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SYSTEMATIC REVIEWS AND META-ANALYSIS

OBJECTIVES

After reading this chapter, you should be able to:

 1. Carry out a systematic review.

 2. Complete the data-extraction process to provide data suitable for meta-analysis.

 3. Calculate  summary estimates  of  effect,  evaluate  the level  of  heterogeneity  among study 
results, and choose between using fixed- and random-effects models in your analysis.

 4. Present the results of your meta-analyses graphically.

 5. Evaluate potential causes of heterogeneity in effect estimates across studies.

 6. Evaluate the potential impact of publication bias on your study results.

 7. Determine if your results have been influenced by an individual study.

 8. Deal with a variety of situations related to the types of data presented in (or missing from) 
relevant studies.

 9. Understand the important issues when carrying out a meta-analysis of observational studies.
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28.1 INTRODUCTION

When making decisions about health interventions, we would like to use all of the information 
available in order to make the most informed decision. Unfortunately, the information in the 
literature is often inconclusive and conflicting. For example, assume that you are working in 
public health in a jurisdiction that has an unacceptably high incidence of salmonellosis and your 
outbreak investigations suggest that poultry is the primary source. You are working with the 
meat-processing industry in your region and you want to investigate ways of reducing the level 
of Salmonella contamination on poultry carcasses. If you did a thorough literature review in late 
2011 (limited to studies which had been carried out under commercial or pilot plant settings—
not laboratory-based studies—which reported actual Salmonella levels), you would find reports 
of 25 trials presented in 6 manuscripts (Example 28.1). Results of these trials would range from 
interventions that reduced  Salmonella concentrations by a statistically significant,  but rather 
inconsequential 0.53 log units  (Yang et al,  1998) to a very large reduction of 4.8 log units 
(Smith et al, 2005). You might be left wondering what an average reduction (if there is such a 
thing) might be expected, if the variation in results was more than would be expected due to 
chance variation, and what factors might account for the large variation.

If  you  wanted  to  carry  out  a  more  formal  review  of  the  available  data  on  the  effect  of 
interventions on Salmonella levels, there are 2 fundamental approaches which you could take: a 
narrative review or a systematic review (which might include a meta-analysis). (Data from a 
recent publication outlining effects of ‘chilling’ interventions on Salmonella contamination of 
chicken carcasses will be used for all examples in this chapter (Bucher et al, 2011).)

28.2 NARRATIVE REVIEWS

In situations in which there are very few studies (or the reviewer has chosen to only review a 
few studies), a review may take the form of a study-by-study report. In this case, each study is 
considered individually in order to subjectively take into account the unique circumstances of 
each study, and little effort is made to present an overall summary assessment of effect. While 
the situation described above identified only 6 manuscripts, they reported results from 25 trials 
which would be difficult  to review in this manner.  It  is also likely that, with so much data 
available, you would like some form of summary estimate of the effect derived from all of the 
studies and a study-by-study report would not provide this.

A second approach would be to carry out a traditional narrative review in which studies are 
qualitatively assessed and the results subjectively combined into an overall conclusion. Some 
characteristics of traditional narrative reviews that make them less desirable than systematic 
reviews are listed below (Sargeant et al, 2006).

• They tend to be carried out by subject experts who may bring preconceived opinions to 
the process resulting in a biased review. 

• They  often  do  not  have  a  structured  methodology  for  identifying  and  assessing  the 
relevant studies, leading to the possibility of selective inclusion of studies in support of 
the reviewer’s opinion. 

• Small but well-designed studies may be omitted if they lack statistical power to produce 
statistically significant results.

• Inclusion criteria for studies are often not described in adequate detail for the reader to 
assess the thoroughness of the literature search.
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• In deriving an overall estimate of effect, there is also a tendency to weight all studies 
equally and, as will be seen later, they should not all receive equal weight.

As a consequence of the above limitations, narrative reviews should only be used to provide an 
overview of literature on a specific topic, not to guide treatment or prophylactic decisions. 

28.3 SYSTEMATIC REVIEWS

A recently published review outlines the steps involved in carrying out a systematic review 
(Sargeant et al, 2006). These are:

1. Specify the question to be answered.
2. Lay out the review protocol.
3. Find all of the studies.
4. Determine which studies are relevant (requires inclusion and exclusion criteria).
5. Evaluate study quality.
6. Extract the relevant data from each study.
7. Summarise and synthesise the results (may include performing a meta-analysis).

Each of these is discussed below.

28.3.1 Specify the question

When specifying the question to be answered, you need to keep in mind what is most important 
from a clinical or health-policy objective, rather than letting data availability drive the study 
objective. It is often more desirable to address a more general question, which will broaden the 

Example 28.1 Individual point estimates of effect of various interventions on 
Salmonella log concentrations on poultry carcasses
data = salm_MA

Six studies containing data from 25 separate trials had sufficient data to compute the mean difference in 
Salmonella levels (on a natural log scale) between treated and non-treated carcasses. The individual 
point estimates from each of the 25 groups are included in the table below (-refid- and -id- are the study 
and trial identifiers used in the dataset provided on the MER website).

refid id mean 
difference

refid id mean 
difference

refid id mean 
difference

218 29 -4.835 3909 159 -1.842 10754 437 -0.530

2228 38 -2.072 3909 160 -2.072 10754 438 -3.132

2228 40 -1.382 3909 161 -2.533 10754 439 -3.730

3909 153 -2.303 3909 162 -2.533 10754 440 -2.786

3909 154 -2.993 3909 163 -1.382 10754 441 -3.385

3909 155 -2.533 3909 164 -1.842 11272 781 -0.691

3909 156 -2.303 10754 434 -0.967 11927 820 -1.151

3909 157 -1.151 10754 435 -0.898

3909 158 -2.072 10754 436 -1.289
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eligibility characteristics for studies to be included in the review, rather than to address a very 
specific, but restrictive, question. For example, a review of the ability of  β-blockers to reduce 
the short-term risk of myocardial infarction was based on studies in which 12 different drugs 
had been used  (Freemantle et al,  1999) rather than focusing on a single specific drug. This 
enhanced the generalisability of the results.

Specifying the question, in addition to clarifying the intervention(s) to be considered, will also 
involve the specific outcome(s), the comparisons to be evaluated (eg new treatment vs either 
standard treatment or no treatment), and study designs to be included in the review.

28.3.2 Lay out the protocol

A systematic review should be both as objective as possible and sufficiently transparent so that 
a reader of the review should be able to duplicate it if they desired. This requires that a written 
protocol for the review be developed. This protocol corresponds to the ‘Materials and Methods’ 
section of a primary study and covers all  of the steps (described below) in carrying out the 
review. Having a clear protocol will minimise the number of subjective decisions made during 
the review process. 

28.3.3 Find the studies

The  literature  review on  which  a  meta-analysis  is  based  must  be  both complete  and  well- 
documented.  The  most  commonly used approach  to  ensuring  that  all  published  studies  are 
found is to carry out computer-based literature searches of the major electronic databases (eg 
Medline (PubMed)) and to follow this with a review of the reference lists in all of the papers 
identified through the computer-based search. Robinson and Dickersin (2002) give an example 
of an effective strategy for searching for randomised controlled trials in Medline. The search 
process, including the names and date ranges of all databases searched along with the search 
strategy (eg keywords used) must be documented.

Finding articles published in conference proceedings and other forms (eg theses, non-indexed 
portions  of  journals)  is  more  difficult  than  finding  articles  in  the  peer-reviewed  published 
literature but necessary  (Hopewell et al, 2002). While some databases of these resources are 
available,  it  is  often  necessary  to  identify  conferences  which  were  likely  to  have  relevant 
publications in their proceedings and carry out a manual search of all proceedings for the time 
frame of interest.

One of the difficult issues to address is whether or not the review should include data from 
unpublished studies. The potential effects of publication bias are discussed in Section 28.8, but 
identifying and obtaining results from unpublished studies is a difficult task. In  some cases, 
databases  of  funded  research  projects  could  be  used  to  identify  studies  that  have  been 
conducted, but not published. Alternatively, personal contact with investigators working in the 
field might identify unpublished studies.

28.3.4 Determine if studies are relevant

The process of deciding whether or not studies are relevant involves specifying the  inclusion 
and exclusion criteria for the review. Inclusion criteria include: the intervention(s) of interest, 
the populations(s) in which the studies can be carried out, the outcome(s) of interest, and the 



SYSTEMATIC REVIEWS AND META-ANALYSIS 783

types of study to be included (many systematic reviews only consider randomised controlled 
trials,  but  this  is  not  always  applicable).  Exclusion  criteria  may  include  factors  such  as 
publication in a language not accessible to the review team, publication prior to a specified date 
etc. The relevance of studies can usually be determined from the title and abstract, and should 
be assessed independently by 2 or more members of the review team. 

28.3.5 Evaluate study quality

The internal and external validity of each relevant study needs to be evaluated (with emphasis 
on internal validity). While inclusion criteria (described above) will play a role in ensuring the 
validity  of  studies  considered  (eg a  meta-analysis  might  be  based  only  on  randomised 
controlled  trials),  other  issues  of  study design  (eg blinding,  formal  method of  randomising 
treatment allocation, clear criteria for eligibility of subjects in the trial) must also be evaluated. 
A variety of scales and checklists have been developed (Jüni et al, 2001) and the list used will 
depend on the types of study being evaluated (eg observational studies have different criteria 
than  randomised  controlled  trials).  The  Cochrane  Collaboration  has  developed  a  tool  for 
assessing the risk of bias in studies which covers 6 domains: sequence generation, allocation 
concealment,  blinding,  incomplete data,  selective reporting,  and other  sources  of  bias.  (See 
Cochrane Handbook for Systematic Reviews of Interventions for details  (Higgins and Green, 
2008).)

Results of this quality assessment may be used in 1 of 3 ways. First, if a study does not meet all  
(or a subset) of the quality criteria,  you  might decide to exclude it  from the meta-analysis. 
However, if very stringent criteria are set, you might end up excluding most studies.

The second approach is to evaluate study-design issues and assign a quality score to the study. 
This quality score can be used to eliminate studies from consideration or to weight the studies 
in the meta-analysis (ie poor-quality studies receive less weight when estimating the summary 
effect). The use of a quality scale introduces a degree of subjectivity to the meta-analysis and is 
not generally recommended (Greenland, 1994; Herbison et al, 2006; Higgins and Green, 2008).

The third approach is to record the key elements of the quality assessment and evaluate them as 
a source of heterogeneity (see Section 28.7) between studies. The quality assessment can also 
be used in a  form of  sensitivity analysis  in which overall  results  are  compared  with those 
obtained from studies with defined subsets of quality characteristics.

28.3.6 Extract the relevant data

The layout  and presentation of results  in epidemiologic  studies  are highly variable.  This is 
particularly true for observational studies, but it is even an issue when reviewing randomised 
controlled trials. The 2 fundamental pieces of information that you need from each study are the 
point estimate of the outcome(s) of interest and a measure of the precision of that estimate (SE 
or CI). In some cases, these are not presented directly, but sufficient data are available to allow 
you to compute the required information. For example, a study may report the total number of 
individuals in each of the study groups and the number with positive outcomes and, from these 
data, the risk ratio for the outcome (and its SE) can be computed for use in a meta-analysis.

For outcomes measured on a binary scale (eg occurrence of myocardial infarction), you need to 
decide if you will extract  and record a relative measure of effect  (eg risk ratio—RR) or an 
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absolute measure (eg risk difference—RD).  It  is  generally more meaningful  to  use relative 
measures  for  summarising  effects.  The  summary  estimate  can  then  be  applied  to  specific 
populations in which the overall risk of disease is known (or can be estimated) to compute an 
absolute effect of the intervention. Regardless of which measure of effect is used, you should 
record the frequency of  disease  (eg risk)  in the control  group as this might  be a source of 
heterogeneity  of  study  results  (see  Section 28.7.3).  In  addition  to  data  on  the  outcome  of 
interest,  bibliographic  information,  and  information on study characteristics  (eg population, 
specifics of the intervention, length of follow-up etc) should be recorded.

Before starting the data-extraction process, you need to develop a template on which to record 
all of the fundamental information about the study, including any information required in the 
evaluation of the quality of the study or to evaluate as a possible cause of heterogeneity among 
study results.  Given  that  data  extraction  is  a  complex  process,  it  is  desirable  to  carry  out 
duplicate  data extraction (ie data extracted independently by 2 investigators)  followed by a 
comparison of the 2 datasets to identify and resolve any differences  (Buscemi et al,  2006). 
When carrying out the data extraction, it is also important to watch for duplicate reporting of 
results. In some cases, data from an individual study might be published in multiple locations 
(eg a company report and a peer-reviewed journal publication) but must only be included in the 
meta-analysis once. Example 28.2 describes the literature review and data-extraction process 
for the meta-analysis of processing interventions to reduce Salmonella levels in chicken. These 
data are used for all subsequent examples in this chapter.

28.3.7 Summarise and synthesise the results

Extracted data can be summarised and synthesised using qualitative or quantitative methods. A 
qualitative summary may involve tabular and/or graphical display of the key outcomes along 
with a narrative description of the studies. In situations in which there are few studies and/or the 

Example 28.2 Literature review and data extraction for meta-analysis

A meta-analysis of the effects of various interventions on Salmonella contamination levels in poultry 
has recently been published (Bucher et al, 2011) and data from this study are used for all examples in 
this chapter. A literature review of 6 electronic databases covering the period up to 2009 (with some 
subsequent manual searching) identified a total of 14,197 references related to Salmonella in poultry. A 
review of the abstracts (1st relevance screening) and full papers (2nd relevance screening) ultimately 
identified  154  English-language  manuscripts  that  potentially  contained  results  from evaluations  of 
interventions.  From all  of  these papers,  45 studies  (representing 381 trials) were  found to contain 
sufficient  data  on  either  Salmonella concentrations  (eg colony  forming  units  (CFU)  per  ml)  or 
isolations (yes/no) to be used in a meta-analysis. Only studies carried out under commercial or pilot 
plant settings were used in this chapter, leaving 6 studies (25 trials) reporting Salmonella concentration 
and 40 studies (286 trials) reporting isolation. For analyses involving  Salmonella isolation, only data 
derived from ‘chilling’ interventions (17 studies, 57 trials) were used.

Outcomes (CFU/ml and ORs) were converted to the logarithmic scale to comply with assumptions of 
normality. In the original manuscript, isolation results were analysed as ORs, but in examples in this 
chapter the results have been analysed as RRs.

Note Data  extracted  for  use  in  this  chapter  were  chosen  for  their  pedagogical  value.  The  results 
presented here do not, in any way, represent a complete analysis of these data. For that information, the 
reader is referred to the primary publication (Bucher et al, 2011).
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results from the studies are highly variable, a qualitative summary may be all that is warranted. 
In other situations, it is often desirable to compute an overall estimate of the outcome of interest 
and  to  quantitatively  investigate  why  estimates  of  the  outcome  vary  across  studies.  This 
quantitative assessment is called a meta-analysis and is the subject of the rest of this chapter.

28.4 META-ANALYSIS—INTRODUCTION

A meta-analysis has been defined as: “The statistical analysis of a large collection of analysis 
results from individual studies for the purpose of integrating the findings” (cited in Dickersin 
and Berlin (1992)). It is a formal process for combining results from a number of studies and is 
generally  considered  the  ‘gold  standard’ for  providing  summary  information  about  health 
interventions. Meta-analyses have been used most commonly to combine results from a series 
of  controlled  trials.  However,  they  can  also  be  used  to  combine  results  from  a  series  of 
challenge studies (as many were in the data used in this chapter), or observational studies (see 
Section 28.11) as was done in a meta-analysis of the effects of  duration of breastfeeding on 
child and maternal health (Kramer and Kakuma, 2002) which actually combined data from both 
controlled trials and observational studies. A more complete description of meta-analyses can 
be found in texts such as  Egger  et al (2001) and Borenstein  et al (2009) or the online text 
published  by  the  Cochrane  Collaboration  (Higgins  and  Green,  2008).  The  Cochrane 
Collaboration  is  an international  organisation set  up to  help health-care  professionals  make 
informed decisions through the use of systematic reviews of health research. A review of recent 
advances  in  meta-analysis  methodologies  has  been published recently  (Sutton and  Higgins, 
2008).

The objectives of a meta-analysis are to provide an overall estimate of an association or effect 
based on data from a number of scientific studies, and to explore reasons for variation in the 
observed effect across studies. It accomplishes this by imposing a systematic methodology on 
the review process. Because it combines data from multiple studies, there is a gain in statistical 
power for detecting effects. When computing an overall estimate of effect, it takes into account 
both the individual study estimates and the precision of those estimates (standard errors) so that 
the results from each study are weighted appropriately. 

Meta-analyses can be used to review existing evidence prior to making clinical or health-policy 
decisions, or as a precursor to further research by better quantifying what is already known, and 
identifying  gaps  in  the  scientific  literature.  A  meta-analysis  might  be  combined  with  a 
traditional narrative review, and hence should be thought of as complementary to that review 
process.

28.4.1 Meta-analysis—types of data

There are 3 types of data which can be used in a meta-analysis: summary estimate data, group 
data,  and  individual  patient  (subject)  data  (IPD)  (Table  28.1).  Summary  data  are  the  most 
commonly used and consist of a point estimate of the effect of interest and some measure of its 
precision. For example, a set of studies might all report a risk ratio and its confidence interval 
for an effect of a treatment. If only summary data are available, the meta-analysis is restricted to 
using the measure(s) of effect reported.  Group data consist of outcome data for each of the 
intervention groups (eg risk of ‘cure’ in the treatment group and the control group separately). 
For  studies  with  binary  interventions  (treatment)  and  outcomes,  it  is  usually  possible  to 
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reconstruct the 2X2 table from which a variety of measures of effect can be computed. IPD are 
least  frequently  available  and  consist  of  the  original  data  for  each  individual  in  the  study. 
Summary estimate data can only evaluate the effects of study level variables (eg was the study 
blinded  or  not?)  as  sources  of  heterogeneity.  Group  data  can  also  include  group-level 
covariates,  although  these  are  not  usually  important  if  study  subjects  have  been  randomly 
assigned  to  groups.  IPD  allow  for  the  evaluation  of  study-,  group-,  and  individual-level 
variables (eg age of study subjects) as a source of heterogeneity (see Section 28.7).

Table 28.1 Types of data used in meta-analyses

Data Type Binary outcome Continuous outcome

Summary 
estimate

Point estimate: RR, OR, RD, IR
Estimate of precision: SE or CI

Point estimate: mean difference (MD)
Estimate of precision: SE or CI

Group Cell values for treated and control groups 
(from which various effects measures and 
their precision can be calculated)

Number, mean, and standard 
deviation in each group from which 
the MD and its SE can be computed.

Individual 
patient data

Raw data—outcome value (0 or 1) and 
individual characteristics for each study 
subject

Raw data—outcome value 
(continuous) and individual 
characteristics for each study subject

Formulae  for  common  measures  of  effect  (eg RR,  OR etc)  and  their  standard  errors  and 
confidence intervals are presented in Chapter 6. If  IPD are available, all of the data can be 
pooled into a  single dataset  and reanalysed,  taking into account  the clustered  nature of  the 
observations (within study) using methods outlined in Chapters 20–23. This is the most flexible 
approach to the analysis but these data are rarely available so it will not be considered further in 
this chapter. 

28.4.2 Meta-analysis—process

There are multiple steps involved in carrying out a meta-analysis of results from a systematic 
review. These include:

• deciding whether to base the analysis on a fixed- or random-effects model
• computing a summary estimate of effect (if appropriate)
• presenting the data (usually graphically)
• evaluating possible reasons for heterogeneity of study results (ie why different studies 

produce different estimates)
• searching for evidence of publication bias and evaluating the influence that individual 

studies have on the outcome.

Each of these will be discussed in subsequent sections.

28.5 FIXED- AND RANDOM-EFFECTS MODELS

A fundamental decision to be made in any meta-analysis is whether to use a fixed- or random-
effects model. A  fixed-effects model is based on the assumption that the effect of the factor 
being investigated is constant across studies and that any variation among studies is due only to 
random variation. On the other hand, a random-effects model assumes that the true study effect 
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does vary across studies and the observed study effects reflect both this variation and random 
variation. Graphically, the studies can be represented as shown in Fig. 28.1.

28.5.1 Fixed-effects model

A fixed-effects model can be written as: 
T i= i Eq 28.1

where Ti is the effect measure (eg lnRR) from study i. (Note Ti is used to designate the study 
outcome instead of Yi, which is generally used throughout this book for outcome variables, in 
order to distinguish between the measure of effect (Ti) and the outcome measured on individual 
study subjects (Yi).) 

θ is the overall treatment effect and εi is the error term for study i which is distributed as:
i~N 0,V i  Eq 28.2

where Vi is the within-study variance for study i (Vi=[SE(Ti)]2  ). This is assumed to be known 
and uncertainty about Vi is not part of the modelling process. Combining Eq 28.1 and Eq 28.2 
shows that the distribution of the Ti is:

T i~N  ,V i Eq 28.3

Computing a summary estimate of effect
In order to compute a summary estimate of the overall effect, the individual study results must 
be weighted based on the precision of the estimates. The most commonly used procedure is 
inverse  variance  weighting where  weights  are  computed  as  Wi=1/Vi.  This  procedure  is 
applicable  for  pooling  results  from models  of  continuous  (linear  regression,  ANOVA)  and 
discrete (logistic, Poisson regression) data. However, inverse variance methods might not work 
well when study sizes are small. 

For  binary  data,  alternative  approaches  based  on  the  Mantel-Haenszel procedure  or  an 

Fig. 28.1 Graphical representation of fixed- and random-effects models
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approach  attributable  to  Peto are  available  (Egger et  al,  2001;  Sweeting et  al,  2004).  The 
former is often preferable to the inverse variance approach when the data are sparse (ie where 
the outcome is a relatively rare event). The Peto method does not work well when treatment 
effects  are large or when the intervention groups are seriously unbalanced (unequal  sample 
sizes); however, the method has been extended for use with time-to-event data.

For continuous data there are 2 possible measures of effect size: the mean difference and the 
standardised mean difference.  The mean difference  is  used when all  studies  measure the 
outcome on the same scale (which simplifies pooling the results) and the used weights are the 
inverse variance weights.  Methods based on standardised mean differences  are discussed in 
Section 28.10.2.

28.5.2 Random-effects model

A random-effects model assumes that a distribution (heterogeneity)  of true treatment effects 
across studies exists, resulting in additional variability among study results. It is most common 
to  assume  that  the  study  effects  have  a  normal  distribution  so  the  random-effects  model 
becomes:

T i=uii Eq 28.4

with: ui~N 0,2 and  i~N 0,V i Eq 28.5

where ui is the random-effect for study i, and τ2 is the between-study variance (heterogeneity). 
Combining Eq 28.4 and Eq 28.5 shows that the distribution of the Ti is:

T i~N  ,V i2 Eq 28.6

Random-effects models generally produce a point estimate of the summary effect that is similar 
to that obtained from fixed-effects models, but which has a wider confidence interval than a 
fixed-effects model (because the variance of the estimate is larger).

The simplest (and classical) analysis of a random-effects model estimates  τ2 by a method of 
moments  (MM)  and  computes  a  summary  estimate  from  the  weights  Wi=1/(Vi+τ2) 
(DerSimonian  and  Laird,  1986;  DerSimonian  and  Kacker,  2007).  Recent  alternative 
approaches,  derived  from  statistical  inference  for  mixed  models  (Chapter  21),  include 
maximum likelihood (ML), restricted maximum likelihood (REML) and empirical Bayes (EB) 
methods. The MM, ML and REML estimate may be biased unless  τ2 is small while the EB 
estimate  has  been  found  to  generally  be  accurate  (Sidik  and  Jonkman,  2007).  If  IPD  are 
available, mixed models (as described in Chapters 20–23) can be used for meta-analyses. In this 
case, a random slopes model which allows for the estimate of the treatment effect to vary across 
studies is used (see Chapter 21 for a discussion of random slopes models).

The advantages of a fixed-effects model are that it does not require the estimation of τ2 nor are 
there any distributional assumptions about  ui

 . However, the assumption of a constant-treatment 
effect across all studies is often not tenable, and ignoring between-study variation may lead to 
Type I errors (for the statistical significance of  θ) and confidence intervals too narrow for  θ. 
Consequently, random-effects models are now more commonly used. Results from fitting both 
fixed- and random-effects models for the Salmonella concentration (CFU/ml) and  Salmonella 
isolation data are shown in Example 28.3.
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28.6 PRESENTATION OF RESULTS

One of the most important outputs from a meta-analysis is a graphic presentation of the results. 
The most commonly used format is referred to as a forest plot and it displays the point estimate 
and confidence interval of the effect observed in each study along with the summary estimate 
and its  confidence  interval.  Fig.  28.2 (Example 28.4)  shows a forest  plot  for  the effects  of 
interventions on the log Salmonella counts. The elements of the plot are described in Example 
28.4.

Example 28.3 Fixed- vs random-effects models
data = salm_MA

Both fixed- and random-effects models were fit to both the  Salmonella concentration (CFU/ml) and 
isolation (no/yes) data. In all models, the inverse variance approach (Section 28.5) was used to assign 
weights to the study results.

Salmonella concentration (25 trials)
Pooled estimate 95% Cl

Method (log counts) Z P Lower Upper

Fixed -2.421 42.63 <0.001 -2.532 -2.310

Random -2.121 7.62 <0.001 -2.666 -1.576

The pooled estimate suggests that the interventions evaluated reduced the log concentration by slightly 
over  2  units.  As expected,  the  point  estimates  for  the  summary  effect  were  quite  similar,  but  the 
random-effects model produced much wider confidence intervals. However,  the  Q statistic (Section 
28.7) for heterogeneity was 542.5 with 24 degrees of freedom (P<0.001) giving strong evidence of 
heterogeneity  among  study  results.  Potential  reasons  for  this  heterogeneity  will  be  explored  in 
Examples  28.5  and  28.6.  Given  the  strong  evidence  of  heterogeneity,  the  value  of  the  summary 
estimate is questionable.

Based  on  the  random-effects  model,  the  estimate  of  the  between-study  variance  was  1.79 
(SD=√1.79=1.34) suggesting that 95% of the effects  of the interventions should lie between -2.12-
2*1.34=-4.8 and -2.12+2*1.34=0.56 logCFU/ml. Higgins I2 (Section 28.7.2) was 95.6%.

Salmonella isolation (57 trials)
Pooled estimate 95% Cl

Method (RR) Z P Lower Upper

Fixed -0.288 8.10 0.000 -0.358 -0.218

Random -0.606 6.72 0.000 -0.783 -0.429

Both models suggest that the ‘chilling’ interventions reduced the risk of Salmonella being isolated from 
the carcass,  but the point estimates  are quite different.  However,  the  Q statistic (Section 28.7) for 
heterogeneity was 214.9 with 56 degrees of freedom (P<0.001) giving strong evidence of heterogeneity 
among study results. As above, given the strong evidence of heterogeneity, the value of the summary 
estimate is questionable.

Based  on  the  random-effects  model,  the  estimate  of  the  between-study  variance  was  0.226 
(SD=√0.226=0.48) suggesting that 95% of the RRs of these ‘chilling’ interventions should lie between 
-0.61-2*.48=-1.57  and -0.61+2*.48=0.35. Higgins I2 (Section 28.7.2) was 73.9%.
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Example 28.4 Forest plot
data = salm_MA

Fig. 28.2 shows a forest plot of the estimated effects of interventions on log Salmonella concentrations. 

Studies are sorted by year of publication.

In these plots, each horizontal line represents the results from a single study. Each line is labelled with 
a unique label (the group number). The length of the line represents the 95% confidence interval for the 
parameter estimate from the study.  Note One line has been truncated at +1. The centre of the shaded 
box on each line marks the point estimate of the parameter from that study, and the area of the box is  
proportional to the weight assigned to the study in the meta-analysis. Studies with large boxes (none 
evident in this example) would have had a strong influence on the overall estimate. The dashed vertical 
line  marks  the  overall  estimate  of  the  effect.  The <> at  the  bottom of  the  dashed line  shows the 
confidence interval for the estimate of the overall effect. The solid vertical line marks the value where 
interventions would have no effect (ie mean difference in log counts=0).

As you can see, there was considerable variability among the individual study point estimates, although 
they were all negative (ie reduction in counts). This was noted previously in Example 28.3. All of the 
studies were assigned roughly comparable weights (2.81–4.27%).

Fig. 28.2 Forest plot of studies of effects of various interventions on the log 
Salmonella counts on poultry carcasses

NOTE: Weights are from random effects analysis
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In some cases, it might be desirable to order the individual studies according to some criteria 
such as year of completion (to see if there is a trend over time) or quality score (to see if study 
quality affects the observed effects).

28.7 HETEROGENEITY

Heterogeneity  refers  to  variability  among study results  (beyond  random variation)  and  this 
should always be evaluated in a meta-analysis. Unfortunately,  this is not always done—in a 
review of 34 meta-analyses carried out between 1999 and 2001, only 23 had any evaluation of 
heterogeneity (Petitti, 2001). 

28.7.1 Real vs artifactual heterogeneity

Heterogeneity  may  be  real  or  artifactual.  Real  heterogeneity  arises  when  there  are  true 
differences  in  treatment  effects  across  studies.  Artifactual  heterogeneity arises  when  the 
difference  is  only  due  to  study  design  issues,  not  to  variation  in  the  real  treatment  effect 
(Glasziou and Sanders, 2002). Study design issues, which might result in variation between 
observed effects across studies, include factors such as: duration of follow-up, reliability of the 
outcome measure (ie possibility for misclassification of the outcome), lack of blinding, and/or 
compliance.

The choice of summary measure of treatment effect can also induce artifactual heterogeneity. 
For example, Table 28.2 shows some hypothetical data from 3 studies of a treatment. If the 
effect of the treatment is assessed using a risk ratio (RR), then all 3 studies show exactly the 
same treatment effect (2.0). However, if odds ratios (OR) or risk differences (RD) were used as 
a measure of effect,  there would be substantial  heterogeneity.  In  general,  ratio measures  of 
effect are considered more stable across studies than difference measures (Schmid et al, 1998).

Table 28.2 Hypothetical data from 3 studies showing that the choice of effect measure 
can influence whether or not there is heterogeneity among study results

Controla Txa RR OR RD

0.1 0.2 2.0 2.3 0.1

0.2 0.4 2.0 2.7 0.2

0.4 0.8 2.0 6.0 0.4
a data are the proportion in each group with the outcome of interest

28.7.2 Clinical vs statistical heterogeneity

Another  important  distinction  is  between  clinical  and  statistical  heterogeneity.  Clinical 
heterogeneity means that differences between populations studied (eg study-selection criteria, 
disease severity,  specifics  of interventions)  mean that  ‘real’ differences  are expected in the 
response (Egger et al, 2001). Statistical heterogeneity means that the variation between studies 
in the observed outcome (response to treatment) was more than would have been expected due 
to chance alone. If clinical heterogeneity is always expected, 2 important questions arise. First, 
is  statistical  assessment  of  heterogeneity  warranted  or  should  the  focus  be  solely  on 
quantification of the degree  of  heterogeneity?  Second,  is  it  reasonable  to compute a  single 
summary effect estimate given that the derived value is an average effect and may not apply to 
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any  specific  population?  Certainly,  any  summary  effect  measure  must  be  interpreted  with 
caution.

Despite  the  questions  raised  above,  it  is  common  to  assess  the  statistical  significance  of 
heterogeneity and the most commonly used method is Cochran’s Q statistic. The formula is:

Q=∑
1

k

wi T i−2
Eq 28.7

where wi are the applied weights and θ is the pooled estimate (assuming a fixed effect). The null 
hypothesis tested is  ‘no heterogeneity’ (ie τ2=0 in Eq 28.5) and under this assumption, the  Q 
statistic  has  a χ2 distribution with  k-1 df (where  k is  the number  of  studies).  This  test  has 
relatively low power for detecting heterogeneity when the number of studies is small (Higgins 
et al, 2002) or if the total number of study subjects is small or the study SEs vary considerably 
(Baujat  et al,  2002). Consequently,  the possibility of heterogeneity of effects should not be 
ruled out simply because the test yields a non-significant P-value. You might want to relax the 
P-value  required  for  ‘significant  heterogeneity’ (eg 0.1  instead  of  0.05).  Alternatively,  you 
might want to evaluate the power of the test to detect heterogeneity among the studies you are 
evaluating (Hedges and Pigott, 2001; Jackson, 2006). If there is any evidence of heterogeneity, 
potential causes of that variability should be investigated (see Section 28.7.3). 

The  level  of  heterogeneity  in  a  meta-analysis  can  be  quantified  using  Higgins  I2 which 
computes the proportion of variance between studies that is due to heterogeneity as opposed to 
chance (Higgins et al, 2003; Higgins and Thompson, 2002). 

I 2=[Q−k−1 ] /Q ∗ 100% Eq 28.8

The adjectives low, medium, and high were originally assigned to values of  I2 of 25%, 50%, 
and  75%,  respectively  (Higgins et  al,  2003),  although  an  evaluation  of  possible  causes  of 
heterogeneity should be undertaken whenever the I2 is greater than 25%.

28.7.3 Evaluation of heterogeneity

There are several possible approaches to evaluating heterogeneity and these include:
• subgroup analyses
• stratified analyses
• graphical assessment
• meta-regression.

Each of these is discussed below.

Subgroup analysis
It  may be possible  to identify a specific  subgroup of studies  defined by a characteristic  of 
interest  and to focus attention on that  subgroup.  However,  results  from a specific  subgroup 
should be interpreted with caution. As a hypothetical example, consider a meta-analysis of 11 
studies of the effects of a new drug for prevention of migraine headaches on the frequency of 
migraines.  An overall  beneficial  effect  (RR=0.6)  was observed but significant  heterogeneity 
was present,  and  gender  appeared  to  be a  contributing factor.  If  most  studies  (n=10)  were 
carried out in females but the single study carried out in males found no significant beneficial 
effect (RR=1.0), what advice would you provide to doctors about treating males? Provided there 
is  no biological  basis for  expecting a substantial  difference in the treatment  effect  between 
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males  and females,  the best  estimation of  effect  in  any particular  subgroup is  provided by 
considering all of the evidence rather than just looking at the data from that  subgroup (this is 
referred to as Stein’s Paradox (Egger et al, 2001)). Consequently, the advice to males should 
probably be that the therapy is effective. In general, results from specific subgroups should only 
be considered if the intent to evaluate that  subgroup was clearly spelled out in the systematic 
review protocol (Section 28.3.2) (Higgins et al, 2002).

Stratified analysis
In a stratified analysis, the data are stratified according to a factor (which should be specified in 
the  study  protocol)  thought  to  influence  the  treatment  effect,  and  a  separate  meta-analysis 
carried out in each of the strata.  The disadvantage to this approach is that individual  strata 
might contain relatively few studies. The statistical significance of the difference between 2 
strata can be computed using a standard Z test statistic:

Z=
1−2

SE1
2SE2

2 Eq 28.9

where  θ1 and  θ2 are  the  effects’ estimates  in  the  2  strata.  (Note The  problem of  multiple 
comparisons  must  be  avoided.)  Based  on  a  fixed-effects  assumption  within  each  stratum, 
Cochran’s  Q statistic  can  be  used  to  compute  a  test  for  homogeneity  across  strata  (null 
hypothesis is that there are no stratum effects): 

QB=QT−∑Q S Eq 28.10

where QT and QS are Cochran’s Q statistics for the full data and for stratum S, respectively. QB 

can be compared with a χ2 distribution with S-1 df where S is the number of strata. However, 
this test statistic is only valid if there is no significant residual heterogeneity within any of the 
strata.  Example  28.5  presents  a  stratified  (by  disinfection)  meta-analysis  of  the  effects  of 
interventions on Salmonella concentration.

Graphical assessment of heterogeneity
Several  types  of  plot  can  be  used  to  evaluate  the  level  of  heterogeneity  and  the  possible 

Example 28.5 Stratified meta-analysis
data = salm_MA

Separate meta-analyses of the effect of interventions on Salmonella concentrations (log(CFU/ml)) on 
poultry carcasses were carried out for each of the 2 Salmonella serotypes (Typhimurium vs mixed).

Number 
of CI Heterogeneity Higgins 

Serotype studies Estimate lower upper Q P I2 (%)

Salmonella Typhimurium 21 -2.245 -2.840 -1.650 525.3 <0.001 96.2

Mixed spp. 4 -1.411 -1.941 -0.880 2.63 0.453 0

All data together 25 -2.121 -2.666 -1.576 542.5 <0.001 95.6

Serotype seems to account for some of the heterogeneity among studies, but the results are not clearcut. 
Within studies based on  Salmonella  Typhimurium, there was still strong evidence of heterogeneity. 
This was not the case in the mixed species studies, but there were only 4 in this group, so the power to 
detect heterogeneity was very low. Because of the heterogeneity within one of the strata, the QB was 
not computed to evaluate between strata heterogeneity.
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contribution of specific factors to the observed heterogeneity.  A  Galbraith plot plots the  Z 
statistic (Zi=Ti  /SE(Ti)) from each study against the inverse of its SE (1/SE). The slope of the 
resulting line is  the overall  (fixed-effect)  estimate,  and lines  ±2 units  from this line should 
encompass 95% of observations if there is no significant heterogeneity. The plot can also be 
used to identify outlying points contributing substantially to the Q statistic. Fig. 28.3 shows a 
Galbraith plot for the  Salmonella concentration data (11 of 25 (44%) of the observations lie 
outside the  ± 2 unit lines) and one extreme outlier (refid=218) is identified. Removing that 
observation  reduced  the  heterogeneity  χ2 from  542.5  to  192.5,  but  it  remained  highly 
statistically significant.

Simple scatterplots of the effect size vs a factor suspected of contributing to heterogeneity can 
be useful for evaluating that relationship. If the effect measure is a ratio measure (eg RR or OR), 
then the log of the effect should be plotted. Fig. 28.4 shows a scatterplot of the mean difference 
in Salmonella concentration vs chemical concentration in the intervention, with the size of the 
plotted  points  proportional  to  their  weights  and  the  most  extreme  outlier  identified.  There 
appears  to  be  a  trend  toward  greater  reductions  in  concentration  with  increasing  chemical 
concentration.

28.7.4 Meta-regression

The most flexible approach to evaluating causes of heterogeneity is meta-regression. A meta-
regression  is  a  weighted  regression  of  the  observed  treatment  effects  against  study-level 
predictors  (with  inverse  variance  weights  used  most  commonly for  the  weightings).  If  the 
number  of  studies  are  limited,  factors  might  be  investigated  one  at  a  time,  or  if  there  are 
sufficient data, a multivariable regression model could be built. 

Fig. 28.3 Galbraith plot for assessing heterogeneity in the effect of 
interventions on Salmonella concentration
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As  with  meta-analyses,  both  fixed-  and  random-effects  models  are  possible  (Higgins  and 
Thompson,  2004).  A fixed-effects  model assumes that  the factors  in the model completely 
explain  the  between-trial  variance  (ie the  predictors  completely  explain  the  between-study 
variance).  This  is  usually  an  unjustifiable  assumption  and  often  leads  to  Type  I  errors. 
Consequently, fixed-effects models should not be used.

A  random-effects  meta-regression  model  extends  the  random-effects  model  (Eq  28.4)  by 
adding predictors; eg a model with a single predictor can be written as:

T i=ui1 X 1i i Eq 28.11
with: ui~N 0,2 and i~N 0,V i Eq 28.12

where ui are the random-effects for each study and τ2 is the between-study variance. Estimation 
of  τ2 can be based on the same methods as for Eq 28.4 (ie MM, ML, REML and EB). ML 
estimates may be biased downward because the ML estimation procedure does not take into 
account the degrees of freedom used in estimating the fixed effects (Sidik and Jonkman, 2007). 
Example 28.6 shows a meta-regression of the effects of: publication date, study design, study 
population, intervention type, and disinfectant type on the logRR of Salmonella isolation.

There  are a number of issues to be considered when carrying  out meta-regression analyses 
(Thompson and Higgins, 2002). First, it must be recognised that meta-regression analyses are 
observational  studies,  even  if  the  individual  studies  in  the  meta-analysis  were  randomised 
controlled trials. Consequently,  the role of confounding and intervening factors  needs to be 
considered.  For example,  type  of  intervention  (-intrv-)  was  one of  the  factors  evaluated  in 
Example 28.6. Both types of intervention evaluated and the resistance of  Salmonella strains 

Fig. 28.4 Scatterplot of the mean difference in Salmonella concentration vs 
chemical concentration (categorised). Areas of circles are proportional to the 
weight assigned to each study in a fixed-effects meta-analysis
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may  change  over  time,  so  publication  year  (categorised)  was  forced  into  the  model  as  a 
potential confounder.

Second, the significance of individual predictors needs to be carefully considered. Knapp and 
Hartung  (2003) introduced a variance estimator that  produced CI with better coverage  than 
standard estimates. However, when there are few studies, even this approach is too conservative 
and a non-parametric  permutation approach may be preferred  (Harbord and Higgins,  2008). 

Example 28.6 Meta-regression for evaluating causes of heterogeneity
data = salm_MA

A meta-regression was  carried out  to  evaluate  the  effects  of  publication date,  study design,  study 
population,  intervention type,  and disinfectant  type on the logRR of  Salmonella isolation.  (See the 
dataset description in Chapter 31 for an explanation of the various intervention and disinfectant types.)

REML estimate of between-study variance     Number of obs = 170
     τ2 = .2571

Higgins I2  = 75.74%
Model F(17,152) = 4.33

Prob > F =  0.000
Coef SE t P>t 95% CI

pub. year 1980s 0.006 0.332 0.02 0.985 -0.649 0.661

pub. year 1990s 0.089 0.293 0.30 0.762 -0.490 0.667

pub. year 2000s -0.126 0.308 -0.41 0.683 -0.734 0.482

design=2 0.042 0.221 0.19 0.851 -0.396 0.479

design=3 -0.477 0.418 -1.14 0.255 -1.302 0.348

design=4 -0.208 0.245 -0.85 0.397 -0.693 0.277

pop. uncontam. 2.778 0.886 3.13 0.002 1.027 4.529

interv.=2 0.364 0.266 1.37 0.174 -0.162 0.889

interv.=3 0.385 0.304 1.27 0.207 -0.215 0.986

interv.=4 -0.388 0.220 -1.76 0.080 -0.824 0.047

interv.=5 -0.055 0.246 -0.22 0.824 -0.541 0.432

interv.=6 0.544 0.352 1.55 0.124 -0.151 1.240

disinfect.=1 0.435 0.433 1.01 0.316 -0.420 1.291

disinfect.=2 -0.850 0.358 -2.38 0.019 -1.556 -0.144

disinfect.=3 0.494 0.299 1.65 0.100 -0.097 1.085

disinfect.=4 0.238 0.313 0.76 0.448 -0.380 0.856

disinfect.=5 0.137 0.323 0.42 0.672 -0.501 0.774

constant -0.732 0.430 -1.70 0.090 -1.581 0.116

The overall  model  was  highly significant  (P<0.001).  Neither  publication year  nor study type  were 
significant,  but these were forced into the model as potential confounders. The overall  P-values for 
study population, intervention type, and disinfectant type were all <0.02. The  τ2

 
value (0.257) is the 

estimate of the between-study variance after adjustment for the predictors in the meta-regression. The τ2 

for the null model was 0.310 showing a modest reduction in unexplained variation by the predictors.
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There is also the issue of multiple comparisons. Meta-regressions may evaluate a large number 
of  predictors  perhaps  based  on a fairly  small  sample of  studies.  This  greatly  increases  the 
probability of finding one or more significant associations due to chance alone  (Higgins and 
Thompson, 2004). Some adjustment (eg Bonferroni or an adjustment based on a permutation 
approach to computing P-values  (Harbord and Higgins,  2008)) for the number of predictors 
being evaluated may be necessary. 

Finally,  the  potential  for  ecological  fallacies  must  be  considered  (see  also  Chapter  29). 
Predictors  in  a  meta-regression  are  study-level  values  and  these  may represent  study-level 
averages for individual study-subject-level characteristics (eg average pre-treatment Salmonella 
levels for birds in the study). A relationship observed at the study level may not be true at the 
study-subject  level.  Meta-analyses  based  on  IPD are  much  better  suited  for  evaluating  the 
effects of individual-level characteristics.

28.7.5 Underlying risk as a cause of heterogeneity

If the outcome of interest is binary, one potential cause of heterogeneity that deserves special 
consideration is the  underlying risk, as measured by the risk in the control group.  In  each 
study, the risk of disease in the control group is a reflection of the overall risk in the population 
being studied. It is important to address the question—is the treatment more or less effective 
when disease is rare vs common? This issue can be examined graphically using a L’Abbé plot 
which plots the risk in the treated group vs the risk in the control group (Song, 1999). If there is 
little heterogeneity, the points will cluster around a line corresponding to the pooled treatment 
effect (RR). Fig. 28.5 shows a L’Abbé plot for the intervention—Salmonella isolation data with 
the size of  the points proportional  to the sample size of  the study.  It  is  clear  that  there  is 
substantial variation around the line corresponding to the pooled treatment effect.

Fig. 28.5 L'Abbé plot for the Salmonella isolation meta-analysis
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Underlying risk seems like an ideal  candidate to consider as a source of heterogeneity in a 
meta-regression. Unfortunately,  there is a structural  dependence between the underlying risk 
(risk  in  the  control  group)  and  the  risk  ratio  because  the  latter  includes  the  former  in  its 
calculation. Studies with a low risk in the control group are more likely to have higher risks in 
the treatment  group (or  vice  versa)  due to  random variation.  As a  result  of  this  structural 
dependence,  standard  meta-regression  methods are  not  a  good option for  evaluation of  the 
effect  of  underlying  risk.  A  recent  study  (Dohoo et  al,  2007) compared  3  methods  (both 
Bayesian and frequentist) for evaluating the effects of underlying risk. The overall conclusions 
were:

• if  underlying  risk  does  contribute  to  heterogeneity,  the  estimate  of  the  intervention 
(treatment) effect from an ordinary random-effects meta-analysis will be biased, but the 
bias is not generally large

• one  of  the  3  methods  was  generally  recommended  (because  it  required  fewer 
assumptions)

• Bayesian  methods were  very flexible  and provided  direct  estimates  of  the SE of  the 
predictors

• frequentist methods worked better if there were few studies.

The  overall  conclusion  was  that  it  was  probably  reasonable  to  start  with a  standard  meta-
regression and use one of the 3 more complex methods described as a final step if there was 
evidence that underlying risk explained any of the heterogeneity. (Note Addition of risk in the 
control group as a predictor to the meta-regression in Example 28.6 showed it  to be highly 
significant predictor (data not shown). However, the reader is referred to  Dohoo et al  (2007) 
for details of how to handle this situation.)

28.8 PUBLICATION BIAS

When carrying out a meta-analysis,  you need to consider  whether  it  is likely that  there are 
studies that have been completed,  but for which the results have not been published. Study 
results that are not statistically significant or which are unfavourable to the sponsor of the study 
might  be  less  likely  to  be  published  than  significant,  favourable  results  (Dickersin,  1997). 
Consequently, published studies may represent a biased subset of the total body of work on the 
subject  (Hopewell et al, 2007). Unfortunately,  it is often very difficult to obtain unpublished 
study  results.  However,  if  you  have  any  indication  that  unpublished  results  constitute  a 
substantial portion of data available, then you should make an effort to obtain them. On the 
other hand, one argument against including unpublished results in a meta-analysis is that those 
results  have  not  been  peer  reviewed  and  thus,  do  not  have  one  of  the  key  components  in 
assuring data quality.

There are 3 general approaches to dealing with the problem of publication bias. The first, as 
described above, is to contact investigators directly to obtain unpublished results, or to at least 
determine how many unpublished results there are. A second approach is to estimate how many 
studies with ‘null’ results (ie no observed effect) would have to exist before a summary effect 
from your meta-analysis would become non-significant.  This approach is less recommended 
because it focuses on hypothesis testing (is there an effect or not?) rather than on estimating the 
magnitude of the overall effect.

The third approach is based on an evaluation of the relationship between study results and their 
precision. A  funnel plot displays  each study’s  SE (or its inverse (1/SE)) plotted against  its 
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estimated effect. If publication bias is a problem, there will likely be a number of studies with 
large effects and large SEs but an absence or shortage of studies with large standard errors and 
small or no effects. For example, Fig. 28.6 in Example 28.7 shows a funnel plot from the meta-
analysis of the Salmonella concentration data. There appears to be a shortage of studies with 
large treatment effects (negative values) which runs contra to what we expect if publication bias 
is an issue.

There are a number of statistical tests based on the principle of the funnel plot. These evaluate 
the relationship between study results and their SEs using a rank correlation (Begg’s test: (Begg 
and Mazumdar, 1994)) or a linear regression approach (Egger’s test: (Egger et al, 1997)). Both 
tests standardise the observed effect sizes prior to evaluation of the association with the SE. 
Neither test is very sensitive if the number of studies is small (eg <20)  (Sterne et al, 2000) 
although, in general, Egger’s test is more powerful at detecting publication bias. Both tests may 
also produce false positive results in situations in which there are large treatment effects, few 
events per trial, or all trials are of similar size. If either test is significant, publication bias might 
be influencing your results. However, the tests are only appropriate when you expect either a 

Example 28.7 Funnel plot for evaluation of publication bias
data = salm_MA

A funnel plot for the Salmonella concentration meta-analysis was generated (Fig. 28.6). It appears that 
there is a shortage of studies with substantial negative (ie beneficial) treatment effects (possibly with 
both small and large SEs). This runs against the usual assumption about publication bias which would 
suggest that it is usually studies with small or undesirable treatment effects which do not get published. 
The  plot  clearly  identifies  study  id=29  as  an  outlier  with  a  very  large  reduction  in  Salmonella 
concentration.

Begg’s test of publication bias has a P-value of 0.726; Egger’s has a P-value of 0.073. The fact that 
neither achieves statistical significance may be due partly to the relatively small sample size (n=25).

Fig. 28.6 Funnel plot
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positive or negative effect from the intervention (not both). If either positive or negative effects 
are of equal interest, any publication bias would produce a ‘gap’ in the ‘middle’ of the funnel 
(studies with null effects are less likely to be published) which would not likely be detected.

A  ‘trim-and-fill’ method  (Duval  and  Tweedie,  2000) of  assessing  the  effect  of  possible 
publication bias is based on the following steps.

• ‘Trim’—Produce a funnel plot and then sequentially omit studies until it is considered 
symmetrical
• Determine the centre of this new ‘symmetrical’ plot (ie a new estimate of the treatment 

effect)
• ‘Fill’—Replace the omitted studies along with their  ‘counterparts’ (hypothetical studies 

of the same SE but on the other side of the centre line
• Redo the meta-analysis using the original data plus the new hypothetical studies.

This  provides  an  estimate  of  what  the  treatment  effect  would  be  if  all  studies  had  been 
published.  Example  28.8  shows  a  ‘trimmed-and-filled’ funnel  plot  and  how  the  estimated 
treatment effect is substantially increased by the addition of the hypothetical studies. 

Methods of evaluating publication bias are an active area of research and some recent areas of 

Example 28.8 ‘Trim-and-fill’ evaluation of publication bias
data = salm_MA

Duval and Tweedie’s ‘trim-and-fill’ method was applied to the funnel plot generated in Example 28.7. 
This procedure identified 3 additional hypothetical  studies (marked as  ‘+’ on Fig. 28.7) required to 
make the funnel plot symmetrical. It appeared that there was a shortage of studies with large (negative) 
treatment effects. This runs against the usual assumption about publication bias which would suggest 
that it is usually studies with small treatment effects which do not get published. In this example, the 
estimated intervention effect is increased in magnitude from -2.12 to -2.30 by the addition of the 3 
hypothetical studies.

Fig. 28.7 Funnel plot with 'filled data points' added
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investigation  are  described  in  Sutton  and  Higgins  (2008).  However,  we  caution  that  the 
assessment of funnel plots is subjective and asymmetry is not easy to detect (Terrin et al, 2005). 
In  addition,  factors  other  than  publication  bias  can  produce  asymmetry,  so  overly  strong 
interpretation of funnel plots and tests of publication bias should be avoided.

28.9 INFLUENTIAL STUDIES

As in most regression-based models, it is important to determine if individual studies are having 
a profound influence on the summary estimate derived from a meta-analysis. If they are, you 
need to determine whether or not this is warranted. It might well be that one study was much 
larger than the others and consequently provides a much more precise estimate of the effect. In 
this situation, you need to evaluate that study to determine if it was of sufficiently high quality 
that you can accept the results.

One way to evaluate the effects of individual studies is to sequentially delete the studies from 
the meta-analysis and determine how the estimate of the summary effect  changes (Example 
28.9). 

28.10 OUTCOME SCALES AND DATA ISSUES

Published manuscripts vary substantially in how much data they provide and how they present 
them. This gives rise to a number of data-related issues which include:

• methods for computing standard errors (SE)
• dealing with continuous outcomes that may be measured on different scales
• combining data from studies that use continuous and dichotomous outcomes
• imputing missing variance estimates
• imputing 2X2 table cell frequencies
• dealing with sparse data.

All of these will be dealt with below. However, regardless of the method(s) actually used, it is 

Example 28.9 Influential studies 
data = salm_MA

Several previous figures and examples have identified the trial with -refid-=218 as an outlying,  and 
potentially  influential,  observation.  Random  effects  meta-analyses  were  conducted  including  and 
omitting this trial. 

Meta-
analysis

Number of 
studies Estimate

CI Heterogeneity Higgins

lower upper χ2 P I2 (%)

all trials 25 -2.121 -2.666 -1.576 542.5 <0.001 95.6

without 218 24 -2.011 -2.375 -1.646 192.5 <0.001 88.1

Although this trial was the most heavily weighted in the meta-analysis including all observations, it 
only had a weighting of 4.27%. Removal of this study reduced the magnitude of the overall effect by 
about  5%. It  also reduced the between  study heterogeneity,  but  this  remained very large (Higgins 
I2=88.1%). Given the high level of heterogeneity, the overall summary estimate is of little use, so it is 
just as important to note that some characteristic of this trial led it to have the most dramatic reduction 
in Salmonella concentrations.
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of paramount  importance  to  ensure  that  any data modifications  undertaken  are  biologically 
sensible.  For  example,  if  data  from different  scales  are  combined,  it  is  necessary that  they 
measure the same effect. Similarly, if data values are imputed, one should always check that the 
resulting values are reasonable and do not end up as influential values in the analysis.

28.10.1 Methods of computing standard errors 

If a study reports a confidence interval but not a SE, the SE can be estimated as

SE=UL−LL
2Z 1−/2 Eq 28.13

where  UL and  LL  are  the  upper  and  lower  limits  of  the  CI  respectively.  For  a  95% CI,
Z1-α/2=1.96. (Note For small sample sizes, a t statistic should be used instead of a Z statistic.) For 
ratio measures (eg θ=RR or OR), the SE must be determined for ln(θ), and is estimated from the 
CI for ln(θ).

Occasionally,  a study reports grouped data or raw values, and it is necessary to compute the 
effect  measure of interest and its SE. For dichotomous outcomes, formulae for measures of 
association (RR,  OR,  RD) and their SE are presented in Chapter 6. For continuous outcomes, 
the main measures which you may need to compute follow.

MD i=m1 i−m2 i Eq 28.14

where m1i and m2i are the mean values in groups 1 and 2, respectively, in study i.

SE MDi=SD1i
2

n1 i


SD2 i
2

n1 i Eq 28.15

where the SDs and ns are the group-specific standard deviations and sample sizes for study i. 
For some computations (see Section 28.10.2), it is necessary to compute a pooled SD (si).

si= n1 i−1 ∗SD1 i
2 n2 i−1∗SD2 i

2

n1in2 i−2 Eq 28.16

28.10.2 Continuous outcomes measured on different scales

You sometimes encounter studies which have evaluated comparable outcomes, but which have 
used different scales to do so. For example, when carrying out a meta-analysis of studies into 
the effects of various types of power toothbrush on dental plaque (Deacon et al, 2010) needed 
to be able to include studies which measured plaque using different scales or indices (and for 
which  no  mathematical  conversion  possible).  The  solution  to  this  problem  is  to  compute 
standardised mean differences which, for each trial, expresses the treatment effect relative to the 
variability observed in the outcome in the trial. The resulting measure is often referred to as an 
effect size (ES) and there are 3 common methods of computing it.

Cohen’s d relates the mean difference to the pooled SD of the 2 groups.

d i=
m1i−m2 i

si  
SE d i= N i

n1 i n2 i


d i
2

2 n1in 2i−2  Eq 28.17

where si is the pooled SD (Eq 28.16).
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Hedges’ adjusted g is a similar measure but includes a small sample adjustment.

gi=
m1i−m2 i

si 1− 3
4 n1 in2 i−9  

SE gi= N i

n1 i n2 i


g i
2

2 n1in2 i−3.94 Eq 28.18

Glass’s Δ scales the difference by the SD in the control group. It is the preferred measure if the 
intervention affects both the mean value of the outcome and its variability.

i=
m1 i−m2 i

SD2 i  
SE i= N i

n1i n2 i


i
2

2 n2 i−1 Eq 28.19

Methods of combining results when studies report outcomes using a mixture of raw and log-
transformed scales have recently been published (Higgins et al, 2008). These methods are also 
useful even when all results are presented on the raw scale but have highly skewed results (eg 
mean microbiological  counts).  In  this case,  log-transformation may be required to meet the 
assumption of normal distribution of values used in meta-analyses. It was one of the methods 
described  in  Higgins’ paper  which  was  used  to  compute  log-transformed  estimates  of 
Salmonella concentration differences in the data used in examples in this chapter.

28.10.3 Combining continuous and dichotomous outcomes

In some situations, it may be necessary to combine outcomes measured on a continuous scale in 
some studies and a dichotomous scale in others. One approach to this problem is to compute an 
effect size from the 2x2 tables in the studies with a dichotomous outcome (ie convert the RD, 
RR or  OR into an ES). Seven approaches to this computation have been evaluated  (Sánchez-
Meca et al,  2003) with the most  widely applicable being one attributed to Cox in which a 
ln(OR)  is  converted  to  an  effect  size  (dCox=ln(OR)/1.65)  with  its  associated 
SE=SE(ln(OR))/1.65.

An alternative approach is to dichotomise the results from the studies based on a continuous 
outcome based on a selected cutpoint. The disadvantages of this approach are that it only works 
if all studies with continuous outcomes used the same scale (or you need to select a cutpoint for 
each scale used) and any dichotomisation involves a loss of information.

28.10.4 Imputing missing variance estimates

If studies with continuous outcomes fail to report either the SE of the mean difference, or the 
SDs for the study groups, you need to come up with an estimate of the precision of the mean 
difference if the study is to be included in the meta-analysis. There are multiple approaches to 
dealing with this problem (Thiessen et al, 2007; Wiebe et al, 2006). If either a P-value or a test 
statistic for the difference between the 2 groups is given, the SE can be computed from standard 
statistical formulae. If only a range was reported for the P-value (eg P<0.05), you can take a 
conservative approach and use the largest possible P-value.

An alternative approach is to ‘borrow’ a SE estimate from other studies. This can be done by 
choosing the largest SE reported (conservative), using the mean SE from all other studies or 
imputing the SE based on study characteristics (usually done using a linear regression model). 
Using a  ‘borrowed’ SE has been found to perform acceptably  (Furukawa et al, 2006) and is 
preferable to omitting studies with missing SEs from the meta-analysis.
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28.10.5 Imputing 2x2 table cell frequencies

Some meta-analysis procedures for dichotomous outcomes require 2x2 table cell frequencies, 
not just an effect measure (eg ln(OR)) and its SE. For example, without cell frequencies, the 
only weighting method which can be used is the inverse variance approach and it has some 
limitations (see Section 28.5.1). Algebraic methods of imputing cell frequencies from an effect 
measure (RD, RR, or OR), their CI (or variance), and their sample size have been reported (Di 
Pietrantonj,  2006).  The  accuracy  of  the  estimation  depends  on  the  precision  of  the  CI  (or 
variance) reported and the width of the CI (wider CI leads to better imputation). It also depends 
on the number of significant digits to which the CI is reported,  but is generally adequate if 
reported to 2 decimal places.

28.10.6 Dealing with sparse data

You may encounter situations in which there are zero events in one or both of the intervention 
groups (eg if adverse reactions are one of the outcomes assessed in a meta-analysis of RCTs). If 
there  are  zero  events  in  both  groups,  the  study  can  be  ignored  because  it  contains  no 
information. If there is a zero in one group, the impact will depend on the method of pooling. If 
inverse variance weights are used, the lnOR or lnRR are undefined. Mantel-Haenszel weighting 
may not be possible but the Peto method is not affected.  Sweeting  et al (2004) review and 
evaluate different continuity adjustments that can be used to deal with the problem of sparse 
data (details beyond the scope of this text) and Rücker et al (2009) propose the use of arcsine 
differences as an alternative.

28.11 META-ANALYSIS OF OBSERVATIONAL STUDIES

While meta-analyses have more commonly been used for combining results from RCTs, meta-
analyses  of  observational  studies  are  becoming  more  common  and  are  equally  important 
(Dickersin,  2002;  Egger et  al,  2001).  One notable  example is  the  1964 Surgeon General’s 
Report on Smoking and Health  (Surgeon General,  1964) in which the effect  of smoking on 
cancer risks from 7 cohort studies were evaluated. There are a number of reasons why the use 
of meta-analysis lags behind that of RCTs (Dickersin, 2002). 

• There  has  been  less  research  into  meta-analysis  methods  applicable  to  observational 
studies. 

• There is not yet a register of observational studies being conducted.
• Efforts to standardise methods of reporting of observational  studies (eg the STROBE 

Statement (von Elm et al, 2007)) are very new.
• Causal criteria need to be considered (see  Section 1.10). A meta-analysis may enhance 

the  statistical  evidence  and  an  evaluation  of  heterogeneity  gives  insight  into  the 
consistency of results, but other criteria also need careful consideration.

Observational studies are prone to a wide range of biases and there is a risk that a meta-analysis 
may lend spurious precision to questionable results (Egger et al, 1998). Consequently, the focus 
of  a  meta-analysis  of  observational  studies  should  be  an  evaluation  of  heterogeneity  and 
developing an understanding of why results vary across studies. Study characteristics such as 
study type (cohort vs case-control), study quality characteristics (eg compliance, blinding etc) 
and population restrictions should be considered as sources of heterogeneity.
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Despite the limitations noted above, methods used in the meta-analysis of RCTs are generally 
applicable to meta-analyses  of observational  studies.  However,  before embarking on such a 
review, it is important to think about the important ways in which observational studies differ 
from RCTs and how these will affect a meta-analysis.

28.11.1 Observational studies vs RCTs—bias

As has been noted throughout this text, observational studies are more prone to a variety of 
biases than RCTs. Consequently, it is particularly important that a meta-analysis not provide a 
sense of statistical certainty when the contributing studies suffer from serious biases.

In theory, confounding is not possible in a RCT provided that random allocation has been done 
properly, there is good compliance, and the sample size is large (residual confounding from an 
uneven distribution of a factor across the intervention groups may remain, in small trials). Large 
sample size in an observational study provides no such guarantee that confounding does not 
occur. A common confounder may affect all studies being evaluated.

Similarly, RCTs have little opportunity for selection bias because both the treatment and control 
groups should be representative of the target population provided random allocation has been 
carried out. The same is not true for observational studies (see Chapter 12).

In RCTs, there should not be any misclassification of exposure (ie intervention) although there 
may be substantial misclassification of the outcome. However, assuming equal follow-up of the 
2  study  groups,  this  latter  misclassification  should  be  non-differential  (see  Section 12.6.1) 
meaning any bias will be toward the null. On the other hand, observational studies may have 
misclassification of both exposure and outcome and it may be differential or non-differential.

28.11.2 Observational studies vs RCTs—exposure

While the intervention (exposure) may vary across a set of RCTs in some important aspects (eg 
dose, duration of administration), exposure factors are likely to be much more variable across 
observational studies in which the exposure is not under investigator control. While most RCTs 
evaluate a single exposure, this limitation does not affect longitudinal and case-control studies 
which may evaluate a number of possible exposures. While exposure in RCTs is usually known 
with certainty, exposure level in observational studies is often only recorded in broad categories 
(eg smoking: 0, 1–10, 11–20, or 21+ cigarettes per day) and these categories may vary across 
studies. Given that exposure may vary across a wide range, it may be necessary to consider 
methods for evaluating dose-response evaluations (Dumouchel, 1995).

28.11.3 Observational studies vs RCTs—outcome

In RCTs, the outcome is not as likely to be a rare event (see  Section 28.10.6) as it is in an 
observational  study.  Consequently,  specific  methods  for  dealing  with  sparse  data  may  be 
required in a meta-analysis of observational data (Austin et al, 1997) (but are beyond the scope 
of this text).

Because confounding is not likely to be a serious problem in RCTs, it is often not necessary to 
compute estimates of effect  adjusted for potential confounders.  In  a meta-analysis based on 
observational studies, this is often very important. If  only unadjusted estimates of effect  are 
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available, it may be important to adjust these using some form of external adjustment factor.

RRa=RRu /U  U =RRu/RRa Eq 28.20

where  RRa=adjusted  RR,  RRu=unadjusted  RR, and  U=measure of confounding bias.  U can be 
estimated from studies which report both the RRa and the RRu.. (For models on a log scale (eg 
logistic model), U=βu-βa).  For further details, see Chapter 33 of Rothman et al (2008).

28.12 META-ANALYSIS OF DIAGNOSTIC TESTS

Meta-analysis of studies evaluating diagnostic tests is currently an area of considerable research 
interest  and  requires  some  special  considerations.  A  few  of  the  important  issues  will  be 
identified here, but the reader is referred to other sources for a more detailed coverage of this 
topic  (Egger et al, 2001, Chapter 14;  Devillé et al, 2002; Harbord et al, 2007; Whiting et al, 
2003; Whiting et al, 2006; Zamora et al, 2006).

First, it is important to note that there are many aspects of diagnostic test performance which 
might be summarised in a meta-analysis. In addition to sensitivity (Se) and specificity (Sp), one 
might  include  likelihood  ratios,  repeatability,  reproducibility,  or  other  measures  of  test 
performance  (see  Chapter  5).  Second,  most  meta-analysis  procedures  for  diagnostic  test 
evaluation studies require that group data (2x2 table cell frequencies) be available in addition to 
point estimates and SEs (eg of Se and Sp).

In  general, if estimates of  Se and  Sp are reasonably homogeneous across studies, it  may be 
possible  to  use  standard  meta-analysis  techniques  to  compute  summary  estimates  of  test 
performance. For this to be possible, 2 criteria will probably need to be met. First, the test being 
evaluated should be consistently compared with a good reference test. If studies use a variety of 
reference tests, it is very likely that there will be considerable variation in the Se and Sp of the 
test being evaluated. Second, if the test result is measured on a continuous (or ordinal) scale, a 
consistent cutpoint needs to be used across all studies. If different cutpoints are used, then there 
will almost certainly be considerable variation in the Se and Sp estimates. Note Satisfying these 
2 criteria certainly does not ensure that study results will be homogeneous.

Given  the  inverse  relationship  between  Se and  Sp,  a  summary  measure  of  diagnostic  test 
performance  that  combines  information  about  both  Se and  Sp would  be  useful.  One  such 
measure is the diagnostic odds ratio (DOR) (Glass et al, 2003). It can be computed as:

DOR= TP∗TN
FP∗FN

=
 Se

1−Se 
 1−Sp

Sp 
= LR+

LR -

Eq 28.21

where TP, TN, FP, and FN are the number of true positives, true negatives, false positives, and 
false negatives in a study and LR+ and LR- are the likelihood ratios of positive and negative test 
results. It is often necessary to add a small quantity (often 0.5) to each of the 4 values to avoid 
computational difficulties. The larger the DOR, the stronger the diagnostic evidence provided 
by the test (a value of 1 indicates no diagnostic ability at all).  DORs are sometimes pooled in 
meta-analyses to provide an overall evaluation of the test’s capabilities. While the DOR has the 
advantage of combining the Se and Sp into a single measure, it must be remembered that it does 
not distinguish between tests with high Se and low Sp versus low Se and high Sp.
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28.13 USE OF META-ANALYSIS

As indicated, the most common use of meta-analysis is for summarising data from a series of 
controlled trials. As previously noted, results from a meta-analysis of randomised controlled 
trials  are  generally  considered  to  be  the  ‘gold  standard’ in  terms  of  information  to  guide 
therapeutic and prophylactic procedures.

Meta-analysis can also be used in research programmes. They might either serve as a ‘definitive 
study’ by combining the results from many previous studies or they can be used to help design 
future studies by providing the best estimate of effect for use in sample-size calculations. If a 
series of studies is being conducted, the results of a meta-analysis can also provide a ‘stopping 
rule’  by identifying when sufficient  evidence of the efficacy of a product exists to warrant 
halting research on it. In this situation, a cumulative meta-analysis is a useful tool. It shows how 
the pooled estimate changed as each new study was added. A meta-analysis might also identify 
factors that strongly influence study results (ie  contribute to heterogeneity)  and guide future 
research into those effects.

Meta-analysis can also be used to help guide policy decisions. For example, when addressing 
the question of whether or not to register recombinant bovine somatotropin (rBST) for use in 
dairy cattle, Health Canada commissioned reviews by both medical and veterinary panels of 
experts. The meta-analysis of the effects of rBST on dairy cattle health and production (Dohoo 
et al, 2003a; 2003b) was one of the key pieces of information used by Health Canada when 
making a decision regarding the registration of the drug for use in Canada (in this case the 
decision was to not register the drug).

Guidelines for reporting of systematic reviews and meta-analyses have been published as the 
PRISMA Statement (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 
(Liberati et al, 2009; Moher et al, 2009).
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