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ECOLOGICAL AND GROUP-LEVEL STUDIES

OBJECTIVES

After reading this chapter, you should be able to:

 1. List the 3 major categories of variable used in ecologic models, describe their attributes, and 
apply these to a specific research question.

 2. Describe  the  constructs  of  a  linear  model  at  the  individual  and  group  levels  and  the 
constraints on estimating incidence rate ratios at the group level.

 3. Describe  how  within-group  misclassification,  group-level  confounding,  and  group-level 
interaction can effect causal inferences.

 4. Describe the basis of the ecologic and atomistic fallacies.

 5. Identify scenarios where ecologic studies are less likely to produce cross-level inferential  
errors.

 6. Describe how to integrate individual-level studies with ecologic studies to prevent cross-
level inferential errors

 7. Describe the rationale for using non-ecologic group-level studies in epidemiologic research.
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29.1 INTRODUCTION

Up until this point in our text, our interest has focused on studies where the exposure, outcome,  
and confounders are measured and analysed at the individual level. Here, we cover studies in 
which  groups  of  subjects  are  sampled  and  the  exposure,  outcome,  and  confounders  are 
measured and analysed at  the group level,  but  the researcher  wishes to make inferences to 
individuals.  Epidemiologists  call  these  ecologic  studies (see  Examples  29.1  and  29.2) 
(Greenland  and  Robins,  1994;  Levin,  2006).  In  most  instances  the  grouping  is  based  on 
geographic and/or administrative areas, in increasing size, such as townships, counties, districts, 
provinces, and nations, or the groupings are based on organisational units such as schools or 
work-place/industry.  For example, in Example 29.1 the unit is the county, in Example 29.2 it is 
the state. In other studies, the grouping might be based on areas defined by weather, or level of  
air/water  pollutant;  the  researchers  then  might  wish  to  use  spatial  correlations  to  ascertain 
possible effects of the exposures (Blanchard et al, 2011). In essence, ecologic studies are cluster 
samples  (see  Chapter  2;  individuals  are  units  of  concern)  but  all  exposure,  outcome,  and 
confounder  measurements  are  made at  or  summarised  to  the  cluster  (group)  level,  not  the 
individual.  Ecologic studies often serve as a useful step in the evolution of research, providing 
preliminary information that requires more definitive research designs to make progress (Savitz, 
2012).  Most  often  for  epidemiologists  the  outcome is  a  health-related  condition,  including 
traditional  ‘disease’,  but  also outcomes such as  parasuicide  (Newman and Stuart,  2005),  or 
behaviour (Lee and Cubbin, 2009) have been used.

Between individual-level  and ecologic  studies,  there  is  a  collection of  study designs  where 
either the exposure or outcome is measured at the individual level, while the other variable(s) is  
measured at the group level and the researcher wishes to make inferences to individuals. These 
are called partial ecologic studies (Webster, 2002). 

The primary analytic feature, and greatest limitation, of ecologic studies is that we do not know 
the joint distribution of both the risk factor(s) and the disease at the individual level within each 
group. Although we know the proportion exposed to each factor and the risk, or rate, of cases  
for each group, we do not know the proportion of exposed cases within the group. Typically 
this is because we lack individual-level data on the risk factor, the disease, or both (Rothman et  
al, 2008). For example in Example 29.1 we do not know the distribution of water arsenic levels 
to which  cancer and non-cancer patients were exposed.

Ecologic studies have been sub-classified depending on whether or not the exposure of interest  
is measured directly. For example, the study might be called exploratory if there is no direct 

Example 29.1  Ecologic associations between arsenic levels in ground water and cancer 
incidence in Idaho

County-level data on cancer incidence data (1991–2005) from the Cancer Data Registry of Idaho and 
arsenic levels in ground water (1991– 2005) from the Idaho Department of Environmental Quality were  
used (Han et al, 2009).  The authors calculated age-adjusted incidence rates (adjusted to the US 2000  
standard population) for  specific  cancers,  and all  malignant  cancers combined.  Multivariable linear 
regression analysis was applied to evaluate the relationship between arsenic levels in ground water and  
cancer incidence. When adjusted for the proportion of people in each county for each of race, gender,  
smoking,  body mass index (<25), and population  density/mile2,  no relationship was found between 
arsenic levels in ground water and cancer incidence.
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measure of the exposure of interest or if there is no specific exposure variable being studied. 
For  example,  if  a  study  portrayed  the  rate  of  disease  (eg  E  coli 0157  in  humans)  by 
administrative area, we might use previous knowledge of local features (eg cattle density in the 
area) as a surrogate, to explain the observed spatial variation in rates of disease, even though  
there was no direct measurement of cattle density in the study. Conversely,  ecologic studies 
might be called analytic if the exposure factor is measured and included in the analysis. 

In general, ecologic studies can be conducted using the same approaches as used for studying 
individuals; namely by:

(1) comparing the frequencies of exposure and disease among a number of groups at a given 
point in (or during a limited period of) time, similar to cross-sectional studies, or 

(2) estimating the changes in both exposure and disease frequencies during a given period in 
one or more groups (often in just one group) as in cohort or case-control studies, or 

(3) a combination of the 2 types. 

If  the  groupings  contain  small  numbers  of  people,  or  the  groups  are  highly  variable  in 
population-size,  the  analysis  should  account  for  the  different  precision  of  disease  rates  by 
group. Spatial analysis might require adjustment for spatial correlation. Short term temporal 
studies might need to adjust for a lag period between exposure and disease occurrence, whereas, 
studies that cover an extended period of time might have to account for, and try to separate, the 
age,  period,  and  cohort  effects  on  the  outcome,  as  well  as  taking  account  of  changes  in 
diagnostic  standards.  Attempts  to  separate  age,  period,  and  cohort  effects  lead  to  an 
identifiability  problem  as  these  3  components  are  interlinked  and  cannot  be  assessed 
independently  (see  Osmond and Gardner  (1989);  Robertson et  al (1999) for  a  discussion). 
Studies that combine both among-group and temporal approaches for identifying associations 
should provide a more thorough test of hypotheses than either approach alone. We begin our 
discussion of ecologic studies by asking ourselves, “why study groups?”, especially if we want 
to make inferences to individuals?

29.2 RATIONALE FOR GROUP-LEVEL STUDIES

If the grouping (eg census tracts, cities, or nations) are the unit of interest, these are not ecologic 
studies. The recent increase in the use of spatial statistics often focuses on large aggregates of 
people such as cities, districts, watersheds, and so forth. Providing the variables are measured at 
the group level  and any inferences are  directed  towards  this  level,  this  poses  no particular 
inferential problem. See Section 29.9 for further discussion of non-ecologic group-level studies. 
However, if the intent is to make inferences about individuals based on the results from the 

Example 29.2 Bladder cancer incidence rates compared with ecologic factors among 
states in America

Bladder cancer mortality rates for all states from 2000 to 2003 were age adjusted to the US population 
for the year 2000 (Colli and Kolettis, 2010). Predictors, included age-adjusted data for the percent of 
the people among states who were former smokers or lacked health insurance, mean monthly UV index  
values, and the percent of the population who received drinking water from a surface water supply (as  
opposed to groundwater). A multivariable linear regression analysis  was used to determine the best fit  
model  for  predicting  bladder  cancer  incidence.  Bladder  cancer  incidence  correlated  directly  with  
smoking and inversely with solar UV radiation levels.



816 ECOLOGICAL AND GROUP-LEVEL STUDIES

group-level  analysis,  we must  be very careful  (reasons  for  this  are  discussed subsequently) 
because of a number of pitfalls of logic. Nonetheless, some advantages of studying groups are:

Measurement constraints at the individual level Often, it is difficult to measure exposure at 
the individual level (eg level of pollutants, as in our previous example) so an average for the 
group might suffice.  In  other circumstances,  the variation in an exposure (eg diet) between 
individuals might be large, whereas the group average might adequately reflect exposure of the 
group to specific nutrients for the purposes of the study.

Exposure homogeneity If  there  is  little  variation  in  exposure  among individuals  within  a 
group, it is difficult to assess the exposure’s impact using individuals as the unit of interest. For  
example, if all people within a city are exposed to the same level of radon, we might need to  
study groups (cities with different average exposure levels of radon) to observe the apparent  
effect  of  radon  exposure.  Hence,  using  groups  with  a  wider  variation  in  level  or  type  of  
exposure than exists within groups would be helpful.

Interest in group-level effects These arise naturally if one is studying the impact of area-wide 
programmes, or area-wide exposures. For example, in many circumstances, vaccines, different 
health  care  systems,  and  treatments  (eg  water-based  fluoride)  can  only  be  delivered,  or 
implemented practically, at the group level. Hence, groups are of interest. It is also recognized 
that  group-level  factors  often impact on individual behaviour(s)  and if these factors  can be 
identified,  they  may  be  exploited  in  health  promotion  programs  (eg in  anti-smoking 
campaigns).

Simplicity of analysis Often it appears to be easier to display and present group-level rather 
than individual-level data. However, as we will point out, these group-level analyses might hide 
serious methodological problems when we are attempting to make inferences to individuals (see 
Section 29.4). 

29.3 TYPES OF ECOLOGIC VARIABLE

The categorisation of variable types within ecologic studies is still dynamic (see  Diez-Roux, 
(1998a;  1998b);  McMichael  (1999) for  a  discussion).  For  our  purposes,  we  will  use  3 
categories: aggregate (aka derived), environmental and global variables.

29.3.1 Aggregate variables

This type of variable is also called a derived variable in that it is formed, at least in part, by 
aggregating individual observations to form a summary variable (often the mean) for the group 
(eg proportion exposed, per cent obese, disease rate, mortality rate) such as the cancer rate in 
Example 29.1. Thus, aggregate variables are summaries of measurements made on individuals 
within the group (eg the proportion who smoke in Example 29.2). Aggregate variables can refer 
to the predictor variables, the outcome variable, or both. In the instances where disease is the 
outcome, the aggregate usually is measured using rates because most groups are open; if closed, 
then a risk-based approach can be used. 
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29.3.2 Environmental or contextual

Usually  these  are  physical  characteristics  of  the  group such  as  local  weather  (eg UV index; 
Example 29.2), level of pollutants in the area, or characteristics of water supply (eg  deep well 
versus surface water). Environmental/contextual variables may or may not be aggregate variables; 
the key feature is that they have an analogue at the individual level (eg level of air pollution, or 
level of radon exposure). Often we do not actually measure these variables at the individual-level 
because of practical constraints and for analysis, we assign the same value of the variable to every 
individual  within  the  group.  This  approach  becomes  especially  tenuous  as  the  within-group 
variance in that factor increases. For example, between-individual variance for exposure to UV 
rays might be large, so serious misclassification can result from this process. In addition, it might 
well be that there is an interaction between the factor at the individual level (eg titre to influenza) 
and the contextual variable for the same factor (eg percentage of people with a protective titre to 
influenza), as in herd immunity and these need to be identified for proper inference.  

29.3.3 Group or global

These variables reflect a characteristic of groups, organisations or places for which there is no 
analogue at the individual level (eg population density as in Example 29.1). 

29.4 ISSUES RELATED TO MODELLING APPROACHES IN ECOLOGIC STUDIES

We begin by noting that, at the group level, both predictor and outcome ecologic variables often 
are measured on a continuous scale, even though they might be dichotomous variables at the 
individual level; this is particularly true when aggregate variables are used. As mentioned, if the 
outcome at the group level is classified as dichotomous (eg  disease present or absent in the 
group) and the inferences are made at the group level, the study is not an ecologic study and can 
be pursued with the same features and constraints as ordinary observational studies (Chapters  
7–10). With aggregate variables, because the outcome reflects the average rate or risk for the 
group, a natural scale for modelling group level variables is the linear regression model (as  
outlined in Chapter 14) in which we regress the aggregate outcome variable on the aggregate 
exposure variables. Although this is a valid approach, many researchers opt to use correlation 
coefficients; whereas we would prefer the regression coefficient as a measure of association.  
About 33% of the ecologic studies in recent years have used correlation coefficients, instead of 
regression  coefficients  (Ojha et  al,  2011) as  their  measure  of  association.  Because  of  the 
limitations of the linear model approach, some prefer to use a Poisson model (see Example  
29.3) when the outcome measures are counts of infrequent disease.

29.5 THE LINEAR MODEL IN THE CONTEXT OF ECOLOGIC STUDIES 

As an  example  of  the  linear  model  approach,  we  can  imagine  the  continuous  outcome  Y 
representing the annual risk or rate of hospital admission (eg  0.15 per person-year  in city  j) 
modelled as a linear function of the exposure to air pollution (eg 0.3 of the people in city j are 
exposed to high levels of air pollution as  X1) and perhaps adjusting for the effects of one or 
more confounders  (eg the average  age  of  people in  each  city as  X2). The  model  could be 
specified as:

Y j=01 X 1 j2 X 2 j j
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where  X1j is  the  proportion  exposed  to  air  pollution  and  X2j is  the  average  age  in  city  j, 
respectively. Environmental  or  global  variables  might  be  entered  and  analysed  as  either 
dichotomous, ordinal, or continuous variables. The linear model would provide an incidence 
rate  difference  (IDG)  from the  exposure  which  is  estimated  as  β1,  conditional  on  the  other 
variables in the model. In many situations, the outcome might need to be transformed to better 
meet  the  assumptions  of  the  linear  model,  and  a  weighted  regression  might  be  needed  to  
account  for  the  different  levels  of  precision  by group  (because  of  large  differences  in  the  
number of study subjects per city). For example, the outcome could be weighted by the group 
size, the reciprocal of the within-group variance, or some function relating to the within-group 
homogeneity of exposure. 

A ‘nice’ feature of a linear model is that, if the rate (or risk) difference is constant across groups 
at the individual level, assuming no other biases, the rate difference at the group level will be of  
the same magnitude. In contrast, if the rate ratio is constant at the individual level, a logit model  
of the outcome will produce biased estimates at the group level (Rothman et al, 2008). 

Associations between predictors and dichotomous outcomes at the individual level are usually 
based on ratio measures (eg OR). However, a problem with using ratio measures at the group 
level in linear models is that, for aggregate variables, these estimates force us to extrapolate our  
inferences to groups (cities) with no exposure and to groups with 100% exposure; rarely do we 
have these groups in our data. For example, from a simple linear model, β0 is the rate in non-
exposed (X=0) groups and β1+β0 is the rate in exposed groups (X=1). Hence, the incidence rate 
ratio (IR) at the group level is:

IRG=
01

0
=1

1

0 Eq 29.1

Thus, valid inferences about ratio measures require totally exposed and non-exposed groups, 
and extrapolation beyond the range of the available data is not good practice.

As in  linear  models  (Chapter  14),  issues  of  confounding and  interaction are  dealt  with by 
including these variables in the model. Control of individual level confounders in an ecologic 
analysis, however, is less successful than it is in an individual-level analysis because control is 
performed by using average or proxy data, hence attenuating associations. Also, risk factors in 
ecologic  analysis  tend  to  be  more  highly  correlated  with  each  other  than  they  are  at  the 
individual level making it difficult to isolate the effect of individual risk factors. When other 
variables are included in the model, the previous estimation method for IRG must be extended to 

Example 29.3 A population-based ecologic study of inflammatory bowel disease

The objective of this study was to determine associations between the incidence of inflammatory bowel 
disease  (IBD),  specifically  Crohn’s  disease  and  ulcerative  colitis,  in  the  Canadian  province  of  
Manitoba,  and  sociodemographic,  geographic,  and  disease-related  characteristics  of  the  study 
population for the period 1990–2001 (Green et al, 2006). The unit of analysis was a ‘small geographic 
area’ (this is a defined census area in Canada) of which there were 498 in the province. For each area,  
potential predictors included the socioeconomic status index, the percentage of the population reporting 
Jewish ethnicity, the percentage of the population reporting Aboriginal ancestry, and the percentage of 
the  population  reporting  ‘visible  minority’  status,  age-standardised  reportable  enteric  disease,  and 
small-area estimates of multiple sclerosis incidence rates. A Poisson regression model was used for 
analyses. 
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account for their effect. In order to accomplish this, we usually set the value of these variables  
(that is the Xjs) to their mean as shown in Eq 29.2.

IRG=
01∑  X 

0∑  X Eq 29.2

where ∑  X is the sum of the products of the other coefficients and the mean values of the 
other X variables in the model.

Some  researchers  prefer  to  use  standardised  outcomes,  such  as  (standardised  morbidity/  
mortality ratios (SMRs)) to control confounding and they regress these standardised outcomes 
on  the  group-level  explanatory  variables.  Typically  age  and  sex,  and  sometimes  race  are 
included  in  the  SMR.  However,  this  approach  does  not  prevent  confounding  unless  the 
explanatory variables are also standardised in the same manner, and sufficient data to achieve 
this often are not available. 

Interaction is usually modelled in the same manner as with individual analyses using a product 
term (eg X1*X2). However, creating this term based on group means is not equivalent to taking 
the average of the terms created at  the individual level. Thus, this approach has a different 
(often lower) level of ability to detect an interaction. One particular type of interaction that is  
important  to identify is  a  contextual  effect  where  the group-level  factor  modifies  the same 
factor’s  effect  at  the individual level.  To identify this contextual  effect,  we create  a  cross-
product term between the factor at the group (eg proportion with titres) and the individual level 
(presence of a titre) and test its significance.

29.6 ISSUES RELATED TO INFERENCES

The major  inferential  problems that  arise  are  because  of  heterogeneity of  exposure  and  of 
confounders within the group. Thus, a finding at the group level—that exposure is associated 
with increases (or decreases) in the risk of disease by 3 times—does not mean that this is true at 
the individual level. Indeed, it could be that the exposed subjects are not the ones having the 
highest  risk of becoming cases.  This error  in inference  is termed the  ecologic  fallacy (see 
Section 29.9.2 for the opposite error, the atomistic fallacy). The ecologic fallacy became well 
known after Robinson explained it in 1950  (Robinson, 2009; Subramanian et al,  2009) and 
Webster (2002) has questioned if we are still haunted by it? In order to help avoid the fallacy,  
Firebaugh (2009) and Oakes (2009) point out the need for multilevel perspectives and analyses.

In  addition,  even without the ecologic  fallacy,  the group-level  bias usually exaggerates  the 
magnitude of the true association away from the null. However,  occasionally it reverses the  
direction  of  the  association.  As  a  simple,  hypothetical  example,  assume  that  you  are 
investigating a disease which is caused by an infectious agent X that produces lifelong antibody 
titres and clinical disease which only develops if exposure occurs later in life.  Early exposure  
does not produce clinical signs. At the individual level, disease will be positively associated 
with  exposure  to  X (all  cases  will  have  antibodies).  However,  at  the  group  level,  a  high 
prevalence of X will more likely result in early exposure and hence, be associated with a low 
level of disease.

We  now  examine  the  3  major  causes  of  ecologic  bias—within-group  bias,  group-level 
confounding,  and  group-level  interaction—in more  detail;  see  Greenland  and  Morgenstern, 
1989.
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29.7 SOURCES OF ECOLOGIC BIAS

29.7.1 Within-group

Within-group bias can be caused by confounding, selection bias or misclassification. Here we 
discuss only misclassification of individual-level exposure and its effects on observations at the 
group level.

As noted earlier,  if aggregated exposure variables are used, the exposure level of groups is  
defined by combining individual exposure observations. Imperfect  exposure classification of 
individuals in turn leads to errors in the estimates of both the individual-level association and  
the group-level association. As noted in Chapter 12, non-differential exposure misclassification 
at the individual-level biases the observed association toward the null, but, in ecologic studies,  
it biases the association away from the null  (Greenland, 1992). The effect of this bias on the 
rate ratio derived from an ecologic linear regression model can be predicted if the necessary 
data are known as indicated in Eq 29.3:

IRG=1 IR−1
SeSp∗IR− IR Eq 29.3

where Se is the individual-level sensitivity, Sp is the individual-level specificity, and IR the true 
individual-level incidence rate ratio. The IDG is also biased by the factor (Se+Sp-1). This bias 
can be quite large as shown in Example 29.4. Also, when exposure (or disease) prevalence of  
groups is based on a small sample of individuals within each group, measurement error at the 
individual level is compounded by sampling error (hence, the earlier referral to extreme values  
of outcomes with small group sizes). For more details on this bias, see Brenner et al (1992).

29.7.2 Confounding by group 

If both the level of exposure and the background rate of disease in the unexposed individuals  
varies  across  groups,  this  sets  up a group-level  correlation of  exposure and outcome.  Such 
confounding  can  arise  from  the  differential  distribution  of  extraneous  individual-level  risk 
factors across groups (note that these risk factors need not (although they can) be confounders 
at the individual level (ie within groups)), or from the occurrence of group-level confounders 
(ie here the covariates are associated with both exposure and disease at the group level). One  
example of this is research on the contribution of influenza to hospital admissions or mortality;  
the contribution occurs in the fall and winter but there are numerous confounders  that vary 
seasonally  including  the  weather  and  human  behaviour.  Jackson  (Jackson,  2009) examines 
some approaches to research on factors that vary seasonally, including the use of time-series 
methodology. Example 29.5 demonstrates group-level confounding.

29.7.3 Effect modification (interaction) by group

In a linear model, bias will occur at the group level if the rate difference at the individual level  
varies  across  groups.  We should  recall  that  although  we  use  a  logit  scale  (usually)  at  the  
individual level, we often use a linear model at the group level. This introduces a non-linearity  
into the comparison of the results which might evidence itself as interaction in the linear scale.  
Such variation can arise from the differential distribution of individual level effect modifiers 
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across groups, or due to effect modification by a group-level factor (see Example 29.6).

29.7.4 Summary of confounding and interaction at the group level

To summarise the previous discussion, cross-level (ie ecologic) bias will not occur if :
•  the incidence rate difference, within groups, is uniform across groups, and 
•  if there is no correlation between the group-level exposure and the rate of the outcome in 

the unexposed. 

Example 29.4 Effect of individual-level exposure misclassification on group-level results

For  simplicity  we  will  use  schools  as  our  group and childhood respiratory disease  (CRD) as  our  
outcome. We begin with the correctly classified study population structures in 2 schools (j=1,2).

School 1 School 2

Correctly classified Exposed Non-exposed Totals Exposed Non-exposed Totals

Number of cases 50 40 90 100 30 130

Person-time (tj) 200 800 1000 400 600 1000

CRD Rate (Ij) 0.250 0.050 0.090 0.250 0.050 0.130

Group proportion exposed 0.20 0.40

The data in bold typeface are the numbers we would use for the analysis at the group level if there was 
no misclassification. At the individual level of analysis, the IR=5 and the ID=0.20 in both schools. Note 
that  in  school  1,  20% of  the  person-time  is  exposed  (200/1000),  while  in  school  2,  this  is  40% 
(400/1000).  The regression  coefficients  for  the group level  analysis  are  obtained by solving the 2 
equations for the 2 unknowns: 0.09=β0+β1*0.2 and 0.13=β0+β1*0.4 which gives the following model 
Y=0.050+0.2X. The IDG=0.20 and

IRG=1 0.2
0.05

=14=5

Now, with an imperfect test of exposure, having a sensitivity of 0.8 and a specificity of 0.9 (see Section 
12.7,) we would observe the data below.

School 1 School 2

Incorrectly 
classified Exposed

Non-
exposed

Overall 
rate Exposed

Non-
exposed

Overall 
rate

Number of cases 44 46 90 83 47 130

Person-time (tj) 240 760 1000 380 620 1000

Rate (Ij) 0.183 0.061 0.090 0.218 0.076 0.130

Group proportion 
exposed

0.24 0.38

At the individual level, (based on the misclassified data pooled over the schools) the IR=3.04 and the 
ID=0.137. These are biased towards the null (ie 0). However, the exposure misclassification leads to 
biased group-level estimates of the proportion of exposed person-time in each school; the difference  
between the 2 schools becomes smaller and hence, the apparent effect of exposure becomes larger.  
Using the same approach to obtain the regression coefficients, the model is Y=0.0214+0.286X. At the 
group level, the misclassified IRG is 14.3 and the IDG is 0.29. Thus, a non-differential misclassification 
at the individual level has biased the group IRG and IDG away from the null.
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The only (but  huge)  drawback to these criteria  is  that  individual-level  data are  required  to 
evaluate them and these data rarely are available.  Glynn and Wakefield  (2010) demonstrate 
how to conduct sensitivity analysis of ecologic data and also the value of small amounts of  
individual level data to prevent cross-level bias.

On  the  other  hand,  if  individual-level  effect  modifiers  are  differentially  (ie  unequally) 
distributed across groups,  ecologic bias will occur as a result of the consequent group-level 
effect  modification.  If  extraneous  risk  factors  are  differentially  distributed  across  groups,  
ecologic  bias  will  occur as  a  result  of  group-level  confounding,  regardless  of whether  the 
extraneous  risk  factor  is  a  confounder  at  the  individual  level  or  not.  Controlling  for  the 
extraneous risk factor in the ecologic analysis will generally remove only part of the bias.

Example 29.5  Effects of confounding on group-level results

In this example, E1 is the exposure of interest at the individual level and E2 is the potential individual-
level confounder (both binary). At the group level, these are represented by the variables  X1 and  X2, 
respectively (for simplicity,  we omit subscripts for schools), both measured on the continuous scale 
(data in bold typeface in table). Consider these data from 3 schools:

School A E2+ E2- E2 pooled

E1+ E1- E1+ E1- E1+ E1-

Cases 52 74 5 7 57 81

Person-
time ta

260 740 260 740 520 1480

Ia 0.20 0.10 0.02 0.01 0.11 0.055

IRa 2 2 2

X1: p(E1+)=0.26 X2: p(E2+)=0.50 Y: p(D+)=0.068

School B E2+ E2- E2 pooled

E1+ E1- E1+ E1- E1+ E1-

Cases 56 52 8 8 64 60

tb 280 520 420 780 700 1300

Ib 0.20 0.10 0.02 0.01 0.09 0.046

IRb 2 2 2

X1: p(E1+)=0.35 X2: p(E2+)=0.40 Y: p(D+)=0.062

School C E2+ E2- E2 pooled

E1+ E1- E1+ E1- E1+ E1-

Cases 60 30 14 7 74 37

tc 300 300 700 700 1000 1000

Ic 0.20 0.10 0.02 0.01 0.74 0.037

IRc 2 2 2

X1: p(E1+)=0.50 X2: p(E2+)=0.30 Y: p(D+)=0.056

(continued on next page)
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Based on this summary, it is clear that we need to be careful when making inferences about 
individuals using group-level analyses; yet, group-level analyses will continue to be used. So, 
how can  we  help  avoid  some of  these  problems?  Well,  the  misclassification  issue  is  best  
resolved by reducing the level of errors, but the bias away from the null is still a reality and 
needs to be considered in all group-level studies. With respect to confounding and interaction,  
again these are real problems. But, both the confounding and effect modification examples used 
here are taken from scenarios where group-level analyses are unlikely to be rewarding because 
most of the variation is at the individual level. Because the outcome varies little across groups,  
research should focus on the individual level.

In general, ecologic bias will be less of a problem when:
(1) The  observed  range  of  exposure  level  across  groups  is  large  (Savitz,  2012).  Linear 

regression analysis of ecologic data is especially sensitive to problems of limited among-
group exposure variation. If this is the situation you are faced with, consider using other 
model forms, such as exponential and log-additive models (eg Poisson);

(2) The within-group variance of exposure is small; therefore in selecting study populations 
minimise  the  within-group  and  maximise  the  among-group  exposure  variation 
(sometimes using smaller, more homogeneous, groupings helps accomplish this);

(3) Exposure  is  a  strong risk  factor  and  varies  in  prevalence  across  groups  (hence,  the 
group-to-group variation in incidence is large), and

(4) The distribution of extraneous risk factors is similar among groups (ie little group-level 
confounding).  Because  confounding  is  notoriously  difficult  to  control  statistically  in 
ecologic studies, research settings should be identified in which confounding is unlikely 
or modest in magnitude. 

The opportunity to include health conditions that can serve as positive and negative controls 
strengthens ecologic evidence for the health outcome of interest (Savitz, 2012).

Despite the pitfalls, we should continue our struggle to gain valid knowledge from group level 
studies  (Webster, 2002). While the biases discussed very likely occur frequently,  the effects 
might be small and need not prevent us making valid inferences to individuals. In this regard,  

Example 29.5 (continued)

Examining these data from the individual’s perspective, we observe that the true (individual) IRs for E1 

and E2 are 2 and 10, respectively. Both ratios are constant across schools so there is no interaction at  
the individual  level.  Also,  there  is  no  confounding  by  E1 or  E2 within  schools  (as  E1 and  E2 are 
independent). However, because the prevalence of E2 varies by school, this results in an association of 
school with Y that is independent of E1. Consequently, the group-level estimate of the effect of E1 (ie 
using  X1) may be biased. At the school level, a simple linear regression of  Y of  X1 yields  Y=0.080-
0.049X1 and the ecological estimate of IRG is (0.031/0.080)=0.39 suggesting that exposure is sparing. 
Controlling  for  exposure  2  in  the  analysis  does  not  prevent  the  bias  with  the  equation  being 
Y=0.038+0.000X1+0.060X2. The IDG is zero, and using the mean prevalence of exposure for X2 of 0.40, 
when X1 changes from 0 to 1, we have (based on Eq 29.2)

IRG=
.038.000.4∗.06

 .038.4∗.06
=1.00

This adjustment brings the IRG for exposure 1 to the null value suggesting ‘no effect.’ Unfortunately, 
because we rarely have sufficient information to know whether or not the group- and individual-level 
results agree, relating group findings to individuals is fraught with difficulty. 
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we should treat these potential biases in the same manner as in individual-level studies; try to 
understand, quantify and minimise them.

Dufault and Klar  (2011) have examined the quality of recent cross-sectional ecologic studies 
and note the following:

• Much cross-sectional research potentially has its data dictated by either the convenience 
or the necessity of using pre-existing information.  Only 18% of authors  implicitly or 
explicitly justified their choice of ecologic units

• The vast majority (97%) of outcomes were aggregate in nature. Non-aggregate outcomes 
included global measures such as regional socioeconomic inequality and governmental 
health-care expenditures.

• Fifty-four per cent of studies relied on fewer than 100 group-level observations.
• The  most  common  analytical  approaches  were  to  use  either  ordinary  least  squares 

Example 29.6 Effect modification by group

Consider the following data from 3 schools:
School A School B School C Total

E+ E- E+ E- E+ E- E+ E-

CRD Cases 120 30 120 36 120 42 360 108

Person-time (t) 1000 1000 800 1200 600 1400 2400 3600

I 0.12 0.03 0.15 0.03 0.20 0.03 0.15 0.03

IR 4.0 5.0 6.7 5.0

ID 0.09 0.12 0.17 0.12

X1 = p(E+) 0.5 0.4 0.3

Y = p(D+) 0.075 0.078 0.081

First let’s examine the data from the perspective of the individual. We observe that the effect of the  
exposure E (as denoted by IR, or the ID) varies by school. Thus, some school-level factor is interacting 
with the exposure E, and with a large enough sample, this might be declared as significant interaction  
on either the additive or the multiplicative scale (see Chapter 13). Note that there is no confounding by  
group (ie school level) at the individual level because p(D+|E-)=0.03 in all 3 schools. Thus, school per 
se is not a cause of disease at the individual level (although we would argue against presenting a single 
estimate of effect when interaction is present). Also, because there is no confounding, the crude IR of 
5.0 provides an unbiased estimate of the effect at the individual level. There is, however, interaction  
because some factor at the school level is making the impact of exposure (whether measured by IR or 
ID) vary across schools, and this effect increases as the prevalence of E+ decreases.

An ecologic analysis at the school level would only use the aggregated summary data (bold typeface) 
from the table. The ecologic linear regression of Y on X yields:

Y =0.09−0.03 X

and the ecologic estimate of IRG would be:
1−0.03/0.09=0.67

Clearly this is not anywhere near the individual-level IR of 5. Thus, the effect modification by group 
has led to an ecologic bias that actually reversed the direction of the association at the individual level.
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regression or Poisson regression,
• Ninety per cent of studies used adjusted outcome rates, unfortunately in over half of these 

studies, the investigators failed to adjust covariates for age or sex when the outcomes had 
been standardised for these potential confounders and were at risk of publishing biased 
inferences.

• Only 42% of studies adequately and explicitly justified an ecologic analysis or why the 
design was either necessary or desirable. 

• In  the  majority  of  the  reviewed  studies,  investigators  did not  sufficiently  inform the 
reader about the possibility of cross-level (ecologic) bias. The authors concluded that a 
STROBE-type  list  (standardised  reporting  guidelines;  see  Section  7.4.2)  for  ecologic 
studies was needed to provide guidance for researchers.

29.8 ANALYSIS OF ECOLOGIC DATA

Wakefield (2004) described ecological inference with 2X2 tables; his paper is a very detailed 
review of the analysis and interpretation of ecologic data. Wakefield concludes “We end with 
the obvious statement that the solution to the ecological inference problem is to supplement the  
aggregate  data  with  representative  and  accurate  survey  sample  information  on  individuals 
within  the  areas  of  interest.  The  use  of  prior  information  concerning  the  within-area 
probabilities and the extent of contextual effects will also be beneficial.” 

More  recently,  Wakefield  (2009) authored  an  instructive  paper  on  multilevel  modelling 
(MLM). We will not pursue the details of multilevel modelling here, but would pick up on 2 of  
Wakefield's  suggestions.  First,  it  is  important  to  validate  the  assumptions  of  MLM  and 
Wakefield provides some examples of exploratory data analyses.  For example, serious bias can 
arise when the random effects  are correlated with covariates.  Second, he stresses that  valid 
interpretation  of  MLM  coefficients  requires  considerable  care  (and  gives  examples).  He 
concludes that  although MLM is very helpful, largely because of the  ‘vast’ list of potential 
confounders, most of which have not been measured, it remains very difficult to make causal  
inferences. Subramanian et al (2009) stress the need for multilevel analyses to resolve the the 
cross-level analytic and inferential issues we have described (see Chapters 21–23). 

Wakefield & Haneuse (2008) describe how to link individual-level data on individuals with the 
ecologic data, using a two-phase design (similar to that discussed in Section 10.8) to prevent  
ecologic bias.  One suggested approach is to use outcome-dependent (case-control) sampling 
within groups to obtain individual-level data (Haneuse and Wakefield, 2008). Another approach 
is to extend this and sub-sample on both outcome and exposure,  as well as confounders of  
importance (Wakefield and Haneuse, 2008). The advantage of the 2-phase approach is that the 
sampling is more efficient since it incorporates exposure and confounder variables as well as 
outcome. Equal numbers of individuals can be sampled from each of the categories designated 
by  the  cross-classification  of  the  outcome,  exposure  and  confounding  variables  as  well  as 
‘group’. If there are a large number of groups (eg schools) it might be necessary to aggregate 
groups into larger  units such as regions.  The analysis  of the data must take account  of the 
outcome dependent sampling and the authors provide example software code (in R) on their 
website.  In  order  to  maintain  efficiency  of  sub-sampling,  it  is  important  to  limit  the 
stratification to factors likely to be important predictors. However, if unimportant variables are 
included although efficiency is lowered, the procedure still prevents ecologic bias. 



826 ECOLOGICAL AND GROUP-LEVEL STUDIES

29.9 NON-ECOLOGIC GROUP-LEVEL STUDIES

A number of epidemiologists have noted that epidemiology initially focused on groups as the  
unit of interest, and only recently has it shifted that emphasis to individuals. In general, it is 
their  view that  we  should  strive  to  refocus  on  groups  given  the  recognition  that  health  is 
impacted  by  individual-level  characteristics  (including  behaviours)  as  well  as  the  physical,  
biological,  and  social  environments.  If  the  individual  is  really  the  level  of  interest,  then 
multilevel models  allow us to include core information from higher levels of organisation, and 
investigate contextual effects. However, there is also a need to focus inferences on groups per 
se (Diez-Roux, 1998a; 1998b; McMichael, 1999).  Unfortunately (for us), the terminology can 
be very confusing.  We will  continue  to  refer  to  these as  group-level  studies,  but  we must 
recognise that others call these  ‘ecological perspective’,  ‘ecological model(s)’, and multilevel 
model(s)—these  are  often  used  interchangeably  (Richard et  al,  2011).  In  thinking  about 
studying groups and whether we should be making inferences to groups or individuals, Rose 
(2001) stated that it is helpful to distinguish between 2 questions.

1. What is the etiology of a case?
2. What is the etiology of incidence?

Both questions emphasise that there is more than one cause of a given disease or condition. 
However,  the first question about causes of cases requires that we conduct our study at the 
individual level. With individual people as our principal or only level of interest, we identify 
causes of disease in individuals. In this context, within a defined population (group), the use of  
the  ratio  measures  of  association  to  identify  potential  causes,  and  measure  their  strength, 
assumes a heterogeneity of exposure within the study population. In the extreme, if every study 
subject is exposed to a necessary cause, then the distribution of cases (in individuals) would be  
wholly  determined  by individual  susceptibility  determined  by  the  other  components  of  the 
sufficient  causes  (for  example,  a  genetic  component,  not  the  widespread  (albeit  essential) 
exposure). In general, Rose notes that the more widespread or prevalent a risk factor is, the less  
it explains the distribution of cases within that population. Hence, we might even conclude that  
a  prevalent  necessary  cause  was  of  little  causal  importance—it  might  even  be  considered 
normal background exposure.

In addition to this inferential problem, when we focus on individuals, we often treat group-level  
factors as nuisance variables, whether through using a fixed-effect or a random-effect modelling 
approach. In this context, we do not try to understand, or explain, the group-to-group variation, 
just to deal with it. As was discussed in Chapter 20, in choosing the appropriate aggregation 
level to study, it is useful to examine the proportion of variance that can be attributed to the 
individual and to the group because this is a useful guide for focusing future investigations (see 
Section 20.2.2). Even if our focus is on individuals, it is also useful to investigate if the effect of 
an exposure factor on individuals depends mainly on that individual-level risk factor, or others  
at the group level (the contextual effects). Herd immunity is one example where we know this 
to be a real biological phenomenon; the prevalence of disease in a group might have a similar 
important  effect  on the nature of the disease (eg  timing and/or dosage of first  exposure) in 
individuals.

To address  the question about  causes  of  incidence  in  populations,  we must  investigate  the 
determinants of group or population means (eg why is the disease more common in group ‘A’ 
than in group ‘B’?). To do so, we need to study the characteristics of groups to identify factors  
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that act by shifting the distribution of disease of the entire group. For their success, group-level  
studies require either a large variance of exposure levels across groups, a large study size ( ie  
number of groups), or a combination of the two. Obtaining a sufficient number of groups (eg 
census areas or counties) to give a study reasonable power has often been a practical limitation 
of  group-level  studies.  Nonetheless,  especially  in  many public-health  activities,  we  have  a 
particular need to know the determinants of incidence, be they families, schools, or geographic  
areas, in order to help prevent disease in the population. 

29.9.1 The group as the aggregate-scale of interest

Virtually all epidemiologists are aware of the hierarchical organisation of the populations we 
study. These levels of organisation range from subcellular units, to cells, organs, body systems, 
individuals,  aggregates  of  individuals such as  households,  families,  neighbourhoods,  census 
tracts, states, nations etc. The key point is that each higher level of organisation subsumes all 
the properties  of  lower  levels,  but  has  additional  unique properties  of  its  own  (Diez-Roux, 
1998a; 1998b; Krieger,  1994; Susser,  1973). From this principle, it would seem crucial  that 
risk-factor identification is conducted in the light of the appropriate population level context, 
but with an awareness of risk factors at other levels of organisation. 

Moving beyond the primarily biologic individual-based explanations of disease causation does 
not  imply  denying  biology,  but  rather  involves  viewing  biologic  phenomenon  within  their 
global  and  social-environmental  contexts.  For  example,  Richard  et  al (2011) discuss  the 
ecologic (group level) approaches that have been used over the last two decades to increase 
physical activity and to encourage the addition of more fruit and vegetables to our diet. Lee &  
Cubbin (2009) discuss the impact of social environment in the context of ecologic approaches 
on the effectiveness of our programs designed to prevent obesity. When focusing on issues that 
have a large impact on our health, it is crucial to accept that many of the factors that impact on 
these behaviours occur at levels beyond the individual. Nonetheless, these factors might alter  
the behaviour of individuals both directly and indirectly. Preventing the negative health-impacts 
caused by a single exposure (eg low levels of physical activity), would ‘prevent’ a large number 
of  specific  diseases.  Further,  focusing on the single exposure often is a  more efficient  and 
effective approach to improving health than focusing on the numerous specific outcomes they 
may cause (ie diseases). Similar arguments are advanced for continuing to emphasise the health 
benefits of a non-smoking society, and that these programs need to focus on group-level as well 
as, or more so than, individual-level factors. Richard et al (2011) note that unfortunately, “in-
depth analyses of various sets of programs have empirically confirmed that ... individual and 
interpersonal determinants continue to be the favourite or preferred levels targeted by planners 
and  practitioners”.  Further,  “although  it  would  be  logical  to  integrate  community-based 
participatory research and planning principles ... few ecological models have explicitly made 
this conceptual link”.  Interestingly, based largely on ecologic studies which indicate that the 
prevalence  of  obesity  is  negatively  correlated  with  physician  numbers  on  the  county  level  
within the USA, Gaglioti  et  al (2009) argue for continued support of family physicians (of 
course Gaglioti et al might be correct, but the reader should recall the issue of ecologic fallacy,  
as  explained by Robinson in 1950, (see  Firebaugh,  2009) when making inferences  such as 
these.  

As well as the need to conduct research at the population level to help resolve many endemic 
diseases,  collective  experience  has  been  that  disease  control  programmes  for  contagious  or 
exotic diseases need to be directed more at the population than at the individual level. Despite  
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our most advanced tests for identifying infected individuals, at the end stages of many national-
level infectious disease control programmes, the optimal strategy for disease control is almost  
always to focus prevention and control on groups, not on individuals. 

29.9.2 The group as the level of inference

The desired level of inference links to the level of analysis. In some studies the intent is to 
identify causal factors of cases by investigating individual-level risk factors, whereas in others 
it might be to make inferences about causal factors of incidence by focusing on the group level. 
However, as noted in earlier sections, if one is trying to make inferences about one level (a  
lower level) from data collected at a higher level, then such cross-level inferences are open to 
considerable bias. If we are interested in the interaction between person-level and group-level 
variables,  then  that  aspect  can  be  studied  using  analyses  aimed at  individuals  but  with  an 
appropriate group-level variable (contextual effect (Section 21.4)—eg prevalence of exposure) 
included to allow the interaction to be identified. 

Previously, we examined some of the features that can help us avoid the ecologic fallacy when 
making inferences about the effect of an exposure on individuals when we use group-level or  
ecologic studies. In that context, correct  meant that the group-level findings were consistent 
with the findings at the individual level. However, despite our discussion on this point, given 
the pervasiveness of reductionism in biomedical science, it is likely that the atomistic fallacy 
(using data from lower levels to make inferences about higher levels) is undoubtedly the more 
common of the 2 errors. We certainly risk making this error if our explanations of disease in 
populations are based primarily on what we know about disease in individuals. However, little 
is written about this fallacy. The difference in our assessments of these errors likely reflects the  
prevailing scientific view about what constitutes valid causal inferences. It seems that ecologic 
fallacies are viewed as serious problems because the associations, while true at the aggregate 
level,  are  not  true at  the individual  level;  whereas  in the atomistic  fallacy,  the facts  at  the 
cellular or individual level are deemed to be correct, regardless of how correct, or useful (or  
useless) that knowledge is for efficient and effective disease prevention in populations. 

In addition to the atomistic fallacy, a long-held axiom is that if one is interested in populations,  
one must study populations (McMichael, 1999). This axiom arises in part because the physical,  
chemical,  biological,  and sociological/managerial  properties  at  the higher  level  likely differ  
from those at the lower level, and in part because there are a host of sociological/managerial  
factors  and  some biological  factors  which operate  principally  at  the group level.  A simple 
physical-chemical  example is  that  the properties  of oxygen and hydrogen tell  us very little  
about  the  properties  of  water.  Also  as  Schwartz  (1994) observes,  we  should  not  confuse 
characteristics of a group with that of its individuals, “a hung jury might be indecisive but its 
members might be anything but indecisive”. 

In our research endeavours, we should not look at group-level studies as only crude attempts to 
uncover individual-level  relationships.  Many criticisms of ecologic studies are based on the 
questionable assumption that the individual level of analysis is the most appropriate (Schwartz, 
1994). In fact, the health status of an individual, is itself an aggregated measure, because it is 
body  cells/systems,  not  individuals  that  become  diseased.  The  threshold  for  disease  being 
present in an individual usually is based on a set of criteria, some quantitative, some qualitative.  
Most often, as epidemiologists,  we define the cutpoint(s)  for  ‘having the disease’  and then 
ignore the tremendous variance in severity and effects of that disease in most of our studies  
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(because these are not our primary interest). In a similar vein, we need to study disease at the  
group level, where a family or group (say a village)  might be categorised as diseased or not and 
we might ignore the actual proportion of people with disease. However, in other studies the 
dichotomisation of disease presence or absence (or presence beyond a specified cutpoint  of 
frequency)  might  be  too  crude  an  approach  because  we  are  forced  to  discard  valuable 
information about the extent or severity of disease at the group level. In this situation, it might  
be  preferable  to  retain  the  level  of  disease  (or  outcome)  as  a  quantitative  statement  about 
disease frequency, even though there is no intent on making inferences below the group level. 

In order to optimally interpret some of our group-level studies, a major issue is to differentiate  
the causal inferences we make about associations at the group level from inferences we might 
make relative to the effect of that same (or apparently similar) variable at the individual level 
(Diez-Roux, 1998a; 1998b; Schwartz, 1994). For example, if variable X1 at the individual level 
indicates seroconversion to a specific agent, then X 2= X 1/n at the group level inherently 
carries more information than just the proportion that seroconverted; by its nature a group with 
a low level of X2 likely has different dynamics of infection than one with a high level of X2. For 
example, as noted, the frequency of exposure in the group could influence the timing of initial  
exposure to an agent by individuals, and this is often an important factor in the type of clinical  
syndrome that might result. 

In conclusion, it is clear that there are numerous problems in using aggregated data to make 
inferences about events in individuals. Multilevel analyses (Chapters 20–22) allow us to include 
important  factors  from  higher  levels  of  organisation  when  studying  individuals,  including 
contextual effects. However, appropriately designed studies that focus on groups are necessary 
to identify factors of importance in the distribution of health and disease in populations.
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