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SAMPLING

OBJECTIVES 

After reading this chapter, you should be able to:

 1. Select a random, simple, systematic, stratified, cluster, multistage sample or targeted (risk 
based) sample—given the necessary elements.

 2. Recognise the advantages and disadvantages of each sampling method.

 3. Select the appropriate sampling strategy for a particular situation, taking into account the 
requirements, advantages and disadvantages of each method.

 4. List the elements that determine the sample size required to achieve a particular objective 
and be able to explain the effect of each upon the sample-size determination.

 5. Compute required sample sizes for common analytic objectives. 

 6. Understand the implications of complex sampling plans on analytic procedures.

 7. Select a sample appropriately to detect or rule out the presence of disease in a group of 
animals. 
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2.1 INTRODUCTION

2.1.1 Census vs sample

For  the  purposes  of  this  chapter,  we will  assume that  data are  required  for  all  individuals
(animals, herds etc), or a subset thereof, in a population. The process of obtaining the data will
be referred to as measurement. 

In a  census, every animal in the population is evaluated. In a sample, data are collected from
only a subset of the population. Taking measurements or collecting data on a sample of the
population is more convenient than collecting data on the entire population. In a census, the
only source of error is the measurement itself. However,  even a census can be viewed as a
sample because it represents the state of the population at one point in time and hence, is a
sample  of  possible  states  of  the  population  over  time.  With  a  sample,  you  have  both
measurement  and  sampling  error  to  contend  with.  A  well-planned  sample,  however,  can
provide virtually the same information as a census, at a fraction of the cost. 

Note The outcome in any study (eg disease status) is often determined by the use of diagnostic
tests (see Chapter 5). For the sake of simplicity, in this chapter we will assume that the outcome
is measured without error.

2.1.2 Descriptive versus analytic studies

Samples  are  drawn  to  support  both  descriptive  studies  (often  called  surveys)  and  analytic
studies (often called observational studies).

A  descriptive study (or survey) aims to describe population attributes (frequency of disease,
level  of  production).  Surveys  answer  questions  such  as,  ‘What  proportion  of  cows  in  the
population has subclinical mastitis?’ or, ‘What is the average milk production of cows in Prince
Edward Island (PEI)?’

An analytic study is done to test estimate the magnitude of an association between outcomes
and exposure factors in the population. Analytic studies contrast groups and seek explanations
for the differences between them. An analytic study might ask a question such as, ‘Is barn type
associated with the prevalence of subclinical mastitis?’ or, ‘Is subclinical mastitis associated
with milk production?’ Establishing an association is the first step to inferring causation, as was
discussed in Chapter 1.

The distinction between descriptive and analytic studies is discussed further in Chapter 7.

2.1.3 Hierarchy of populations

There is considerable variation in the terminology used to describe various populations in a
study.  In  this text,  we will  adopt terminology consistent  with that  used in the text Modern
Epidemiology (Rothman et al, 2008) with 3 populations of interest:  the target population, the
source population and the study sample or group. These will be discussed with reference to a
study designed to quantify post-surgical mortality in dogs.

The  target population is the population to which it might be possible to extrapolate results
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from a study. It is often not clearly defined and might vary depending on the perspective of the
individual interpreting the results of the study.  For example,  the investigators  conducting a
post-surgical mortality study might have considered all dogs undergoing surgery in Canadian
veterinary clinics as the target population, while someone reading the results of the study in the
United States might evaluate the study assuming the target population was all dogs undergoing
surgery in North America. 

The  source  population is  the  population  from  which  the  study  subjects  are  drawn.
Conceptually,  all  units  in  the  source  population  should  be  ‘listable’ and  have  a  non-zero
probability of being included in the study. For example, if the post-surgical mortality study was
to be conducted in PEI, and all veterinary clinics in PEI were invited to participate, the source
population would be all dogs undergoing surgery in veterinary clinics in PEI.

The study sample (or group) consists of the individuals (animals or groups of animals) that end
up in the study. Usually this group is some form of sample from the source population. Prior to
conducting  the  study  the  researchers  would  determine  the  necessary  sample  size  (perhaps
planning to sample only some of the clinics and some of the surgical patient records within the
selected clinics. The veterinarians and owners would then be contacted and the study sample
would consist of the animals enrolled through veterinarians and animal  owners who agreed to
participate (and whose records were adequate for inclusion in the study).  These animals are
referred  to  as  a  sample  or  group  of  animals  rather  than  a population because  they  do  not
constitute an easily defined population.

The concept of validity is discussed at length in Chapters 12 and 13, but validity relates to the
populations defined in the following way. The internal validity of a study relates to whether or
not the study results (obtained from the study sample) are valid for members of the source
population. Essentially, this indicates whether or not the study has obtained the ‘correct’ answer
for the source population. Much of this book is dedicated to methods used to maximise the
probability of getting this answer correct. 

The  external  validity relates  to  how  well  those  results  can  be  generalised  to  the  target
population. Evaluation of external validity involves a subjective assessment of whether or not
the source population is broadly representative of the target population. Given that the target
population may be defined differently by different readers, assessment of external validity is
much more difficult. However,  it is much easier to generalise the results from an analytical
study (one which evaluates associations) than results from a descriptive study (which describes
the level of a disease or other characteristics in a population). For example, the prevalence of
post-surgical  complications (a descriptive result) may be very different in PEI than in other
regions of North America. However, an observed association between duration of anaesthetic
and the risk of post-surgical complication (an analytic result) is more likely to be generalisable. 

2.1.4 Sampling frame

The sampling frame is defined as the list of all the sampling units in the source population.
Sampling units are the basic elements of the population that is sampled (eg herds, animals). A
complete list of all sampling units is required in order to draw a simple random sample, but it
might  not  be  necessary  for  some  other  sampling  strategies.  The  sampling  frame  is  the
information about the source population that enables you to draw a sample. In our example, the
sampling frame likely would be the list of all veterinary clinics in PEI. After veterinary clinics
were selected, we would devise a strategy for selecting animal owners within those clinics.
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2.1.5 Objectives of the study

The objectives of a study will influence the sampling strategy employed. Descriptive studies are
usually  aimed  at  determining  the  prevalence  (or  incidence)  of  disease  in  a  population  or
demonstrating that a population is free of disease. Analytical studies are focused on establishing
associations between factors (eg risk factors) and an outcome (eg disease). Unless otherwise
specified, this chapter will focus on sampling to support prevalence estimation or analytical
objectives. The issue of sampling to detect the presence of disease (or alternatively to declare a
population free of disease) will be discussed in Section 2.12. 

2.1.6 Types of error

In a study based on a sample of observations, the variability of the outcome being measured,
measurement error,  and sample-to-sample variability all affect  the results we obtain. Hence,
when we make inferences  based  on the  sample  data,  they  are  subject  to  error.  Within  the
context of hypothesis testing in an analytical study, there are 2 types of error:

Type I (α) error: You conclude that the outcomes in the groups being compared are different
(ie an association exists) when in fact they are not.
Type II (β) error: You conclude that the outcomes are not different (ie no association 
between the exposure and outcome exists) when in fact they are.

A study was carried out to determine if an exposure had an effect on the probability of  disease
occurrence or not. Table 2.1 presents the possible decisions that can be made based on the study
and their relation to the ‘truth’.

Table 2.1 Types of error

True state of nature

Effect present Effect absent

Conclusion of 
statistical analysis

Effect present 
(reject null hypothesis)

Correct Type I (α) error

No effect 
(accept null hypothesis)

Type II (β) error Correct 

Statistical  test  results  reported  in  the  medical  literature  are  aimed  at  disproving  the  null
hypothesis (which is that there is no difference between groups). If differences are found, they
are reported with a P-value which expresses the probability that a difference as large (or larger)
than the one observed could be due to chance, if the null hypothesis is true. P is the probability
of making a Type I (α) error. When P<0.05, we are ‘reasonably’ sure that any effect detected is
not due to chance.

Power is the probability that you will find a statistically significant difference when it exists
and is of a certain magnitude (ie power=1-β). The probability of making a Type II (β) error, or
failing to detect  a difference,  is  sometimes not stated because of the general  preference for
reporting  positive  results  in  the  literature.  So-called  negative  findings (failure  to  find  a
difference) are less likely to be reported. There are a number of reasons why a study might find
no effect of the factor being investigated.

• There truly was no effect of exposure on the outcome.
• The study design was inappropriate.
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• The sample size was too small (low power).
• Bad luck.

An evaluation of the power of the study will at least determine how likely you are to commit a
Type II error for a given alternative hypothesis.

2.2 NON-PROBABILITY SAMPLING

Samples that are drawn without an explicit method for determining an individual’s probability
of selection are known as  non-probability samples. Whenever a sample is drawn without a
formal process for random selection, it should be considered a non-probability sample, of which
there  are  3  types:  judgement,  convenience,  and  purposive.  Non-probability  samples  are
inappropriate for descriptive studies except in the instance of initial pilot studies (even then, use
of  non-probability  samples  might  be  misleading).  However,  non-probability  sampling
procedures are often used in analytical studies.

2.2.1 Judgement sample 

This  type  of  sample  is  chosen  because,  in  the  judgement  of  the  investigator,  it  is
‘representative’  of  the  source  population.  This  is  almost  impossible  to  justify  because  the
criteria for inclusion and the process of selection are largely implicit, not explicit.

2.2.2 Convenience sample 

A convenience  sample is  chosen  because  it  is  easy to  obtain.  For  instance,  herds  in  close
proximity to a research centre, herds with good handling facilities, herds with records that are
easily  accessible,  etc  might  be  selected  for  study.  Convenience  sampling  often  is  used  in
analytical  studies where the need to have a study group that  is representative of the source
population can be relaxed. For example,  Chapter  17 will focus on the relationship between
ultrasound measurements taken in beef cattle at the start of the finishing period and the final
carcass grade of the animals. Even though the study was from a convenience sample of herds,
the results would probably be applicable to beef cattle in general, provided they were fed and
managed under reasonably comparable conditions.

2.2.3 Purposive sample 

The selection of this type of sample is based on the study subjects possessing one or more
attributes such as known exposure to a risk factor or a specific disease status. This approach is
often used in observational analytical studies. If a random sample is drawn from all sampling
units meeting the study criteria, then it becomes a probability sample from the subset of the
source population.

2.3 PROBABILITY SAMPLING

A probability sample is one in which  every  element in the population has a known non-zero
probability  of  being included in the sample.  This  approach  implies  that  a  formal  process  of
random selection has been applied to the sampling frame. The following sections will describe
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how to draw different types of probability sample. Procedures for analysing data derived from the
samples  will  be  discussed  in  Section  2.10.  A much  more  complete  description  of  sampling
procedures can be found in general sampling texts such as Levy & Lemeshow (2008).

2.4 SIMPLE RANDOM SAMPLE

In  a  simple  random  sample,  every  study  subject  in  the  source  population  has  an  equal
probability of being included. A complete list of the source population is required and a formal
random process is used (random is not the same as haphazard). Random sampling can be based
on drawing numbers from a hat, using computer-generated random numbers, using a random-
numbers table, flipping a coin or throwing dice.

For  example,  suppose you  wish to  draw a  sample  of  the 5,000 small  animal  patients  in  a
veterinary clinic to determine the proportion whose vaccinations are up to date. You require a
sample of 500. Assuming that a numbered list of all 5,000 patients is available and files can be
accessed by that number, you could randomly pick 500 numbers between 1 and 5,000. These
numbers would identify the animals whose records you would examine.

2.5 SYSTEMATIC RANDOM SAMPLE 

In a systematic random sample, a complete list of the population to be sampled is not required
provided an estimate of the total number of animals is available and all of the animals (or their
records) are sequentially available (eg cattle being run through a chute). The sampling interval
(j) is computed as the study population size divided by the required sample size. The first study
subject is chosen randomly from among the first  j study subjects, then every  jth study subject
after that is included in the sample. It is a practical way to select a probability sample if the
population is  accessible  in  some order,  but  bias  might  be  introduced  if  the  factor  you  are
studying is related to the sampling interval. Consequently, a simple random sample would be
preferable, but might not be feasible if the logistics of the sampling program (eg time required
for blood sampling) precludes the use of a simple random sample which might generate a series
of consecutive numbers.

Assume once again that you want a sample of 500 patients in a veterinary clinic. You know
how many you need to sample (500) and approximately how many patients there are (5,000)
but generating a list of those patients would be very time consuming. However,  all of their
records are stored alphabetically in a file cabinet. You need to sample every 10 th patient. To
start, randomly pick a number between 1 and 10, then pull out every 10 th file after that to obtain
the data. Data from a systematic random sample are analysed as though they were derived from
a simple random sample.  Note In this specific case, a simple random sample would also be
feasible if the estimate of the source population size was reliable, because there are no logistic
constraints to counting the files.

2.6 STRATIFIED RANDOM SAMPLE

In this approach,  prior to sampling, the population is divided into mutually exclusive strata
based on factors likely to affect the outcome. Then, within each stratum, a simple or systematic
random  sample  is  chosen.  The  simplest  form  of  stratified  random  sampling  is  called
proportional (the number sampled within each stratum is proportional to the total number in
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the stratum). There are 3 advantages of stratified random sampling.
1. It ensures that all strata are represented in the sample.
2. The precision of overall estimates might be greater than those derived from a simple

random sample. The gain in precision results from the fact that the between-stratum
variation is explicitly removed from the overall estimate of variance.

3. It  produces  estimates  of  stratum-specific  outcomes,  although  the  precision  of  these
estimates will be lower than the precision of the overall estimate.

For example, assume you believe that cats are less likely to be up to date on vaccines than dogs.
You would make up 2 lists—one of cats and one of dogs—and sample from each list with
proportional  sampling.  If  40%  of  the  patients  are  cats,  then  500*0.4=200  cats  would  be
selected, and 300 dogs would be selected.

2.7 CLUSTER SAMPLING 

A cluster is a natural or convenient collection of study subjects with one or more characteristics
in common. For example:

• a litter is a cluster of piglets,
• a dairy herd is a cluster of cattle,

• a pen in a feedlot is a cluster of cattle, and
• a county is a cluster of farms.

In a cluster sample, the primary sampling unit (PSU) is larger than the unit of concern. For
example, if you wanted to estimate the average serum selenium level of beef calves in PEI, you
could use a cluster sample in which you randomly selected farms, even though the unit  of
concern is the calf. In a cluster sample, every study subject within the cluster is included in the
sample.

Cluster sampling is done because it might be easier to get a list of clusters (farms) than it would
be to get a list of individuals (calves), and it is often less expensive to sample a smaller number
of clusters than to collect information from many different clusters.

In this example of cluster sampling, a survey to determine the average serum selenium level of
beef calves in PEI was conducted. Fifty herds were selected from a provincial herd list and
every calf in each of the 50 herds was bled at weaning. A cluster sample is convenient because
it is impossible to get a complete list of beef cattle in PEI, but it is easy to get a list of the beef
producers. It is also more practical to sample all cattle on 50 farms than it is to drive around to
all ~300 beef farms in PEI and sample a few animals on each farm. Of course, calves within a
herd are probably more alike than calves from different farms, so the sampling variation for a
given  number  of  individuals  is  greater  than  if  they  had  been  chosen  by  simple  random
sampling. The impact of sampling at the cluster level is discussed further in Sections 2.10.3 and
2.11.6.

When a group is not a cluster In  cluster  sampling,  a group is a cluster  of individuals. A
sample is a cluster sample if the group is the sampling unit and the study subjects within the
group are the unit of concern. When the group is both the sampling unit and the unit of concern,
then by definition, the sample is  not a cluster sample.  For example, the following is  not a
cluster sample: a sample of herds to determine whether or not the herds are infected with a
particular disease agent (in this case, the herd is the unit of concern, not the individual animals).
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2.8 MULTISTAGE SAMPLING 

A cluster might contain too many study subjects to obtain a measurement on each, or it might
contain study subjects so nearly alike that measurement of only a few study subjects provides
information on the entire cluster.  Multistage sampling is similar to cluster sampling except
that, after the PSUs (eg herds) have been chosen, then a sample of secondary sampling units
(eg animals) is selected. Assume again that you are interested in the serum selenium level of
beef calves at weaning, and that within-farm variation is small. That means that you don’t need
to sample very many calves on a particular farm to get a good estimate of the serum selenium
level of all the calves on that farm. Consequently, you might only sample a small number of
individuals on each farm. 

If you want to ensure that all animals in the population have the same probability of being
selected, 2 approaches are possible. First, the PSUs chosen might be selected with a probability
proportional to their size. In other words, if the herd size is known ahead of time, large herds
should have a higher probability of being chosen than small herds. After the number of herds is
chosen, you select a fixed number of calves in each herd from which to get serum samples. If
herd size is  not  known ahead of time, take a simple random sample of the PSUs and then
sample  a constant  proportion of  the calves  in  each  herd.  Either  approach  will  ensure  each
animal has the same probability of selection. If this is not the case, the probability of selection
needs to be accounted for in the analysis (see Section 2.10.2).

How many herds and how many animals to sample within each herd depend upon the relative
variation (in the factor(s) being measured) between herds, compared to within herds, and the
relative cost of sampling herds compared to the cost of sampling individuals within herds. In
other words, when the between-herd variation is large relative to the within-herd variation, you
will have to sample many more herds to get a precise estimate. Multistage sampling is very
flexible where cost of sampling is concerned. If you are like most researchers, you are working
on a limited budget and, when it is expensive to get to herds, you will want to sample as few as
possible. On the other hand, if the cost of processing samples from an individual animal is high
relative to the cost of getting to the farm, you will want to sample fewer animals per farm.
Usually researchers  desire to have the most precise  estimate of the outcome for the lowest
possible cost. These 2 desires can be balanced by minimising the product of the variance and
the cost. Regardless of the total sample size for the study (n), the variance*cost product can be
minimised by selecting ni individuals per herd according to the following formula:

ni=  i
2

h
2∗

ch

ci Eq 2.1

where ni is the number of individuals to be sampled per herd, and σ2
h and σ2

i are the between-
and within-herd variance estimates and ch and ci are the costs of sampling herds and individuals,
respectively. The value for ni needs to be rounded to an integer value and cannot be less than 1.
Once the number  of  individuals  per  herd  has  been determined,  the number of  herds  to  be
sampled is then nh=n/ni.

Keep in mind that cluster and multistage sampling almost always require more subjects for the
same precision than simple random sampling. Example 2.1 describes a stratified, multistage
sampling approach. Multistage sampling, as the name suggests, can be extended to more than
the 2 levels discussed above.
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2.9 TARGETED (RISK-BASED) SAMPLING

Animal disease surveillance programs (particularly for rare or absent diseases) is increasingly
being based on targeted sampling plans. Targeted sampling involves the stratification of the
source population into strata based on one, or more, characteristic(s) which are thought to be
associated  with  the  probability  of  disease  occurrence.  However,  unlike  stratified  sampling,
targeted sampling may involve sampling only from strata in which the probability of finding
cases of disease is highest  (Salman, 2003; Stärk et al, 2006), or at least weighting the sample
heavily in favour of high risk strata. Consequently, some animals may have a zero probability
of being included in the sample. Methods for targeted sampling have recently been developed
and are an active area of research.

In targeted sampling, animals are assigned point values based on the probability of them having
the disease of interest and sampling is proportional to that estimate of risk (Thurmond, 2003).
Sampling proceeds until animals with the predetermined number of points have been sampled.
Population inference  from a targeted sample requires  2 key epidemiological parameters:  an
estimate of how the characteristic used to create the strata relate to the probability of disease ( ie
an estimate of  the risk ratio  (see  Chapter  4)  for  the characteristic),  and an estimate of  the
distribution (frequency) of the characteristic in the source population (Williams et al, 2009b).
The advantage of targeted sampling is that it will require a much smaller sample size than other
forms of sampling if the outcome of interest (disease) is rare and characteristics that strongly
influence the probability of an animal having the outcome can be identified. A disadvantage is
that  key  epidemiological  parameters  might  not  be  known.  Specifically,  the  effects  of  the
characteristic of interest (ie the risk ratio) is often not known for the population being studied
and must be derived from evidence in other populations. In addition, the proportion of animals
with the characteristic of interest also might not be known. Uncertainty in these 2 estimates

Example 2.1 Multistage sampling
data = dairy_dis

A study was conducted in the 3 Maritime provinces of eastern Canada to determine the prevalence of
serologic  reactions to  3 infectious  diseases  of  dairy cattle:  Johne’s  disease (Mycobacterium avium
subspecies paratuberculosis—Map), enzootic bovine leukemia virus (leukosis) and Neospora caninum
(VanLeeuwen J et  al,  2001).  The dataset is described in Chapter 31.  The study had the following
characteristics:

• The target population was all dairy herds in the region.
• The source population was all dairy herds in the region that participated in an official milk

recording programme (approximately 70%).
• The  sampling  frame  consisted  of  a  list  of  all  herds  in  the  source  population  and

subsequently, a list of all cows in each herd selected for the study (both provided by the milk-
production testing programme).

• Sampling was stratified by province with 30 herds being randomly selected within each of
the 3 provinces.

• Sampling was carried out as multistage sampling with the herds being selected first and then
30 cows randomly selected within each of the herds.

• The study sample consisted of the animals selected for participation in the study from which
a blood sample could be obtained.

• All random sampling was performed using computer-generated random numbers.

These data will be used in Examples 2.2 through 2.4.
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should be  taken  into account  when planning a targeted  sampling program  (Williams et  al,
2009b).  Poisson sampling is an unequal  probability sampling strategy that  can be used for
targeted sampling programs (Williams et al, 2009a). 

Targeted  sampling  has  been  used  extensively  in  BSE (bovine  spongiform encephalopathy)
surveillance programs (Prattley et al, 2007a; Prattley et al, 2007b). In this instance, sampling is
focused on the following strata (also called ‘streams’): cattle with clinical signs compatible with
BSE,  dead  stock  (cattle  that  die  on  the  farm),  and  casualty  slaughter  (unhealthy  cattle
slaughtered at the slaughter house). A simulation study used to evaluate the performance of
targeted sampling  for  disease  prevalence  estimation  concluded  that  targeted  sampling  is
appropriate provided justifiable estimates of the key epidemiological parameters are available
(Wells et al, 2009).

2.10 ANALYSIS OF SURVEY DATA

The sampling plan  needs to  be taken  into account  when analysing  data  from any research
project involving a complex sampling plan. (Note Although referred to as ‘survey’ data, the
concepts discussed in this chapter apply equally to the analysis of data from analytic studies
based on complex sampling plans.) There are 3 important concepts that have been raised in the
above discussion of various sampling plans: stratification, sampling weights and clustering. In
addition to these, the possibility of adjusting estimates derived from finite populations must be
considered.

2.10.1 Stratification

If  the  population  sampled  is  divided  into  strata  prior  to  sampling,  then  this  needs  to  be
accounted for in the analysis. For example, in a study of the prevalence of Johne’s disease in
cattle herds, the herds might be divided into dairy and beef. The advantage of such stratification
is that it provides separate stratum-specific estimates of the outcome of interest. If the factor
upon which the population is stratified is related to the outcome (eg prevalence of Johne’s in the
2 strata), then the standard error (SE) of the overall prevalence estimate might also be lower
than if a non-stratified sample was taken. Correctly accounting for the stratified nature of the
sample requires that  the total  population size in each stratum be known in order  to get  the
sampling weights correct (Section 2.10.2).

In Example 2.2, the Neospora data have been analysed ignoring the stratification by province,
and then by taking it into account.

2.10.2 Sampling weights

Although probability sampling requires  that  a  formal  random process  be used to  select  the
sample, it does not imply that all units sampled have the same probability of selection. If a
sample of herds is selected from a source population, and a sample of cows is selected within
each of those herds, then the probability of selection for any given cow can be computed as: 

p(selection)= n
N

∗
m
M Eq 2.2

where n is the number of herds in the sample, N is the number of herds in the source population,
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m is the number of cows that were selected from the sampled herd, and  M  is the number of
cows in that herd. For example, assume that 10 herds are selected out of 100 in a region and,
that in each herd, 20 animals are sampled. If herd A is an 80-cow herd, the probability that a
cow in that herd will ultimately end up in the sample is: 

10/100∗20 /80=0.025 2.5%

Similarly,  if herd B is a 200-cow herd, the probability that a cow in that herd will be in the
sample is: 

10/100∗20 /200=0.011%

These different probabilities of selection need to be taken into account in order to obtain the
correct point estimate of the parameter of interest.

The most common way of forming sampling weights is to make them equal to the inverse of the
probability  of  being  sampled.  This  value  reflects  the  number  of  animals  that  each  of  the
sampled  individuals  represent.  For  example,  a  cow  in  herd  A  would  actually  represent
1/0.025=40 cows in total.  A cow in herd B would have  a sampling weight  of  1/0.01=100
because she had a much smaller probability of selection.

In  Example  2.3,  the  overall  prevalence  of  Neospora  has  been  computed  taking  sampling
weights into consideration.

2.10.3 Clustering

Cluster sampling and multistage  sampling involve the sampling of  animals within groups.

Example 2.2 Analysis of stratified survey data
data = dairy_dis

Valid test values for  Neospora caninum were obtained from 2,425 cows. A simple estimate (treating
the sample as a simple random sample) of the overall seroprevalence was 0.1905 (19.05%) and the SE
of that estimate was 0.0080 (0.80%).

If the data are stratified by province, the seroprevalence estimates are as follows:

Number of Seroprevalence

Province samples Prevalence SE (prevalence)

1 810 0.1012 0.0106

2 810 0.2111 0.0143

3 805 0.2596 0.0155

Overall 2425 0.1905 0.0079

There are considerable differences across the provinces in terms of the seroprevalence of N. caninum.
The SE of the overall estimate from the stratified sample is slightly smaller than when the data were
treated as a simple random sample, but the difference is minimal. Stratification alone does not change
the overall point estimate of the prevalence.  Note This analysis is provided for pedagogical purposes
only.  It  would  not  be correct  to  assume  equal  sampling  weights  (Section 2.10.2)  given  that  non-
proportional sampling was carried out across strata.
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Animals within groups are usually more alike (with regard to the outcome being measured) than
animals chosen randomly from the population. From a statistical perspective, this means that
these observations are no longer independent and this lack of independence must be taken into
account in the analysis.  Failure to do so will almost always result in estimated SEs that are
smaller than they should be.

Clustering may occur at multiple levels. For example, udder quarters are clustered within a cow
while  the  cows are  clustered  within  a  herd.  In  Chapters  20-22,  we discuss  techniques  for
evaluating the degree of clustering at each of the possible levels. However,  when analysing
survey data, one often wants to simply deal with the clustering as a nuisance factor in order to
obtain correct estimates of the SEs of the parameters being estimated. The simplest and most
common approach is to identify the PSU (eg herd) and use this to adjust the estimates for all
clustering effects at levels at, or below, this level (eg clustering within cows and within herds).

Computation  of  the  appropriate  variance  estimates  in  the  presence  of  clustering  and  other
elements of the survey design is not straightforward and requires specialised software. While
the details  of  the procedure  are  beyond this  text,  the most  common technique  is  variance
linearisation (Dargartz  & Hill,  1996;  Kreuter  & Vallian,  2007).  It  has  the  advantage  that
analytical  solutions for  SEs for  most statistics  computed from survey data (eg proportions,
means) are available. However, the procedure requires a large number of PSUs to be reliable.
Variance linearisation is the approach used in Example 2.4 in which the overall prevalence of
Neospora has been estimated taking the within-herd clustering into account (herds were the
PSUs and cows were sampled within herds). Note Survey design can be incorporated not only

Example 2.3 Analysis of stratified and weighted survey data
data = dairy_dis

Cows within the study population had different probabilities of being selected for the sample. Two
factors influenced this:

§ the probability that the herd would be selected

§ the probability that the cow would be selected within the herd.

Herd selection probability: Within each province, the probability of a herd being selected was 30
divided by the total number of herds on the milk-recording programme in the province. For example,
herd  2  was  in  province  3,  in  which  there  were  242  herds  on  milk-recording.  Consequently,  the
probability of this herd being selected was 30/242=0.1240 (12.40%).

Cow selection probability: Within each herd, the probability of a cow being selected was the total
number of cows sampled within the herd divided by the total number of cows in the herd on the day the
herd list was generated. For example, 26 samples were obtained in herd 2, from the 128 cows on the
herd list. A cow in this herd (eg cow # 86) has a selection probability of 26/128=0.2031 (20.31%).

Overall selection probability: The overall selection probability for cow 86 in herd 2 was the product
of the above 2 probabilities: 0.1240*0.2031=0.0252 (2.52%).

Sampling weights: The sampling weight applied to cow 86 in herd 2 was the inverse of the overall
selection  probability:  1/0.0252=39.7.  Effectively,  the  results  from  this  cow  were  considered  to
represent almost 40 cows in the population.

Taking the sampling weights into consideration, the overall estimate of the prevalence of N. caninum
was 0.2021 (20.21%), with an SE of 0.0095 (0.95%). Incorporating weights into the analysis changed
the point estimate of the prevalence and also increased the SE.
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into the estimation of descriptive characteristics (eg  prevalence in Example 2.4) but also into
many of the regression models described in later chapters of the book. Example 20.2 gives an
example of the use of these procedures to account for clustering in a regression analysis.

2.10.4 Design effect

The overall  effect  of  the  sampling  plan  on  the  precision  of  the  estimates  obtained  can  be
expressed as the design effect (referred to as  deff). The deff is the ratio of variance obtained
from taking the sampling plan (eg stratification and clustering) into account to the variance that
would have been obtained if a comparable-sized, simple random sample had been drawn from
the population. A deff >1 reflects  the fact  that  the sampling plan is producing less precise
(larger  variance)  estimates  than a simple random sample would have.  (Of course,  a  simple
random sample often is impossible to obtain.) The deff of the sampling plan computed in the
Neospora  study is also presented in Example 2.4. If  an independent  estimate of the deff  is
available, it can be incorporated into methods to account for clustering in the analysis of survey
data (see Section 20.5.5)

2.10.5 Finite population correction

In most surveys, sampling is carried out without replacement. That is, once a study subject has
been  sampled,  it  is  not  put  back  into the  population and  potentially  sampled again.  If  the
proportion of the population sampled is relatively high (eg >10%), then this could substantially

Example 2.4 Analysis of multistage survey data
data = dairy_dis

The dairy disease data were sampled in a multistage manner with herds being the primary sampling
unit. If the multistage nature of the sample was taken into account (in addition to the stratification and
sampling weights), the overall prevalence estimate remains at 0.2020 (20.20%) but the SE increases to
0.0192 (1.92%). (Clustering was accounted for using a variance linearisation approach to computing
the SE.)

A summary of the estimates of the overall seroprevalence taking various features of the sampling plan
into account is shown below.

Seroprevalence

Type of analysis Estimate SE

Assuming it was a simple random sample 0.1905 0.0080

Taking stratification into account 0.1905 0.0079

Taking stratification and sampling weights into account 0.2021 0.0095

Taking clustering into account 0.1905 0.0191

Taking stratification, sampling weights and clustering into account 0.2021 0.0192

The last row contains the most appropriate estimates for the seroprevalence (and SE) of  Neospora
caninum. The design effect from this analysis was (0.0191/0.0080)2=5.7 which indicates that taking the
sampling plan into consideration produces an estimate of the variance of the prevalence which is 5.7
times larger than the estimate would have been if a simple random sample of the same size (n=2,425)
had been drawn.
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increase the precision of the estimate over what would be expected from an ‘infinite-sized’
population.  Consequently,  the  estimated  variance  of  the  parameter  being  estimated  can  be
adjusted downward by a finite population correction (FPC) factor of:

FPC=
N −n
N −1 Eq 2.3

where N is the size of the population and n is the size of the sample. (Note An FPC should not
be applied in cases  where  multistage  sampling is  carried  out,  even  if  the number  of  PSUs
sampled is >10% of the population.) A finite population correction also can be used when
estimating a sample size (see Section 2.11.5).

2.11 SAMPLE-SIZE DETERMINATION

The choice  of  sample  size involves  both  statistical  and  non-statistical  considerations.  Non-
statistical considerations include the availability of resources such as time, money, sampling
frames, and some consideration of the objectives of the study. Interestingly, cost can be factored
into sample-size calculations, and the greater the cost per sampled study subject, the smaller the
sample size when the budget is fixed.

Statistical considerations include the required precision of the estimate, the variance expected in
the  outcome  of  interest,  the  desired  level  of  confidence  that  the  estimate  obtained  from
sampling is close to the true population value (l-α) and, in analytic studies, the power (l-β) of
the study to detect real effects. 

2.11.1 Precision of the estimate

Whether you want to determine the proportion of cull cows at slaughter that test positive for
Johne’s  disease  or  to  estimate  the  average  weight  of  beef  calves  at  weaning,  you  must
determine how precise an estimate you want. The more precise you wish to be, the larger the
sample size you will require. If you want to know how many cull cows are Johne’s positive
within ±5%, you will have to sample more cows than if you were only interested in obtaining
an estimate within ±10%. Likewise, if you wanted your estimate of the average weaning weight
to be within 2 kg of the real population value, you would need to weigh more calves than if you
only needed to be within 5 kg of the true population mean.

2.11.2 Expected variation in the data

The natural variation inherent in the data must be taken into account when calculating sample
size. The variance of a simple proportion is p*q, where p is the proportion of interest and q is
(1-p).  Consequently,  to  estimate  the  sample size necessary  to  determine  a proportion,  then
(paradoxical  as  it  might  seem)  you  must  have  a  general  idea  of  the  proportion  (with  the
outcome of interest) that you expect to find. 

The measure of variation used for the estimation of the required sample size of a continuous
variable such as weaning weight is the population variance (σ2). We often don’t know what the
standard deviation (σ) is, but we can estimate it. One way to do this is to estimate the range that
would encompass 95% of the values and then assume that range is equal to 4σ. For example, if
you think that 95% of calves would have weaning weights between 150 kg and 250 kg, then a
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rough estimate of the σ would be (250-150)/4=25 kg, and the variance would be 625 kg2.

2.11.3 Level of confidence

In descriptive studies, we must decide how sure we want to be that the confidence interval (CI)
for your estimate will include the true population value. Similarly, in analytic studies, we must
decide on the certainty we want that any difference we observe between 2 sampled groups is real
and not due to chance. This is referred to as  confidence  and it is most commonly set to 95%
(assume a Type I (α) error rate of 5%).

2.11.4 Power

The power of a study is its ability to detect an effect (eg a difference between 2 groups) when a
real difference of a defined magnitude exists. For example, if the real difference in weaning
weights between male and female calves is 20 kg, then a study with a power of 80% would
detect a difference of this magnitude (and declare it statistically significant) 80% of the time. To
increase the power, it is necessary to increase the sample size. The Type II (β) error rate is 1-
power.

Precision and power have been presented as 2 separate issues although they arise from the same
conceptual  basis.  Sample  sizes  can  be  computed  using either  approach,  although they will
produce different estimates. (See Section 2.11.8 for an expansion of this topic.)

2.11.5 Sample-size formulae

The formulae for sample size required to estimate a single parameter (proportion or mean), or to
compare 2 proportions or means, are shown below the following definitions:

Zα  The value of Zα required for confidence = 1-α    Z0.05=1.96
Zα is the (1- α/2) percentile of a standard normal distribution
Note This is the value for a 2-tailed test or 2-sided confidence interval

Zβ The value of Zβ required for power = 1-β    for power 1- β, Zβ =-0.84
Zβ is the (1-β) percentile of a standard normal distribution

L The precision of the estimate (also called the ‘allowable error’ or ‘margin of error’)
equal to half the desired length of a confidence interval

p a priori estimate of the proportion 
(p1, p2—estimates in the 2 groups in an analytic study)

q 1-p

σ2 a priori estimate of the population variance

μμ a priori estimate of the population mean 
(μ1, μ2—if estimates are required for 2 groups)

n sample size
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Estimating proportions or means (n=total sample size)
To estimate a sample proportion with a desired precision:

n=
Z 

2 pq

L2
Eq 2.4

To estimate a sample mean with a desired precision:

n=
Z 

2


2

L2
Eq 2.5

Comparing proportions or means (n=sample size per group)
To compare 2 proportions:

n=
[Z  2 pq−Z  p1q1 p 2q 2]

2

 p1− p2
2

Eq 2.6

where p=(p1+p2)/2 and q=1-p

To compare 2 means:

n=2[ Z−Z 
2


2

1−2
2 ]

Eq 2.7

Note The formulae shown above are approximations and most software will compute sample
sizes using more exact formulae. Particular caution should be exercised with these formulae if
the  resulting  n is  small.  Example  2.5  shows  the  calculation  of  a  sample  size  for  a  study
comparing 2 proportions.

Sampling from a finite population 
If you are sampling from a relatively small population, then the required sample size (n´) can be
adjusted downward using the following FPC formula:

n' =
1

1 /n1 /N Eq 2.8

where n=the original estimate of the required sample size in an infinite population and N=the
size of the population.

It is useful to make this finite population adjustment when computing the sample size for a
simple or stratified random sample if the sampling fraction exceeds 10%. It is only applied to
descriptive studies, not to analytic studies or controlled trial sample size calculations.

2.11.6 Adjustment of sample size for clustering

In veterinary epidemiological research, we often deal with clustered data (eg cows clustered
within herds) with observations within the same cluster being more similar to each other with
respect to the outcome than observations drawn randomly from the population. If our study is
taking place exclusively at the lower (cow) level, with the factor of interest distributed at the
cow level independent of the herd, and the outcome (eg days from calving to conception) is
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measured at  the cow level,  this clustering does not present  a problem when computing the
necessary sample size. Such a situation arises when conducting a controlled trial of a treatment
that  is  randomly  assigned  to  cows  within  herds  (ensuring  that  treatment  allocation  is
independent of herd). (See Chapter 20 for a more complete discussion of this situation.)

However,  if  the factor  of interest  is  something that  occurs  at  the herd level  (eg barn type:
freestall vs tiestall), then the number of herds in the study becomes a more critical concern than
the number of cows (even though the outcome is measured at the cow level). The total sample
size will need to be increased with the magnitude of the increase depending on: 

1. the degree to which observations within a herd are similar (measured by a parameter
called the intra-cluster (or intra-class) correlation coefficient) (Section 20.3.3) and, 

2. the number of cows sampled per herd (having many cows sampled within a herd is of
little value if the cows within a herd are very similar). The formula for adjusting the
sample size is:

n' =n 1m−1 Eq 2.9

where  n' is the new sample size,  n  is the original sample size estimate,  ρ is the intra-cluster
correlation coefficient  and  m is  the number of cows sampled per  herd.  See Chapter  20 for
further discussion of this issue. In Example 2.6, the sample size estimate from Example 2.5 is
adjusted  for  a  group-level  study.  An  alternative  approach  applicable  to  studies  with  a
dichotomous outcome is to base the sample size on a beta-binomial model with the prevalence
of  disease  within  each  cluster  having  a  binomial  distribution  and  the  prevalences  between
clusters following a beta distribution (Fosgate, 2007).

If the factor of interest is measured at the cow level (eg parity), but also clusters within herds
(ie some herds have older cows than other herds), then the required sample size can be expected
to  lie  somewhere  between  the  simple  estimate  (ignoring  clustering)  and  the  much  more
conservative estimate required for herd-level variables. In such cases, a simulation approach

Example 2.5 Sample size for comparing proportions
data = none

Assume that you want to determine if a vaccine (administered at the time of arrival) reduces the risk of
respiratory disease in feedlot steers. For the vaccine to be worth using, you would want it to reduce the
risk from the current level of 15% to 10% of animals affected. You want to be 95% confident in your
result and the study should have a power of 80% to detect the 5% reduction in risk. 

p1=0.15 p2=0.10 p=0.125

q1=0.85 q2=0.90 q=0.875

Z =Z 0.05=1.96 Z =Z 0.80=– 0.84

n=
[1.96 2∗0.125∗0.875−−0.840.15∗0.850.10∗0.90 ]

2

0.15−0.102

=685

Consequently, you would require 1,370 (685*2) animals with 685 being vaccinated and the rest not
vaccinated. A sample size derived incorporating a continuity correction (see Fleiss JL et al (2003)) for
details) is 726 animals per group.
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(Section 2.11.8) may be the best way to estimate a required sample size or assess power. 

2.11.7 Adjustment of sample size in multivariable studies

If you want to consider confounding and interaction (Chapter 13) in your study, you generally
need to increase  your sample size  (Smith & Day,  1984).  If  the confounder  is  not  a strong
confounder (odds ratio (OR) with disease and exposure between 0.5 and 2), then about a 15%
increase is needed. If it is a stronger confounder, then a greater increase in study size should be
used. For continuous-scaled confounders, estimate the correlation of the confounder with the
exposure  variable  ρce,  and  then  multiply  the  unadjusted  sample  size  by  the  factor  
(1-ρ2

ce)-1. For k covariates, the corresponding formula is,

n' =n1k−1 ce
2

1−ce
2 

Eq 2.10

where  ρce is  an  average  correlation  between  the  confounders  and  the  exposure  variable  of
interest. Thus, for 5 covariates with a ρce approximately equal to 0.3, the increase in study size is
50%.

A similar approach is to start with a simple approach to estimating sample size for the key
predictor (exposure) of interest and then modify this for the multivariable situation using the
variance inflation factor (VIF) (Hsieh et al, 1998). 

n' =n∗VIF Eq 2.11

where VIF = 1/(1-ρ2
1,2,3,...,k).

Note that ρ2
1,2,3,...,k is the squared multiple correlation coefficient (between the key predictor and

the remaining k-1 variables) or the proportion of variance of the key predictor that is explained
when it is regressed on the other  k-1 variables.  In general, as  k  increases,  then the multiple

Example 2.6 Sample size with clustering
data = none

If it is not possible to randomly assign the vaccine or placebo to steers within a pen and then keep track
of individuals through their feeding period, then you might want to conduct the study by randomly
assigning some pens to  be vaccinated  and other  pens to  receive  the placebo.  Rates  of  respiratory
disease tend to be highly clustered within pens and, from previous work,  you know the intra-class
correlation (ρ) for respiratory disease in pens in feedlots is about 0.3.

Assuming that there are about 50 steers in each pen, the revised sample size that you will need will be:

n '=n1m−1

=68510.350−1

=10755

Consequently, you will need 10,755 steers per group or 10,755/50=215 pens allocated to each group.
This  very  large  increase  in  sample  size  results  from the  fact  that  the  intra-cluster  correlation  for
respiratory disease is quite high (ρ=0.3) and that we are using a large number of observations (50) in
each pen.
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correlation increases, as does the VIF. The approach to estimating the VIF is the same for both
continuous and binary covariates.

2.11.8 General approaches to sample-size estimation

As indicated in Section 2.11.4, computing sample size for analytical studies (eg comparing 2
means) can be done either by specifying the desired power of the study to detect a difference of
a defined magnitude,  or  by specifying the desired width of the CI for  the difference  being
estimated (ie a precision-based approach). In simple situations, these calculations are relatively
straightforward.  Two approaches  to  generalising these calculations for  more complex study
designs are described below.

Precision-based sample-size computations
The general formula for the width of a confidence interval of a parameter is:

par ± Z∗SE par  Eq 2.12

where  par  is  the  parameter  being  estimated,  Z  is  the  desired  percentile  of  the  normal
distribution and SE(par) is the SE of the parameter estimate.

Note For  simplicity,  the  standard  normal  distribution  will  be  used  as  a  large  sample
approximation for the t-distribution throughout these examples. 

For linear regression models, the SE of any parameter can take the general form of:

SE  par =∗c Eq 2.13

where σ is the residual standard deviation from the model and c is a value which will depend on
the design of the study. For example, for estimating a mean in a single sample:

c=1 /n=1/n Eq 2.14

where n is the sample size. 

For a comparison of means from 2 samples:

c=2 /n

where n is the sample size in each of the 2 groups.

The formulae for the CI can be inverted to solve for n. For example, to estimate the difference
between 2 means with the CI of the estimate being 2L units long (ie ±L), then:

L=Z ∗∗2/ n Eq 2.15

Based on this, the sample size required is:

n=
2Z

2


2

L2
Eq 2.16

Eq 2.15 is the 2-sample analogue of Eq 2.5.

Note Unlike in Eq 2.7, we have not specified a Zβ nor have we specified hypothesised ‘true’
values for the 2 means. The sample size estimated is the one required to provide a confidence



52 SAMPLING

interval (for the difference) with a desired width (2L), regardless of what the actual difference
is. 

This  approach  can  be  generalised  to  any sort  of  sample-size  estimation,  provided  that  the
structure  of  c can  be  determined.  This  is  based  on  the  design  of  the  study.  For  example,
computing the sample size required to evaluate a 2-way interaction between 2 dichotomous
variables is equivalent to evaluating mean values in each of 4 possible groups (formed by the
possible combinations of the 2 variables). Consequently: 

c=4 /n

and the sample size required in each of the 4 groups will be:

n=
4Z

2


2

L2

This leads to the useful guideline that a study in which you want to evaluate interactions among
dichotomous variables needs to be 4 times as large as is required to estimate main effects.

Power calculation by simulation
An approach to power calculation that is applicable to almost any analytical situation is one that
is based on simulation  (Feivesen, 2002). In general, you simulate a large number of datasets
that are representative of the type that you are going to analyse and then compute the proportion
of times that the main factor you are interested in has a P-value less than, or equal to, the level
you  have  set  for  significance  (eg 0.05).  This  approach  can  be  applied  to  multivariable
regression-type models as well as simpler unconditional analyses.

There are 2 scenarios for generating the simulated datasets. In the first (and simplest) approach,
you  might  want  to  evaluate  the  power  of  a  study which  you  have  already conducted.  For
example, let’s assume that you have conducted a controlled trial of pre-milking teat-dipping as
a means of reducing the frequency of clinical mastitis cases in dairy cows. You did the study in
600 cows (300 in the treatment group, 300 in a control group), with data from one full lactation
for each cow. Your outcome (Y) is the number of mastitis cases in each lactation and you are
confident  that  this  followed  a  Poisson  distribution.  (See  Chapter  18  for  details  of  Poisson
regression.) Although you randomly assigned cows to the 2 treatment groups, you still want to
control for parity in your analysis so ultimately you fit a Poisson model of the following form: 

1n E Y =01parity 2treatment 

When you analysed the data, the coefficient for treatment was -0.23 (suggesting that treatment
reduced the frequency of mastitis), but it was not significant and you want to determine what
power the study had to detect an effect of the magnitude that you found.

The steps involved in determining the power by simulation are:
1. For  each  observation  in  the  dataset,  compute  the  predicted  value  based  on  the

coefficients from the model and the particular X values (parity and treatment) for the
observation.

2. Generate a random value for the outcome from a Poisson distribution with a mean at
the predicted value. (In this case, you don’t need to worry about the variance of the
distribution because the mean and variance of a Poisson distribution are equal.)

3. Reanalyse the data and note the P-value for the coefficient for the treatment (β2)effect.
4. Repeat steps 1-3 many times (eg 1,000) and determine the proportion of datasets in
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which the P-value for the treatment effect is <0.05. This is an estimate of the power of
the study to detect a true effect corresponding to β2 =-0.23.

Note This post-hoc power calculation has been presented because it is the simplest example of
the  use  of  simulation  methods  for  sample-size  calculation.  In  general,  post-hoc  power
calculations are not useful (Hoenig & Heisey, 2001; Smith & Bates, 1992).

The second scenario arises if you want to compute sample sizes prior to conducting a study, the
process is similar except that you start by creating a hypothetical dataset based on an expected
final model. This means that you will need to specify the distributions of the X variables, the
size of the dataset,  the hierarchical  structure  of the data (if  it  is  hierarchical  in nature;  see
Chapters 20-22) and all of the relevant variance estimates. An example of the determination of
the power of a future study, but based on some existing data (for covariate effects) is shown in
Example 2.7.

Example 2.7 Power calculation by simulation
data = pig_adg

You have carried out a study to evaluate the effects  of internal parasites (ascarids) and respiratory
diseases on growth rates in swine. Your study was carried out in 341 pigs (114 with worms and 227
without). You carry out a regression analysis to evaluate the effects of the presence of adult worms
(observed in the intestinal tract at slaughter) on the pig’s average daily gain (adg). In this regression
analysis, you also adjust for the effects of the sex of the pig and the farm of origin. The important
results from that regression analysis are:

§ the coefficient for the presence/absence of worms was -7.7 suggesting that pigs with worms
in the intestinal tract gained 7.7 gm/day less than pigs without worms.

§ the  P-value  for  the coefficient  was  0.25 so you  have relatively little  confidence that  the
estimate was really different from 0.

§ the  standard  error  of  prediction  for  adg  was  46.9  gm/day  (this  represents  the  standard
deviation of predicted results—see Chapter 14).

Assume that you would like to know the power of a comparable study (same size, same distribution of
covariates) to detect a 15 gm/day reduction in growth rate per pig. The simulation process to answer
this question is as follows.

You generate 10,000 datasets with randomly generated adg values. For each pig in each dataset, the
adg value is drawn from a normal distribution with the following characteristics:

§ it has a mean value that corresponds to the predicted value from the real data that you started
with (ie based on the pig’s worm status, sex and farm of origin) except that the effect of
worms is set to -15 gm/day

§ it has a standard deviation of 46.9 gm/day

You analyse each of these new datasets and determine the proportion that gave a P-value for the worm
status coefficient that was #0.05. It turns out that the power would be 0.600 (60.0%).  

Consequently, if the true effect of worms is to reduce growth rates by 15 gm/day, a study based on 114
positive pigs and 227 negative pigs will have a 60% chance of finding a significant effect of worms.
This estimate is substantially lower than a power estimate of 80% based on a simple comparison of 2
groups (computations not shown).
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2.12 SAMPLING TO DETECT DISEASE

Sampling to detect the presence (or confirm the absence) of disease is fundamentally different
than sampling to estimate a parameter such as the prevalence of disease.  If  you want to be
absolutely certain that a disease is not present in a population, then the only option is to test the
entire population (and even this only works if the test you have is perfect). As this is rarely
feasible, we rely on the fact that most diseases, if present in a population, will exist at or above
some minimal prevalence. For example, we might think that if a contagious disease was present
in a population, it would be very unlikely that less than 1% of the population would be infected.
Based on this, you can compute a sample size required to be reasonably confident that you
would detect the disease if the prevalence was 1% or higher.

If you are sampling from a finite population (eg <1,000 animals), then the formula to determine
the required sample size is (Cannon, 2001):

n=1−
1/ DN −

D−1
2 

Eq 2.17

where:
• n=required sample size
• α=1–confidence level (usually=0.05)
• D=estimated  minimum  number  of  diseased  animals  in  the  group  (population

size*minimum expected prevalence)
• N=population size

If you are sampling from a large (infinite) population, then the following approximate formula
can be used:

n=1n /1n q Eq 2.18

where  n=the required sample size,  α is usually set to 0.05 or 0.01,  q=(1–minimum expected
prevalence).

If you take the required sample and get no positive results (assuming that you set  α to 0.05),
then you can say that you are 95% confident that the prevalence of the disease in the population
is below the minimal threshold which you specified for  the disease in question. Thus, you
accept  this  as  sufficient  evidence  of  the  absence  of  the  disease.  Example  2.8  shows  the
calculation of the required sample size to determine freedom from Mycoplasma in a sow herd.

A much more complete discussion of issues related to sampling to determine freedom from
disease has been published by Cameron and Baldock (1998a;1998b). Bayesian procedures for
sample size calculations for determination of freedom from disease which take into account the
fact  that  the disease  tends to cluster  (in herds  or  in  regions)  have been developed,  but are
beyond the scope of this text (Branscum et al, 2006).
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Example 2.8 Sample size for freedom from disease

Assume that you want to document the absence of Mycoplasma from a 200-sow herd and that, based on
your  experience  and  the  literature,  a  minimum  of  20%  of  sows  would  have  seroconverted  if
Mycoplasma were present in the herd.

                                               N =200 =0.05 D=40

n = 1−
1/ D N −

D−1
2 

                                           
=1−0.051/ 40200−

40−1
2 
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prevalence of Mycoplasma in the herd is <20%. As you don’t believe that the disease would exist at a
prevalence <20%, you are confident that it is not present. Note This assumes the test is 100% sensitive
and specific. See Chapter 5 for a discussion of test characteristics. (If  you use the large population
formula (Eq 2.18), you get a sample size estimate of 13.4.)
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