals become infected  (A) and the average  lifespan of individuals (L)  can be used to
estimate λ (the incidence rate of new infections), as well as R0 and s* :

=1/ A R0=L / A s *=A/ L Eq 27.14

This approach only works when L is a threshold (ie everybody survives to age L and then dies)
and the total population size is constant, which is approximately true for people in developed
countries, but not for developing countries (Anderson and May, 1991). The estimate of R0 is an
overall  estimate representing an average  level  of  transmission within and between different
groups. Knowledge about contact rates is required to come up with estimates of group-specific
estimates of R0.

If  data  about  the  age-serologic  profile  of  an
infection  within  a  population  are  available,  it  is
possible  to  derive  an  estimate  of  λ (population
incidence  rate).  The  proportion  remaining
susceptible at age=a (denoted sa) can be determined
from a survival curve plot (eg Fig. 27.5). The slope
of this curve at  age=a is  related to the incidence
rate  of  infections  (λ)  according  to  the  following
relationship:

slopea=ds /da=− sa
Eq 27.15

The  approach  avoids  the  assumption  that  the
incidence  rate  of  new infections  is  constant  with
age and λ can be estimated for different age groups.
Note If  only  a  single  age  profile  at  one  point  is  available,  then  time-dependent  and  age-
dependent changes in λ are indistinguishable. See Vynnycky & White (2010) for more details of
estimation from age-serological profiles.

Fig 27.5 The slope of a survival curve 
can be used to estimate λ at any 
particular age
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Mathematical  modelling  was  first  used  to  predict  the  impact  of  immunisation  on  MMR
(Anderson and May, 1991). One of the more surprising impacts is that those individuals who
are not immunised will be older if and when they become infected, simply because the infection
is made rarer by the immunisation. If the risk of disease increases with age at infection, then
immunisation can increase disease. Unfortunately, this has been observed for rubella in Greece
(Panagiotopoulos et  al,  1999).  The  lesson  here  is  that  models  are  not  just  theoretically
interesting: infectious disease transmission dynamics really are non-linear and complex.

27.7 DEVELOPING MORE COMPLEX MODELS 

27.7.1 More complex natural histories

A very simple  SIR model was presented in Fig. 27.2. More complex models can account for
more complex interactions between an agent and a host. For example, (as in Fig. 27.1) a newly
infected individual will go through a latent period before becoming infectious. This gives rise to
an  SEIR (Susceptible—Exposed—Infectious—Recovered) model. Similarly,  individuals may
either die or recover (with immunity) after the infectious period, giving rise to the model shown
in Fig. 27.6. In this model, there are only 3 rate parameters (λ γ δ) but there is an additional
probability (probability of death) which needs to be estimated. Much more complex models can
be found in the literature, but are beyond the scope of this text. For example, some infections
develop  an  infectious  carrier  state  (Medley et  al,  2001) or  periodic  recrudescence  of
infectiousness (Brisson et al, 2000; Schiffer et al, 2010).

Note that  the (implicit)  assumption in the models in Figs.  27.2 and 27.6 is that  the rate of
progress through the E and I compartments is constant. This is equivalent to a constant hazard
rate  in  survival  analysis. In  Table  27.1  the  assumed  duration  of  stay  in  the  I class  is
exponentially distributed with mean 5 days. Other factors such as age effects on susceptibility
and reproductive status on transmission can be incorporated into complex models.  In practice,
the complexity is limited by the availability of data and sufficient human and computational
resources. It is not the case that more complex models are better; indeed, additional complexity
can make models harder to understand and use, and can mask underlying principle results

27.7.2 Transmission heterogeneities

The simple SIR model assumes that each individual has the same average contact experience,
and  that  each  individual  has  the  same  chance  of  contacting  all  other  individuals:  the
transmission term pcSI/N. In this section, we consider two approaches to capturing the fact that
individuals  do  not  contact  each  other  at  random.  First,  we  consider  sexually  transmitted

Fig. 27.6 SEIR model that allows for individuals to either recover or die
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diseases in a heterosexual context, ie where there are two types of individual (male and female),
these  identities  are  fixed,  and  infection  is  only  passed  between  them.  Second,  we  briefly
consider network approaches.

Separate populations: sex
For simple sexually transmitted infections, the population has to be divided between male and
female, so that males become infected at a rate  pMcMSMIF (where the subscripts denote gender)
and females  become infected at  rate  pFcFSFIM.  R0  no longer depends on a single contact  and
transmission  probability,  but  is  an  average  of  the  male-to-female  and  female-to-male
transmission rates. Generally, calculation of R0 for multiple populations and transmission routes
is  not  straightforward,  and  depends  on  the  matrix  of  possible  transmissions.  For  this  two
population model (male and female), the matrix of rates of infection is:

[0 p M cM

I F

N F

p F cF

I M

N M

0 ]
where the zeros indicate that the infection cannot be passed between individuals of the same sex
(non-zero entries here would indicate that transmission is possible between individuals of the
same sex (eg male-to-male transmission of HIV)).  In this case, assuming that the infectious
period is the same for the two genders, the appropriate measure for R0  is:

R0=d  pM pF cM c F Eq 27.16

For  a  more complete  discussion  of  multiple  population  diseases  see  (Deikmann  and
Heesterbeek,  2000).  However,  the  principal  complication  for  sexually  transmitted  disease
models is that individuals vary greatly in their rates of sexual partner change, creating a very
strong core group effect (Johnson, 2012).

Networks
The  above  approach  to  modelling  transmission  assumes  that  individuals  contact  other
individuals  at  some  rate,  which  is  modified  by  the  connectance  between  the  groups  that
individuals occupy. In other words, there is a mean rate of contact, but ‘who contacts who’ is
random. However,  individuals tend to contact the same individuals repeatedly:  ie individual
have  a  network  of  contacts  comprising  family,  friends  and  work/school  colleagues.  The  2
principal ways of modelling non-random interaction between individuals are household models,
where individuals interact strongly within small cliques (Ross et al, 2012), and network models
where links between individuals are explicitly stated  (Keeling and Eames, 2005).  However,
although mathematically interesting, and of great potential, the challenge of such models is how
to construct and parameterise them.

27.7.3 Reinfection threshold—diversity and variability

Infection with most pathogens does not create a solid immunity: MMR are the exception in this
respect.  Generally,  immunity  is  either  partial  (ie it  reduces  the  probability  of  infection  on
exposure) or wanes with time since infection (ie individuals start fully immune but eventually
become  fully  susceptible  to  reinfection)  (Gomes et  al,  2004a).  Observed  immunity  is  a
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relationship between host responses and pathogen diversity and pathogen variability. Diversity
refers to the heterogeneity in pathogens at a point in time, and variability refers to the dynamic
changes in the pathogen population. For example, if the antigens (those parts of the pathogen
recognised  by immunity)  in  a  pathogen  population change  completely,  then  all  individuals
become susceptible again, and it appears that immunity has waned, although immunity might
still be solid to pathogens expressing the previous antigens. Clearly, those pathogens that do
change their antigens and are able to reinfect have an evolutionary advantage to pathogen types
that  retain the  same antigens:  pathogens  are  competing with each  other  for  hosts  and host
susceptibility. Influenza is the prime example of this mode of reinfection. This gives rise to the
concept of phylodynamics—the combination of epidemiological, immunological, and genetic
processes that creates the diversity and variability in pathogen populations (Grenfell et al, 2001;
Smith et al, 2004).

Pathogen diversity and variability  have  important  implications for  immunisation since  they
determine what proportion of infections can be prevented, and how long the immunisation is
effective. The majority of vaccines are still made from preparations of pathogens, particularly
killed pathogens, and live attenuated forms of the pathogen, and consequently vaccine inspired
immunity  generally  has  the  same  effect  as  immunity  derived  from  natural  infection.  For
pathogens in which natural  immunity is solid (and births are the only source of susceptible
individuals),  vaccines  work  exceptionally  well,  and  can  eliminate  infection.  However,  for
pathogens  in  which  reinfection  is  the  norm,  such  vaccines  might  have  no  impact  on  the
transmission dynamics of infection (although they might impact on disease). The proportion of
infections that are reinfections is determined by the value of the basic reproduction number, so
that a vaccine will have different apparent efficacies dependent on the value of R0. There is a
threshold, the reinfection threshold, above which immunity and vaccination have very little
effect on transmission dynamics (Gomes et al, 2004b). Suppose that the proportion of infections
that are prevented by natural immunity is 75%. If  R0<1/(1-0.75) or equivalently  R0<4, then
immunity  constrains  the  incidence  of  infection.  However,  if  R0>4, then  the  infection  can
survive  in  a  population  composed  of  people  who  have  already  been  infected.  This  is  the
reinfection threshold: the value of R0 below which completely susceptible people (from births
usually) are required for the infection to invade and persist, and above which the infection can
invade and persist in a population composed of people who have been previously infected. If a
vaccine that  provides the same degree of protection as natural  immunity is  used below the
reinfection threshold, then it will appear to be effective to some degree. But if the same vaccine
is  used  when  R0 is  above  the  reinfection  threshold,  then  it  will  appear  to  be  completely
ineffective, ie it will prevent no infections (Gomes et al, 2004b).

27.8 USING MODELS

In this section we discuss some of the ways in which models can be used in the real world, and
the complications of such applications. Any model is essentially a collection of assumptions.
Additionally,  mathematical models are quantitative, and use the language of mathematics to
describe  the  assumptions.  As with any model,  in  order  to  be  valid,  it  has  to  be  internally
consistent, and reasonable in terms of the mechanisms that it includes to realise its assumptions.
For example, a model of a vector-borne disease has to have within it (explicitly or implicitly)
the size of the vector population and rate at which the vectors feed on people. Once a model is
‘right’ in this sense, it has to be fitted to the real world, and validated before it can inform
policy.
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27.8.1 Fitting models

Most mathematical  models consist  of parameters  that  represent  the rates  of events,  and the
values  of  the parameters  have to be chosen carefully.  This is  usually done by reference  to
literature (eg Mossong  et al (2008) for age-related contact rates), or by fitting sub-models to
observed or experimental data.

In other cases, the whole model must be fitted to observed data. The most straightforward is to
use non-linear regression to find the values of  parameters that minimise the sum of squared
differences between the model and the data (lines and points). However, as shown in Fig. 27.3,
epidemics  are  stochastic  by nature:  an individual outbreak  rarely conforms to the expected
average. Thus, the cp estimated from a single outbreak will not capture the possible values of
cp that might have created these data. If data from multiple outbreaks are available, the range of
estimates will provide more insight into the dynamics of the infectious process. An alternative
is  to  use  stochastic  models  which  provide  insight  into  the  range  of  possible  values  for
parameters such as R0 which are compatible with the single outbreak data. These are generally
beyond the scope of this book, but examples include Bjørnstad et al (2002); Ferrari et al (2005)
as well as the MCMC papers referenced in section 27.6.4. 

27.8.2 Validation and sensitivity analyses

In  most  models,  there  are  a  small  number  of  parameters  for  which  direct  estimates  are
unobtainable, and where there are insufficient  observed data to enable model-fitting. This is
often the case for models which aim to forecast the outcome of an epidemic of a threatening,
but unknown, pathogen. Sensitivity analysis (and the related uncertainty analysis) allows the
influence of such parameters on model outcomes to be quantified. Such analyses might indicate
that the parameter has little influence on the relevant outcomes, or that it is critically important,
and more data and information are required before any reliable outcomes can be gained.  All the
references in section 27.8.3 contain sensitivity analyses.

If a model’s predictions are to be believed as a basis for policy decisions, then it has to have
been tested to at least demonstrate that it  ‘predicts’ the current situation. Any model of non-
trivial complexity cannot be formally proven to be correct; all models operate within a context
so that they can be considered correct for some situations and not others. For example, a model
of hepatitis B virus built for the UK (where the majority of transmission occurs in adults with
high-risk  behaviour) is  highly  unlikely  to  be  relevant  for  Taiwan  (where  the  majority  of
transmission was between children before the advent of immunisation).

Although the use  of  sensitivity  analysis  and formal  model  validation can  provide evidence
about the potential usefulness of a model, the ultimate test is one of common sense. Models
frequently reveal outcomes and dynamic properties that are not necessarily obvious, but which
are logically explicable once recognised. 

27.8.3 Models in policy

Once a model has been created and validated for a particular context, it can be used to inform
policy, which essentially consists of decisions about interventions. Such decisions include many
dimensions, most of which are not included in any model, so models can only inform a process
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rather than drive it. Increasingly models are being combined with economic analyses, to inform
the likely cost effectiveness of an intervention, especially in publicly funded health systems
(Walker  et al, 2010).  Such analyses have played a significant role in decisions to introduce
vaccination (eg HPV—Marra et al (2009), pneumococcus—Melegaro et al (2010)), or not (eg
chicken pox—van Hoek et al (2011), rotavirus—Mangen et al (2010)).

27.9 SUMMARY

This  chapter  has  provided  a  summary  of  mathematical  modelling  of  infectious  disease
transmission dynamics, with pointers into the literature. However, there are many aspects that
we have not addressed, such as explicit dependence on time or geographical space (particularly
important  for vector-borne infections),  or pathogen evolution (and the development of drug
resistance).  These  and  other  aspects  are  introduced  in  various  textbooks  already  cited
(Anderson and May, 1991; Deikmann and Heesterbeek, 2000; Keeling, M. J. and Rohani, 2007;
Vynnycky and White, 2012).
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