VETERINARY EPIDEMIOLOGIC RESEARCH

A comprehensive text for the discipline

www.upei.ca/ver

VETERINARY **EPIDEMIOLOGIC** RESEARCH

Ian Dohoo

Professor Emeritus of Epidemiology Department of Health Management University of Prince Edward Island Charlottetown PEI Canada

Wayne Martin

Professor Emeritus of Epidemiology Department of Population Medicine University of Guelph Guelph Ontario Canada

Henrik Stryhn

Associate Professor of Biostatistics Department of Health Management University of Prince Edward Island Charlottetown PEI Canada

VER inc. Published by VER Inc. · Charlottetown · Prince Edward Island · Canada

This book was prepared using the open source office software—OpenOffice (http://www.openoffice.org/)

The book is printed on recycled paper (50% post-consumer waste).

Editor/Proofreader/Compositor/Publication Coordinator: S Margaret McPike Cover designer: Gregory Mercier Printer: Friesens Manitoba Canada

© 2014, by VER Inc. All rights reserved. This book is protected by copyright. No part of this book may be reproduced, stored in a retrieval system or transmitted, in any form or by any means—electronic, mechanical, photocopy, recording or otherwise—without the written permission of the publisher. For information write:

VER Inc., Box 491, Charlottetown, Prince Edward Island, Canada, C1A 7L1

Third printing May 2014

Printed in Canada

10987654321

National Library of Canada Cataloguing in Publication

Veterinary epidemiologic research / Ian Dohoo ... [et al]. Includes index. ISBN 978-0-919013-60-5 1. Veterinary epidemiology – Research – Textbooks I. Dohoo, Ian Robert

Library catalogue information available from www.upei.ca/ver

Care has been taken to confirm the accuracy of the information presented. Nevertheless, the authors, editor and publisher are not responsible for errors or omissions or for any consequences from application of the information in this book and make no warranty, express or implied, with respect to the content of the publication.

Dedication

This text is dedicated to all of the graduate students who have challenged and inspired us throughout our careers, and to our families who have supported us, especially during the writing of this text.

Foreword		XV	
Preface Acknowledgements		xvi	
		xviii	
1	INTRODUCTION AND CAUSAL CONCEPTS	1	
1.1	Introduction	2	
1.2	A brief history of multiple causation concepts	2	
1.3	A brief history of scientific inference	5	
1.4	Key components of epidemiologic research	8	
1.5	Seeking causes	9	
1.6	Models of causation	10	
1.7	Counterfactual concepts of causation for a single exposure	17	
1.8	Experimental versus observational evidence of causation	20	
1.9	Constructing a causal diagram	21	
1.10	Causal criteria	23	
2	SAMPLING	33	
2.1	Introduction	34	
2.2	Non-probability sampling	37	
2.3	Probability sampling	37	
2.4	Simple random sample	38	
2.5	Systematic random sample	38	
2.6	Stratified random sample	38	
2.7	Cluster sampling	39	
2.8	Multistage sampling	40	
2.9	Targeted (risk-based) sampling	41	
2.10	Analysis of survey data	42	
2.11	Sample-size determination	46	
2.12	Sampling to detect disease	54	
3	QUESTIONNAIRE DESIGN	57	
3.1	Introduction	58	
3.2	Designing the question	60	
3.3	Open question	61	
3.4	Closed question	61	
3.5	Wording the question	65	
3.6	Structure of questionnaires	65	
3.1	Pre-testing questionnaires	00 (7	
3.8 2.0	validation	0/ 67	
3.9 2.10	Response rate	0/	
5.10	Data-coding and editing	08	
4	MEASURES OF DISEASE FREQUENCY	73	
4.1	Introduction	74	
4.2	Count, proportion, odds and rate	74	
4.3	Incidence	75	
4.4	Calculating risk	76	

4.5	Calculating incidence rates	77
4.6	Relationship between risk and rate	79
4.7	Prevalence	80
4.8	Mortality statistics	81
4.9	Other measures of disease frequency	81
4.10	Standard errors and confidence intervals	83
4.11	Standardisation of risks and rates	85
5	SCREENING AND DIAGNOSTIC TESTS	91
5.1	Introduction	92
5.2	Attributes of the test <i>per se</i>	92
5.3	The ability of a test to detect disease or health	100
5.4	Predictive values	103
5.5	Interpreting test results that are measured on a continuous scale	105
5.6	Using multiple tests	111
5.7	Evaluation of diagnostic tests	114
5.8	Evaluation when there is no gold standard	116
5.9	Other considerations in test evaluation	122
5.10	Sample size requirements	123
5.11	Herd-level testing	123
5.12	Use of pooled samples	127
6	MEASURES OF ASSOCIATION	135
6.1	Introduction	136
6.2	Measures of association	137
6.3	Measures of effect	139
6.4	Study design and measures of association	143
6.5	Hypothesis testing and confidence intervals	143
6.6	Multivariable estimation of measures of association	148
7	INTRODUCTION TO OBSERVATIONAL STUDIES	151
7.1	Introduction	152
7.2	A unified approach to study design	154
7.3	Descriptive studies	156
7.4	Observational studies	157
7.5	Cross-sectional studies	158
7.6	Repeated cross-sectional versus cohort studies	162
8	COHORT STUDIES	167
8.1	Introduction	168
8.2	Study group	169
8.3	The exposure	171
8.4	Ensuring exposed and non-exposed groups are comparable	174
8.5	Follow-up period	175
8.6	Measuring the outcome	175
8.7	Analysis	176
8.8	Reporting of cohort studies	177

viii

9	CASE-CONTROL STUDIES	181
9.1	Introduction	182
9.2	The study base	182
9.3	The case series	183
9.4	Principles of control selection	184
9.5	Selecting controls in risk-based designs	185
9.6	Selecting controls in rate-based designs	187
9.7	Other sources of controls	190
9.8	The number of controls per case	193
9.9	The number of control groups	193
9.10	Exposure and covariate assessment	193
9.11	Keeping the cases and controls comparable	193
9.12	Analysis of case-control data	194
9.13	Reporting guidelines for case-control studies	195
10	HYBRID STUDY DESIGNS	199
10.1	Introduction	200
10.2	Case-crossover studies	200
10.3	Case-case studies	203
10.4	Case-series studies	204
10.5	Case-cohort studies	206
10.6	Case-only studies	208
10.7	Two-stage sampling designs	209
11	CONTROLLED STUDIES	213
11.1	Introduction	214
11.2	Stating the objectives	215
11.3	The study group	216
11.4	Allocation of study subjects	221
11.5	Specifying the intervention	225
11.6	Masking (blinding)	225
11.7	Follow-up/compliance	226
11.8	Measuring the outcome	227
11.9	Analysis	227
11.10	Clinical trial designs for prophylaxis of communicable organisms	230
11.11	Ethical considerations	233
11.12	Reporting of clinical trials	235
12	VALIDITY IN OBSERVATIONAL STUDIES	243
12.1	Introduction	244
12.2	Selection bias	244
12.3	Examples of selection bias	249
12.4	Reducing selection bias	254
12.5	Information bias	255
12.6	Bias from misclassification	257
		201
12.7	Validation studies to correct misclassification	263
12.7 12.8	Validation studies to correct misclassification Measurement error	263 264

12.10	The impact of information bias on sample size	266
13	CONFOUNDING: DETECTION AND CONTROL	271
13.1	Introduction	272
13.2	Control of confounding prior to data analysis	275
13.3	Matching on confounders	276
13.4	Matching using propensity scores	281
13.5	Detection of confounding	283
13.6	Analytic control of confounding	288
13.7	Other approaches to control confounding and estimate causal effects	295
13.8	Multivariable modelling to control confounding	301
13.9	Instrumental variables to control confounding	302
13.10	External adjustment and sensitivity analysis for unmeasured confounders	304
13.11	Understanding causal relationships	306
13.12	Summary of effects of extraneous variables	315
14	LINEAR REGRESSION	323
14.1	Introduction	324
14.2	Regression analysis	324
14.3	Hypothesis testing and effect estimation	326
14.4	Nature of the X-variables	333
14.5	Detecting highly correlated (collinear) variables	338
14.6	Detecting and modelling interaction	340
14./	Causal interpretation of a multivariable linear model	341
14.8	Evaluating the main assumptions	344
14.9	Assessment of individual observations	256
14.10	Time series deta	350
14.11	Time-series data	300
15	MODEL-BUILDING STRATEGIES	365
15.1	Introduction	366
15.2	Steps in building a model	367
15.3	Building a causal model	367
15.4	Reducing the number of predictors	368
15.5	The problem of missing values	3/4
15.0	Effects of continuous predictors	3/3
15./	Identifying interaction terms of interest	381
15.8	Building the model	383
15.9	Evaluate the results	388 200
15.10	Presenting the results	390
16	LOGISTIC REGRESSION	395
16.1	Introduction	396
16.2	The logistic model	396
16.3	Udds and odds ratios	397
16.4	Fitting a logistic regression model	398
16.5	Assumptions in logistic regression	399
10.0	Likelinood ratio statistics	400

16.7	Wald tests	401
16.8	Interpretation of coefficients	402
16.9	Assessing interaction and confounding	405
16.10	Model-building	408
16.11	Generalised linear models	408
16.12	Evaluating logistic regression models	410
16.13	Sample size considerations	421
16.14	Exact logistic regression	421
16.15	Conditional logistic regression for matched studies	422
17	MODELLING ORDINAL AND MULTINOMIAL DATA	427
17.1	Introduction	428
17.2	Overview of models	429
17.3	Multinomial logistic regression	431
17.4	Modelling ordinal data	436
17.5	Proportional odds model (constrained cumulative logit model)	437
17.6	Adjacent-category model	441
17.7	Continuation-ratio model	443
18	MODELLING COUNT AND RATE DATA	445
18.1	Introduction	446
18.2	The Poisson distribution	447
18.3	Poisson regression model	448
18.4	Interpretation of coefficients	449
18.5	Evaluating Poisson regression models	451
18.6	Negative binomial regression	454
18.7	Problems with zero counts	461
19	MODELLING SURVIVAL DATA	467
19.1	Introduction	468
19.2	Non-parametric analyses	473
19.3	Actuarial life tables	473
19.4	Kaplan-Meier estimate of survivor function	475
19.5	Nelson-Aalen estimate of cumulative hazard	478
19.6	Statistical inference in non-parametric analyses	479
19.7	Survivor, failure and hazard functions	480
19.8	Semi-parametric analyses	485
19.9	Parametric models	503
19.10	Accelerated failure time models	507
19.11	Frailty models and clustering	510
19.12	Multiple outcome event data	517
19.13	Discrete-time survival analysis	518
19.14	Sample sizes for survival analyses	522
20	INTRODUCTION TO CLUSTERED DATA	529
20.1	Introduction	530
20.2	Clustering arising from the data structure	530
20.3	Effects of clustering	536
	-	

20.4	Simulation studies on the impact of clustering	540
20.5	Introduction to methods for dealing with clustering	542
21	MIXED MODELS FOR CONTINUOUS DATA	553
21.1	Introduction	554
21.2	Linear mixed model	555
21.3	Random slopes	560
21.4	Contextual effects	564
21.5	Statistical analysis of linear mixed models	565
22	MIXED MODELS FOR DISCRETE DATA	579
22.1	Introduction	580
22.2	Logistic regression with random effects	580
22.3	Poisson regression with random effects	584
22.4	Generalised linear mixed model	587
22.5	Statistical analysis of GLMMs	593
22.6	Summary remarks on analysis of discrete clustered data	603
23	REPEATED MEASURES DATA	607
23.1	Introduction to repeated measures data	608
23.2	Univariate and multivariate approaches to repeated measures data	611
23.3	Linear mixed models with correlation structure	616
23.4	Mixed models for discrete repeated measures data	624
23.5	Generalised estimating equations	627
24	INTRODUCTION TO BAYESIAN ANALYSIS	637
24.1	Introduction	638
24.2	Bayesian analysis	638
24.3	Markov chain Monte Carlo (MCMC) estimation	642
24.4	Statistical analysis based on MCMC estimation	646
24.5	Extensions of Bayesian and MCMC Modelling	651
25	ANALYSIS OF SPATIAL DATA: INTRODUCTION AND VISUALISATION	663
25.1	Introduction	664
25.2	Spatial data	664
25.3	Spatial data analysis	667
25.4	Additional topics	673
26	ANALYSIS OF SPATIAL DATA	679
26.1	Introduction	680
26.2	Issues specific to statistical analysis of spatial data	680
26.3	Exploratory spatial analysis	682
26.4	Global spatial clustering	690
26.5	Localised spatial cluster detection	697
26.6	Space-time association	700
26.7	Modelling	704

CONTENTS

27 27 1	CONCEPTS OF INFECTIOUS DISEASE EPIDEMIOLOGY	715 716
27.1	Infection vs disease	718
27.3	Transmission	710
27.5	Mathematical modelling of infectious disease transmission	71)
27.4	Estimating $R_{\rm a}$ and other infectious disease parameters	721 725
21.5	Estimating K_0 and other infectious disease parameters	123
28	SYSTEMATIC REVIEWS AND META-ANALYSIS	739
28.1	Introduction	740
28.2	Narrative reviews	740
28.3	Systematic Reviews	741
28.4	Meta-analysis – Introduction	745
28.5	Fixed- and random-effects models	746
28.6	Presentation of results	749
28.7	Heterogeneity	750
28.8	Publication bias	758
28.9	Influential studies	760
28.10	Outcome scales and data issues	760
28.11	Meta-analysis of observational studies	764
28.12	Meta-analysis of diagnostic tests	766
28.13	Use of meta-analysis	766
20	ECOLOCICAL AND CDOUD LEVEL STUDIES	277
29	ECOLOGICAL AND GROUP-LEVEL STUDIES	773
29.1	Introduction	//4
29.2	Tamas of accelence consists	//4
29.5		115
29.4	Issues related to modelling approaches in ecologic studies	//0
29.5	Issues related to inferences	//8
29.6	Sources of ecologic bias	//8
29.7	Non-ecologic group-level studies	/82
30	A STRUCTURED APPROACH TO DATA ANALYSIS	789
30.1	Introduction	790
30.2	Data-collection sheets	790
30.3	Data coding	791
30.4	Data entry	791
30.5	Keeping track of files	792
30.6	Keeping track of variables	792
30.7	Program mode versus interactive processing	793
30.8	Data-editing	794
30.9	Data verification	795
30.10	Data processing—outcome variable(s)	795
30.11	Data processing—predictor variables	796
30.12	Data processing—multilevel data	796
30.13	Unconditional associations	796
30.14	Keeping track of your analyses	797

31 DESCRIPTION OF DATASETS

799

Foreword

When I was asked to write the Foreword for the first edition of Veterinary Epidemiologic Research six years ago, I saw publication of the book as a major step in the continuing maturation and growth of the field of veterinary epidemiology. Finally we would have a single source that we could go to for information on how to use and interpret epidemiologic methods – confident that investigational designs and analytical techniques were comprehensively and accurately described, with appropriate guidance on their strengths and limitations.

Six years on, that promise has been amply fulfilled, and the book has found a place in the centre of the bookshelf of epidemiologists throughout the world. It can either be pulled out quickly to check a point, or an entire chapter can be read carefully and methodically to widen the horizons and increase the skills of both the budding epidemiologist and the experienced practitioner of the field. We have all gained benefit from the use of the book.

The first edition used the wide investigational experience of the authors and brought together in one place most of the methods we use in our work. This Second Edition adds chapters covering a number of areas that have grown considerably in importance over the last decade, and justified detailed coverage in this new edition. I am particularly pleased to see that spatial epidemiology, survival analysis and Bayesian analysis are now covered in detail, and that a number of other areas have been strengthened.

Epidemiologists are practical people, and they benefit from the opportunity to learn through practical examples. This book is very strong in providing real-world examples of the various methods and how to use them, which makes it easy to learn the 'how' of epidemiology as well as the 'why'.

For the first edition, I wrote "This is a comprehensive text for the discipline of veterinary epidemiology, written by authors who have the standing to provide wise and insightful guidance on epidemiological research methods for the novice and the expert alike". This second edition is even more comprehensive, and has also been refined through the experience of using it for teaching and for practical application in epidemiologic investigations and research.

I commend it to all who are involved in epidemiology, as the book you absolutely must have on your shelf.

Professor Roger S Morris CNZM, MVSc, PhD, FACVSc, FAmerCE, FRSNZ Massey University EpiCentre, Palmerston North, New Zealand

PREFACE

The 2^{nd} edition of *Veterinary Epidemiologic Research* arrives 6 years after the publication of the 1^{st} edition (2003). One major motivation for the preparation of this 2^{nd} edition was a desire to expand the coverage to include several new topic areas which are becoming increasingly important for veterinary epidemiologists. In addition, our use of the 1^{st} edition in graduate level courses identified a number of areas in which we thought more detail, or clarification, would be beneficial. Finally, we believe that it would be helpful to readers if referencing of source material was more thorough throughout the text, so we have endeavoured to do that. As with the 1^{st} edition, the text grew as we wrote it. We have tried to achieve a balance between being comprehensive and making the material accessible to researchers and graduate students.

Specific encouragement to prepare a 2nd edition came from the many users of the text who have provided us with numerous positive comments about the value of the book. The use of the text around the world certainly exceeded our expectation and we are grateful to you, the readers, who have made it so successful. We have also appreciated the many constructive suggestions from users of the 1st edition, and have tried to incorporate many of these into this edition.

Before reviewing the content of the text we thought we should address the three most common questions we received about the 1st edition.

- Why are the 2X2 tables oriented the way they are (disease in rows, exposure in columns)? The answer to this was actually included in the 1st edition (page 671—Glossary and Terminology). We feel that the text Modern Epidemiology (Rothman *et al*, 2008) is a key reference text in the field of epidemiology and have chosen to be consistent with their format.
- Why does the title use the word 'epidemiologic' instead of 'epidemiological'? According to "Scientific Style and Format—The CSE manual for Authors, Editors and Publishers" (Council of Science Editors—Style Manual Committee, 2006), either is acceptable. Once again, we deferred to a text which we felt was seminal in the development of epidemiologic methods "Epidemiologic Research: Principles and Quantitative Methods" (Kleinbaum *et al*, 1982).
- Why does the title on the spine of the book run the opposite direction from all other books on my bookshelf? This was just an oversight on our part. We have conformed with tradition for this edition.

This text focuses on both design and analytic issues. The general structure is the same as the 1st edition. Chapters 1 through 6 focus on basic epidemiologic principles. The biggest change from the 1st edition is the substantial expansion of the material covered in Chapter 5 (Screening and Diagnostic Tests) and this reflects the substantial growth in methods for evaluating tests that has taken place in the last 6 years. All other chapters in this section have undergone modest expansion.

As in the 1st edition, Chapters 7-11 focus on study design issues for observational studies and controlled trails. The most substantial changes in this section are: much more extensive referencing in all chapters and a substantial expansion of the material in Chapter 11 (Controlled Studies). In addition, there has been much discussion over the past decade about the need for epidemiologists to thoroughly report their research findings (and by doing so this will help ensure high quality study designs in the future) and we have cited the summary recommendations in these chapters.

Once again, Chapters 14-19 cover a range of multivariable models. In all chapters, new information has been incorporated, but the largest change is in Chapter 19 (Modelling Survival Data). The analysis of time-to-event data is expanding rapidly in veterinary epidemiology and we wanted to provide a more complete coverage of this topic.

As in the 1st edition, Chapters 20-23 deal with the issue of clustered data, but the material has been updated and reorganised considerably. Chapter 20 includes a more substantial coverage of the impact of clustering and incorporates some of the material previously in Chapter 23. Chapter 23 now provides a much more thorough description of methods for analysing repeated measures data.

Chapters 24-30 include both new material and updates to existing chapters. New topics covered include: Introduction to Bayesian Analysis (Chapter 24—contributed by William Browne and Henrik Stryhn), two chapters on presenting and analysing spatial data (Chapter 25 and 26—contributed by Javier Sanchez and Dirk Pfeiffer), and Concepts of Infectious Disease Epidemiology (Chapter 27—contributed by Ian Dohoo and Graham Medley). There has also been a substantial expansion in the coverage of meta-analysis (Chapter 28) compared with the 1st edition.

In order to make some room for the new material, some changes and section/topic deletions were required. The size (height and width) of the text has been slightly increased and the sections in which we provided 'program files' and a complete bibliography for the text have been removed. Both of these items are available at www.upei.ca/ver.

As we did in the 1st edition, we have made extensive use of examples. All of the datasets used in these examples are described in the text (Chapter 31) and are available through the book's website. Virtually all of the examples have been analysed using the statistical program Stata[™] —a program which provides a unique combination of statistical and epidemiological tools and which we use extensively in our teaching. Version 10 of Stata was used throughout although Version 11 was released shortly before the book went to print. Updates to some of the program files which take advantage of features in Version 11 will be added to the website as they become available.

We hope that you find this second edition of *Veterinary Epidemiologic Research* useful in your studies and your research.

REFERENCES

- Council of Science Editors Style Manual Committee. Scientific style and format: The CSE manual for authors, editors and publishers. 7th ed. Reston (VA): The Council; 2006.
- Kleinbaum D, Kupper L, Morgenstern H. Epidemiologic Research: Principles and Quantitative Methods. London: Lifetime Learning Publications; 1982.
- Rothman K, Greenland S, Lash T. Modern Epidemiology, 3rd Ed. Philadelphia: Lippincott Williams & Wilkins; 2008.

ACKNOWLEDGEMENTS

As noted in the Preface, many individuals have provided constructive feedback on the 1st edition of this text, and we are grateful for that feedback. However, one individual—Gary Anderson of Melbourne University—stands out in this regard. Over the past 5 years, Gary provided a wealth of valuable feedback, on VER 1, which we very much appreciated. As is usually the case, if you do a good job at something, you get given more work (no good work should go unpunished!)—and this is true for Gary. Thus, as we planned, and then wrote, the 2nd edition we asked Gary to review many of the analytical chapters and he has kindly done so in a very thorough and constructive manner. We are deeply indebted to him for this valuable contribution.

We believe the value of this book has been greatly enhanced by the provision of a substantial number of 'real-life' datasets, both for use in the examples and the sample problems. Rather than include a list of the contributors (it is becoming a very long list), we would like to collectively acknowledge their contribution and point out that they are all identified as contributors in Chapter 31 in which the datasets are described.

Putting this book together has been both a learning experience and a lot of fun. We chose to prepare this book using open source software (OpenOffice—<u>www.openoffice.org</u>) and in the process have learned a lot about how to use a general purpose office package for preparing a text. We are deeply indebted to Margaret McPike who has done all of the editing, proofreading, and formatting of this text. As with the 1st edition, we chose to publish this book ourselves, which entailed taking complete responsibility for these activities. Margaret has dedicated herself to this task. All of the credit for layout of the book, and the clarity of the format, goes to Margaret.

We would like to thank Gregory Mercier, who did the graphic design work for the cover of the 1st edition of this book cover and updated it for the 2nd edition. We would also like to thank Bill Rising of Stata Corp. who reviewed a number of the analytical methods chapters and provided some very constructive feedback, particularly in terms of the program files (Stata -do- files) which are available on the book's website.