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INTRODUCTION AND CAUSAL CONCEPTS 

OBJECTIVES 

After reading this chapter, you should be able to: 

 1. Explain  the  history  of  causal  thinking  about  disease  and  scientific  inference  from  an
epidemiologic perspective. 

 2. Explain  the  basis  of  component-cause  models  and  how  this  concept  helps  to  explain
measures of disease association and the proportion of disease explained by a causal factor. 

 3. Explain the basis of causal-web models.

 4. Describe the counterfactual concept and its utility in understanding disease causation and
the estimation of causal effects. 

 5. Explain how observational studies and field experiments seek to estimate causal effects and
how these relate to counterfactual and component-cause models. 

 6. Construct a logical causal diagram based on your area of research interest as a guide for
your study design and analyses. 

 7. Apply a set of causal criteria to your own research and as an aid to interpreting published
literature and planning future research. 



2 INTRODUCTION AND CAUSAL CONCEPTS

1.1 INTRODUCTION 

Epidemiology is largely concerned with disease prevention and therefore, with the “succession
of  events  which  result  in  the  exposure  of  specific  types  of  individual  to  specific  types  of
environment”  (ie exposures)  (MacMahon  &  Pugh,  1970).  Thus,  epidemiologists  strive  to
identify these exposures and evaluate their associations with various outcomes of interest (eg
health, welfare, productivity) so as to improve the lives of animals and their keepers. Hence,
this book is about associations: associations which are likely to be causal in nature and which,
once identified, we can take advantage of to improve the health, welfare and productivity of
animals and the quality and safety of foods derived from them. Associations between exposures
and outcomes exist as part of a complex web of relationships involving animals and all aspects
of  their  environment.  Thus,  in  striving  to  meet  our  objectives,  we  (epidemiologists)  are
constantly struggling to improve our study designs and data analyses so that they best describe
this complex web. It is only by studying these associations under field conditions (ie in the ‘real
world’) that we can begin to understand this web of relationships. 

As a starting place, we believe it is useful to review the history of the concept(s) of multiple
interrelated causes (exposures) (see also Rothman et al, 2008). This will provide a sense of how
we have arrived at our current concepts of disease causation and where we might need to go in
the future. Because we want to identify associations which are likely to be causal (or at the very
least useful for disease control (Olsen, 2003), it is appropriate to review the relevant areas of the
philosophy of  science that  relate  to  causal  inference.  Following this  brief  review,  we  will
proceed with overviews of the key components of veterinary epidemiologic studies and discuss
some current concepts of disease causation. Our objective is to provide a foundation on which a
deeper understanding of epidemiologic principles and methods can be built. 

1.2 A BRIEF HISTORY OF MULTIPLE CAUSATION CONCEPTS 

As noted, epidemiology is based on the idea that ‘causes’ (exposures) and ‘outcomes’ (health
events) are part of a complex web of relationships. Consequently,  epidemiologists base their
research on the idea that there are multiple causes for almost every outcome and that a single
cause can have multiple effects. This perspective is not universally shared by all animal-health
researchers.  In  this  current  era,  when  great  advances  are  being made in  understanding  the
genetic  components  of  some  illnesses,  a  significant  proportion  of  medical  and  veterinary
research is focused on the characteristics of only direct causal agents and how they interact with
the genetic makeup of the host of interest. As Diez-Roux (1998b) points out, while it is true that
genetic abnormalities are important precursors of many diseases, in terms of maintaining health,
the real questions relate to the extent that our current environmental exposures and lifestyles
(animal management) lead to genetic defects as well as the extent to which these exposures and
lifestyles allow specific genetic patterns to complete a sufficient cause of disease. (The concept
of ‘components of sufficient cause’ is discussed in Section 1.6.1.)

From a historical perspective,  it is evident that the acceptance of the concept(s) of multiple
interacting causes has ebbed and flowed, depending on the dominant causal paradigm of the
era. However, the roots of this concept can be traced back to at least 400 BC when the Greek
physician, Hippocrates, wrote Air, Water and Places. He stated the environmental features that
should be noted in order to understand the health of populations. Based on this aspect of his
writing, it is clear that Hippocrates had a strong multicausal concept about exposure factors in
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the environment being important ‘causes’ of disease occurrence. He carried on to discuss the
importance of the inhabitant’s lifestyle as a key determinant of health status, further expanding
the ‘web of  causation.’  Nonetheless,  his concepts  linking the state  of  the environment  and
lifestyle to the occurrence of disease seem to have been short-lived as, between 5 and 1750 AD,
humoral  imbalances  (events  within  the  individual)  became  the  major  paradigm  of  disease
causation (Schwabe, 1982). 

Between 1750 and 1885, the multifactorial  nature of disease causation returned when man-
created environmental filth became accepted as a central cause of disease, and the prevalent
causal paradigm was that disease was due to the effects of miasmas (ie bad air). It was during
the mid 1800s that John Snow conducted his studies on contaminated water as the cause of
cholera (Frerichs, 2001). Using a combination of astute observations about the lack of spread of
the disease among health workers, the geographical distribution of cholera, his findings in a
series of observational studies, and his use of natural as well as contrived (removal of the Broad
Street pump handle) experiments, Snow reached the correct conclusion about the transmission
of  cholera;  namely,  that  it  was  spread  by  water  contaminated  by  sewage  effluent.  It  is
noteworthy that  he arrived  at  this  conclusion almost  30 years  before  the  organism (Vibrio
cholera) was discovered, thus demonstrating an important principle: disease can be prevented
without knowing the proximal causal agent. 

A few years later (ie in the 1880s–1890s), Daniel Salmon and Frederick Kilborne determined
that a tick (Boophilus annulatus) was associated with a cattle disease called ‘Texas Fever’ even
though the direct causal agent of the disease (a parasite: Babesia bigemina) was not discovered
until many years later (Schwabe, 1984). Their initial associations were based on the similar
geographical distributions between the disease and the extent of the tick’s natural range; theirs
was  the  first  demonstration  of  a  parasite  requiring  development  within  a  vector  before
transmission. Their work also provided the basis for disease control before knowing the actual
agent of the disease. Thus, in this period (mid-to-late 1800s), the study of the causes of specific
disease  problems  focused  on  multiple  factors  in  the  environment,  albeit  somewhat  more
specifically than Hippocrates had discussed earlier. 

The multifactorial causal concept became submerged during the late 1800s to the mid 1900s,
when the search for specific  etiological  agents (usually microbiological)  dominated medical
research.  This ‘golden  era’  of  microbiology lead to a number of successes  including mass-
testing, immunisation, specific treatment, as well as vector control (eg the mosquito vector of
malaria  was  now known)  as  methods  of  disease  control.  Indeed,  control  of  many specific
infectious  diseases  meant  that  by  the  mid  1900s,  chronic,  non-infectious  diseases  were
becoming  relatively  more  important  as  causes  of  morbidity  and  mortality  in  humans  in
developed countries. It was recognised early on that single agents were not likely responsible
for  these chronic diseases  and large-scale,  population-based studies  examining the potential
multiple causes of these diseases were initiated. For example,  the Framingham Heart  Study
pioneered  long-term surveillance  and  study of  causes  of  human health  beginning  in  1949.
Shortly after this time the observational studies on smoking and lung cancer began to appear
and  this  spurred  much  discussion  about  causal  inference  (Berlivet,  2005).  Large-scale,
population-based studies of animal health were also undertaken. In 1957, the British initiated a
national survey of disease and wastage in the dairy industry—the survey methods were later
critiqued by their author (Leech, 1971). Thus, by the early 1960s, in human and animal-health
research, there was once again a growing awareness of the complex web of causation. 

By the 1970s, multiple interacting causes of diseases returned as a major paradigm of disease
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causation. Building on the knowledge from the microbiological revolution, the concept of the
agent-host-environment  causal  triad appeared  in  an early epidemiology text  (MacMahon &
Pugh, 1970). In this conceptual model, a number of component causes were required to come
together (either sequentially or simultaneously) in order to produce disease; later, the complex
of factors that would produce disease was known as a sufficient cause and it was assumed that
most diseases had a number of sufficient causes. In addition to multiple causes, the component
cause model was not constrained to have all causal factors at the same level of organisation. A
traditional  veterinary  example  used  to  portray  some of  these  concepts  is  yellow shanks  in
poultry (Martin et al, 1987). When poultry with the specific genetic defect (an individual-level
factor) are fed corn (ration is usually a herd/flock level factor) they develop a discolouration of
the skin and legs. If all poultry are fed corn, then the cause of the disease would be a genetic
defect;  however,  if all birds had the genetic defect,  then the cause of the disease would be
deemed to be the feed. In reality, both factors are required and the disease can be prevented by
removing either the genetic defect, or changing the feed, or both, depending on the specific
context. 

The 1970s appeared to be a period of peak interest  in causation (Kaufman & Poole, 2000).
Susser’s text on causal thinking appeared in 1973 (unfortunately, it has never been reprinted)
and, 3 years later, the concepts of necessary and sufficient causes were published by Rothman
(1976),  followed by a set  of criteria to help assess causation by Susser  (1977).  Large-scale
monitoring of animal diseases also began in this period (Ingram et al, 1975). As an example,
linking databases of veterinary schools across North America in the Veterinary Medical Data
Program was initiated based on the concept of using animals as sentinels for the environment.
Indeed, large-scale active surveillance was to become the cornerstone of efforts to prevent and
control disease (Schwabe, 1993).

The 1980s seemed to be a quiet time as no major new causal concepts were brought forward.
Hence  (perhaps  by  omission),  the  aforementioned  web  of  causation  might  have  become
restricted  to  studying  individual-level,  directly  causal  factors  focusing  on  biological
malfunctioning  (Krieger,  1994).  In  1990,  epigenesis  was  proposed  as  a  formal  model  of
multivariable causation that attempted to link, explicitly, causal structures to observed risks of
disease  (Koopman  &  Weed,  1990).  While  this  proved  to  be  an  interesting  and  exciting
proposal,  the  limitations  of  this  approach  were  later  realised  (Thompson,  1991) and  the
approach remained only a concept. 

Since the mid nineties, there has been a lot of introspective writing by epidemiologists working
on human diseases with much concern over an excess focus on individuals as the units of study
and analysis. We shall not review these debates in detail because excellent discussions on these
topics are available elsewhere (Diez-Roux, 1998a; Diez-Roux, 1998b; McMichael, 1999). What
is apparent is that, whenever possible, elements of the social, physical and biological features of
the defined ecosystem should be included in each study. The unit of concern can range from the
individual, to groups (litters, pens, barns), farms/families, villages or communities, watersheds
or larger ecosystems. Thus, epidemiologic research remains deeply rooted in the concept of
multiple interrelated causal factors for disease occurrence and hence, for disease prevention.
This  conceptual  basis  has  been  supported  by  substantial  progress  in  the  development  of
epidemiologic research methodologies and these are the subject of this book. 

In the first decade of the 21st century,  perhaps the most visible shift in the focus of veterinary
medicine and epidemiology has been to reassert the ‘One Medicine’ approach to world health.
The earlier history of veterinary public health was reviewed by Schwabe, 1991. Historically, a
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number  of  people,  for  example  Dr  William Osler,  a  Canadian  physician,  and  the  German
pathologist Rudolf Virchow had stressed and contributed to the One Medicine approach.  More
recently  the  list  of  major  contributors  would  also  include  Dr  Jim  Steele  (Steele,  2008).
However, in our opinion, Dr Calvin Schwabe was the most forceful veterinary leader in this
regard and his classic text Veterinary Medicine and Human Health (Schwabe, 1984) is a unique
and  valuable  resource  in  this  regard.  Since  then,  the  movement  has  continued  to  expand
(Cardiff et al, 2008; Franco  et al, 2004; King et al, 2008; Pappaioanou, 2004; van Knapen,
2000). The One Medicine movement appeared to gain momentum following the occurrence of a
number  of  serious  disease  outbreaks  around  the  world  including  the  bovine  spongiform
encephalopathy (BSE) epidemic, severe acute respiratory syndrome (SARS), and H5N1 avian
influenza.  In  November,  2005,  The  Veterinary  Record and  the  British  Medical  Journal
published  simultaneous  issues  exploring  how the  veterinary  and  medical  professions  could
collaborate for mutual benefit. In 2006, The American Medical Association and the American
Veterinary Medical Association approved resolutions supporting One Medicine or ‘One Health’
approaches that bridge the 2 professions. The importance of epidemiology in supporting this
movement seems obvious. As of the date of writing this text (2009), the importance of sound
epidemiological research to help us understand zoonotic diseases such as influenza has been
reiterated.

1.3 A BRIEF HISTORY OF SCIENTIFIC INFERENCE 

Epidemiology  relies  primarily  on  observational  studies  to  identify  associations  between
exposures  and  outcomes.  The  reasons  are  entirely  pragmatic.  First,  many  health-related
problems  cannot  be  studied  under  controlled  laboratory  conditions.  This  could  be  due  to
limitations in our ability to create ‘disease’ problems in experimental animals, ethical concerns
about causing disease and suffering in experimental animals and the cost of studying diseases in
their  natural  hosts  under  laboratory  conditions.  Most  importantly  though,  if  we  want  to
understand the complex web of relationships that affects animals in their natural state, then we
must study them in that state. This requires the use of observational  studies, and inferences
from these studies are based primarily on inductive reasoning. 

Philosophical  discussion of  causal  inferences  appears  to  be  limited  mainly to  fields  where
observation (in which we attempt to discern the cause) rather than experimentation (in which
we try to discern or demonstrate the effect) is the chief approach to research. While the latter
approach  is  very  powerful,  one  cannot  assume  that  the  results  of  even  the  best-designed
experiments are infallible. Recent discussions have however, included approaches to identifying
and understanding causal factors in complex systems (De Vreese, 2009; Rickles, 2009; Ward,
2009).  Nonetheless,  because epidemiologists rely heavily on observational  studies  and field
experiments  for  the majority of our research  investigations,  a  brief  review of the basis  for
scientific inference is in order.  We pursue this review in the context that epidemiology is a
pragmatic discipline, that our activities are tied to health promotion and disease prevention and,
that as Schwabe, 2004, indicated, the key for disease prevention is to identify causal factors that
we can manipulate, regardless of the level of organisation at which they act. We will briefly
present  the  concepts  of  inductive  and  deductive  reasoning.  More  complete  reviews  on  the
philosophy of causal inference are available elsewhere (Aiello & Larson, 2002; Weed, 2002;
White, 2001). Based on our readings we present the following brief history:

Inductive reasoning is the process of making generalised inferences about (in our context)
‘causation’ based on repeated observations. Simply put, it is the process of drawing conclusions
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about the state of  nature from carefully recorded and analysed  observations.  Francis  Bacon
(1620),  first  presented  inductive  reasoning  as  a  method  of  making  generalisations  from
observations to general laws of nature. As 2 examples, John Snow’s observations during the
cholera outbreaks of the mid 1800s led to a correct inference about the mechanism of the spread
of the disease,  while  Edward  Jenner’s  observations that  milkmaids who developed cowpox
didn’t get smallpox, led to his conclusion that cowpox might prevent smallpox. This, in turn,
led to the development of a crude vaccine which was found to be effective when tested in
humans in 1796. These were both dramatic examples of the application of inductive reasoning
to important health problems. In 1843, John Stuart Mill proposed a set of canons (rules) for
inductive inference. Indeed, Mill’s canons might have been the origin of our concepts about the
set of component causes that are necessary or sufficient to cause disease (White, 2000). 

While it  is easy to identify important  advances in human and animal health that have been
based  on  inductive  reasoning,  proponents  of  deductive  reasoning  have  been  critical  of  the
philosophical basis (or lack thereof) of inductive logic. David Hume (1740) stated that “there is
no logical force to inductive reasoning”. He stated further that “we cannot perceive a causal
connection, only a series of events”. The fact that the sun comes up every day after the rooster
crows, should not result in a conclusion that the rooster crowing causes the sun to rise. He noted
further  that  many  repetitions  of  the  2  events  might  be  consistent  with  a  hypothesis  about
causation but do not prove it true. Bertrand Russell (1872-1970) continued the discussion of the
limitations of inductive reasoning and referred to it as “the fallacy of affirming the consequent.”
(In this process, we might imply that if A is present, then B occurs; so if B occurs, A must have
been present.) 

Deductive reasoning is the process of inferring that a general ‘law of nature’ exists and has
application in a specific, or local, instance. The process starts with a hypothesis about a ‘law of
nature’ and observations are then made in an attempt to either prove or refute that assumption.
The  greatest  change  in  our  thinking  about  causal  inferences  in  the  past  century  has  been
attributed to Karl Popper who stated that scientific hypotheses can never be proven or evaluated
as  true,  but  evidence  might  suggest  they  are  false.  This  philosophy  is  referred  to  as
refutationism. Based on Popper’s philosophy, a scientist should not collect data to try and prove
a  hypothesis  (which  Popper  states  is  impossible,  anyway),  but  that  scientists  should  try to
disprove their theory; this can be accomplished with only one observation. Once a hypothesis
has been disproven, the information gained can be used to develop a revised hypothesis, which
should once again be subjected to rigorous attempts to disprove it. Popper argues that, only by
disproving hypotheses do we make any scientific progress. It is partially for this reason that,
when conducting statistical analyses, we usually form our hypothesis in the null (ie that a factor
is not associated with an outcome) and, if our data are inconsistent with that hypothesis, we can
accept  the  alternative  hypothesis,  that  the  factor  is  associated  with the  outcome.  Thus,  the
current  paradigm  in  deductive  reasoning  is  to  conjecture  and  then  attempt  to  refute  that
conjecture. A major benefit of using Popper’s approach is that it helps narrow the scope of
epidemiologic studies instead of using a data-mining ‘risk-factor’  identification approach.  It
suggests that we carefully review what is already known and then formulate a very specific
hypothesis that is testable with a reasonable amount of data. In the former approach, we often
generate long, multipage questionnaires, whereas, in the latter, the required information is much
more constrained and highly focused on refuting the hypothesis. Epidemiologic investigations
which start with a clear hypothesis are inevitably more focused and more likely to result in
valid conclusions than those based on unfocused recording and analysis of observations. 

Two other  important  concepts  that  relate  to  scientific  inference  are  worth  noting.  Thomas
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Bayes, a Presbyterian minister and mathematician, stated that “all forms of inference are based
on the validity of their premises” and that “no inference can be known with certainty” (1764).
He noted that scientific observations do not exist in a vacuum, and that the information we have
prior to making a series of observations will influence our interpretation of those observations.
For example, numerous studies have shown that routine teat-end disinfection (after milking)
can reduce the incidence of new intra-mammary infections in dairy cows. However, if a new
study was conducted in which a higher rate of infections was found in cows that received teat-
end  disinfection,  we  would  not  automatically  abandon  our  previous  ideas  about  teat-end
disinfection. His work has given rise to a branch of statistics known as  Bayesian analysis,
some of which will appear later in this book (Chapter 24). 

More recently,  Thomas Kuhn (cited in Rothman  et al (2008)) reminds us that, although one
observation can disprove a hypothesis, the particular observation might have been anomalous
and  that  the  hypothesis  could  remain  true  in  many  situations.  Thus,  often  the  scientific
community will come to a decision about the usefulness, if not the truth, of a particular theory.
This is the role of  consensus in scientific thinking. While hard to justify on a philosophical
basis, it plays a large role in shaping our current thinking about causes of disease. 

Although philosophical debates on causal inference will undoubtedly continue (Robins, 2001;
White, 2001), as a summary of this section we note that “... all of the fruits of scientific work, in
epidemiology or other disciplines, are at best only tentative formulations of a description of
nature  ...  the tentativeness  of  our knowledge does not  prevent  practical  applications,  but  it
should keep  us  sceptical  and critical”  (Rothman & Greenland,  2005).  While keeping  these
historical  and  philosophical  bases  in  mind,  we  will  now proceed  to  an  outline  of  the  key

Fig. 1.1 Key components of epidemiologic research
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components of epidemiologic research. 

1.4 KEY COMPONENTS OF EPIDEMIOLOGIC RESEARCH 

Fig. 1.1 (previous page) summarises key components of epidemiologic research. It is somewhat
risky to attempt to simplify such a complex discipline and present it in a single diagram, but we
believe  it  is  beneficial  for  the  reader  to  have  an  overview  of  the  process  of  evaluating
associations between exposure and outcome as a guide to the rest of the book. 

Our rationale for doing research is to identify potential causal associations between exposures
and outcomes (the centre of the diagram). In many cases, the exposures are risk factors and the
outcome is  a  disease  of  interest.  However,  this  is  not  the  only scenario;  for  example,  our
outcome of interest might be a measure of productivity or food safety and the exposures might
include  certain  diseases.  Ultimately,  we  aim  to  make  causal  inferences (bottom  right  of
diagram)  about  relationships  between  exposure  and  disease  in  the  source  population  as  a
preliminary step toward developing policy and programs to maintain health and prevent disease.

An overview of the contents of this text is shown below:
• Chapter  1  gives  a  brief  history  of  epidemiology  and  the  scientific  process  and

discusses  some  important  concepts  of  causation as  they  relate  to  epidemiologic
research. 

• Field research starts with an overall  study design and the main observational study
types are discussed in Chapters 7-10, with controlled trial designs being presented in
Chapter 11. In all studies, it is important to identify the target population and obtain
our  study  group from  the  source  population in  a  manner  that  does  not  lead  to
selection bias. Sampling is discussed in Chapter 2 and selection bias in Chapter 12. 

• Once we have identified our study subjects, it is necessary to obtain data on exposure
variables,  extraneous  variables  and the outcome in a  manner  that  does not  lead to
information bias (Chapter 12). Two important tools that are used in that process are
questionnaires (Chapter 3) and diagnostic and screening tests (Chapter 5). 

• In  order  to  start  the  process  of  establishing  an  association  between  exposure  and
outcome, we need to settle on a measure of disease frequency (Chapter 4) and select
a  measure of association (Chapter 6) that fits the context. In many cases, the study
design will determine the measures that are appropriate.

• Confounding bias is a major concern in observational studies, and the identification
of factors that should be controlled as confounders is featured in Chapter 13, along
with a variety of techniques to prevent this bias. 

• With our data in hand, we are now able to begin to model relationships with the intent
of  estimating  causal  effects  of  exposure  (Chapter  13).  Individual  chapters  are
dedicated to the analyses appropriate for outcomes that are continuous (Chapter 14),
dichotomous (Chapter 16),  nominal/ordinal (Chapter 17),  count (Chapter 18) and
time-to-event  data (Chapter  19).  Chapter  15 presents  some general  guidelines  on
model-building techniques that are applicable to all types of model. 

• In veterinary epidemiologic research, we often encounter clustered or correlated data
and these present major challenges in their analyses. Chapter 20 introduces these while
Chapters  21  and  22  focus  on  mixed  (random  effects)  models  for  continuous  and
discrete  outcomes.  Chapter  23  focuses  on  the  specific  issue  of  analysing  repeated
measures data.

• In  Chapter  24  we  introduce  Bayesian  analysis. The  Bayesian  approach  formally
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incorporates  the  degree  of  certainty  we  hold  about  a  hypothesis before  we  see
additional data (prior probability) and modifies this based on the information gained
from new data  to  update  the  prior  and  obtain  new (posterior)  estimates  about  the
certainty of that hypothesis. 

• Chapters  25  and  26  present  the  basics  of  geographical  information  systems and
spatial statistics that we use in epidemiology. These fields have developed a number
of unique approaches that are useful in the study of diseases in populations. Recall the
pioneering work using these methods by Salmon and Kilborne mentioned earlier. 

• Chapter  27  describes  infectious  disease  epidemiology. The  ability  of  the  living
agent(s)  to spread from subject  to subject  creates  ‘dependencies’  (correlations) and
other phenomenon such as herd immunity that must be accounted for in our research
efforts.

• Systematic reviews and assessments of the literature in the form of meta-analyses are
becoming increasingly important and are introduced in Chapter 28. 

• Not all studies allow us to collect data on exposures and outcomes at the individual
level and yet there is much that we can learn by studying disease in groups (eg herds).
Thus, ecologic studies are introduced in Chapter 29. 

• Finally,  we  complete  the  text  with  Chapter  30  which  provides  a  ‘road  map’  for
investigators starting into the analysis of a complex epidemiologic dataset. 

With this background, it is time to delve deeper into this discipline called epidemiology. And, at
the outset it is important to stress that epidemiology is first and foremost a biological discipline,
but one which relies heavily on quantitative (statistical) methods. It is the integration of these 2
facets,  with  a  clear  understanding  of  epidemiologic  principles  which  makes  for  successful
epidemiologic research. As Rothman and Greenland (1998), point out: 

Being either a physician (veterinarian) or a statistician, or even both is neither a
necessary  nor  sufficient  qualification  for  being  an  epidemiologist.  What  is
necessary is an understanding of the principles of epidemiologic research and the
experience to apply them. To help meet this goal, this book is divided roughly
equally into chapters  dealing  with epidemiologic  principles  and those  dealing
with quantitative methods.

1.5 SEEKING CAUSES 

As already noted, a major goal  for epidemiologic research is to identify factors that can be
manipulated to maximise health or prevent disease. “The true subject matter of epidemiologic
practice and of textbooks of epidemiology is research design and methods for disentangling
causes and effects” (De Vreese, 2009). In other words, we need to identify causes of health and
disease in populations. That might seem like a simple enough task, but it is, in fact, complex.
Here we want to focus on what a cause is and how we might best make decisions about whether
a factor is a cause. For our purposes,  a cause is any factor that produces a change in the
severity  or  frequency  of  the  outcome.  Some  prefer  to  separate  biological  causes  (those
operating within individual animals) from population causes (those operating at or beyond the
level of the individual). For example, infection with a specific microorganism could be viewed
as a biological  cause  of  disease within individuals,  whereas  management,  housing or  other
factors that act at the herd (or group) level—or beyond (eg weather)—and affect whether or not
an  individual  is  exposed  to  the  microorganism,  or  affect  the  animal’s  susceptibility  to  the
effects of exposure, would be deemed as population causes. We recognise, that whereas disease
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occurs in individuals, “epidemiology deals with groups of individuals because the methods for
determining  causality  require  it”  (De  Vreese,  2009).  Vineis  and  Kriebel  (2006),  review
concepts of causality “from Koch to Rothman” (the component-cause model).

In searching for causes, we stress a holistic approach to health. The term holistic might suggest
that we try to identify and measure every suspected causal factor for the outcome of interest.
Yet, quite clearly, we cannot consider every possible factor in a single study. Rather, we place
limits on the portion of the ‘real  world’ we study and, within this, we constrain the list  of
factors we identify for investigation. Being pragmatists,  often we attempt to identify causal
factors that we can manipulate in order to help prevent disease, while recognising that some
non-manipulatable  factors  also  may be  crucial  to  our  understanding  of  disease  patterns  in
populations. Usually, extant knowledge and current belief are the bases for selecting factors for
study.  Because of this, having a concept of causation and a causal  model in mind can help
clarify  the  data  needed,  the  key  measures  of  disease  frequency  and  the  interpretation  of
associations between exposure and disease. We also need to differentiate between a conceptual,
or metaphysical view of causation which we develop at the individual level (eg counterfactual
states) and the techniques we use to achieve our objectives at the population level. We begin
with an overview of 2 important models of causation.

1.6 MODELS OF CAUSATION 

Given  our  belief  in  multiple  causes  of  an  effect  and  multiple  effects  of  a  specific  cause,
epidemiologists have sought to develop conceptual models of causation. Usually, however, the
actual causal model is unknown and the statistical measures of association we use reflect, but
do not explain, the number of ways in which the exposure might cause disease. Furthermore,
although our main interest in a particular study might focus on one exposure factor, we need to
take into account the effects of other causes of the outcome that are related to the exposure (this
process is usually referred to as control of confounding) if we are to learn the ‘truth’ about the
potential causal effect of our exposure of interest. 

Because  our  inferences  about  causation  are  based,  at  least  in  the  main,  on  the  observed
difference in outcome frequency or severity between exposed and unexposed subjects, we will
continue our discussion by examining the relationship between a postulated causal model and
the resultant, observed, outcome frequencies. We begin with a description of component-cause
and the causal-web models of causation. 

1.6.1 Component-cause model 

The  component-cause  model  is  based  on  the  concepts  of  necessary  and  sufficient  causes
developed by Rothman in 1976. A necessary cause is one without which the disease cannot
occur (ie the factor will always be present if the disease occurs). In contrast, a sufficient cause
always  produces  the  disease  (ie  if  the  factor  is  present,  the  disease  invariably  follows).
However, both experience and formal research have indicated that very few exposures (factors)
are  sufficient  in  and  of  themselves,  rather  different  groupings  of  factors  can  combine  and
become sufficient  causes.  Thus, a  component-cause is  one of  a  number  of  factors  that,  in
combination, constitute a sufficient cause. The factors might be present concomitantly or they
might follow one another in a temporal chain of events. In turn, when there are a number of
chains with one or more factors in common, we can conceptualise the web of causal chains (ie a
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causal-web). This concept will be explained further under the causal-web model (Section 1.6.2).

As an example of component causes, in Table 1.1 we portray the causal relationships of 4 risk
factors for bovine respiratory disease (BRD). These include: 

• a bacterium, namely Mannheimia hemolytica (Mh) 
• a virus, namely the bovine respiratory syncytial virus (BRSV) 
• a set of Stressors such as weaning, transport, or inclement weather, and
• other bacteria such as Histophilus somni (Hs). 

Table 1.1 Four hypothetical sufficient causes of bovine respiratory disease 

Sufficient causes

Component causes I II III IV

Mh + +

BRSV + +

Stressors + + +

Other organism (eg Hs) +

In  this deterministic portrayal,  there are  4 sufficient  causes,  each one containing 2 specific
components; we assume that the 4 different 2-factor combinations each form a sufficient cause.
Hence, whenever these combinations occur in the same animal, clinical respiratory disease will
occur  (as  mentioned,  one  can  conceive  that  these  factors  might  not  need  to  be  present
concomitantly, they could be sequential exposures in a given animal). Some animals could have
more than 2 causal factors (eg Mh, BRSV, Stressors) but the exposure to the first of the 2-factor
combinations would be sufficient to produce BRD. Note that we have indicated that only some
specific 2-factor combinations act as sufficient causes; Mh is a component of 2 of the sufficient
causes, as is BRSV. Because no factor is included in all sufficient causes, there is no necessary
cause in our model of BRD. Obviously, if you have not guessed by now, you should be aware
that the number of causal factors and their arrangement into sufficient causes, as presented here,
are purely for the pedagogical purposes of this example. 

Now, against this backdrop of causal factors, we will assume that we plan to measure only the
Mh and BRSV components (ie obtain nasal swabs for culture and/or blood samples for antibody
titres). Nonetheless, we are aware that, although unmeasured, the other components (Stressors
and/or Hs) might be operating as components of one or more of the sufficient causes. In terms
of the 2 measured factors, we observe that some cattle with BRD will have both factors, some
will have only Mh and some only the BRSV components. Because of the causal effects of the
other unmeasured factors (eg Stressors and Hs forming sufficient cause IV), there will be some
animals with BRD that have neither of these 2 measured factors. 

The effect of risk factor prevalence on disease risk 
One of the benefits of thinking about causation in this manner is that it helps us understand how
the prevalence of a co-factor can impact on the strength of association between the exposure
factor and the outcome of interest. For example, assume that we are interested principally in the
strength of association between infection with Mh and the occurrence of BRD (the various
measures of association are explained in Chapter 6). According to our example in Table 1.1,
Mh produces disease when present with BRSV, but also without BRSV when combined with
Stressors. What might not be apparent however, is that changes in the prevalence of the virus,
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or of the  Stressors (since they are components of the same sufficient cause) can change the
strength of association between Mh and BRD. To demonstrate this point, note the 2 populations
in Examples 1.1 and 1.2. 

This  example  is  based  on  the component-cause model  shown in  Table  1.1  using  3  causal
factors: Mh, BRSV and Stressors. The frequency of each factor indicated above the body of the
tables in Examples 1.1 and 1.2 is the same {p(Stressors)=0.4 and p(Mh)=0.6} except that the
frequency of BRSV is increased from 30% in Example 1.1 to 70% in Example 1.2. In  our
examples, all 3 factors are distributed independently of each other; this is not likely true in the
field, but it allows us to examine the effect of single factors without concerning ourselves with
the biasing (ie confounding) effects of the other factors. 

If infection with Mh is our exposure factor of interest, it would be apparent that some but not all
cattle with Mh develop BRD and that some cattle without Mh also develop BRD. Thus, Mh
infection by itself is neither a necessary nor sufficient cause of BRD. Similarly for BRSV, some
infected cattle develop BRD, some non-infected cattle also develop BRD. In order to ascertain
if the occurrence of BRD is associated with Mh exposure, we need to measure and contrast the
risk of BRD among the exposed (Mh+) versus the non-exposed (Mh-). In Example 1.1, these
frequencies are 58% and 12%, and we can express the proportions relative to one another using

Example 1.1 Causal complement prevalence and disease risk—Part I

The number  and risk of  BRD cases  produced  by 2  measured  and one unknown  exposure  factors
assuming  joint  exposure  to  any  2  factors  is  sufficient  to  cause  the  disease  are  shown  below.
Mannheimia  hemolytica (Mh)  is  the  exposure  of  interest  (total  population  size  is  10,000;
p(Stressors)=0.4; p(Mh)=0.6; p(BRSV)=0.3).

Measured factors

Unmeasured
Stressors BRSV Mh

Population
number

Number
diseased

1 1 1 720 720

1 1 0 480 480

1 0 1 1680 1680

1 0 0 1120 0

0 1 1 1080 1080

0 1 0 720 0

0 0 1 2520 0

0 0 0 1680 0

Risk of disease among the Mh+ 3480/6000 = 0.58

Risk of disease among the Mh- 480/4000 = 0.12

Risk difference in Mh+ 0.58 - 0.12 = 0.46

Risk ratio if Mh+ 0.58/0.12 = 4.83
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a statistic called the risk ratio which is 58/12=4.83. This means that the frequency of BRD is
4.83 times higher in Mh+ cattle than in Mh- cattle. We could also measure the association
between Mh and BRD using a risk difference; in this instance, the RD is 0.46 or 46%. These
measures are consistent with Mh being a cause of BRD, but do not prove the causal association.

In Example 1.2, the frequency of BRSV is increased, and the risk ratio for Mh+ cattle becomes
smaller  (2.93) and the RD larger  (0.54 or  54%).  Thus, we might  be tempted to think that
exposure to Mh+ in some sense acts differently from a causal perspective in one example to
another, yet the underlying causal relationship of Mh exposure to the occurrence of BRD has
not changed. The difference in the measure of association is due to a change in the frequency of
the  other  components  of  the  sufficient  causes,  namely  BRSV in  this  example.  The  other
components that can form sufficient causes are called the causal complement to the exposure
factor. Here with sets of 2 factors being sufficient causes, the causal complements of Mh are
BRSV or  Stressors  but  not  both  (the  latter  cattle  would  have  developed  BRD from being
stressed and having BRSV). 

In  general,  we note  that  when the  prevalence  of  causal  complements  is  high,  measures  of
association between the factor of interest and the outcome that are based on risk differences will
be increased (especially when the prevalence of exposure is low) (Pearce, 1989). Some, but not

Example 1.2 Causal complement prevalence and disease risk—Part II

The number  and risk of  BRD cases  produced  by 2  measured  and one unknown  exposure  factors
assuming  joint  exposure  to  any  2  factors  is  sufficient  to  cause  the  disease  are  shown  below.
Mannheimia  hemolytica (Mh)  is  the  exposure  of  interest  (total  population  size  is  10,000;
p(Stressors)=0.4; p(Mh)=0.6; p(BRSV)=0.7).

Measured factors

Unmeasured
Stressors BRSV Mh

Population
number

Number
diseased

1 0 1 720 720

1 0 0 480 0

1 1 1 1680 1680

1 1 0 1120 1120

0 0 1 1080 0

0 0 0 720 0

0 1 1 2520 2520

0 1 0 1680 0

Risk of disease among the Mh+ 4920/6000 = 0.82

Risk of disease among the Mh- 1120/4000 = 0.28

Risk difference in Mh+ 0.82 - 0.28 = 0.54

Risk ratio if Mh+ 0.82/0.28 = 2.93
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all,  ratio  or  relative  measures  of  association  could  have  the  opposite  relationship  with  the
prevalence  of  causal  complements.  In  any  event,  although  the  causal  mechanism  remains
constant, the strength of association will vary depending on the distribution of the co-factors,
many of which we do not know about or remain unmeasured for practical reasons. As will be
discussed, strength of association is one criterion of causation but it is not a fixed measure and
we need to bear the phenomenon just discussed in mind when making causal inferences.

In addition to the above observations, you might verify that the impact of BRSV on BRD as
measured by the risk ratio would be the same (RR=3.2) in both Examples 1.1 and 1.2 even
though its (ie BRSV) prevalence has changed. Although this is only one example, we could
state the general rule that the strength of association for a given factor depends on the frequency
of the causal complements but, providing the distribution of the other causal factors is fixed,
changes in the prevalence of the factor of interest do not alter its strength of association with the
outcome.  If  we  could  measure  all  the  co-factors  including  Stressors  and  the  other  causal
component factors, the picture would change considerably. For example, if the Stressors were
the only other  causes of BRD, it  would be obvious that, in the non-stressed animals, BRD
occurred only when both Mh and BRSV were present together. This would be clear evidence of
biological synergism, a feature that is detected numerically as statistical interaction (ie the joint
effect  of  the 2 factors  would be  different  than the  sum of  their  individual  effects—in this
instance, they would have no ‘individual’ effect, only a joint effect) (for more advanced reading
see VanderWeele and Robins, 2007b). In stressed cattle, all animals exposed to Mh or BRSV
would get BRD but there would be no evidence of interaction because 100% of singly, as well
as jointly, exposed stressed cattle would develop BRD. 

Because changes in the prevalence of the ‘unknown’ or ‘unmeasured’ factor(s) will alter the
magnitude of effect for the measured exposure, we accept that we need to think of measures of
association as ‘population specific.’ Only after several studies have found a similar magnitude
of effect  in different populations should we begin to think of the effect  as in some sense a
biological constant. Further, as shown in our examples, even if the cases have arisen from an
assumed  model  that  incorporates  biological  synergism,  because  of  the  distribution  of  the
unknown causal factors, interaction (indicating synergism) might not be evident in the observed
data. Flanders,  2006  discusses  the  component-cause model  and  its  relationship  to  the
counterfactual model in a more complex multifactorial setting than we describe here. 

So far,  we have pursued the component-cause  model  as deterministic.  However,  in reality,
because  we  virtually  never  know all  of  the  component  causes  of  a  disease,  there  will  be
circumstances where it appears that a factor is causal and other circumstances where it appears
to  have  no,  or  even  a  sparing,  effect. The  statistical  models  we  use  to  identify  possible
component-causes average these effects across individuals. Indeed, it is possible that a factor
which appears to elevate the risk of disease in a population can have no effect, or a sparing
effect, on some individuals within their population (Rothman & Greenland, 2005). Because of
this  we need  to  stress  that  epidemiological  measures  of  association  are  for  groups  not  for
individuals (this was also stressed in early writings on epidemiological methods by McMahon
and Pugh, in 1970). Koopman and Lynch, 1999 indicated the need to broaden the scope of the
sufficient cause model in individuals to include the effects of interactions between individuals
and a population based approach, particularly when studying infectious diseases.  Diez-Roux
(2007)  extends  this  approach  to  integrate  social  and  biological  risk  factors  in  a  systems
approach to disease prevention in populations. Traditionally, social risk factors are deemed to
be very indirect causes of disease through their impact on more proximate biological causes. In
her view, a systems approach would not investigate individual risk factors (or individuals) one
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at  a  time,  but  would  investigate  the  behaviour  and relationships  of  multiple  elements  in  a
particular population system while it is functioning.

Although the component-cause model is somewhat simplistic, we believe it has great merit in
determining which factors to include in the study of a specific disease. As noted, clues about the
potential  influence  of  a  factor  from  studies  in  basic  biological  sciences,  or  from  other
epidemiologic studies to identifying potential causal factors are more useful than an unfocused
data-mining approach in which factors are studied merely because we already have data on
them, or because the data are easily available. Nonetheless, by “studying disease causation in
large groups makes us ... able to answer the question of what causes diseases without knowing
much about the precise biological and chemical mechanisms involved” (De Vreese, 2009).

Proportion of disease explained by risk factors
Using the concepts of necessary and sufficient causes, we also gain a better understanding of
how  much  disease  in  the  population  is  attributable  to  that  exposure  (or  alternatively  the
proportion of disease that we could prevent by completely removing the exposure factor). 

As explained in Chapter 6, this is called the population attributable fraction (AFp). For example,
if we assume that the prevalence of each of the 4 sufficient causes from Table 1.1 is as shown in
Table 1.2,  then, if  we examine the amount of disease that  can be attributed to each of  the
component causes, it appears that we can explain more than 100% of the disease. Of course, we
really can’t; it is simply because the components are involved in more than one sufficient cause
and we are double-counting the role that each component cause plays as a cause of the disease. 

Table 1.2 Hypothetical sufficient causes of bovine respiratory disease and relationship to 
population attributable fraction 

Sufficient causes

Component causes I II III IV AFp (%)

Mh + + 75

BRSV + + 60

Stressors + + + 55

Other organism (eg Hs) + 10

Prevalence of sufficient cause (%) 45 30 15 10

Another important observation is that, when 2 or more factors are both essential for disease
occurrence,  it  is  difficult  to attribute a specific  proportion of the disease occurrence to any
single causal factor. For example, in cattle that had all 3 factors, Mh, BRSV and Stressors—it
would be impossible to decide the unique importance of each factor. Our model indicates that
once any 2 of the 3 were present, then BRD would occur and the presence of the third factor is
of no importance causally; thus, as the saying goes ‘timing is everything’. Certainly, because
the frequency of co-factors can vary from subgroup to subgroup, as with relative risk measures,
one should not think of AFp as being a ‘universal’ measure of importance.

Whereas the AFp is an extremely useful measure of importance, we also need to be aware of the
‘prevention paradox’(De Vreese, 2009). As an example, suppose that the AFp for a factor (eg
a vaccine) is 50%. This would suggest that if the prevalence of the disease in unvaccinated
subjects was 6%, then if we fully vaccinated the population only 3% of the subjects would
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develop the disease. Indeed, this is an important reduction for the population. However, 94% of
the subjects we vaccinated would not have developed the disease if left unvaccinated, and half
of those who would have developed the disease in the absence of vaccination developed it
anyway despite being vaccinated. Thus, when proposing to implement our findings, we need to
be aware of the costs and the possible side-effects of the proposed policy or program.

1.6.2 Causal-web model

A second way of conceptualising how multiple factors can combine to cause disease is through
a causal web (Example 1.3) consisting of multiple indirect and direct causes (Krieger, 1994).
This concept is based on a series of interconnected causal chains or web structures; in a sense, it
takes the factors portrayed in the sufficient-cause approach and links them temporally. In this
model, a direct cause has no known intervening variable between that factor and the disease
(diagrammatically,  the  exposure  is  adjacent  to  the  outcome).  Direct  causes often  are  the
proximal causes emphasised in therapy, such as specific microorganisms or toxins. In contrast,
an  indirect cause is one in which the effects of the exposure on the outcome are mediated
through one or more intervening variables. It is important to recognise that, in terms of disease
control, direct causes may be no more valuable than indirect causes. In fact, many large-scale
control efforts are based on manipulating indirect rather than direct causes. Historically,  this
was also true: whether it was John Snow’s work on cholera control through improved water
supply, or Frederick Kilborne’s efforts to prevent Texas Fever in American cattle by focusing
on tick control. In both instances, disease control was possible before the actual direct causes
(Vibrio cholerae and  Babesia bigemina)  were  known,  and  the  control  programme was  not
focused directly on the proximal cause. 

One possible web of causation of respiratory disease (BRD) based on the 3 factors in Examples
1.1  and  1.2  might  have  the  structure  shown  in  Example  1.3.  The  causal-web  model
complements the component-cause model but there is no direct equivalence between them. As
we show in Chapter 13, formal causal-web diagrams are very useful to guide our analyses and
interpretation  of  data.  In  our  example,  the model  indicates  that  Stressors  make the  animal
susceptible to both Mh and BRSV, that BRSV increases the susceptibility to Mh and that BRSV
can ‘cause’  BRD directly  (this  might  be  known to be  true,  or  it  might  reflect  the  lack  of
knowledge about the existence of an intervening factor such as Hs which is missing from the
causal model). Finally, it indicates that Mh is a direct cause of BRD. If this causal model is true,
it suggests that we could reduce BRD occurrence by removing an indirect cause such as stress,
even though it has no direct  effect  on BRD. We could also control BRD by preventing the
action of the direct causes Mh and BRSV (eg  by vaccination, or prophylactic treatment with
antimicrobials—we are not suggesting that you do this!). As mentioned, this model claims that
Stressors do not cause BRD without Mh or BRSV infection and thus suggests a number of 2- or
3-factor groupings of component causes into sufficient causes. However, it does not explicitly
indicate whether some of the proximal causes can produce disease in and of themselves (ie it is
not apparent whether BRSV can cause BRD by itself or if it needs an additional unmeasured
factor).  From the  previous  examples,  the  outcome frequencies  in  BRSV-infected  and  non-
infected cattle will depend on the distribution of the other component causes and whether, in
reality, it can be a sufficient cause by itself. In Section 1.8, we will discuss the relationship of
the causal structure to the design of our studies and as a guide to the correct approach in our
analyses and interpretation of the study data. 
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1.7 COUNTERFACTUAL CONCEPTS OF CAUSATION FOR A SINGLE EXPOSURE

The most widely accepted conceptual basis for determining causation in epidemiology is called
the counterfactual or potential outcomes model (Greenland, 2005). In a sense, it reflects the
way many of us would make causal inferences and can be the basis for forming clearly defined
questions  for  future  research.  Both  Greenland  (2005)  and  Hernan  (2005)  give  examples
(through hypothetical interventions) of the specificity required in counterfactual questions if we
are to make progress in resolving complex health problems. 

The following discussion closely follows that of Hernan (2004). Suppose we are interested in
whether or not a vaccine would protect against a disease, while having concerns that the side-
effects of the vaccine might be harmful. If we saw an exposed (ie in this instance vaccinated)
subject who developed the disease we might begin to think that the exposure (or its side effects)
caused the disease in that subject. If  we imagined the same subject in the same time period
except they were not exposed (not vaccinated), this would be referred to as the counterfactual
state. Obviously, this individual does not exist, but it is what we would ideally like to observe in
order  to  make  valid  causal  inferences.  If  the  disease  did  not  occur  in  this  hypothetical
counterfactual individual, we would surely conclude that the exposure (vaccination) had caused
the observed disease in that individual. Conversely, if the disease occurred in this non-exposed
counterfactual individual, we likely would conclude that the exposure was not a cause of the
disease in that subject (since the disease occurred regardless of exposure). We can make this
thought process more formal by denoting the potential outcome in exposed subjects as DE+ and
the potential outcome in the same subjects if they were unexposed as DE-. Our thought process
concludes that there is a causal effect in that subject if DE+ ≠ DE-. Note that a causal exposure
need not be causal in all individuals principally because the other factors needed to complete a
sufficient  cause  are  absent.  Further,  in  reality,  we  cannot  determine  a  causal  effect  at  the
individual level because only one exposure level is observed and the data relating to what might
have happened at the other exposure level is missing.

If  we expand our thought  process  to  the  population level,  we could  compare  the potential
frequency of  disease  in  a  population if  all  of  its  members  were  exposed,  p(DE+=1),  to  the
potential frequency of disease in that same population if none of its members was exposed
p(DE-=1) (recall again that because the subject might be missing a key component cause, not
everyone  would get  the disease  if  exposed  and because  of  other  unknown sufficient  cause
complexes,  not  everyone  would  be  disease-free  if  unexposed  to  a  specific  factor  such  as
vaccination). Nonetheless, we would say there is a causal effect in the population if there is a
difference  in  counterfactual  means  p(DE+=1)-p(DE-=1)≠0. An  equivalent  measure  of  causal
effect  based  on  relative  frequencies  is  p(DE+=1)/p(DE-=1)≠1.  Although these  population
measures are not directly observable, unlike at the individual level, we can estimate them under

Example 1.3 A causal-web model of BRD based on component causes from Example 1.1

Mh

Stressors

BRSV
BRD
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specific conditions; namely, through the use of randomisation in the perfect experiment.

In Table 1.3, we summarise the observed exposure, actual disease outcome, and counterfactual
outcomes  in  20  subjects  based  on  Hernan  (2004).  Here,  ‘i’  is  the  subject  counter, C a
confounder, E the exposure and D the outcome. A 1 indicates the presence, and 0 the absence of
the factor or the outcome. In the 2 columns on the right side of Table 1.3 are the counterfactual
outcomes for the exposed and unexposed groups. We have set this example up such that the
exposure (vaccination) causes (or would have caused) the disease in 3 individuals (subjects 7, 9
and 11) and prevents (or would have prevented) it in 3 others (subjects 1, 12 and 18). It had no
effect in the remaining 14 individuals (their outcome did not change under the counterfactual
state). Recall from our discussion of component causes that these effects (if real) could be due
to the presence or absence of other component causes. However, since both ΣDE+ and ΣDE- equal
10, there is no causal effect in the population. We should note that in the counterfactual (or
potential  outcome)  setting,  our  inference  about  cause  is  made  by  comparing  the  potential
outcomes in the exact same subjects under different exposure scenarios. 

Now,  our  first  practical  approach  to  estimating  the  causal  effect  is  to  use  a  measure  of
association developed by contrasting 2 very similar but different groups of subjects, one of
which is exposed and one of which is not. The observed probability (or risk) of the outcome in
the exposed is defined as p(D+|E+) and p(D+|E-) in the non-exposed. Although this looks very
similar to the comparisons in the counterfactual model, the risks now depend on observed data
in the exposed and unexposed subsets of the actual population and reflect ‘associations’ not
necessarily  causation.  In  this  instance,  7/13  (0.54)  subjects  who  were  actually  exposed
developed the disease, but only 3/7 (0.43) actually unexposed subjects developed the disease.
Thus, the association measure does not equal the causal effect in this instance (and in general
we  will  try  and  remind  ourselves  that  association  does  not  necessarily  imply  causation
throughout this text). 

So what accounts for the fact that the observed risks do not equal the counterfactual risks?  And,
given this, how do we design studies to obtain data suitable for causal inferences?  The problem
is  that  our  comparison  group  (E-)  is  not  a  good  counterfactual  group  in  that  it  differs
systematically from the E+ group in a manner that alters the risk of the outcome. In Table 1.3,
in the E+ group 9/13=0.69 of the individuals were C+ but in the E- group, only 3/7=0.43 were
C+.  Consequently,  the  groups  were  not  exchangeable.  Exchangeability  means  the exposure
status of the 2 groups could be switched without impacting the results, but because the groups
were different, this was not possible. 

A major problem for epidemiologists in their use of observational studies (as in our example) is
that the exposed and unexposed groups of subjects are rarely exchangeable. The most likely
reason for this difference is the presence of other factors that are related to the exposure and the
disease  (in  our  example,  the  C+  and  C-  subjects  might  have  different  exposure  levels  to
infection and this impacts on disease occurrence). These factors are called confounders and the
phenomenon of confounding will be explored in detail in Chapter 13. The presence or absence
of this confounding factor is shown in the second column of Table 1.3. Given these data we
note that among those possessing the confounding factor (eg being exposed to a high risk of
infection), 75% were exposed (ie vaccinated) whereas among those not exposed to a high risk
of infection, only 50% were exposed (vaccinated). 

We will delay the discussion of techniques to control confounding until Chapter 13, and at this
point  only introduce  the fact  that  there  are  a  number  of  ways  of  trying  to  ensure  that  the
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observed risks would equal the counterfactual risks. One way is to view the problem as trying
to uncover the mechanism behind the allocation of exposure as stated by  Rubin, 1991. For
example  the  observed  data  could  have  resulted  from  a  controlled  experiment  where  the
researchers decided to vaccinate a higher percentage of high risk than low risk study subjects.

Table 1.3 Observed and counterfactual results of an exposure (E) and disease (D)

Subject Confounder
Actual

Exposure (E)
Actual

Outcome (D)
Counterfactual 

Results

(i) (C) DE=1 DE=0

1 1 0 1 0 1

2 0 0 1 1 1

3 1 1 1 1 1

4 1 1 0 0 0

5 1 1 1 1 1

6 1 1 1 1 1

7 0 0 0 1 0

8 0 1 1 1 1

9 0 0 0 1 0

10 0 1 0 0 0

11 1 1 1 1 0

12 1 0 1 0 1

13 1 1 1 1 1

14 0 1 0 0 0

15 1 1 1 1 1

16 0 0 0 0 0

17 1 0 0 0 0

18 1 1 0 0 1

19 0 1 0 0 0

20 1 1 0 0 0

Totals 12 13 10 10 10

p(DE=1=1)=0.5 p(DE=0=1)=0.5

Observed p(D+|E+)=7/13=0.54

Observed p(D+|E-)=3/7=0.43

E=1 E=0

p(D+|C+) 6/9=0.67 2/3=0.67

p(D+|C-) 1/4=0.25 1/4=0.25
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This approach leads to the development of propensity scores and proportional  weighting of
stratum specific outcome frequencies to obtain unbiased estimates of causal parameters (Hernan
&  Robins,  2006a).  Related  to  this  is  the  use  of  standardised  risks/rates to  adjust  for  the
distribution of exposure in the different levels of the confounder(s) (Sato & Matsuyama, 2003).
Other  researchers  have  developed  methods  to  prevent  confounding  based  on  ‘instrument
variables’. Historically, the traditional approach has been the use of physically stratifying the
data  based  on  the  levels  of  the  confounder(s)  and  using  adjusted  measures  of  association
(relative risks and odds ratios) initially developed by Mantel and Haenszel in 1959 (see Chapter
13  for  details).  Here,  we  note  that  the  risks  of  disease  are  the  same  in  the  exposed  and
unexposed subjects once the subjects are divided into those with a high risk of infection and
those  with  a  lower  risk  of  infection.  In  order  to  make  valid  causal  inferences,  a  major
underlying assumption of all of these methods is that there is no residual confounding given the
control of (adjustment for) measured confounders—this produces ‘exchangeability’ within the
strata formed by the combinations of measured confounders.

1.8 EXPERIMENTAL VERSUS OBSERVATIONAL EVIDENCE OF CAUSATION

Experimental evidence 
Traditionally,  the  gold  standard  approach  to  identifying  causal  factors  is  to  perform  an
experiment. In most 2-arm experiments (see Chapter 11), we randomise some animals (or other
units of concern) to receive the factor and some to receive nothing, a placebo, or a standard
intervention (treatment). After a suitable time period, we then assess the outcome in the study
subjects and proceed to assess if there are differences in the outcome between the 2 groups.  As
an alternative design, we might more nearly approach the counterfactual state by using a cross-
over design in which subjects are randomly assigned to receive the treatment of interest,  or
serve as controls, in the first period of the experiment. After a suitable ‘wash-out period, the
subjects then receive the other level of the treatment (ie if they received the treatment in the first
period they would receive the placebo in the second and vice-versa).  This allows the subject to
serve as their own control as in the counterfactual setting. In both of these experimental designs,
the exposure (now denoted as X) explicitly precedes the outcome (denoted as Y) temporally and
all  other  variables  (known and unknown) that  do not intervene  between  X and  Y are made
independent of X through the process of randomisation (this means that extraneous variables do
not confound or bias the results we attribute to the exposure X). This independence of all factors
from  the  treatment  X produces  exchangeability  in  the  treatment  groups;  that  is  the  same
outcome would be observed (except for sampling error) if the assignments of treatment to study
subjects had been reversed (ie if the treated group had been assigned to be untreated). In an
experiment,  the formal  application of randomisation provides  the probabilistic  basis  for  the
validity of this assumption. Factors that are positioned temporally or causally between X and Y
are not measured and are of no concern with respect to answering the causal objective of the
trial. In these experimental contexts, exposure X would be a proven cause of outcome Y if the
value or state of Y changed following the manipulation of X. 

The measure of causation in this ideal trial is called the causal-effect coefficient and indicates
the difference in the outcome between the ‘treated’  and ‘non-treated’ groups (ie those with
different levels of factor X). For example, if the risk of the outcome in the group receiving the
treatment is denoted  R1 and the risk in the group not receiving the treatment is  R0, then we
might  choose  to  measure  the  effect  of  treatment  using  either  an  absolute  measure  (ie risk
difference—RD)  or  a  relative  measure  (ie risk  ratio—RR)  as  shown  in  Chapter  6.  If  this
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difference is greater than what could be attributed to chance, then we could say that we have
proved that the factor is a cause of the outcome event.  A key point is that all causal-effect
statements are based on contrasts of outcomes in the different treatment groups; the outcome in
the treated group cannot be interpreted without knowing the outcome in the untreated group. 

Observational evidence 
In observational studies, we estimate the difference in values of Y between units that happen to
have different values of X. In contrast to the experimental setting, we do not control whether a
subject is, or is not, exposed. As we have seen in Table 1.3 measures of association do not
necessarily reflect  causation. Variables related to both  X and  Y and which do not intervene
between X and Y must be controlled to prevent confounding bias and support the estimation of
causal effects. The major differences between observational studies and field experiments lie in
the ability to prevent selection, misclassification and confounding bias, and dealing with the
impact of unknown or unmeasured factors. Thus, by themselves, observational studies produce
measures  of  association  but  cannot  ‘prove’  causation.  However,  in  the  ideal  observational
study,  with total  control  of  bias,  the measure  of  association  will  estimate the causal-effect
coefficient. Nonetheless, in a given setting, experimental evidence is deemed to provide more
solid evidence of causality than observational  studies because,  in reality,  “To find out what
happens to a system when you interfere with it, you have to interfere with it (not just passively
observe it).” (Attributed to Box (1966) in Snedecor and Cochran (1989)). 

Limits of experimental study evidence 
Despite their advantages, performing ‘ideal’ experiments is not easy even at the best of times
(see Chapter 11) and, furthermore, many potential causal factors of interest to epidemiologists
would be difficult to study using a controlled-trial format. For example, it would be impossible
to perform the perfect experiment to answer the question of whether or not badgers that are
infected with M. bovis cause tuberculosis in cattle. Laboratory studies are useful to demonstrate
what can happen when animals are exposed to a specific exposure (eg that factor A can cause
outcome B),  but,  if  the  circumstances  are  too contrived  (very  large  dose,  challenge  by an
unnatural  route,  limited  range of  co-factors),  laboratory results  might  not  be  much help in
deciding the issue of  causation under  normal,  everyday conditions.  For  example,  we could
conduct a laboratory experiment in which cattle and infected badgers are maintained within a
confined enclosure and assess whether or not the cattle became infected. If they did, this would
demonstrate that infected badgers can cause infection in cattle, but not the extent, or route of
infection in the field. 

In field trials that are subject to non-compliance, we often have to decide how to manage the
non-compliance in assessing the role of the treatment on the outcome and, although any given
field  trial  might  provide  more  valid  evidence  for  or  against  causation  than  any  given
observational study, it is not uncommon for differences in results to exist among apparently
similar  field  trials.  Hence,  the  ability  to  make  perfect  inferences  based  on  field  trials  is
illusionary. In  addition,  in  many instances,  it  is  impossible  to  carry  out  experiments  under
conditions that even remotely resemble ‘real-world’ conditions. Rickles, 2008, has discussed
the  particular  limitations  of  interpreting  causal  effects  when using  experimental  designs  to
intervene in complex systems. 

1.9 CONSTRUCTING A CAUSAL DIAGRAM 

Causal diagrams are helpful for displaying relationships among a number of possible causal
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variables  (variables  are  names  for  factors  that  we wish  to  study),  as  well  as  for  deducing
statistical  associations  that  might  arise  from a  given  set  of  underlying  causal  relationships
(Glymour & Greenland, 2008). The cause-and-effect  relationships, and correlations, are best
shown in a causal diagram (also called directed acyclic graphs, or modified path models). To
construct a causal diagram, we begin by imposing a plausible biological causal structure on the
set  of  variables  we plan  to  investigate  and  translate  this  structure  into graphical  form that
explains our hypothesised and known relationships among the variables. The causal-ordering
assumption is usually based on known time sequence and/or plausibility considerations.  For
example,  it  might  be  known  that  one  variable  precedes  another  temporally,  or  current
knowledge  and/or  common sense  might  suggest  that  it  is  possible  for  one  factor  to  cause
another but not vice-versa. We will explain the process using an example (Example 1.4) in
which we hypothesise that reproductive diseases will impact on reproductive efficiency in dairy
cattle. Causal diagrams are discussed further in Section 13.5.1.

The easiest way to construct the causal diagram is to begin at the left with variables that are pre-
determined and progress to the right, listing the variables in their causal order. The variation of
these variables (those to the extreme left such as AGE in Example 1.4) is considered to be due
to factors  outside of the model.  The remaining variables are placed in the diagram in their
presumed causal order; variables to the left could ‘cause’ the state of variables to their right to
change. If it is known or strongly believed that a variable does not cause a change in one or
more  variables  to  its  right,  then  no  causal  arrow  should  be  drawn  between  them.  Once
completed, if the proposed model is correct, the analyses will not only be more informative
about which variables we need to include in our study, but it will also provide more powerful
analyses than approaches that ignore the underlying structure. The only causal models to be
described here are called recursive;  that is, there are no causal  feedback loops (if  these are
believed to exist, they can be formulated as a series of causal structures). 

Suppose the model is  postulated to assess  if  reproductive  diseases  impact  on the outcome,
specifically fertility. In our model, AGE is assumed to be a direct cause of retained placenta
(RETPLA), cystic ovarian disease (OVAR) and FERTILITY but not METRITIS. (This means
that the risk of RETPLA and METRITIS change with the age of the cow, as does the measure
of FERTILITY.) Note that METRITIS and OVAR are intervening variables between RETPLA
and the outcome of interest FERTILITY. We will assume that our objective is to estimate the
causal effect of RETPLA on FERTILITY based on the association between these 2 variables. 

The model indicates that AGE can cause changes in FERTILITY directly and also by a series of
pathways involving one or more of the 3 reproductive diseases. It also indicates that AGE is not

Example 1.4 A causal diagram of factors affecting fertility in cows

OVAR

AGE

RETPLA

RETPLA = retained placenta
OVAR = cystic ovarian disease

METRITIS

FERTILITY
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a direct  cause of METRITIS.  In terms of understanding relationships implied by the causal
diagram, the easiest  way to explain them is to think of  getting (perhaps  walking)  from an
exposure variable (eg RETPLA) to a subsequent variable (eg FERTILITY). As we pass through
variables in the direction of the arrows, we trace out a  causal path. The rule for tracing the
causal pathways is that you can start backwards from any variable but once you start forward on
the arrows you cannot  back up. Paths which start  backwards  from a variable are  spurious
causal paths and reflect the impact of confounders. In displaying the relationships, if there are
variables that we believe are correlated because of an unknown or unmeasured common cause,
we use a line to indicate this, and you can travel in either direction between these variables. If 2
variables are adjacent (connected by a single direct arrow), their causal relationship is deemed
to be directly causal. Paths which start forward from one variable and pass through intervening
variables to reach the outcome are deemed to be indirect causal paths (eg RETPLA can cause
fertility changes through its effect on OVAR, but not directly). The combined effects through
indirect and direct paths represent the total causal effect of the variable. 

Okay, so, how does this help us? Well, in order to estimate the causal effect, we must prevent
any spurious (confounded) effects,  so the variables preceding an exposure factor of interest
(RETPLA) that have arrows pointing toward it (ie from AGE) and through which FERTILITY
(the outcome) can be reached on a path must be controlled. In this instance, that variable is
AGE. The model also asserts that we do not control intervening variables so METRITIS and
OVAR are not placed in the statistical model when estimating the causal effect. If we assume
that there are no other confounders that are missing from the model, our analyses will estimate
the  causal  effect  of  RETPLA  on  FERTILITY.  (This  also  assumes  the  statistical  model  is
correct, but that is another story.) 

We should note that if we did control for METRITIS and OVAR in this model, we would not
obtain the correct estimate of causal effect. Rather, we would only obtain the direct effect of
RETPLA on FERTILITY  if  that  direct  effect  existed (and  in  our example  no direct  effect
exists).  This  feature  will  be  discussed  again  when  regression  models  (eg Chapter  14)  are
described as this is a major reason why we can inadvertently break down a causal web. In the
causal diagram used here, we explicitly assume there is no direct causal relationship between
RETPLA and FERTILITY (so this would be an inappropriate analysis for this reason also).
However,  RETPLA can  impact  on FERTILITY  indirectly  through the  diseases  METRITIS
and/or OVAR, and controlling these variables would block these indirect pathways. Thus, only
by excluding  METRITIS  and OVAR,  and  controlling for  AGE,  can  we obtain the  correct
causal-effect estimate. 

Greenland  and  Brumback  (2002),  discuss  relations  among  causal  diagrams,  counterfactual
models,  component-cause  models  and  structural  equation  (ie path)  models. Howards  et  al,
(2007)  provide a good discussion on the use of causal diagrams with linkages to appropriate
regression models for estimating the associations and examples of causal diagrams based on
potential causes of perinatal disease. For more advanced reading see VanderWeele and Robins,
2007a.

1.10 CAUSAL CRITERIA 

Given that researchers seek to make advances in identifying potential causes of disease using
observational study techniques, a number of workers have proposed a set of causal guidelines
(these  seek  to  bring  uniformity to  decisions  about  causation  (Evans,  1995;  Susser,  1995)).



24 INTRODUCTION AND CAUSAL CONCEPTS

Because these depend on value judgements, we should accept that different individuals might
view the same facts differently (Poole, 2001). The recent origin of these guidelines is attributed
to  Hill (1965) who proposed a list of criteria for making valid causal  inferences (not all of
which had to be fully met in every instance). These guidelines include: time sequence, strength
of association, dose-response, plausibility,  consistency,  specificity,  analogy and experimental
evidence. Today, we might add evidence from meta-analysis to this list. Over the years, the first
4 of these have dominated our inference-making efforts (Weed, 2000) and recently, researchers
have investigated how we use these and other criteria  for making inferences (Waldmann &
Hagmayer, 2001). In one study, a group of 135 epidemiologists were given a variety of realistic
but contrived examples and varying amounts of information about each scenario. At the end of
the exercise, they had agreed on causal inferences in only 66% of the examples. This stresses
the individuality of interpreting the same evidence. Nonetheless, since we think that reference
to a set of criteria for causal inferences is a useful aid to decision-making (they provide “a road
map through complicated territory” (Rothman et al, 2008)), we will briefly comment on Hill’s
list of items and give our view of their role in causal inference. 

Doll (2002) describes the application of Hill’s guidelines of causation when deducing causation
from epidemiological observations.  Franco  et al (2004), provide a good discussion of causal
criteria  in  cancer  epidemiology  and  examples  of  the  collaborative  impact  between
epidemiologists and laboratory scientists. Rothman and Greenland  (2005) comment that  we
should “avoid the temptation to use causal criteria simply to buttress pet theories at hand, and
instead ....focus on evaluating competing causal theories using crucial observations”.  Phillips
and  Goodman  (2006) debate  the  value  of  causal  criteria,  but  appear  to  accept  their  utility
provided they do not  degenerate  into black-box algorithms which  might  replace  “scientific
common sense”. Hofler (2005b) chooses to interpret Hill’s criteria in a counterfactual setting; a
setting he had elaborated upon in an earlier  paper (Hofler,  2005a). In an interesting article,
Lipton  and  Odegaard  (2005),  suggest  that  causal  expressions  are  not  required  for  the
development of policy to prevent disease and are not as defendable as just stating clearly the
methods used to arrive at the statistical association(s) between an exposure and disease. Lash
(2007) accepts  the  utility  of  causal  criteria  but  warns  that  in  many  instances  researchers
underestimate the magnitude of systematic errors and uncertainties in their data and fail to fully
recognise  “countervailing  external  information”. Shapiro  (2008a;  2008b;  2008c) provide  a
recent summary of the utility of guidelines for inferring causation. Ward (2009) published an
extensive review of the use of causal criteria. He claims that their application does not fully
satisfy  either  deductive  or  inductive  reasoning,  but  that  their  application  does  provide  a
consistent basis for arriving at the best explanation for the statistical association. 

At the outset, we must be clear about the context for inferring causation. As Rose (2001) stated,
it is important to ask whether we are trying to identify causes of disease in individuals or causes
of disease in populations. Indeed, with the expansion of molecular studies, the appropriate level
at  which to  make causal  inferences,  and whether  such inferences  are valid  across  different
levels of organisation remains open to debate. However, clear decisions about the appropriate
level to use (think back to the objectives when choosing this) will guide the study design as
well as inferences about causation. The following set of criteria for causation can be applied at
any  level  of  organisation,  and  the  criteria  are  based  on individual  judgement,  not  a  set  of
defined rules. 
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1.10.1 Study design and statistical issues 

As will be evident after delving into study design (Chapters 7-10), some designs are less open
to bias than others. For example, case-control studies are often assumed to be subject to more
bias than cohort studies. However, much of this criticism is based on case-control studies using
hospital or registry databases. We think it important that every study be assessed on its own
merits and we need to be aware of selection, misclassification and confounding bias in all study
designs. 

Most often we do not make inferences about causation unless there is a statistically significant
association between the exposure and the outcome (and one that is not likely to be explained by
one or more of the previous biases). Certainly, if the differences observed in a well-designed
study have P-values above 0.4, this would not provide any support for a causal relationship.
However, outside of extremely large P-values, statistical significance should not play a pivotal
role in assessing causal relationships. Like other researchers, we suggest an effect-estimation
approach based on confidence limits as opposed to a hypothesis-testing approach. Despite this,
recent  research  indicates  that  P-values  continue  to  be  used  frequently  to  guide  causal
inferences: P-values of 0.04 are assumed to be consistent with causal associations and P-values
of  0.06  inconsistent.  At  the  very  least,  we  believe  this  is  an  overemphasis  of  the  role  of
assessing sampling variability vis-a-vis a causal association and is not a recommended practice. 

1.10.2 Time sequence 

While a cause must precede its effect, demonstrating this fact provides only weak support for
causation. Further, the same factor could occur after disease in some individuals and this would
not disprove causation except in these specific instances. Many times it is not clear which came
first; for example, did the viral infection precede or follow respiratory disease? This becomes a
greater problem when we must use surrogate measures of exposure (eg antibody titre to indicate
recent exposure). Nonetheless, for inferring causation we would like to be able to demonstrate
that an exposure preceded the effect, or at least develop a rational argument for believing that it
did—sometimes these arguments are based largely on plausibility (ie which time sequence is
more plausible) rather than on demonstrable facts. 

1.10.3 Strength of association 

This is usually measured by ratio measures such as risk ratio or odds ratio but could also be
measured by risk or rate differences. The belief in larger (stronger) associations being causal
appears to relate to how likely it is that unknown or residual confounding might have produced
this effect. However, because the strength of the association also depends on the distribution of
other components of a sufficient cause, an association should not be discounted merely because
it  is  weak.  Also,  when studying  diseases  with very high  frequency,  risk ratio  measures  of
association will tend to be weaker than with less common diseases.  White (2004), studied the
influence of relative prevalence of the agents when making causal inferences about the roles of
2 potential  causal  factors.  It  appeared that  the agent with the higher prevalence (and in his
studies the larger the etiologic fraction) was deemed to be more important causally. Hence,
some could posit that we should base our judgement more on etiologic fractions than on risk
ratios. In further work (White, 2005), it was shown that whereas people do put a lot of weight
on what we would call etiologic fractions, they often modify their judgements based on the
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impact of the second cause when the first is not present, and the judgements appeared to differ
when the apparent effect was sparing instead of harmful. 

1.10.4 Dose-response relationship 

If we had a continuous, or ordinal, exposure variable and the risk of disease increased directly
with the level  of  exposure,  then this  evidence  supports  causation  as  it  tends to  reduce  the
likelihood of confounding and is consistent  with biological  expectations.  However,  in some
instances, there might be a cutpoint of exposure such that nothing happens until a threshold
exposure is reached and there is no further increase in frequency at higher levels of exposure.
These  circumstances  require  considerable  knowledge  about  the  causal  structures  for  valid
inferences.  Because  certain  physiological  factors  can  function  to  stimulate  production  of
hormones or enzymes at low doses and yet act to reduce production of these at higher levels,
one should not be too dogmatic in demanding monotonic relationships. 

1.10.5 Coherence or plausibility 

The essence of this criterion is that if an association is biologically sensible, it is more likely
causal  than  one  that  isn’t.  However,  be  careful  with  this  line  of  reasoning.  A  number  of
fundamentally important causal inferences have proved to be valid although initially they were
dismissed  because  they  did  not  fit  with  the  current  paradigm  of  disease  causation.  As  an
example,  when  we  found  out  that  feedlot  owners  who  vaccinated  their  calves  on  arrival
subsequently had more respiratory disease in their  calves  than those who didn’t,  we didn’t
believe it—it didn’t make sense. However, after more research and a thorough literature search
in which we found the same relationship, we were convinced it was true. The problem likely
related to stressing already stressed calves which made them more susceptible to a battery of
infectious organisms. 

Coherence requires that the observed association is explicable in terms of what we know about
disease mechanisms. However, our knowledge is a dynamic state and ranges all the way from
the  observed  association  being  assessed  as  ‘reasonable’  (without  any  biological  supporting
evidence) to requiring that ‘all the facts be known’ (a virtually nonexistent state currently).
Postulating a biological  mechanism to explain an association after the fact  is deemed to be
insufficient  for  causal  inferences  unless  there  is  some  additional  evidence  supporting  the
existence of that mechanism. 

1.10.6 Consistency 

If the same association is found in different studies by different workers, this gives support to
causality.  This  was  a  major  factor  in  leading  us  to  believe  that  the  detrimental  effects  of
respiratory  vaccines  on  arrival  at  feedlots  were  indeed  causal.  Not  only  were  our  studies
consistent  but  there  were  numerous  examples  in  the  literature  indicating  (or  suggesting)
potential negative effects of the practice. Our beliefs were further strengthened by publications
from experimental work that indicated a plausible explanation for the detrimental effects. 

Lack of consistency doesn’t mean that we should ignore the results of the first study on a topic,
but  we should temper  our interpretation  of  the  results  until  they are  repeated.  This  would
prevent  a  lot  of  false  positive  scares  in  both  human  and  veterinary  medicine.  The  same
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approach might be applied to the results of field trials and, because there is less concern over
confounding, we might not need to be as strict. Recent research has indicated that, in human
medicine, once 12 studies have reached the same essential conclusion, further studies reaching
the same conclusion are given little additional weight in making causal inferences (Holman et
al, 2001). 

Meta-analysis is used to combine results from a number of studies on a specific exposure factor
in a rigorous, well-defined manner (Weed, 2000) and consequently helps with the evaluation of
consistency. Evidence for or against a hypothesis can be obtained as opposed to dichotomising
study results into those that support a hypothesis and those that do not. In addition, explanation
of the methods used in meta-analysis tends to provide a clearer picture of the reviewer’s criteria
for causation than many qualitative reviews (see Chapter 28). 

1.10.7 Specificity of association 

Based on rigid criteria for causation such as Henle-Koch’s postulates, it used to be thought that,
if a factor was associated with only one disease, it was more likely causal than a factor that was
associated with numerous disease outcomes. We no longer believe this and specificity, or the
lack thereof, has no valid role in assessing causation—the numerous effects of smoking (heart,
lungs,  infant  birth  weight,  infant  intelligence)  and  the  numerous  causes  for  each  of  these
outcomes should be proof enough on this point. 

1.10.8 Analogy 

This is not a very important criterion for assessing causation, although there are examples of its
being used to good purpose. This approach tends to be used to infer relationships in cases of
human diseases based on experimental results in other animal species. Today, many of us have
inventive minds and explanations can be developed for almost any observation, so this criterion
is not particularly useful to help differentiate between causal and non-causal associations. 

1.10.9 Experimental evidence 

This criterion perhaps relates partly to biological plausibility and partly to the additional control
that  is  exerted  in  well-designed  experiments.  We  tend  to  place  more  importance  on
experimental evidence if the same target species is used and the routes of challenge, or nature
of the treatment are in line with what one might expect under field conditions. Experimental
evidence from other species in more contrived settings is given less weight in our assessment of
causation. Indeed, the experimental approach is just another way to test the hypothesis, so this
is not really a distinct criterion for causation in its own right. 

Swaen and van Amelsvoort (2009) developed a process for formalising the application of these
causal criteria, for assessing the extent to which each criterion was true, and the application of a
formal weighting of the criteria, using discriminant analysis, to estimate the probability that the
observed associations between an exposure and an outcome were causal. However, details of
this procedure are beyond the scope of this text.
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