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VALIDITY IN OBSERVATIONAL STUDIES

OBJECTIVES

After reading this chapter, you should be able to:

 1. Identify the different types of selection bias and assess whether or not a particular study is
likely to suffer from excess selection bias.

 2. Determine the likely direction and magnitude of a selection bias through the use of estimates
of sampling fractions or sampling odds.

 3. Apply the principles of bias prevention in the design of a study; for example, how to avoid
detection bias in secondary-base studies.

 4. Explain the differences between non-differential  and differential  misclassification bias in
terms of sensitivity and specificity.

 5. Evaluate misclassification of exposure, disease or both in 2X2 tables.

 6. Explain why one cannot use the population sensitivity and specificity estimates to correct
for disease status misclassification in case-control studies.

 7. Evaluate the likely impact of misclassification on observed associations using sensitivity
analysis.

 8. Know how to apply validation studies and adjust observed data using techniques such as
regression calibration.

 9. Modify sample size estimates to account for misclassification.
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12.1 INTRODUCTION

An awareness  of the key features  of study design implementation and analysis  should help
ensure that we obtain valid results from our research efforts. In this regard, the term validity
relates to the absence of a systematic bias in results; that is, a valid measure of association in the
study group will have the same value as the true measure in the source population (except for
variation due to sampling error). To the extent that the study group and the study population
measures differ, systematically, the result is said to be biased. There are 3 major types of bias: 

1. selection  bias:  due  to  factors  affecting  the selection  of  study subjects,  or  to  other
factors  that  relate  to  the  willingness  of  potential  study subjects  to  participate  in  a
research project 

2. information  bias:  due  to  factors  relating  to  obtaining  accurate  information  on  the
exposure, outcome and covariates of interest, and 

3. confounding bias: due to the effects of factors other than the exposure of interest on
the observed measure of association. 

In this chapter, we discuss the nature, impact and prevention of selection and information bias;
confounding is discussed in Chapter 13. 

Most  analytic  studies  are  conducted  on  non-randomly  sampled  study  subjects,  so  there  is
always some uncertainty about how well the attributes and the associations in the study group
reflect  the attributes  and associations in the larger  source  population from which the study
group is drawn. In addition, once the study groups are selected, we must be able to accurately
measure the exposure, extraneous factors and outcome of interest, and control confounding, if
we want to make valid conclusions about the exposure-outcome association. In this context, an
internally  valid  study  will  allow  us,  based  on  the  study  group  data,  to  make  unbiased
inferences  about  the  association(s)  of  interest  in  the  source  population.  External  validity
relates to the ability to make correct inferences to populations beyond the source population
(the first of these being the target population). In this regard, while it is certainly desirable that
the study and source populations be ‘representative’ of the larger target population, one should
not sacrifice internal validity in order to gain external validity (see Alonso et al, 2007). In the
extreme, there is no value in being able to extrapolate incorrect results. Generalisability is an
inferential step beyond external validity and refers to the ability to develop and extend valid
scientific  theories  to  broadly  defined  populations  (eg associations  that  are  valid  across
populations and/or species). 

12.2 SELECTION BIAS

Selection bias results from the fact that the composition of the study group(s) differs from that
in the source population and this biases the association observed between the exposure(s) and
the outcome(s) of interest. This bias can have large effects on study results. Hence, the criteria
used to select study subjects and maintain them in the study are important to describe (Grimes
and Schulz, 2002; Sandler, 2002; Beck, 2009, and pertinent sections in Chapters 7-10). From a
sampling perspective, each study will have an objective that relates to a target population (eg
the impact of a disease of dairy cows in a defined area such as a province in Canada).  For
practical purposes, it is often necessary to obtain the study subjects from a subset of the target
population (eg all dairy herds in the province with computerised records), and this constitutes
the source population. The actual group of subjects (ie participating herds) in which the study
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is conducted is called the study group (see Section 2.1.3). In the ideal, the source population
will completely reflect the target population, and the study group will completely reflect the
source population. 

As noted in Chapters 7-10, we investigate associations by contrasting outcomes in 2 or more
groups of subjects. As described in Chapter 1, the ideal comparison group for causal inferences
is the counterfactual group. For example, in a cohort study, the ideal counterfactual group for
the  exposed  study group  would  be  the  exact  same subjects  if  they  had  not  been  exposed.
However, as this ideal group is non-existent, we strive to select the non-exposed study group in
a manner that ensures that the 2 groups are totally comparable with respect to all factors that
might  bias  the  measure  of  association.  Our  intent  is  to  have  the  association  that  is  under
investigation be the same in the study group as in the source population. From a selection bias
point of view, this means that the 2 groups under study should be comparable at the initiation of
the study and any decrease in this ‘comparability’ throughout the study period should not be a
result of the study process. We also would note that clinical trials (Chapter 11) are not immune
to  selection  bias.  Although  randomisation  helps  ensure  that  the  groups  receiving  the
treatment(s) are comparable (ie exchangeable), since the study subjects usually are volunteers,
they may differ from the source population in a manner that leads to biased results (eg if the
treatment  interacts  with  the  characteristics  of  the  study groups  that  differ  from the  source
population) (Beck, 2009).

If  it  occurs,  selection  bias happens  either  before  the  study  begins,  or  during  the  study
implementation, and it results from the procedures used to obtain study subjects and factors that
influence  participation  and participant  behaviour  (eg their  management  of  the herd).  These
factors influence participation in the study in such a way that  the composition of the study
group(s) differs from that in the source population and this biases the observed association. The
basic conditions for selection bias can be shown pictorially using the techniques of directed
acyclic  graphs  and  the  concept  of  statistical  conditional  dependence  (Hernan  et  al,  2004;
Sjolander et al, 2008). In the left column of Fig. 12.1, we indicate that both exposure (E) and
the outcome disease (D) directly affect the selection (S) of study subjects. In this depiction, E
and  D are independent of each other (ie not associated) in the source population; however,
when we conduct the study using only the responders (ie condition on selection S), assuming
that there is some non-response, E and D become associated. Alternatively, had E and D been
associated in the source population, the observed association in the study group would differ
from that in the source population; ie selection bias would occur. On the right, disease directly
affects selection in the source population. Exposure does not directly affect selection, but unless
the  bias variable (eg behaviour or attitude) which is directly related to (or correlated with)
exposure and with selection is controlled or ‘adjusted for’, exposure will be statistically related
to selection and a biased association between exposure and disease will  result  in the study
group. As a third example (not shown), the bias variable could be related to the disease, not the
exposure, and the exposure be directly related to selection. In summary, as Hernan et al, 2004,
demonstrate, using directed acyclic graphs (aka causal diagrams), that selection bias is a result
of conditioning on the common effects of exposure and disease, or on the effects of variables
related  to  exposure  and  disease.  Shahar  (2009)  has  elaborated  on  this  with  application  to
information bias.
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We also can gain some understanding of selection bias using sampling fractions. Assume the
source population and study group have the structure shown in Table 12.1 (upper-case letters
represent the number of subjects in the source population, lower case letters the study group). 

Table 12.1 A representation of the structure of the source population and study group

Source population structure Study group structure

E+ E- E+ E-

D+ A1 A0 M1 D+ a1 a0 m1

D- B1 B0 M0 D- b1 b0 m0

N1 N0 N n1 n0 n

12.2.1 Sampling fractions and sampling odds

Our intent is to select the study group in a manner that avoids selection bias. Formally,  the
study group is a sample of the source population. We can visualise the sampling fractions (sf) in
each of the 4 categories of exposure and disease as:

sf 11=a1/ A1

sf 12=a 0/ A0

sf 21=b1/B1

sf 22=b0/B0 Eq 12.1

where the subscripts refer to the row-cell combination in the 2X2 table structure (row 1, column
1 is the upper left cell: exposed and diseased  etc) of Table 12.1. If  the study subjects were
obtained by random selection,  of ‘n’ from ‘N’ subjects,  the 4 sampling fractions would be
equal, except for random variation. Under this selection method, it is reasonable, and correct, to
assume that if all 4 sampling fractions are equal, there is no selection bias (Morabia, 1997).
Furthermore, if the sampling fractions are equal, the odds ratio (OR) of the sampling fractions
(ORsf) equals 1. It is noteworthy that the 4 sampling fractions can be unequal and not produce
bias in the observed OR provided the ORsf equals 1. Under this latter condition, there is also no
bias to the risk ratio (RR) if disease is infrequent. In reality, we rarely know the values of the sf
so this limits the practical utility of this approach. However, understanding the role of sampling
fractions provides a theoretical basis for understanding the conditions under which bias will or
will not occur. See Example 12.1 for an application of using the sampling fraction odds ratio to
investigate selection bias arising from non-response.

Fig. 12.1 A diagram depicting basic conditions for selection bias
Note ORED=1, but ORED|S≠1
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In  practise,  sampling  odds  might  be  easier  to  conceptualise  than  the  individual  sampling
fractions.  For example,  in a risk-based cohort,  or longitudinal  study,  one could express the
sampling odds of disease (soD+|E) among exposed subjects versus the sampling odds of disease

Example 12.1 Selection bias due to non-response

In  order  to  demonstrate  that  non-response  can  bias  an  association  measure,  we  first  give  an
hypothesised example where the non-response is related only to exposure and not to the outcome. In
this situation,  one would  not  expect  the non-response to bias the measure  of  association.  For  this
example, we will initially assume the following scenario:

• 10% of the subjects in the source population are exposed
• In the exposed subjects in the source population, 30% are non-responders (nr) and that the

risk of the outcome in the non-responders is the same as that in the responders (r) at 25%.
• In  the non-exposed subjects in  the source population,  10% are non-responders  and these

subjects have the same risk of the outcome as the responders at 12%.

Based on these assumptions, the source population structure is:

Exposedr Exposednr Non-exposedr Non-exposednr

D+ 175 75 972 108

D- 525 225 7128 792

700 300 8100 900

Risk 0.25 0.25 0.12 0.12

If  we initially contact 100 exposed and 100 non-exposed individuals,  in the source population,  the
overall response ‘rate’ is 80% and the study group will have the following structure:

Exposedr Non-exposedr

D+ 18 11

D- 52 79

70 90

Apart from rounding error, the ratio of risks (RR) in the study group (RR=2.04) matches the risk ratio in
the source population (RR=2.08), as does the OR (2.49 vs 2.44). There is no bias. 

Now,  given  exactly  the same response risks,  we  will  assume that  non-response is  related to  both
exposure and outcome, and the risk of the outcome is twice as high in non-responders as in responders
in both the exposed and non-exposed groups. 

Under this scenario (and ignoring rounding errors), the population structure would be:

Exposedr Exposednr Non-exposedr Non-exposednr

D+ 133 114 891 198

D- 567 186 7209 702

700 300 8100 900

Risk 0.19 0.38 0.11 0.22

The ratio of the risks in the source population is 0.247/0.121=2.04 and the odds ratio is 2.38.
(continued on next page)
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in the non-exposed subjects as:

soD+∣E +=sf 11/ sf 21

soD+∣E -=sf 12/ sf 22 Eq 12.2

If these selection odds are equal, there is no bias, and this becomes the goal of study-subject
selection strategies in observational studies. If the ratio of the sampling odds is greater than 1,
then the bias is away from the null; if the ratio of the sampling odds is less than 1, the bias is
toward the null. Thus, from a practical perspective in designing a cohort study we need to ask
ourselves,  over  and  above  the  associations  between  exposure  and  disease  in  the  exposure
cohorts, am I more (or less) likely to select for disease in the exposed than in the non-exposed
cohort? As noted, in Example 12.1, because of the non-response, the sampling odds for disease
among  the  exposed  is  5.89  (ie 0.053/0.009),  and  among  the  non-exposed,  it  is  7.5  (ie
0.075/0.010) giving a ratio of sampling odds equal to 0.8. In  relative terms, we have over-
sampled  disease  in  the  non-exposed,  and  biased  the  observed  association  toward  the  null.
Similarly,  in  designing  a  case-control  study,  we  wish  to  avoid  a  differential  selection  for
exposure that is over and above any associations between exposure and disease in the case and
control groups in the source population. 

Example 12.1 (continued)

As before, if we initially contact 100 exposed and 100 non-exposed individuals, the study group will
have the following structure (apart from sampling error):

Exposedr Non-exposedr

D+ 13 10

D- 57 80

70 90

Now the study group RR is 0.19/0.11=1.73, and the OR is 1.90; both are biased estimates of the true
associations. 

Note that in this scenario the sfs are:
sf 11=13/247=0.053
sf 21=57/753=0.075
sf 12=10/1089=0.009
sf 22=80/7911=0.010

and the odds ratio of the sfs is:

ORsf =
0.052∗0.01

0.075∗0.009
=0.8

Thus, based on the OR of the sfs, the bias would be expected to be toward the null, and we note that the
true OR multiplied by the sampling fraction odds ratio gives the observed OR (ie 2.38*0.8=1.90). 

If we doubled the non-response risk in both exposed and non-exposed groups, the sampling fraction of
the odds ratio would be 0.66. Thus, it is conceivable to produce considerable bias from this form of
selection bias. 
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12.3 EXAMPLES OF SELECTION BIAS

12.3.1 Choice of comparison groups 

A general principle is that the study groups should be selected from the same source population.
In cohort studies, it is important that the subjects in the non-exposed group be comparable with
those in the exposed group with respect to other risk factors for the outcome that are related to
the exposure. This is more of an issue with the usual 2-group (ie  exposed and non-exposed)
cohort design, than with a single-cohort study design. Similarly, in a case-control study, it is
important  that  the  control  group  reflects  either  prevalence  of  exposure  in  the  ‘non-case’
members of the population from which the cases arose (risk-based study) or the proportion of
exposed animal-time at risk for the non-case group in the source population (rate-based study).
Since the members of the study groups are rarely obtained by random sampling, decisions about
how to select the study subjects must include knowledge about the context and the biology of
the problem being investigated as well as the structure and dynamics of the source population. 

As an example, a recent study has documented how the design of a surveillance system can bias
the risk of disease by breed type (Ducrot  et al, 2003). In France, BSE cases were identified
through  a  mandatory  reporting  system (MRS)  based  on  clinical  cases,  as  well  as  targeted
surveillance  (TS)  using  a  diagnostic  test  on  cattle  found  dead  on  the  farm,  subjected  to
euthanasia, or emergency slaughter. The MRS detected “34 BSE cases, all from dairy herds,
while  the  TS  program  discovered  49  cases,  with  only  36  (73.5%)  from  dairy  herds”.
Investigations subsequently demonstrated that the MRS system was biased toward detecting
cases in dairy herds (perhaps because dairy cattle in England had been reported to have an
excess of BSE cases,  and the system depended on recognising and reporting clinical  signs,
hence subclinical or atypical cases were missed). The sampling of the TS system was not biased
by production  system but  the  obvious  clinical  cases  were  excluded.  Thus,  data  from both
systems were needed to get an unbiased measure of association between breed and BSE risk.

Tongue et al (2006) describe another instance where the selection of the study subjects can bias
prion protein genotype  in  studies  of  scrapie.  They posited that  different  genotypes  may be
related to different ages when scrapie develops—culling of early cases and their relatives would
alter the subsequent distribution of genotypes in the flock or population of interest. Also, given
knowledge of the relationship of genotype to scrapie risk, the willingness of owners to test their
flock could vary from genotype to genotype.  Information from different databases  are very
helpful in helping to interpret associations under these conditions (as was found in the previous
example of BSE).

12.3.2 Non-response

Non-response bias can be a major problem in both descriptive and analytic studies and its level
and effects are often understated (Stang, 2003; Morton et al, 2006; Mezei and Kheifets, 2006).
Non-response  leads  to  bias  if  the  association  between  exposure  and  the  outcome  in  the
responders differs from that in non-responders; hence, the association in the study group (ie
only  the  responders)  differs  from  that  in  the  source  population.  Although  non-response
produces its effects through a process similar to a confounding variable, it may not be directly
controlled in the same manner. The stronger the association between exposure and disease and
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the  greater  the  proportion  of  non-responders,  the  greater  the  potential  bias.  In  veterinary
research, non-response on behalf of the owner could be a surrogate indicator for management,
housing, or feeding differences of the owner’s animals that could relate to both the outcome and
the exposure factor. In studies where humans are the units of concern, willingness to enrol in a
study might be related to both the exposure and the outcome, hence the study group produces a
biased response. One factor that appears to influence participation in surveys and observational
studies is the socio-economic status (SES) of the potential participant; subjects from a higher
SES are more likely to participate than those from a lower SES. In veterinary studies, if SES is
associated with both the animal’s or the herd’s exposure and the disease of interest, then a bias
could result. 

One way to assess the possible effects of response bias is to ascertain if the extent of non-
response  within  each  group  (ie the  exposure  cohorts,  or  the  case  and  control  groups)  is
approximately  equal.  If  they  are  equal,  or  approximately  equal,  there  will  be  little  to  no
selection bias. Low overall response rates do not necessarily result in selection bias and high
response  rates  do  not  guarantee  a  lack  of  bias  (Nohr  et  al,  2006;  Bjertnaes  et  al,  2008).
Achieving an equal response in the groups based on exposure or outcome should be a major
consideration when designing and implementing observational studies. A second approach to
assess possible bias is to compare responders and non-responders using whatever information
you have on exposure, disease, or other features, recognising that because the owner/participant
won’t respond (or collaborate), the data might be limited. For example, if some information on
potential participants in a study of risk factors for foot problems in dairy cows is available (eg
milk  production  of  dairy  herds),  then  we  can  compare  this  between  responders  and  non-
responders) to see if they differ. If the differences are negligible, or if the variable(s) the groups
differ on is not related to the outcome of interest in the study subjects, then selection bias will
likely have only a small impact on the study results.  Example 12.1 demonstrates how non-
response produces bias.

12.3.3 Selective entry or survival bias

Sometimes the groups we study are highly selected in that only subjects that possess certain
desirable attributes are selected for membership. The analogous problem in studies of humans is
called the ‘healthy worker’ effect, and is a major issue especially in occupational-health studies.
In veterinary research, adult food-producing animals (sows, cows  etc) are highly selected for
herd membership on entry (eg they might need to meet specific growth rate and fertility criteria)
and, once admitted to the herd, these animals must maintain certain production standards (eg
number of piglets produced per year) to remain in the herd. Similarly, horses that are currently
racing are a biased subset of all horses that started to enter the race circuit, and they are very
likely to be healthier than all  horses that  have raced at  least  once. As one example of this
potential bias, if we wanted to assess the impact of post-partum disease on fertility in dairy
cows, and we chose the calving-to-conception interval as an outcome measure, we could get a
biased view of the disease effects. Animals that did not get pregnant would be excluded from
the outcome measure. Hence, because these cows did not pass the entry criterion of becoming
pregnant,  they  are  excluded from the  study and  yet  this  failing  is  a  crucial  component  of
assessing the fertility status of the herd. Braback et al (2006) demonstrated that selection bias
likely contributed to the lower prevalence of asthma and allergic keratoconjunctivitis in farmers
—farm children with these condition are less likely to pursue farming because of the physical
demands  and  the  known  risks  of  other  respiratory  conditions  (eg chronic  bronchitis)  than
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children without these conditions. Knowledge of this helped them interpret the results of earlier
studies investigating the association between occupation and respiratory disease (the presence
of early disease was affecting exposure (occupation) and also, later-life disease status. 

With respect to selective survival, if both the exposure and disease being studied affect whether
or not a food animal remains in the herd (or whether or not a horse is still racing), then a study
group  drawn  from  only  ‘existing’  (eg  racing)  animals  might  give  a  biased  measure  of
association between the exposure  and disease.  The premature  removal  of  animals  from the
original  group  might  be  highly  correlated  with  the  exposure  factor  and  the  outcome,  thus
leaving the study group as a biased subgroup from the source population. Whenever selective
survival  is  likely to be an issue, the study group(s)  should be drawn from all  animals that
entered the herd (or ever raced) during a specified time period, not just from animals that are in
the herd (or are racing) at the start of the current study period. In many of these instances,
implementing longitudinal studies commencing at the birth, or herd entry, of the study subjects
would provide the best evidence of the impact of specific exposures throughout the life of the
study subjects (Brabeck et al, 2006).

Survival bias can also result from the use of prevalent cases of disease (eg in case-control or
cross-sectional studies). If the duration of survival after disease onset differs by exposure status,
then bias could result. Cross-sectional studies are problematic in this regard, and partly for this
reason, it is recommended that case-control studies usually should include only incident cases.

Unintentional  selection  bias  might  be  at  play  in  many  studies  of  antimicrobial  resistance
patterns (Miller and Tang, 2004). Often the data are based on isolates obtained from clinically
ill subjects, or from subjects prophylactically exposed to antimicrobials. Hence, many of the
isolates would have been exposed to antimicrobials prior to culturing of tissue specimens. Thus,
the number and type of bacterial isolates, and their level of antimicrobial resistance (or minimal
inhibitory concentrations) might be more a function of what antimicrobials had been used and
how effective they were at reaching and killing susceptible organisms in the tissue samples that
get  cultured than of  the prevalence  of  pathogenic  organisms or their  level  of  antimicrobial
resistance in the source population. If the objective of the study is to describe the extent of
antimicrobial resistance in the source population, samples should be obtained from randomly
selected subjects (some of which may have been exposed to antimicrobials).  The impact of
exposure to antimicrobials on the level of resistance could be assessed in a valid manner. 

12.3.4 Detection bias

Detection bias results when the probability of identifying the disease (or outcome) differs by
exposure status. In cohort studies, detection bias is best viewed as a misclassification. It can
arise if those assessing the outcome know the exposure status of the study subject, and if they
alter their assessment of the outcome because of that knowledge. 

In case-control studies, the central issue in detection bias is one of selection, in that animals that
have the disease of interest might be misclassified as not having that disease because they were
less likely (or never) to be examined for the disease (see Section 12.6). This potential bias is of
concern  when a large  percentage  of  the  cases  would be  found (and  therefore  identified  as
potential study subjects) as a result of undergoing examination in a screening or diagnostic
process where participation is influenced by exposure status (ie the act of being assessed is
directly or indirectly influenced by the exposure status). Given this scenario, the issue is how
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best to select controls. A frequently suggested guideline is that the controls should be non-cases
that have undergone the same screening, but the nature of the exposure, disease and the context
of  diagnostic  testing  need  to  be  considered  (Harris  et  al,  2005).  Here  the  concern  was
misclassifying  untested  subjects  as  non-cases  when,  in  reality,  they  were  mildly  diseased
undetected cases. In many instances, severity of illness would be the ‘bias’ variable (Fig. 12.1)
that leads to testing (or not).

Detection bias was at the root of protracted discussions about the appropriate control group for
a series of uterine cancer  cases  in a study of the potential impacts of hormone-replacement
therapy in  women  (Greenland  and  Neutra,  1981).  Women  on  estrogen  tended  to  evidence
vaginal bleeding and therefore would be examined (in a manner that could lead to the detection
of  uterine  cancer)  more  frequently  than  women not  on  estrogen.  Hence,  the  possibility  of
detection bias was raised. Some researchers  argued that  the controls should be restricted to
those women who had been examined because  of vaginal  bleeding and found negative  for
cancer. However, it was subsequently determined that because all cases of uterine cancer were
detected,  ultimately  (regardless  of  screening),  it  was  not  necessary  to  enforce  the  general
principle that controls should undergo the same testing regime as the cases. Another method to
evaluate detection bias is described in Section 12.4.1.

Another example of potential detection bias was related to misclassification of the outcome
(Singer  et al, 2001). These workers were selecting birds with avian cellulitis in the slaughter
plant using the presence of certain gross lesions as indicators that the birds had the disease, and
then culturing these birds for specific strains of  Escherichia coli.  Their concern was that, if
certain strains of  E. coli  only produced lesion(s) that were not being detected visually,  then
these birds would not be selected. Hence, only a biased subset of the  E. coli-caused lesions
would be detected.  These researchers  developed a method to assess  possible selection bias
based on comparing the findings in the birds that they detected with findings in birds detected
using independent criteria by the USDA inspectors. In general, it is desirable to have a sensitive
and specific set of inclusion criteria when selecting study subjects.

12.3.5 Admission risk bias 

Admission risk bias has provoked much debate over the validity of secondary-base case-control
studies, and is the basis of Berkson’s fallacy (Schwartzbaum et al, 2003; Sadetski et al, 2003).
In this instance, the probability of admission to the registry or hospital (ie the secondary-study
base)  is  related to  both the disease  and the exposure.  That  the exposure of  interest  has  an
independent risk of admission to the hospital or registry (ie p(H|E+)>0) is a prerequisite for a
bias to occur. In practise, this effect is through the production of exposure-related diseases other
than the case disease of interest. A differential admission risk between the cases (p(H|D+)) and
the average admission risk of the control disease categories (p(H|D-)) is also needed to produce
the bias, but this is a very common situation in most case-control studies.  Thus, the controls
drawn from the  hospitalised  population  might  not  reflect  the actual  exposure  status  of  the
population from which the cases arose. 

In terms of the direction of bias, provided exposure leads to ‘being in the registry’, if the risk of
hospitalisation (ie being in the registry) is greater for the disease of interest than the average
risk for the potential controls,  the sample (ie study group)  OR will  be less than the source
population OR. Thus, if the study data leads to a statistically significant OR, the true association
in the source population would be even stronger. Conversely, if the risk of hospitalisation (ie
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being in the registry) is lower for the disease of interest than the average risk for the potential
controls, the sample OR will be more than the source population OR. 

A frequently cited example involves investigations of the association between smoking and
lung cancer using hospital-based case-control studies. Smoking can lead to hospitalisation for
many diseases and thus, it is suspected that the prevalence of smoking is higher in many of the
disease categories from which controls might be selected (Sadetzki  et al, 2003). In a similar
manner, since the frequency of many animal diseases increases with age, then the average age
of animals in veterinary hospitals would be older than the age of the general population and this
could  bias  the  association  between  age  and  specific  diseases  when  the  non-diseased  study
subjects  are  selected  from  veterinary  hospitals.  Thus,  it  is  important  to  try  and  obtain
quantitative estimates of the likely degree of bias that different potential control groups might
produce (see Example 12.2). Since it is nearly impossible to assess the degree of selection bias
in any given secondary-base study, this constrains the inferences that should be drawn from a
single secondary-base study. In Chapter 9 and Section 12.4, we develop guidelines for selecting
cases and controls in a manner to prevent or minimise the magnitude of bias.

Because of the difficulties in selecting appropriate  controls in secondary-base studies, some
researchers obtain controls directly from the putative source population. Tam et al (2003) have
documented  that  disease  severity  and  societal  factors  influence  the  inclusion of  subjects  in
registries for infectious intestinal disease. Their research suggests that we need to be careful
when using population controls as they may not be representative of the actual population that
gave rise to the cases. The same authors also supported the use of case-case studies to avoid this
potential bias (see Section 10.3). 

12.3.6 Loss to follow-up and follow-up biases 

Similar to non-response bias, if there is a differential loss to follow-up that is related to the
exposure status and the outcome, then bias in the measure of association will result. Thus, in the
design and implementation of the study protocol, we should try to follow-up study subjects as
completely as possible and minimise losses.  Failing that, we should try to ensure that both
groups are followed with equal rigour (this tends to equalise, but does not reduce, the losses).
Unfortunately, the larger the losses, the more difficult it becomes to ensure equality of losses
across the study groups. Robinson  et al (2007), have surveyed the literature for strategies to
reduce  follow-up losses and they provide a list  of the 12 most frequently stated strategies.
Among the more frequent strategies were: obtaining community involvement; creating study
identity  (eg study  name  and  consistent  letterhead);  having  study  personnel  with  excellent
communication skills; clearly explaining the benefits of the research, having regular scheduled
contacts  with  participants;  regular  reminders;  minimising participant  burden,  and  providing
participant specific benefits (perhaps a free consultation or a specific information package). 

Bias also can result from differential management of exposed and non-exposed subjects during
the study. More generally, behavioural changes in study subjects as a result of being studied are
referred to as the Hawthorne effect. In an observational study, the role of the researcher is to
observe,  not  alter,  the normal (ie usual) events experienced  by the study subject  or  his/her
animals. However, it is often difficult to ‘hide’ the reason for the study and the act of enquiring
into specific lifestyle/management/housing factors could lead the participant to modify his/her
protocols  in  ways  that  are  not  obvious  to  the  researcher.  This  could  lead  to  differential
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management by exposure status, or at the very least, it could lead to exposure status changes
during the study period. Ducrot et al (1998), describe the interrelations between the observer (ie
the researcher) and the observed (ie the participants) in the context of on-farm studies. Being
aware of this effect and implementing the study in a manner designed to minimise any bias,
through complete and equivalent follow-up of the groups, is the best prevention.

12.3.7 Bias due to missing data

If the missing data are distributed randomly, they will reduce precision and power, but not lead
to biased associations. However, missing data can create a bias similar to non-response, because
the researcher must adjust the analysis (eg impute the missing value) (Cole et al, 2006; Fraser
and Yan, 2007; Fraser and Yan, 2009), drop the variable(s) with missing values (and possibly
leave  a  confounding  bias),  or  drop  the observation  (and  hence,  effectively  produce  a  non-
response). Thus, minimising missing data and assessing whether the level of missing data is
equivalent in the groups being compared (eg cases and controls) are recommended features of
study design. We discuss the problem of missing values further in Section 15.5.

12.4 REDUCING SELECTION BIAS

Most of the specific recommendations for preventing selection bias are contained in Section
12.3 or in the study design chapters (Chapters 7-10) and will not be repeated here. However,
being aware of the potential pitfalls in selecting study subjects, and conceptualising how these
pitfalls might apply to selection of study subjects from the proposed source population is the
first step in prevention. In cohort studies where explicit exposed and non-exposed groups are
selected, care needs to be taken when selecting the comparison group, and due consideration
should be given to minimising non-response bias, missing data, and ensuring equal follow-up
and preventing detection bias (see Chapter 8 for details). Case-control studies (Chapter 9) are
particularly  susceptible  to  selection  bias  because  of  the  (usual)  built-in  differential  risk  of
inclusion  based  on  disease  status.  Thus,  minimising  a  differential  response  to  study
participation between cases  and potential controls should be a major focus of study subject
selection procedures.  With regard to selection, the comparison group in case-control studies
need not be similar to the case group in all respects except for the disease of interest, but rather
just with respect to the factors related to the outcome that might lead to being included in the
study. A key principle for control selection is that they should represent the proportion exposed,
or the exposure time, in the non-diseased members of the source population. This is chiefly a
problem  in  secondary-base  studies  and  to  circumvent  it,  we  implement  the  guideline  of
selecting controls only from non-case diagnostic categories that are unlikely to be associated
with the exposure. In addition, where possible, case-control studies should be based on only
incident cases and the control subjects should come from the same source population as the
cases (See Chapter 9 for details). Even with all these precautions, care must be taken in making
broad inferences from a single case-control study using secondary databases. 

12.4.1 Evaluating and correcting selection bias

For valid and effective control of selection bias, 1 of 2 conditions needs to be met: the factors
associated with selection must be antecedents of both exposure and disease, or the distributions
of exposure and disease must be known in the source population. Under the first condition, the
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bias can be controlled in a manner similar to confounding; for example, if owner income might
cause selection bias in a secondary-base case-control study, it can be measured and controlled
in the analysis. Geneletti et al (2009), and Alonso et al (2006) describe methods to test for, and
correct, selection bias in case-control studies, based on using data internal to the study, or in
some instances  data that  are  external  to the study group.  The variable(s)  which is strongly
related to selection, or study participation and produces the bias (called a  bias breaker by
Geneletti  et  al (2009))  needs  to  be  identified  so  that  unbiased  estimates  of  its  population
distribution can be obtained (this is necessary so that these ‘correct’ estimates are not associated
with ‘selection’).  We refer  you  to Geneletti  et al (2009) for  the actual  calculations and the
constraints needed to select valid adjustment factors.

However, as example, identifying and adjusting for the bias variable in case-control studies of
the  impact  of  smoking,  the  observed  association  can  be  adjusted  for  selection  bias,  if  the
prevalence  of  smoking  in  the  source  population  (from  which  the  cases  were  obtained)  is
available (ie it replaces the observed proportion of smokers in the study control subjects). In
general, Berkson’s fallacy can be prevented if estimates of the hospitalisation rates of the non-
diseased  subjects  are  available.  Although  this  is  quite  difficult  to  implement,  the  potential
impact of differential admission risks could be investigated in sensitivity analyses.  Similarly
adjustment for the potential effect of SES on participation can be made using information on
the combined level of SES in the cases and controls (this approach uses data internal to the
case-control study to ‘adjust the biasing variable SES’). External data on the SES from a recent
census in the source population could also be used. In the case of detection bias in the studies of
estrogen use and uterine cancer, selection bias could be ‘corrected’ by using the prevalence of
vaginal bleeding among women with uterine cancer in the source population (here again, this
corrects for the distribution of the biasing variable—vaginal bleeding). Alonso et al (2006 and
2007) describe the use of inverse probability weighting to adjust for selection bias as a result of
dropouts during a cohort study. Berger (2005) describes how to use reverse propensity scores to
detect and ‘correct’ for selection bias.

In veterinary medicine, we rarely have solid estimates of the sfs or of the distribution of the bias
variable. However, we can assess the potential bias from single estimates of sampling fractions
or the bias from a distribution of sampling fractions using a stochastic approach. In Example
12.2, we use software developed by Orsini et al (2008), to demonstrate both deterministic and
stochastic adjustment for potential selection bias based on estimating the sampling fractions in
case-control studies. The examples given above of the bias-variables hopefully will help us to
identify the key variable(s) that affect selection in our studies and assess their potential impact
on the study results. Sensitivity analyses (using a range of parameter estimates) can be useful
for this purpose (Sjolander et al, 2008).

12.5 INFORMATION BIAS 

The previous discussion was concerned with whether the study subjects had the same exposure-
disease association as that which existed in the source population, and we assumed that disease
and exposure were correctly classified. We now move on to discuss the effects of incorrectly
classifying,  or  measuring,  the  study subjects’  exposure,  extraneous  factors  and/or  outcome
status. When describing errors in classification of categorical  variables,  the resultant  bias is
referred to as misclassification bias; if the variables of interest are continuous, then we term the
erroneous result as measurement error or bias. Information bias is a collective term for either
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of  these  biases.  Information  bias  can  alter  the  magnitude  and  direction  of  estimates  of
association,  in  ways  which  might  not  be  intuitive.  Also,  the  errors  in  classification,  or
measurement, can affect different measures of association differently (ie  risk ratio versus risk
difference). Hence, for our purposes, we will focus primarily on the effects of information bias
on relative measures of association (RRs and  ORs). In the discussion that follows, the study
subject could be an individual animal, or participant, or a group of individuals, such as a herd.

We will begin this topic with a review of the basics of misclassification—the most studied of
information biases.

Example 12.2 The evaluation of potential selection bias based on estimates of sampling 
fractions

The table below displays the frequency of no-home-cooked food and home-cooked food that was fed to
lactating dogs with and without atopic dermatitis in Sweden. Data from Nødtvedt et al, 2007.

No home-cooked food Home-cooked food

Cases 31 16

Controls 25 30

The authors noted an increased risk (OR 2.33; 95% CI 1.04-5.19) of atopic dermatitis in the high risk
breeds of dogs that was associated with feeding ‘commercial food’ (ie no home-cooked food). 

The remainder of this example is developed for pedagogic purposes only; we do not imply that the
selection bias shown here actually exists. Suppose we know that selection bias is likely and we have a
good idea of the relative selection probabilities. We will adjust the odds ratio, deterministically, using
the following sampling fractions (sf) to assess the potential impact of the selection bias:

Deterministic Stochastic

sf exposed cases (E+D+) 0.5 triangular (0.4, 0.5, 0.6)

sf non-exposed cases (E-D+) 0.6 triangular (0.5, 0.6, 0.7)

sf exposed controls (E+D-) 0.05 triangular (0.01, 0.05, 0.1)

sf non-exposed controls (E-D-) 0.1 triangular (0.05, 0.1, 0.2)

The deterministic sfs were chosen to reflect our belief that those who prepare home-cooked food (ie the
unexposed) would be more likely to participate in the study than those who do not. The cases have a
higher participation level than the controls. While the observed OR was 2.33, the ‘adjusted’ OR (after
accounting for the sfs) was 1.40 (95% CI of 1.04, 5.19); the strength of association is now considerably
(67%) reduced.

To demonstrate stochastic sensitivity analysis, suppose we know the likely direction of selection bias
but we don't have a precise idea of the actual sfs. We specified a triangular distribution for the sfs as
shown above (eg the sf for E+ D+ was assumed to have a minimum value of 0.4, a maximum of 0.6
and a most  likely value of  0.5).  This  keeps the same direction of  bias  as  before  but  now we  are
uncertain about the actual sampling probabilities. The impact of considering the sfs was to reduce the
OR to approximately 1.28 with 95% of the estimates falling between 0.43 and 3.13. Once again note
the downward direction of the OR from what we would have expected to see in the absence of selection
bias. Clearly, if selection bias was present, at about the same magnitude as we specified here, then the
true association was considerably weaker than what was observed. 
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12.6 BIAS FROM MISCLASSIFICATION

Misclassification  bias  results  from  a  rearrangement  of  the  study  individuals  into  incorrect
categories because of errors in classifying exposure, outcome or both. Non-compliance with an
assigned treatment in a clinical trial can also produce misclassification bias, because the subject
was  not  actually  receiving  the  treatment  specified.  With  categorical  measures  of  exposure,
outcome, or other covariates, especially dichotomous measures (ie exposed or not, diseased or
not), the errors of classification can be described in terms of sensitivity and specificity as shown
in Chapter 5. Here, sensitivity (Se) for a given event (eg exposed) is the probability that an
individual  with  the  event  will  be  classified  as  having  the  event.  Specificity  (Sp)  is  the
probability that an individual without the event  (ie not exposed) will  be classified as being
without the event. 

12.6.1 Non-differential misclassification of exposure

The tabular data layout is the same as shown in Table 12.1. The true cell values for the study
group are represented by a1,  b1,  a0, and b0, with m1 diseased and m0 non-diseased,  n1 exposed
and and  n0 non-exposed subjects.  The observed  cell  values will  be denoted with the prime
symbol) as a1', b1', a0', and b0'.

If  misclassification  of  the  exposure  and  outcome are  independent  (ie  errors  in  classifying
exposure are the same in diseased and non-diseased animals and vice-versa when classifying
disease  in  exposed  and  non-exposed  subjects)  then  the  misclassification  is  called  non-
differential. With non-differential misclassification for exposure we have: 

Se E∣D+=SeE∣D-=Se E and/or SpE∣D+=SpE∣D-=SpE

where  SeE is the sensitivity of exposure classification and  SpE is the specificity of exposure
classification.

How do these  errors  relate  to  our  observed  data?  We begin  by assuming misclassification
frequencies for exposure, denoted as SeE and SpE, and assuming SeD+=SpD-=100%. The true cell
frequencies are shown in the left column and the observed frequencies in the right column of
Table  12.2.  Clearly,  the  observed  cell  values  are  a  mixture  of  correctly  and  incorrectly
classified  study  subjects.  Since  we  are  only  misclassifying  exposure  in  this  example,  the
number of diseased and non-diseased subjects represents the true number of subjects in each
health category.  With dichotomous exposures and outcomes, non-differential errors will bias
the measures of association toward the null (given that the  SeE+SpE >1) (Jaffar  et al, 2003,).
Notwithstanding  this,  Jurek  et  al (2008)  note  that  unless  the  classification  errors  are
independent and exactly equal then bias away from the null can occur; thus the assumption that
errors are approximately non-differential may not be predictive of bias toward the null. Thus
assumptions  about  non-differential  errors  should  be  made  only  when  it  is  logical  that  the
conditions are met. 
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Table 12.2 Relationship between the number of correctly and incorrectly classified 
subjects by exposure status

True number Incorrectly classified number

a1 a1'=SeE*a1+(1-SpE)*a0

a0 a0'=(1-SeE)*a1+SpE*a0

b1 b1'=SeE*b1+(1-SpE)*b0

b0 b0'=(1-SeE)*b1+SpE*b0

The impact of classification errors depend on their magnitude and the actual prevalence of the
item (ie exposure or disease)  being classified. Relatively small errors  (10%–20%) can have
sizable effects on relative risks. Nonetheless, Blair et al (2007) comment that some “exposure
misclassification  probably  occurs  in  all  studies”.  Thus,  in  judging  the  effects  of
misclassification  the actual  likelihood of  that  misclassification  occurring  and  its  magnitude
should be considered. A numerical example of the impact of non-differential misclassification
is shown in Example 12.3. 

Whereas  in  cohort  and  cross-sectional  studies,  the  assumption  that  any  errors  of  exposure
classification  are  non-differential  may  be  logical  and  valid,  in  case-control  studies,  the
assumption of non-differential errors is often open to question (see below). 

12.6.2 Evaluating non-differential exposure misclassification

A few moments  investigating  small  changes  in  the  estimated  sensitivity  and  specificity  of
exposure classification (based on Table 12.2) will convince you that they can produce large
changes in the observed association. Indeed, the variability in the data arising from these small

Example 12.3 Impact of non-differential misclassification of exposure

In this (fictitious) example, we first assume that there is no misclassification, hence, the true study
group structure in this example is:

Exposed Non-exposed Total

Diseased 90 70 160

Non-diseased 210 630 840

Total 300 700 1000

The true  OR  is 3.86. If we now assumed an exposure sensitivity of 80% and an assumed exposure
specificity of 90%, we would expect to have the following observed cell numbers (calculations shown):

Exposed Non-exposed Total

Diseased 90*0.8+0.1*70=79 70*0.9+90*0.2=81 160

Non-diseased 210*0.8+630*0.1=231 630*0.9+210*0.2=609 840

Total 300* 0.8+700*0.1=310 700*0.9+300*0.2=690 1000

Note Exposure misclassification does not affect the disease status totals, only the exposure category
totals. As predicted, with non-differential errors the odds ratio has been reduced from 3.86 to 2.57.
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changes  can  be  much  more  dramatic  than  changes  that  would  be  expected  from sampling
variation. Jurek  et al (2006) stressed that  quantitative methods are available to estimate the
effect of, or correct for, these errors. Given that we often lack knowledge of the true SeE and SpE

values, we view this process more as evaluation than ‘correction’. However, the quantification
of potential effects provides valuable information that aids interpretation of study results.

As an introduction to this process (see Fox et al (2005)), if the most likely values of SeE and SpE

are known, we can correct the observed classifications for the errors. As we noted elsewhere,
because we rarely know the true values of  SeE and SpE,  we use this approach to evaluate the
likely direction  and  magnitude  of  bias  a  range  of  reasonable  estimates  might  produce,  not
necessarily  to  ‘correct’  for  classification  errors.  Nonetheless,  knowing the  ‘algebra’ behind
these methods should aid our understanding of the process.  Assuming non-differential errors,
we can use the following approach to reclassify the study group. Since b1'+b0' = b1+b0 = m0, we
can solve for the number of exposed controls b1 as:

b1=
b1 '−1−SpE∗m0

SeESpE−1  Eq 12.3

Similarly, we can solve for the number of exposed cases a1 as:

a1=
a 1 '−1−SpE∗m1

SeESpE−1 Eq12.4

with b0 and a0 determined by b0=m0-b1 and a0=m1-a1. We now complete the ‘adjusted’ 2X2 table
cell values and compute the estimate of the true OR. This process also can be used to assess the 
effect of differential errors in exposure status by repeating the process separately in each of the 
case and control groups using the appropriate estimates of SeE and SpE . 

Fox  et al (2005) and Orsini  et al (2008) have implemented this approach for  evaluating and
correcting misclassification errors in case-control studies with appropriate software code. Thus,
we can ‘plug-in’ reasonable estimates of  SeE and SpE to ascertain the deterministic impact of
classification errors. Example 12.4 shows an evaluation of the effect  of misclassification of
exposure using the data presented in Example 12.2. 

In this process, if we obtain ‘impossible’ results; this means that the ‘plug-in’ values used are
not consistent with the data, so the actual error risks must differ from the values being used for
‘corrections’.  In  attempting  to  obtain  better  estimates  of  actual  Se and  Sp  from  our  own
validation, or external  datasets, Lyles  et al (2007) provide a test of ‘transportability’  which
ascertains  if  the  estimates  of  errors  in  different  datasets  are  similar.  They  also  provide  a
likelihood ratio test to ascertain if the errors should be considered to be differential. 

In general, when exposure prevalence is low, lack of specificity produces more errors than lack
of sensitivity.  Walter (2007) notes that the attributable fraction is not biased if sensitivity is
perfect; however, if perfect sensitivity is achieved at a cost of substantially reduced specificity
then the precision of the attributable fraction estimate can be decreased. Frost and White (2005)
describe methods for correcting errors in time-varying risk factors in longitudinal studies, and
demonstrate that some frequently used methods do not work adequately in this context.
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12.6.3 Non-differential misclassification of disease-cohort studies

Here the same concepts of classification errors arise as with exposure misclassification except
that we now focus on errors in classifying health status in cohort studies. With non-differential
misclassification for disease we have

Example 12.4 Evaluating exposure misclassification

The original  data  (Nødtvedt  et al,  2007) are shown in Example  12.2.  As examples  for  evaluating
potential misclassification bias, we chose the 3 different scenarios (ranges of errors and approaches to
evaluation) shown in the table below; the impact of these errors on the observed OR is also included.

Scenario 1
Deterministic with

Non-differential errors

Scenario 2
Deterministic with
Differential errors

Scenario 3
Stochastic with

Differential errors

Se Cases 0.8 0.9 uniform(0.85-0.95)

Sp Cases 0.95 0.85 uniform(0.82-0.88)

Se Controls 0.8 0.8 uniform(0.7-0.9)

Sp Controls 0.95 0.95 uniform(0.92-0.98)

Observed OR 2.33 2.33 2.33

Adjusted OR 3.71 1.81 1.94 (median)

Scenario 1 The  SeE and SpE were assumed to be non-differential  (ie equal in the case and control
groups) and were assumed to be a single set of values. Note The adjusted (assumed closer to true) OR
is larger than the observed OR. As expected, misclassification bias reduced the OR.

Scenario 2 The  SeE and SpE were assumed to be differential (SeE higher in cases and SpE higher in
controls) and were assumed to be a single set of values. Note Now the adjusted OR is closer to the null
value than the observed value. Misclassification bias has resulted in a bias away from the null.

Scenario  3 The  SeE and SpE were  assumed  to  be
differential  (SeE higher  in  cases  and SpE higher  in
controls) and but were now randomly selected from
the  uniform  distributions  shown.  (A  uniform
distribution is one which any value within the range
specified is equally likely.) The median value for the
adjusted OR from 2,000 simulations was 1.94 (similar
to the assumed to be a single set of values). Note The
adjusted  OR is now closer to the null value than the
observed value. Misclassification bias has resulted in
a bias away from the null,  and 95% of the adjusted
values fell in the range of 1.72 to 2.16. A distribution
of  estimated values is shown in Fig. 12.2

As these scenarios  demonstrate, misclassification can
produce  considerable  bias.  However,  one  needs  to
have reasonable estimates of the ‘error rates’ in order
to assess  the direction and extent  of  bias the errors
produce.

Fig. 12.2 Distribution of adjusted OR 
from stochastic analysis
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Se D∣E+=SeD∣E-=SeD and/or SpD∣E+=SpD∣E-=SpD

where  SeD is  the  sensitivity  of  disease  classification  and  SpD is  the  specificity  of  disease
classification. There are 2 components to disease classification in cohort studies and they have
different impacts on the association measure. First, we need to establish the health status of all
study subjects at the initiation of follow-up in order to exclude prevalent cases, and second we
need to identify the new cases of the outcome that develop during the study period. 

With respect to establishing the initial health status,  Pekkanen  et al (2006) demonstrate that
imperfect assessment of the disease status at the start of a cohort study can bias subsequent
measures of association. Imperfect sensitivity fails to exclude subjects with the outcome at the
study outset; imperfect specificity has less of an impact. The equations to estimate the impact of
this bias are very complicated and have no simple arithmetic solution. However, Pekkanen et al
(2006) showed that non-differential misclassification of disease at baseline can lead to over- or
underestimation  of  the  true  incidence  risk  ratio,  because  the  observed  incidence  risk  ratio
reflects both the association at baseline and at follow-up. This underscores the need to carefully
exclude all prevalent diseased subjects from the study using a sensitive test for disease at the
initiation of the study.

The impact of errors in the diagnosis of the outcome during follow-up is similar to the impact
of exposure errors.  For binary outcomes non-differential  errors bias the association measure
toward the null; the impact of differential errors in classifying the outcome are more difficult to
predict.  Adjusting for  these  errors  is  similar  to  the process  discussed in Section 12.6.2 for
exposure-related errors. Luan et al (2005) note that it is not always beneficial to adjust binary
outcomes for misclassification because the increase in variance of the OR offsets the correction
for bias. 

12.6.4 Non-differential misclassification of disease case-control studies

Because  of  the  often  unknown  sfs  in  case-control  studies,  the  approach  to  correcting  for
diagnostic errors that are applicable in cohort studies do not apply to this case-control studies
unless SpD=1.00. In that instance, imperfect disease sensitivity does not bias the RR or IR, and
only biases the OR if disease frequency is common. The key here is that it pays to verify the
diagnoses of the cases so that there are no false positive cases, as the association measures will
not be biased even if the diagnostic SeD is less than 100%.

When SpD <1, non-cases will be included in our case series. Hence, in a case-control study, if
we take all the apparent cases for our study, we will be including SeD*M1 of the true cases and
(1-SpD)*M0 false positives as cases. Usually, we take only a fraction (sf) of the apparent non-
cases  as controls, hence ultimately,  we will include a small number of false negative cases
(sf*(1-SpD)*M1) and a much larger number of true non-cases (sf*SpD*M0). Thus, in the study
group, the case-control sensitivity will be

Se cc=SeD /SeDsf ∗1−SpD  Eq 12.5

and the case-control specificity will be 

Spcc=sf ∗SpD /1−SpDsf ∗SpD Eq 12.6

Both of these could be very far from the true population values of sensitivity and specificity.
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Thus, external  estimates of  SeD and  SpD cannot be used to correct  misclassification in case-
control  studies.  Also, estimates  of diagnostic  SeD and  SpD obtained from case-control  study
subjects cannot be used to estimate the population SeD and SpD values.

12.6.5 Misclassification of both exposure and disease

As noted earlier, if one works through many examples using realistic error rates, it becomes
clear  that  misclassification  bias  can  create  much  more  uncertainty  in  our  measures  of
association than sampling variation. Thus, we need to pay a great deal of attention to reducing
these errors whenever possible. Although it is possible to conduct simultaneous adjustment for
errors in exposure and outcome, in cohort or cross-sectional data, most researchers prefer to
evaluate (what if?) for the more important errors or make the adjustments for one set of errors at
a time. 

12.6.6 Differential misclassification of exposure or outcome

If the errors in exposure classification are related to the status of the outcome under study, the
errors are called differential. Here, the SeE and SpE differ by disease status

Se E∣D≠SeE∣D- and/or SpE∣D+≠SpE∣D-

In a similar manner, for outcome classification, with differential errors, the SeD and/or SpD of
classifying disease status differs over exposure levels

Se D∣E+≠SeD∣E- and/or SpD∣E+≠SpD∣E-

The resulting bias in the measure of association might be in any direction (eg  an association
might  either  be exaggerated  or  underestimated).  A few minutes  with a  spreadsheet  playing
‘what-if’ will help convince you of this. 

In  case-control  studies,  recall  bias is  one  illustration  of  (likely)  differential  errors  in  that
‘affected’ subjects (ie cases) might be expected to have an increased sensitivity, and perhaps a
lower specificity than non-affected subjects in recalling previous exposures. We developed an
example  of  this  bias  in  Example  12.3.  Chyou  (2007)  studied  the  impact  of  differential
misclassification of exposure among cases and controls, and confirmed that differential errors
make the direction of bias difficult to predict.

12.6.7 Reducing misclassification errors

The specific ways that can be used to reduce misclassification errors are highly context specific.
Nonetheless,  in general,  the frequency of errors  can be reduced by using clear  and explicit
guidelines,  having  well-trained  consistent  research  personnel  and  ‘double-checking’  the
exposure and disease status whenever  possible.  Seek confirmation of  information whenever
possible  through  laboratory  results,  or  other  confirmatory  records  of  exposure  or  disease.
Validating the test or survey instrument prior to its widespread use is certainly preferable (see
Chapter 3 for some suggestions) to trying to correct for misclassification errors after the fact.
As examples of approaches to minimise errors, it is important to collect specific rather than
general  exposure data as the latter  often lead to attenuation of the true association between
exposure  and  outcome (Friesen  et  al,  2007).  When attempting  to  obtain  specific  exposure
information (eg pesticide or antibiotic use) either ask detailed questions, or ask for bottle labels,
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or have the participant identify the exposure item from a portfolio of pictures (Acquavella et al,
2006).  Be  aware  that  self-reported  exposures  may  not  correlate  very  well  with  objective
measures of exposure (Radon et al, 2007), and don’t make assumptions about exposures. For
example, Jones et al (2006) found that household water supply was a poor indicator of drinking
water source for subjects on private water systems.

In addition to reducing errors, because the results of non-differential misclassification generally
are predictable, we often recommend ‘blind’ techniques for survey personnel to help ensure that
the errors are equalised. This is a good general strategy, and can be applied to the perusal of
case records, interview information etc. 

12.6.8 Misclassification of extraneous variables

If a confounder is measured with error, it is impossible to fully control for its confounding
effect. The bias can be large if the true effect of the exposure is weak and the confounder is
strongly related to exposure and the outcome. In the face of misclassification of the confounder,
it becomes difficult to know whether or not one should control for the confounder (see Chapter
13). A general recommendation is that the impact of controlling an extraneous variable should
only  be  investigated  when  little  misclassification  of  the  confounder  exists,  or  until  after
adjustments for the errors have been made. Berry et al (2005) demonstrate that using a badly
misclassified confounder to control a bias can lead to incorrect conclusions. Similarly, Murad
and Freedman (2007) used ‘corrected’ estimates of misclassified variables before examining for
interaction. Clearly,  one must focus on reducing measurement error in all variables, not just
exposure and outcome, if valid analyses and inferences are to be made. 

12.6.9 Misclassification of multinomial exposure or disease categories

With several levels of exposure, the effects of classification errors are less predictable than with
dichotomous variables.  Fosgate (2006) demonstrated that the likelihood ratio could be biased
away from the  null  when  categorising  a  continuous  outcome into  categories.  A consistent
finding was that non-differential error reduced the value (eg sensitivity or specificity) of the
assessment tool at each level that was measured with error. Non-differential misclassification
might bias measures of association in intermediate exposure levels away from the null, and
might even reverse the direction of the ORs for these levels. This becomes an important issue
when we use regression models because while these models allow for error in the measurement
of  the  outcome  they  assume  no  error  of  measurement  of  the  predictor  variables.  Non-
differential  underestimation  of  exposure  at  high  levels  might  cause  a  threshold  effect  of
exposure to appear as a dose-response relationship. Likewise, non-differential misclassification
of both E and D status when the errors are not independent might lead to bias away from the
null, particularly when the prevalence of both exposure and disease are low.  Leeflang  et al
(2008) noted that data driven choices of cut-points often lead to overly optimistic assessments
of error levels, but the bias tends to decrease with increasing sample size. 

12.7 VALIDATION STUDIES TO CORRECT MISCLASSIFICATION

A thorough review of the use of validation studies  to correct  misclassification is given  by
Thurigen et al (2000) especially as they relate to case-control studies (see this paper for details).
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The  4  main  approaches  reviewed  are  regression  calibration,  maximum  likelihood,  semi-
parametric and Bayesian methods. One summary finding is that we need to be aware of the
limitations in using ‘simple’ approaches to correct for misclassification, but unfortunately the
more advanced methods are not user-friendly. Two-stage samples, mentioned in Chapter 11, are
useful  for  validation  purposes  and  this  approach  is  also  elaborated  in  Section  12.8.  For
validation, we select a subsample of study subjects and verify their exposure and/or disease
status. Recall that, for direct  estimates of sensitivity and specificity,  we are determining the
probability of the observed state (D'), given that we know the true state of the individual (D).
That is:

p D' =1∣D=1 

whereas when correcting for misclassification, we are attempting to determine the probability of
the true state, given knowledge of the observed state:

p D=1∣D'=1 

As noted previously,  a major problem with post-hoc adjustments of misclassification is that
they are very sensitive to changes in the estimates of the error  rates used in the correction
process. Thus, unless there is an extremely thorough validation procedure, the estimates of error
might vary sufficiently such that very different ‘corrected’ results could arise from applying a
range of apparently sensible choices of the correction factor. A few minutes trying ‘what-if’
adjustments  should  convince  you  of  this.  Lyles  et  al  (2007)  discuss  correcting  for
misclassification  using  internal  data  (as  in  a  2-stage  validation  study)  and  also  using  data
external to the study. The authors note that it is very important for the sensitivity and specificity
of misclassification to be equivalent in the 2 datasets (transportable) before attempting to adjust
for the errors. Validation to correct for measurement error is described in the next section.

12.8 MEASUREMENT ERROR 

Errors in measuring quantitative factors can lead to biased measures of association and this fact
seems to be ignored frequently (Jurek et al, 2006). The bias can arise either because the variable
is not measured  accurately  (ie a systematic bias), or due to a lack of  precision  (see Section
5.2.2). In turn, lack of precision might arise from either variability in the test per se, or because
the  substance  being  measured  varies  within  an  individual  (for  physiological  reasons)  and
consequently, repeated measures are needed to provide a valid overall indicator of the status of
the individual (eg a mean of 2 or more samples).

Considerable work on the issue of measurement error and the general approach to correcting
measurement bias has been published in recent years (Freedman et al, 2008, Guolo, 2007). To
introduce  the concepts  of correcting these errors,  let’s suppose that  we have 2 quantitative
exposure factors and we wish to estimate their association with either a binary or continuous
outcome.  Allowing  that  the  Y-variable  could  represent  the  logistic  transform  of  a  binary
outcome, or a continuous outcome variable in a linear model, we could express the uncorrected
‘naive’ model as:

Y =0 u 1u X 1 '2 u X 2 ' Eq 12.7

where the subscript ‘u’ indicates that the coefficients are biased because the predictor variables,
here denoted as X', are measured with error. There is a variety of approaches to correcting for
errors; one robust and relatively simple method is called the regression calibration estimate



VALIDITY IN 265
OBSERVATIONAL STUDIES

(RCE).  To obtain the  RCE, we take a  random subset  of  the  study subjects  and  perform a
validation  study so  that  the  true  values  for  X1 and  X2 are  obtained.  Now,  assuming  non-
differential measurement errors, we regress each true X variable on the set of observed predictor
variables. That is:

X 1= 011 X 1 ' 12 X 2 ' Eq 12.8

X 2=021 X 1 '22 X 2 ' Eq 12.9

Then, we calculate the estimated (ie the predicted) X values for all the study subjects, denoted
here as  X1rc and X2rc using the coefficients from these equations. Then, we regress  Y on these
estimated values.

Y =0rc1rc X 1rc2rc X 2rc Eq 12.10

The coefficients  β1rc should provide less biased estimates of the true  X-Y association than the
naive estimates. The standard errors  need to be adjusted for the calibration process and are
explained  in  Freedman  et  al (2008),  and  implemented  in  Hardin  et  al (2003).  The  above
approach has a crucial assumption; namely non-differential measurement errors. If differential
errors are suspected, the approach need to be modified (Freedman et al, 2008). The regression
models chosen for the  X variables depend on the assumed distribution of the  X variables (ie
continuous or binary),  and the validity of the approach to correcting measurement errors, in
part, depends on the fit of the above models. Murad and Freedman (2007) apply regression
calibration to  correcting measurement  error  before  examining interactions  in  linear  models.
Wang  et  al (2008)  describe  methods  to  adjust  for  missing  data,  measurement  error  and
misclassification in longitudinal studies.

12.9 ERRORS IN SURROGATE MEASURES OF EXPOSURE

Often,  epidemiologists  focus  on the effects  of  a  complex  exposure  factor.  For  example,  in
studies of the impact of air pollution from oil and gas-processing emissions on cattle or wildlife
health,  what  is  the  appropriate  measure  of  air  pollution?  In  this,  and  other  examples,  the
exposure might be a complex mixture of agents (or factors), doses and duration, and it will take
considerable  thought  as  to  what  components  of  exposure  to  measure  and  which  to  ignore
(Waldner, 2008). For example, which of the hundreds of compounds in air pollution does one
measure? The most abundant, the least expensive to monitor, or the most toxic? If a number of
agents are measured, how will they be modelled? The answers to these questions (yes, there
undoubtedly will  be  more  than  one  correct  answer)  will  largely  involve  knowing context-
specific biological background information. 

The decisions about surrogate measures must then be translated into what will be measured, and
how the various axes of exposure will be analysed in order to achieve the study objectives. For
example,  will  the exposure be measured and analysed  on a continuous scale (the preferred
option) or will it be categorised into a dichotomous or ordinal exposure variable? If levels of
specific  agents are highly correlated,  which one should be analysed,  or should a composite
variable be created? Although categorising continuous data is not the preferred choice, it might
reflect  the reality of the exposure measurements better than the more refined measures. For
example,  if  most  levels  of  exposure  are  at  or  near  the  laboratory  sensitivity  of  the  test
procedure, it might be best to dichotomise into non-exposed (for most of the data) and exposed
for the limited number of measurements that are clearly above accepted levels of exposure. Of
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course the measured factors,  being surrogates,  might still  fail to reflect  the actual  exposure.
Thus, even if the variables measured are, in fact, measured without error, we need to be aware
that  because  the  variables  are  surrogates,  we could  still  be  left  with measurement  error  in
respect of the true exposure. 

One solution might be to change the questions asked. Instead of asking about the effects of ‘air
pollution’,  ask  about  the  effects  of  the  measurable  component(s)  (eg sulphur  dioxide,  then
factors such as H2S or particulates would be extraneous variables). More focused questions still
require the measurement and control of other factors that might confound or interact with the
exposure but the more focused answers might allow better progress toward solving the issue(s).

12.10 THE IMPACT OF INFORMATION BIAS ON SAMPLE SIZE 

It  is  apparent  that  classification and measurement  errors  can  have a serious impact  on the
measures  of  association.  With non-differential  misclassification of  categorical  variables,  the
measures are biased toward the null. And, under classical measurement error models, the same
is true for continuous variables. This has led some to conclude that in planning a study, the
projected loss of power due to these errors should be considered and the sample size increased
accordingly (Devine, 2003). The formulae used in Chapter 2 for sample size estimates assumed
that  the  p1 and  p2 were  true  population  levels.  However,  because  the  outcomes  might  be
measured with an imperfect test, survey question, or diagnostic procedure the observed disease
frequencies would be as follows:

p1 ' =Se p11−Sp1− p1 and p2 ' =Se p 21−Sp 1− p2

The difference p1' - p2' is usually less than the difference p1 - p2 and it is the adjusted estimates
(and  their  variances)  that  should  be  used  to  estimate  sample  size  to  account  for  the
misclassification. Some care is needed, however, because, if we are using the observed outcome
levels from previous studies where outcomes were measured with error, these would already
represent  p1'  and p2' and need not be adjusted further.  Obuchowski (2008) generalises sample
size estimation to account  for misclassification,  response bias  and other  features  of  clinical
trials  with  emphasis  on  evaluating  screening  programs.  Huzurbazar  et  al (2004)  used
adjustment for the costs of misclassification errors in herds of cattle when screening for bovine
virus diarrhea infection.
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