

Renewable

Energy

Quest

in.termit...ten...cy

ter .ter

It ain't so simple: Complexity

Lower rates

Greener Choices

Reduced Greenhouse Gases Local Control

Investing in our community

YOUR DAILY USAGE

Summerside

Room Heater 12345678	0 %	0 kWh Stored	Water Heater 123456	0 %	o kWh Stored	Water Heater 0211W30470	18 %	4 kWh Stored
Water Heater 0111W27693	0 %	0 kWh Stored	Room Heater 101112560091654SSH	3 %	0 kWh Stored	Furnace 209115337016161SHH	28 %	36 kWh Stored
Furnace 206125224016379SHH	27 %	24 kWh Stored	Water Heater 0211W29164	17 %	3 kWh Stored	Furnace 206124224016380SHH	29 %	27 kWh Stored
Room Heater 101112560091655SSH	34 %	9 kWh Stored	Water Heater 0111W26916	18 %	3 kWh Stored	Furnace 207145438016864SHT	7 %	9 kWh Stored
Water Heater 0213W31699	18 %	3 kWh Stored	Water Heater 0211W29169	18 %	3 kWh Stored			

Capturing Wind with Thermal Energy Storage – Summerside's Smart Grid Approach

Steven Wong, Member, IEEE, Greg Gaudet, and Louis-Philippe Proulx

Abstract—The City of Summerside, PE, Canada, has 21 MW of wind capacity from which it meets almost half of its electric energy demand. At times, wind power exceeds what is needed locally. To avoid exporting the excess wind to the bulk grid at unfavourable prices, an innovative smart grid program for active control of thermal energy storage systems has been designed and implemented. On the utility-side, fibre has been wired through multiple feeders to coordinate real-time control of load. On the client-side, consumers are incentivized to install ToU or realtime controlled electric thermal storage or water heater units in place of oil appliances. To quantify program impacts, a system model is created for simulating many what-if scenarios using system data from 2013 to 2015. It is found that there are compelling, measurable benefits to utility and consumer finances, GHG emissions and wind integration with little negative impact

A. Thermal Energy Storage

Thermal energy storage systems (TES) are devices that store energy as heat for later use in mediums such as water, ceramics, and rocks. Classification, design, application, and evaluation of TES in building applications are thoroughly explored in [1], [2]. The DR potential of various TES systems are explored in a German context in [3]; it finds that devices intrinsic to households (e.g., heating/ventilation and refrigeration) can be used for peak shaving but are not suitable for balancing wind variability, for which dedicated TES is needed. Related to TES are thermostatically controlled loads (such as air conditioners), which can provide DR through temperature

SAMSUNG Summerside Electric LE ENERGY INC. SAMSUNG

Renewables Penetration (46%)

Wellness Centre electricity costs

Greenhouse Gases

Carbon Tax Immunity

Honeywell

Building Optimization Analytics

... to Next Generation Energy Optimization

LED Street Lights

Smart Meters

Fiber connectivity to the Summerside Grid Car Chargers

Rebates for Heat for Less (Thermal Storage)

Consultations on Smart Homes

If you install them, will they come?

Celebrating 10 Years

Nourish Next-Gen Renewable Quests

Daniel, Jordan & Erik – UNB Engineering Students

Nourish Next-Gen Renewable Quests

UPEI

engineering

...and next-next gen

Renewable

Energy

Quest

Confounds, Variables and Biases

- Community-owned electric utilities extremely uncommon in Canada
 - Regulatory regimes do NOT favor distributed electrical generation/distribution
- Public policy shops emaciated at all levels of government over last 30 years
 - Supplanted by independent think tanks (independent, but unbiased? Hmmm)
- Public policy slow-footed uptake of behavioral/cognitive sciences to catalyze change
- Electric utility industry driven by conservative values—ROI trumps public good
- Luxuries of North American "bigness" hard to give up—historical frontier culture
 - E.g. big houses, big spaces, big cars, big super-highways, big suburbs, big consumption, big oil, all contributing to big carbon

