" A small country with big ideas"

Monica Araya 2016

100% Green Electrical Energy for the Faroes by 2030

Lessons for Small Islands

R&D Manager Dipl.Ing. E.E. (Hons) MBA Renewables

Faroe Islands

10/25/2016

Faroe Islands

• General data:

- 18 islands (17 are populated)
- 50.000 inhabitants
- Area of 1.399 km²
- Main export: Fish and fish products

Electrical Company SEV

Company Structure:

- Non-profit, founded 1st October 1946
- 100 % owned by all Faroese municipalities
- Monopoly on grid operation (transmission & MV/LV distribution)
- "De facto" monopoly on production (98%)
- Joint and several price structure
- Vertically Integrated Company
- *"Micro isolated system" in EU terms* (< 500 GWh)
 - Directive 2009/72
 - Derogation from relevant provisions in different chapters about unbundling, third party access etc.

Fossil fuel Powerplant

- Hydro Powerplant
- 60kV Substation
- 🛧 Windturbine
- _____ 60 k V
- _____ 20kV
- 10kV
- _____ 6kV

_____ Subsea Cable 10/25/2016

Energy Mix 1954 - 2015

10/25/2016

5

SEL

Renewable energy duration curve 2015

Main drivers for renewable energy in the Faroe Islands

Carbon free electricity by 2030

Assumptions:

- 2% increase in consumption annually
- Linear electrification of Heating 2016 2030

- Linear electrification of transport on land

Unpredictable oil expenses

Projected Energy Demand

Projected Energy Demand 2015-2030

SEV

Renewable resources

in the Faroe Islands

A systematic approach to identify local resources in order to set up a technology roadmap

Assessment of local renewable resources

Average wind speed: > 10m/s

Precipitation: ~1284 mm/year (PEI: 890mm/y) Soruce: WWW.gov.pe.ca

Peak tidal velocities: ~ 3.5 m/s

Average sun hours: ~ 1100 hrs/year (PEI: 1841) sorrice: www.currentresults.com

Correlation between the resources

Testbed for Smart Grid

Technologies

Battery system in Húsahagi

Schematic overview of battery system

Battery system in operation

Schematic overview of PowerHub

Testbed for Smart Grid Technologies

Technologies supporting the 100% RE Vision

Supporting Technologies

- Electrification of the heating sector (houses and buildings)

SEL

Nordic Council Nature and Environment Prize

Chair of Board Mr. Jákup Suni Lauritsen and CEO Mr. Hákun Djurhuus

Motivation:

"The prize goes to the Faroese electricity" company SEV for its ambitious targets and innovation. SEV's work is not only important for the phasing in of renewable energy in the Faroe Islands, but also for the European grid as a whole. Its ambitious targets and the creative nature of its efforts to reduce dependency on fossil fuels make SEV a worthy recipient of the Nordic Council Nature and Environment Prize 2015."

" We simply must balance our demand for energy with our rapidly shrinking resources. By acting now we can control our future instead of letting the future control us"

Jimmy Carter 1977

Thank you!

Terji Nielsen

Dipl.Ing. E.E. (hons) MBA Renewables tn@sev.fo

Wind energy

and and

The Neshagi Wind farm

Project specification:

- 3 pcs ENERCON E44/900kW (2,7MW)
- Capacity factor: 45%
- Annual production: 10,6 GWh
- Building phase: 2011-2012

Economical figures:

- Total cost: 5.2 million CAD
- Oil savings: 2.300 ton/year
 - more than 1.2 million CAD/year
- Generating cost: 0,081 CAD/kWh

Carbon footprint:

• Annual CO₂ reduction: 7.000 ton/year

The Húsahagi Wind farm

Project specification:

- 13 pcs ENERCON E44/900kW (11.7MW)
- Capacity factor: 42%
- Annual production: 41 GWh
- Building phase: 2013-2014

Economical figures:

- Total cost: 20.3 million CAD
- Oil savings: 8.000 ton/year
 - approximately 4,6 million CAD/year
- Generating cost: 0,063 CAD/kWh

Carbon footprint:

Annual CO₂ reduction: 28.000 ton/year

Other renewable resources

Hydropower

6 Hydropower plants Total installed capacity: 37MW Annual energy production: 115 GWh First installation in 1921

Tidal energy

Photovoltaic

Average sun hours 2007 – 2015 (DMI)

Instantaneous wind penetration

From SEVs SCADA system (BECOS32)

Challenging weather conditions

Customers

HiddenFjord -Fútaklettur Salmon Farm delivering superior quality salmon. Power Hub controls the heat pump that keep the newly born salmons at the right temperature before they are send out

(35 kW heat pump)

Bergfrost

Care for the environment was the primary reason for blasting tunnels from the mountain for the cold store. It was felt that the blot on the landscape would be too visible if the quarry in Fuglafjørður was extended northwards. Far-sighted council members came up with the idea of going further into the mountain for stones.

(150 kW cooling compressor)

Kollafjord Pelagic Receives freshly caught fish and freeze it. The facility in Kollafjørð is one of the world's largest and most advanced processing facilities for human-consumption pelagic fish.

(4.200 kW cooling compressors)

Disconnecting flexible loads

PowerHub system topology

SEV

PowerHub FFDR test

Frequency drop after production trip (12 % of total system load)

PowerHub FFDR test

Frequency drop after production trip (12 % of total system load)

PowerHub FFDR test

Frequency drop after production trip (12 % of total system load)

