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CONFOUNDING: DETECTION AND CONTROL

OBJECTIVES

After reading this chapter, you should be able to:

 1. Apply a working set of criteria to identify potential confounders in an observational study.

 2. Use restricted sampling to prevent confounding.

 3. Determine appropriate variables for control of confounding using matching and implement
the matching process in a cohort study.

 4. Determine appropriate variables for control of confounding using matching and implement
the matching process in a case-control study.

 5. Use matching based on propensity scores in a cohort study. 

 6. Implement a valid plan for the control of confounding using analytic procedures.

 7. Use a causal diagram to identify factors (confounders) needing control.

 8. Apply a  stratified  analysis  to  a  set  of  categorical  variables  to  evaluate  the  presence  of
interaction and assess the extent of confounding, while estimating causal effects.

 9. Apply a stratified analysis based on propensity scores.

 10. Understand  the  link  between  inverse  probability  of  treatment  weighting  (IPTW)  and
standardised risk ratios (SRRs) and the manner in which they estimate the causal effect.

 11. Evaluate the potential of a non-measured confounder to bias the outcome measure using
sensitivity analysis.

 12. Interpret the likely effect of ‘controlling’ extraneous factors having specified their causal
associations with the outcome and exposure.
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13.1 INTRODUCTION

A central focus of epidemiologic research is to identify factors (ie causes) that contribute to the
occurrence  of  disease,  poor  productivity  or  lower  animal  welfare  status  under  ‘real-world’
conditions. In Chapter 1, we noted that it is generally agreed that a randomised controlled trial
(RCT) is the best way to evaluate the effect of these factors (these ‘factors’ usually are referred
to as treatments in the jargon of field experiments, whereas, in observational studies they are
referred to as  exposures). The use of randomisation in experiments provides a probabilistic
basis for the balancing of factors, known and unknown, between the exposed and non-exposed
groups. It prevents confounding and makes the groups ‘exchangeable’, in the sense that it does
not matter which group gets assigned to receive the treatment. Thus, an ideal experiment would
allow us to contrast the true frequency of outcome in the exposed (R1) and non-exposed (R0)
subjects and closely approximate the true causal effect in an unbiased manner. Although it is
not always feasible, ethical, or desirable, to randomly assign study subjects to receive or not
receive  an exposure,  often observational  data may be available to support  a  comparison of
outcomes  in  exposed  and  non-exposed  subjects.  However,  a  difficulty  in  drawing  causal
inferences  from  these  data  is  that  exposed  subjects  are  likely  to  differ  from  non-exposed
subjects with respect to factors that can influence both whether or not the subject is exposed and
the risk of the outcome. These factors bias (or confound) our observed measure of association.
Put another way, the study groups being compared may differ in the frequency of the outcome
for reasons other than the exposure of interest.  Our challenge is to identify the factors  that
‘cause’  this  difference  and  prevent  them  from  producing  a  biased  result.  This  chapter  is
intended to help researchers using observational studies prevent confounding and obtain valid
estimates  of  causal  effects.  As  stressed  in  the  earlier  chapters  on  study  design,  it  is  also
necessary to improve the description of our approaches to control confounding when reporting
our findings so that others may learn from, and assess, our efforts  (Groenwold  et al,  2008;
Klein-Geltink et al, 2007) . 

Confounding can be described as the mixing together of the effects of 2 or more factors. Thus,
when confounding is present we might think we are measuring the association between an
exposure factor and an outcome, but the observed association measure also includes the effects
of one or more extraneous factors. Hence, the measure of association is biased, or confounded.
For our purposes of explaining confounding, we will assume that we have identified one factor
as the main exposure of interest; this is our general preference in terms of research strategy and
study design. One or more other factors that are of interest will be included in the study because
they might  help explain the frequency,  or  level,  of  the outcome—these will  be denoted as
extraneous factors.  Some of the extraneous  factors  can  have an association with both the
exposure and outcome of interest, and failing to ‘control’ or ‘adjust for’ these relationships can
produce  a  biased  measure  of  association  between  the  exposure  factor  of  interest  and  the
outcome. The extraneous factors that produce the bias are called confounders or confounding
factors. Example 13.1 demonstrates confounding of an association.

13.1.1 Which extraneous factors are confounders?

Confounders might be defined based on their having distributional differences between study
groups. This is a necessary but insufficient criterion of confounding. In addition, it is difficult to
implement because we rarely know the true state, and the data from our study groups could
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Example 13.1 A demonstration of confounding 

We will begin by using a fictitious example with  Mannheimia haemolytica (Mh) as the exposure of
interest and bovine respiratory syncytial virus (BRSV) as the extraneous factor that we wish to control.
The  outcome  is  bovine  respiratory disease (BRD),  and the context  is  respiratory disease  in  cattle
feedlots.  We will  assume  BRSV,  whose  distribution  we  plan  to  ‘control’,  is  a  confounder  in  the
population. In  our example,  BRSV fulfills the criteria of being a confounder variable because it is
associated with the exposure and the outcome, it is not intermediate between Mh and BRD on a causal
pathway, and it is not an effect of BRD. Our summary of the fictitious population structure, ignoring
BRSV status, is shown below:

Mh+ Mh- Totals OR

BRD + 240 40 280 3.3

BRD - 6260 3460 9720

Total 6500 3500 10000

Risk (%) 3.7 1.1

Based on observing the risk of BRD by Mh status and ignoring sampling variation,  it appears that
individuals with an active Mh infection (Mh+) have 3.3 times higher odds (think of this as ‘risk’) of
contracting BRD than Mh- individuals (this assumes that 1.1% of the Mh+ individuals would have
developed BRD in the absence of Mh—an assumed argument about exchangeability). But what about
the effect(s) of BRSV? If BRSV is a confounder, then some of the crude association attributed to Mh
might be due to BRSV.

Historically, one commonly used way to ‘control’ confounding is to stratify the data according to the
levels  of  the  confounding  variable(s),  or  their  combinations.  Assuming  that  there  are  no  other
confounders, when the data are stratified on BRSV status, the ‘true’ association between Mh and BRD
becomes apparent within strata. In this instance, it appears that Mh exposure doubles the risk of BRD
in feedlot calves.

Population 
structure Mh

Stratum-specific
ORs

Crude 
OR

BRSV BRD 1 0

1 1 220 10 230 2

1 0 5280 490 5770

5500 500 6000

Risks 0.04 0.02 3.3

0 1 20 30 50 2

0 0 980 2970 3950

1000 3000 4000

Risks 0.02 0.01

Note Ignoring issues of non-collapsibility of ORs (see Section 13.5.2), the crude OR differs from the
stratum-specific ORs (by more than 30%), indicating that confounding is present so we need to use the
stratum-specific ORs to estimate the causal association of Mh with BRD. 
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themselves be confounded. Nonetheless, based on a working set of criteria, we could conclude
that a factor is a confounder if:
 1. it is a cause of the disease, or a surrogate for a cause, and 
 2. it precedes and is associated with the exposure in the source population. In a cohort study,

this means that the confounding factor must be associated with the exposure at the start of
the study. In a case-control study, it means that the confounding factor must be associated
with exposure in the population from whence the cases came (ie it must be associated with
the exposure status in the control group), and

 3. its distribution across exposure levels cannot be determined by the exposure (ie it is not an
intervening factor) or by the disease (ie it is not a result of the disease). We stress that an
intervening  factor (also  intermediate  factor)  should  not  be  treated  as  a  confounding
factor, whether it is totally determined by the exposure or not, because this would modify
(bias) the association between the exposure and the disease such that the true causal effect is
not  obtained.  Similarly,  if  the  disease  produces  an  outcome such  as  another  disease  or
change in production, that outcome should not be deemed to be a confounding factor. 

It is useful to differentiate between a  population confounder and a  sample  (ie study group)
confounder. For example, if the factor is known (or regularly reported) to be a confounder in
the target population, it should be treated as such in the sample (ie controlled) regardless of
whether it appears to be a confounder in the sample or not. Conversely, if it is known not to be
a population confounding factor, then it should not be controlled in the sample, even though it
appears to be a confounder in the study subjects. Often, we do not know the true state of nature
so we must use the data from the study group,  or knowledge of the likely causal  structure
(Section 13.5.1) to make inferences about whether or not a factor is a confounder.

A statistical approach to defining confounding variables is based on the difference(s) in the
distribution of the confounding factor(s) between the groups being studied. More precisely, if
we have  an  exposure  factor  E,  an  outcome Y,  and  an  extraneous  factor  Z  (that  is  not  an
intervening variable or an effect of the outcome), factor Z is a confounder in a cohort study if:

• Z and E are associated unconditionally, and 
• Z and Y are associated in exposure negative animals.

In a case-control study, factor Z is a confounder if:
• Z and E are associated in the controls (not just unconditionally), and
• Z and Y are associated in exposure negative animals.

Although these statistical criteria help us understand the necessary basis for confounding, these
statistical  criteria  are  insufficient  to  determine  confounding  without  some  additional
assumptions about the lack of other confounders. Hence, we do not use statistical criteria to
determine if a factor is a confounder or not. Rather, confounding is said to be present when our
measure of association differs from the true value. Since the true value is usually unknown, the
measure of association obtained after control of all identifiable potential confounders is deemed
to  be  the  best  estimate  of  the  true  causal  association.  Usually  we  would  say  there  is
confounding  when  there  is  a  noteworthy  difference  between  the  crude  and  adjusted  (after
control  of the confounders) measures of association. If  there is only a small difference,  the
crude  measure  will  suffice.  Because  the  identification  and  control  of  confounders  in
observational  studies  is  rarely  perfect,  some  confounding  is  invariably  present,  thus  the
important issue is how large the confounding effect is, not whether or not it is present. This
becomes a matter of judgement (see Section 13.5.2) which we will elaborate subsequently.
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13.2 CONTROL OF CONFOUNDING PRIOR TO DATA ANALYSIS

As noted here, and in the chapters on observational study design, we can prevent or control
confounding from the extraneous factors that we can identify, or measure, by using one or more
of 3 general procedures:  exclusion (restricted sampling) (Section 13.2.1),  matching (Sections
13.3 and 13.4), or analytic control (Section 13.6) (Mamdani et al, 2005; Normand et al, 2005).
The use of these methods to control confounding can be traced directly, or indirectly, back to
the idea of defining causal effects based on counterfactual outcomes. In order to obtain valid
estimates of the causal effect, the groups being compared must be ‘balanced’ with respect to all
factors  that  could  bias  the  observed  association  between  the  exposure  and  outcome.  Thus,
exclusion  and  matching  can  be  used  to  accomplish  this  prior  to  data  analysis.  The  third
approach includes a number of ways of statistically (ie analytically) balancing the groups in
order to develop measures of association that are adjusted for any differences in the distribution
of confounders.  We would stress  that  all  approaches  rely on an implicit  assumption of  no
residual  confounding  given  the  identified,  or  measured,  confounders—an  assumption  that
cannot be validated using the observed data but rather must rely on extant knowledge about the
biology and context of the issue being studied. 

13.2.1 Exclusion (restricted sampling)

Because  confounding  is  the  result  of  the  differential  distribution  of  an  extraneous  factor
between the 2 (or more) groups being compared, a simple way to prevent confounding is by
excluding subjects except those who possess only one defined level of the extraneous factor(s)
for  our  studies.  This  is  called  exclusion or  restricted  sampling,  and  because  every  study
subject  has  the  same  level  of  the  potential  confounder,  no  bias  is  present.  Exclusion  is  a
frequently used technique when selecting study subjects. Some restricted sampling is natural;
for example, we would exclude males and only select females for a study of mastitis. In other
instances, we might deliberately want to restrict our study population to a single breed of study
subjects, or farms that use a specific production-recording scheme (Olde Riekerink et al, 2008).
The former would prevent confounding by breed, whereas the latter could prevent confounding
from differences in herd characteristics across recording schemes as well as help ensure that all
required data would be easily available. Similarly,  we could restrict our study population to
those possessing a limited range of production, disease status, or being between specified ages
etc. As examples of restricted sampling that produced several advantages for study quality by
controlling confounding and in some cases enhancing data quality: 

• Manske et al (2002) prior to a field trial of the effects of hoof-trimming on claw health
in  dairy  cattle,  restricted  their  study  group  of  herds  to  selected  herd  sizes,  breed
compositions, and membership in an official milk-recording scheme. 

• Cramer  et al (2008) in a study of foot problems in dairy cows, restricted the study
herds to those recruited by 5 professional hoof trimmers to minimise confounding by
hoof trimmer.

When considering the use of restricted sampling based on dichotomous extraneous variables we
would  usually  prefer  to  admit  the  low-risk  group  to  the  study.  Even  in  the  absence  of
confounding, admitting subjects only from the high-risk group could make data interpretation
more difficult if interaction between the exposure and potential confounder were present. Thus,
as an example, we normally would prefer to select cows without mastitis (and exclude those
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with mastitis) in a study on the impact of foot lesions on milk production in case having both
conditions produced biological synergism (and hence interaction (Section 13.6.2)). 

13.3 MATCHING ON CONFOUNDERS

Matching is the process whereby we make the distribution of the extraneous factor(s) in the
groups being compared the same. By making the distributions of these factors the same in both
groups, we prevent confounding and in some instances increase the power of the study. We will
discuss 2 broad approaches to matching, one focuses on matching for the variables of concern
directly,  both individually and collectively at the time of study subject selection. The second
approach matches on a multivariable summary of the confounders, called a propensity score,
prior to outcome data analysis. We will first focus on selecting and matching for confounders
directly.

In randomised trials, matching on selected variables prior to randomisation of the treatment
(also called  blocking) is used to reduce the residual variance and thus give the study more
power  per  study subject.  Usually,  matching is not used for  prevention of  bias,  although in
experiments with few subjects, it might help achieve this because randomisation is not likely to
balance all the extraneous variables when the sample size is limited. As an example, in a field
trial of hoof-trimming and claw health in dairy cows, Manske et al (2002) ‘blocked’ on breed,
parity and stage of lactation before allocating, randomly, the treatment (hoof-trimming) to each
cow. 

In  cohort  and  cross-sectional  studies,  matching  on one  or  more  confounding  variables  can
prevent confounding bias and also result in increased power/precision of the study. Matching on
host characteristics such as age, breed and sex is used frequently (because these variables often
are strong confounders). As examples,  Glickman et al (2009) matched on age when studying
the progression of periodontal  disease in dogs,  and Bicalbo  et al (2008) matched on parity,
calving date and lactation status in a study of the impact of lameness on milk production. An
example of the effects of matching in a cohort study is shown in Example 13.2.

Although some gains in power can result from matching, in observational studies, any gains in
statistical efficiency come at a substantial cost. Most importantly,

• in case-control studies, it is not possible to estimate the effect of the matched factor(s)
on the outcome because its distribution has been forced to be identical in the outcome
groups. We can, however, investigate whether the matching factor acts as an effect
modifier (ie if it produces interaction with the exposure of interest). 

• matching  by some global  (ie very  general)  surrogate  factors,  such  as  farm,  might
‘match out’ other potentially important exposures in hypothesis-generating studies. 

• if  matching is  to  be conducted  on several  factors,  it  can  be quite  difficult  to  find
controls that have the same distribution of matching factors.

Matching is used frequently in case-control studies to increase the validity and efficiency of the
study.  As examples,  in a study of avilamycin  resistance  in poultry bacteria,  Chauvin  et  al,
(2005), matched case and control broilers by the slaughterhouse, the time of sampling and the
production type. McCarthy  et al,  (2004) used temporal matching in a study of equine grass
sickness to prevent confounding by season, and Pinchbeck et al,  (2004) matched on race type
and jump number in a study to identify risk factors for falls in horses.  However, matching in
case-control  studies  has  some potential  disadvantages.  For  example,  matching will  actually
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introduce a selection bias into the data. The stronger the exposure-confounder association in the
source population, the greater the bias that is introduced. This bias is generally in the direction
of the null effect, regardless of the direction of the exposure-confounder association, and must
be controlled by carrying  out an appropriate  matched data analysis  (see  Section 13.3.4 for
stratified matched analysis). 

Why does matching have different effects in case-control studies than in cohort studies? In a
cohort study, matching makes the exposure independent of the matched extraneous variable so
there can be no confounding. The matched variable(s) can exert an effect on the outcome but it
has the same effect in both exposure groups. Further, because the outcome (eg disease) has not

Example 13.2 Matching in a cohort study

In  our  ‘pretend’  cohort  study,  we  will  sample  500  exposed  (Mh+)  and  500  non-exposed  (Mh-)
individuals with frequency matching of the Mh- group for the distribution of the confounder (BRSV) in
the exposed study group. Based on the population structure in Example 13.1, among the 500 Mh+
subjects, 85% (ie 5500/6500) of the Mh+ group will be BRSV+, and their risk of disease will be 4%.
So, ignoring sampling variation, 17 of the 425 Mh+ and BRSV+ individuals in our study will develop
BRD. Of the 75 Mh+ individuals without BRSV, 2% or 2 will develop BRD (expected numbers have
been rounded to the nearest whole number). 

Now, we need to select the Mh- subjects to match their distribution of BRSV to that in the Mh+ group.
Normally, 14% (500/3500) of the 500 Mh- subjects would be BRSV+, but we need to have 85% (425)
of them BRSV+. So after determining the BRSV status of the Mh- cattle, we select them to achieve this
level of BRSV+ calves. Of the 425 BRSV+ Mh- calves, 2% develop BRD. Of the 75 Mh- calves who
are BRSV-, 1% or 1 develops the disease. The numbers of matched Mh- subjects are italicised in the
table below.

Note The observed stratum-specific odds ratios are equal to 2 (except for rounding errors), the same as
in  the  source  population (Example  13.1),  as  is  the overall  odds  ratio.  No control  of  the matched
confounder is necessary in the analysis, and there is no bias present in the summary table. However,
matched cohort data should be analysed using a stratified approach to ensure that the variance estimates
of the adjusted odds ratio are correct.

Observed association between Mh and BRD in a cohort study following matching for BRSV

Mh
Stratum-specific

ORs
Crude 

OR

BRSV BRD 1 0

1 1 17 9 26 2

1 0 408 416 824

425 425 850 2

0 1 2 1 3 2

0 0 73 74 147

75 75 150

In contrast to these results, in the next example, we pretend to conduct a case-control study using all
280 cases and 280 controls frequency matched by the confounder BRSV (see Example 13.3).
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happened at  the time of matching,  the matching process  is  independent  of the outcome.  In
contrast,  in  case-control  studies,  the disease  has  already occurred  when the matching takes
place. Hence, if the exposure is related to the matched variable (as it would be if the extraneous
variable is a confounder), and if we make the distribution of the matched variable(s) the same in
cases  and  controls,  we  will  alter  the  distribution  of  exposure  in  the  controls  so  that  their
exposure level is more like that in the cases and less like that in the source population. An
example  of  this  selection  bias  in  a  case-control  study  is  presented  in  Example  13.3.  This
example  also  shows  that  we  can  prevent  this  type  of  selection  bias,  by  stratifying  on  the
matched variable(s). 

13.3.1 General guidelines for matching

The  following  guidelines  should  be  considered  when  contemplating  the  use  of  matching
(Rothman  et  al,  2008).  First,  do  not  match  unless  you  are  certain  that  the  variable  is  a
confounder.  This  is  particularly  important  in  case-control  studies—especially  so  if  the
extraneous variable and exposure are strongly associated. Matching in this situation leads to
overmatching,  because  it  gives  the  distribution  of  the  exposure  in  the  cases  and  controls
greater  similarity than the corresponding distributions in the source population. This occurs
even if the extraneous variable is only related to the exposure and therefore not a confounder in

Example 13.3 Matching in a case-control study

In our case-control study, we will include all 280 cases from the source population in Example 13.1 as
study subjects. This group will have the exposure and confounder distribution shown in Example 13.1.
Now, after determining the BRSV status of the non-cases, we need to select the controls to match the
distribution of BRSV in the cases. In this regard, we note that 82% ( ie 230/280) of the cases will be
BRSV+, so 230 of the controls will need to be BRSV+. Of these 230, 91.5% (5280/5770) will be Mh+
(n=210). Of the 50 BRSV- controls, 24.8% (980/3950) will be Mh+ (n=12). The numbers of matched
controls are italicised in the table below.

Observed association between Mh and BRD in a case control study following matching for BRSV

Case-control 
structure

Mh Stratum-specific
ORs

Crude 
OR

BRSV BRD 1 0

1 1 220 10 230 2.1

1 0 210 20 230

1.6

0 1 20 30 50 2.1

0 0 12 38 50

Note The stratum-specific ORs are equal to 2 (except for rounding error) but the crude OR is 1.6. This
bias, induced by matching in a case-control study,  is a form of selection bias. For example,  in the
population  p(Mh+|BRD+)=86%  (240/280)  and  p(Mh+|BRD-)=64%  (6260/9720).  In  our  study
population,  p(Mh+|BRD+)=86%,  as  it  should,  but  p(Mh+|BRD-)=79%.  The  controls  no  longer
represent  the  level  of  exposure  in  the  source  population.  Clearly,  analytical  control  (eg stratified
analysis) of the matched confounder is necessary to prevent this selection bias in the overall measure of
association. 
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the source population. In addition, with pair-matching (see Section 13.3.4), information will be
lost because cases and controls with the same value of the exposure variable do not contribute
useful data to the analysis, hence, effectively reducing the sample size and decreasing precision.

In some situations, however, matching will increase the efficiency of an analysis. For example:
• matching ensures that the dataset contains a control for every case when the matched

factor is rare, or if it is a nominal variable with many categories (eg  farm, age  etc).
Random sampling in this instance might lead to marginal zeros and the data from such
tables are of no value in the analysis.

• matching might optimise the amount of information obtained per subject, if exposure
information is expensive to obtain.

• matching might be the easiest way to identify controls in a case-control study using a
secondary  base  (eg  matching  on  admission  time by  selecting  the  next  non-case
admitted, or listed in the registry). This is one of the most common uses of matching
and if matching is used only for this convenience, and the frequency of exposure is
constant throughout the study period, the matching often is ignored and an unmatched
analysis of the data performed.

If matching is not needed for one of these reasons, only consider matching in a case-control
study if you anticipate a strong association in the source population between the outcome and
the confounder and a relatively weak association between the exposure and the confounder. In
case-control studies, any gains in efficiency from matching are likely to be modest at best.

13.3.2 Frequency and pair matching

In applying frequency-matching to categorical variables, the overall frequency of the potential
confounder(s)  is  made the  same in the  2 outcome (case  and control)  or  exposure  (cohort)
groups. In pair- or individual-matching, one or more (eg m) control(s) is individually matched,
with respect  to the confounder,  to each case. Relative to frequency-matching, pair-matching
requires a more complex analysis, is generally less efficient (statistically), and makes it difficult
to assess interaction between the exposure and confounder. However, pair-matching might be
the only alternative when categories are very refined. For example if we want to match on age,
gender  and  breed  in  a  case-control  study of  equine  lameness,  we will  have  to  identify an
individual non-lame horse of the same age, gender and breed. Generally, we select between 1 to
4 controls matched to each case. There is minimal gain in efficiency if the control-to-case ratio
exceeds 4:1. Although not necessary, it is simplest to use a fixed control-to-case ratio. 

13.3.3 Caliper-matching

If the confounding variable to be matched on is continuous, we must specify how close, on the
continuous scale, the subject must be in order to be considered matched and hence, this is called
caliper-matching.  Caliper-matching  often  produces  a  problem  for  analysis  in  that,  if  the
individual-match must be within, say 2 years of age, then 2 case (exposed) subjects of the same
age could be matched with controls (non-exposed) whose ages differ by almost 4 years. In this
instance, we either have to live with the ‘wider’ match and chance residual confounding or
decide to use strata in our analyses that are no wider than the ‘matching’ criteria even if that
shifts the ‘matched’ subjects into different strata. 
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13.3.4 Analysing matched data

Frequency-matched data 
In general, frequency-matched data should be analysed using a stratified method (as shown in
Examples  13.1  to  13.3)  to  account  for  the  matching.  If  pair-matching  is  used,  with  few
categories of the confounder, and many pairs present within each category, the data could be
analysed by creating a group identifier for the matched set of subjects and analysing the data as
for a frequency-matched dataset using the group identifier to form the strata. The strata formed
by the matching process must be preserved and an overall measure of association developed.
Note that we cannot assess the main effect of the matched variable(s), but interaction between
the confounder(s)  and exposure  should be evaluated  in  the usual  manner. When additional
confounders  are  present,  a  multivariable  analysis  using  conditional  logistic  regression  (see
Section 16.15) can be used for the analysis.

Pair-matched data
If pair-matching is used, and there are many categories of the confounder and very few pairs
within  each  category,  the  data  must  be  analysed  using  a  matched-pair  analysis.  For  these
analyses, we use the frequencies of matched sets in the 4 exposure and outcome patterns to
estimate the odds ratio. In a case-control study, with 1 control matched to each case, there are 4
possible exposure  patterns:  both the case  and its  matched  control  were  exposed;  both non-
exposed; case exposed and control non-exposed; case non-exposed and control exposed. The
data layout is shown in Table 13.1.

Table 13.1 Data layout for matched-pair case-control analyses

Control pair Case totals

Exposed Non-exposed

Case pair Exposed t u t+u=a1

Non-exposed v w v+w=a0

Control totals t+v=b1 u+w=b
0

The crude OR is:

ORcrude=
a1 b0

a0 b1

Eq 13.1

The Mantel-Haenszel matched OR uses only the data in the discordant cells and is:

ORmatch=
u
v Eq 13.2

The  Mantel-Haenszel  χ2 test  (which in the case of 1:1 matching equals  McNemar’s  test),
should be used for hypothesis testing with 1 df. The formula is:

McNemar's 2
=
u−v2

uv Eq 13.3

Note Only the values in the discordant cells contribute to both the estimate of the OR and the
McNemar’s χ2 test. Concordant pairs provide no useful information for the analysis. As with
frequency  matched  data,  conditional  logistic  regression  (Section  16.15)  can  be  used  if
multivariable modelling is required.
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13.4 MATCHING USING PROPENSITY SCORES

Propensity scores have been used most commonly in cohort studies to evaluate the effects of
treatments  (or  other  exposures) when  evidence  from  a  randomised  controlled  trial  is  not
available.  In  this  situation,  treated  (in  observational  studies  ‘exposed’)  individuals  may be
substantially different from non-treated individuals and this difference needs to be accounted
for. Propensity scores can be used in case-control studies with some limitations (see Månsson
et al, (2007) for details). 

Propensity scores were first proposed by Rosenbaum and Rubin,  (1983). A propensity score
(PS) is the conditional probability of being treated/exposed (ie the probability that an individual
with certain characteristics will be treated/exposed) given the measured covariates. We denote
this as p(E+|C) (See Table 13.4). Once computed, propensity scores can be used for matching,
as the basis for a stratified analysis, as a basis for doing a weighted analysis or they can be
included in a modelling procedure as a covariate. One approach may prove to be more precise
or less biased than another depending on the context  (Austin, 2007; Austin, 2008b; Austin,
2009; Austin et al, 2007).

13.4.1 Computing propensity scores

With only 1 or  2 categorical  confounders,  propensity scores  could be calculated  manually,
using  the  observed  distribution  of  E+  within  levels  of  the  confounder  C.  With  more
confounders and/or continuous confounders, propensity scores are derived from a logit or probit
model with treatment (observed exposure) allocation as the outcome (See Chapter 16). The
question  of  what  predictor  variables  to  include  in  the  model  has  been  the  subject  of
considerable recent  research.  In  general,  we accept  that  including potential  confounders  (ie
variables,  known or  suspected  to  be  related  to  both  exposure  and  the  outcome)  and  their
interactions as necessary, is the most appropriate approach. The inclusion of a number of non-
confounding extraneous variables can lead to problems of over fitting according to Senn et al
(2007), but this problem was not noted by Austin et al (2007). 

13.4.2 Balancing of exposure groups

Propensity  scores  can  be  used  to  help  ensure  equivalence  of  confounder  distribution  by
‘balancing’ the characteristics of the exposed and non-exposed individuals across all strata (also
called ‘levels’ or ‘blocks’) of the PS (Austin, 2008c, 2008d). A study is considered balanced if
2 conditions are met. First, the average value of the PS is the same in exposed and non-exposed
individuals within each stratum of PS. If this is not true, the stratum should be reconfigured
until equality is achieved. Second, the mean value of all covariates making up the PS should be
equal in the exposed and non-exposed groups within each stratum. As part of the balancing
process, it is recommended to examine the distribution of each of the original confounders in
the groups matched by PS score.

As noted, balancing does not require that individuals within a stratum be homogeneous. For
example, mastitic cows treated with antibiotics may be a mixture of early lactation (treatment
designed to minimise impact on milk production) and late lactation cows (treatment designed to
eliminate  the  infection  prior  to  the  dry  period  if  dry  cow  therapy  is  not  practised).
Consequently, cows with a high PS will be a mixture of early and late lactation cows. The study
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would be considered balanced if within a stratum of PS (eg cows with high PS values), the
treated and non-treated cows have the same average PS and the same mean days in milk (DIM).

Computation and evaluation of PSs is often limited to observations falling in the range of PSs
that  includes  both  exposed  and  non-exposed  individuals  (called  the  region  of  common
support). Non-exposed individuals with PS values lower than the lowest value observed for a
exposed  individual  are  ignored  as  are  exposed  individuals  with  higher  PSs  than  any  non-
exposed subject. Not accounting for these may seem wasteful or potentially biased; however, in
the  context  of  trying  to  assess  the  causal  impact  of  an  exposure,  these  individuals  are  so
different  from the  others  in  the  study group  that  regardless  of  their  exposure  and  disease
experience, it is virtually impossible to validly implicate exposure as a cause of the outcome.
However, it is important to note the characteristics of these subjects because they may provide a
clue about potential causes that can be addressed in future studies. 

13.4.3 Matching on propensity scores

Usually,  matching begins with obtaining the PS on the potential study subjects. Then, since
exposed  individuals  usually  are  less  frequent  than  non-exposed  subjects,  we  begin  by
identifying  an  exposed  individual  and  obtaining  their  PS.  Then,  one  or  more  non-exposed
individuals with a similar PS are selected from the available potential study group. Selection of
matches is usually done with replacement (so a non-exposed individual can serve as a matched
control more than once), but there are several ways to select the matched individuals. Nearest-
neighbour matching selects the one or more individuals (ie 1:1 or 1:m matching) with PSs
closest to the exposed subject. However, there is no guarantee that the matched individuals will
have a PS that is very close to that of the exposed subject.  Radius matching selects all non-
exposed individuals with a PS within a certain distance of the value of the exposed individual
(eg ± 0.05 PS units). In kernel matching, all non-exposed individuals serve as controls for each
exposed individual, but they are weighted according to the closeness of their PS. 

13.4.4 Analysis of propensity score matched data 

Once the final groups are selected, it is generally recommended that the analysis of the matched
data use procedures which take the matching into account although the need to do this has been
questioned (Stuart, 2008). Software is available to implement the matching process, ensure the
balancing of measured confounders within strata, and conduct the analysis on cohort or cross-
sectional data (Becker & Ichino, 2002).

With cohort or cross-sectional-derived data, the most common measure of effect computed is
the average treatment effect in treated individuals (att). It is the difference in the outcome
measure between the treated (exposed) and non-treated (non-exposed) individuals. The outcome
measure may be dichotomous (eg att is the difference in the proportion developing the outcome
in the treated (exposed) compared with the non-treated (non-exposed) groups) or a quantity (eg
average somatic cell count in treated minus the average SCC in non-treated). Analytic solutions
exist for standard errors of the  att if nearest neighbour or radius matching or stratification is
employed. Bootstrap methods need to be used to estimate standard errors if kernel matching is
used. 

Example 13.4. shows the computation of PSs for an evaluation of the effect of Mh on the risk of
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BRD.  These  PSs  were  then  used  to  carry  out  both  nearest-neighbour-  and  radius-matched
analyses.  Use of PSs on these data is a little unusual given that the exposure (Mh) is not a
treatment or exposure that is ‘assigned’. However, these data have been used for consistency
with the other examples in this chapter.

We now move on to describe the main ways of detecting confounding. The first is through the
use of causal diagrams, the second is a ‘change-in-measure’ approach, and the third (which we
do not recommend) is to use statistical criterion. 

13.5 DETECTION OF CONFOUNDING

Effective control of confounding during data analysis involves both identifying the potential
confounders  and then carrying  out procedures  to effectively control  for confounding effects
(although  the  2  are  closely  linked).  The  identification  of  potential  confounders  usually
commences with knowledge of the context and additional information about the biology of the
outcome gained from a thorough review of the literature. Further consideration of whether or
not a specific variable should be treated as a confounder, by exclusion, matching, or analysis,
can be guided by the use of causal  diagrams.  Detection and control  of confounders  during
analysis requires that data on the potential confounders have been collected during the early
phases of the study (hence the value of a causal diagram, in addition to a thorough review of the
literature).  The next sections focus on identification of potential  confounders  and assessing
whether or not they indeed are confounders. 

Example 13.4 Matching using propensity scores
data = feedlot

We wanted to evaluate the effect of seroconversion to Mannheimia cytotoxin (-mhcysc) on the risk of
bovine respiratory disease (-brd-), but needed to control for the potential confounding effects of bovine
respiratory syncytial virus infection (-brsvsc-), Histophilus somni infection (-hssc-), province of origin
(-prov-) and weight at entry into the feedlot (-wt0-) using data collected in beef feedlots (Martin et al,
1999).  Unconditionally,  the risks  of -brd- in -mhcysc-  positive and negative cattle were 0.358 and
0.244, respectively, giving a RR of 1.47 and a RD of 0.115.

Propensity scores (PSs) were computed using a logistic  regression of -mhcysc-  on -brsvsc- -hssc-,
-prov- and -wt0- with the analysis limited to the region of common support. Of the 587 individuals with
completed data, 585 fell  in the region of common support with 2 animals with very low PS being
eliminated.  Strata (blocks) were chosen to have a width of 0.1 and all PSs fell  between 0.614 and
0.924. The balancing properties (see text) were satisfied with this stratification of PS.

Nearest-neighbour matching was used with many of the 109 of the 121 non-exposed animals being
used multiple times as controls for the 466 exposed animals. The risks of -brd- in exposed and matched
non-exposed  cattle  were  0.358  and  0.286,  giving  an  att of  0.072  (SE=0.061,  P=0.24).  Nearest-
neighbour matching has apparently increased the risk of -brd- in non-exposed animals and reduced the
apparent effect of -mhcysc-. 

Radius matching (with a radius of 0.01) results in 456 exposed animals being matched with 118 non-
exposed. The risks of -brd- in exposed and matched non-exposed cattle were 0.364 and 0.221 giving an
att of 0.143 (SE=0.052, P=0.006). This  att represents an increase in the apparent effect of -mhcysc-
compared with the crude RD (0.115). As we will see later, this probably represents a better evaluation
of the effect of -mhcysc- than nearest-neighbour matching provided.
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13.5.1 Using causal diagrams to identify potential confounding variables

The identification of which potential confounders need to be controlled can be accomplished at
the planning stage of the research project, or shortly after the final list of variables becomes
available.  In  Chapter 1, we introduced the use of causal  diagrams, and here we extend this
approach as a method of determining whether or not a variable should be controlled. First, of
course,  we need to draw the  causal diagram (also referred to as a  directed acyclic graph
(DAG) (see Greenland et al (1999) and Hernan et al (2002) for examples) using the principles
explained in Chapter 1. VanderWeele et al (2008) describe the conditions necessary for causal
modelling  using  DACs.  Weinberg  (2007) makes  suggestions  about  how  to  incorporate
interaction effects into a causal diagram. 

Within the diagram, we identify the exposure factor and the outcome of interest, as specified in
the major objective of the study. Any factor causally prior to the exposure factor that is on a
pathway connecting the exposure and outcome is a likely candidate for control as a confounder.
Factors that are causally (or temporally) after the exposure variable should not be controlled,
nor should variables that are causally after the outcome. We formalise the process as follows:
 1. Draw the diagram using the guidelines outlined in Chapter 1 and as shown in Example 13.5.
 2. Then eliminate all arrows emanating (ie leading away) from the exposure factor of interest

on the graph.
 3. If there are any paths that still connect the exposure and outcome, then the causally prior

factors and other non-intervening variables in these paths should be controlled, otherwise
these  factors  can  bias  the  measure  of  association.  In  causal  terminology,  these  factors
produce spurious causal effects. 

 4. There is a final twist that is needed to complete this process. Suppose that there are 2 or
more factors that ‘cause’ a third factor that is prior to the exposure factor and the initial
assumption was that these 2 (or more) factors were unrelated, causally,  to each other (ie
these factors would be marginally independent statistically). AGE and BREED have this
structure in Example 13.5 as they both cause RETPLA, but are independent of each other.
However,  when  we  control  for  a  factor  that  they  cause,  this  act  makes  these  factors
conditionally associated, and we will need to control for at least one of them to prevent bias.
(This conditional association is shown as a dashed line on the diagram). To ascertain this,
we need to connect all marginally independent factors with a 2-headed, or dashed, line. In
tracing out pathways between the exposure and outcome we can go either way on this line.
In order to ‘close’ this pathway, we will need to control for one (or more) of these factors in
our  modelling  process.  Thus,  knowledge  of  the  likely  causal  structure  becomes  very
important in selecting factors for control, as control of one factor might necessitate control
of others.

13.5.2 Change in measure of association as an indication of confounding

Once we have identified potential confounders, we can proceed to discover the magnitude (if
any)  of  their  effects.  Since  some  confounding  is  almost  always  present  in  data  from
observational studies; the important question is when does it become sufficiently important to
identify it as a problem? Suppose we begin our analysis of the study data with an unconditional
(crude) association between our exposure and outcome variables and observe a  crude odds
ratio,  ORc.  We then stratify the data based on a potential  confounder,  or a set of potential
confounders.  After  having  ensured  that  the  stratum-specific  odds  ratios  are  deemed  to  be
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approximately ‘equal’ to each other, we obtain the  adjusted odds ratio ORa. Almost always
ORa differs  somewhat  from  ORc,  but  if  we deem the  difference,  relative  to  the  unadjusted
measure,  to be ‘large’  (in some practical  sense),  we say that  some or all of the factors  we
stratified  on  (or  controlled)  were  confounders.  Thus,  when  using  the  change  in  odds  ratio
between the crude (the baseline) and the adjusted values to determine if confounding is present,
we need to specify a difference (eg >20-30% change in the odds ratio) that would be deemed
important  given  the  context  of  the  study.  (Note When  computing  the  % change  from the
unadjusted to the adjusted 3 issues need to be considered. First, we would recommend always
using the unadjusted values as the baseline. Second, for ratio measures (eg OR) the % change
should probably be computed on the log scale (% change in lnOR). This has the advantage that
it  works equally well for risk factors and protective factors (OR>1 and  OR<1 respectively).
However,  the  rule  is  commonly applied  to  OR directly  and,  for  simplicity,  we will  do  so
throughout this chapter. Third, the % change criterion should only be applied to statistically
significant  variables.  Non-significant  variables  for  which  lnOR≈0  can  have  very  large  %
changes  with  very  small  absolute  changes.  If  this  difference  is  exceeded,  then  we  say
confounding is present and the adjusted measure is preferred. Conversely, if there is virtually no

Example 13.5 Identifying confounders using a causal diagram

We can use the causal  diagram from Chapter  1  to  demonstrate  the application of  the criteria  for
identifying  confounders.  Recall  the  example  concerned  studying  the  potential  impact  of  selected
diseases on infertility in dairy cows. We will add another variable to the diagram, BREED, and we
assume that breed effects are transmitted through RETPLA and METRITIS. The causal diagram is:

where RETPLA is retained placenta, OVAR is cystic ovarian disease.

If we were interested in estimating the causal association between METRITIS and FERTILITY:
• omit the arrows leading forward from METRITIS to OVAR and FERTILITY.
• this leaves causal paths to FERTILITY from OVAR and AGE.
• the  spurious  causal  path  from METRITIS  back  to  RETPLA through  OVAR means  that

RETPLA needs to be controlled.
• once  RETPLA  is  controlled  we  need  to  show  that  AGE  and  BREED  have  become

conditionally associated (which  we  do by adding the dashed line).  Although the original
diagram shows them to be independent, controlling for RETPLA makes them conditionally
associated.

• at this point, the only connection from METRITIS to FERTILITY is the pathway through
BREED and AGE (because RETPLA has been controlled). This means that either BREED or
AGE needs to be controlled to break that pathway. Controlling both would not be incorrect
but is unnecessary.

• note that OVAR, being an intervening variable, is not controlled in the analysis.

Of course, there are more complex causal diagrams (see Hernan et al (2002)) but this example should
convey the basics of their use.

OVAR

AGE

RETPLA

FERTILITY

METRITIS

BREED
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difference between the crude odds ratio and the adjusted odds ratio, we say that confounding
was not present and the crude measure suffices. 

In  part,  this  inference  and the  change-in-estimate approach  to  identifying  confounders  are
based on the fact that without confounding, if the stratum-specific measures are equal to X, then
when the data are collapsed over that confounder, the crude measure will also be X. If the data
meet this criterion, they are called collapsible (Kass & Greenland, 1991). 

Non-collapsibility of odds ratios
The measure of association used can affect our interpretation of confounding. In particular, the
odds ratio, which is our most frequently used measure, suffers from the problem that it is not
always collapsible. If  we are using risk difference or risk ratio measures  of association, the
crude measure will always be a weighted average of the stratum-specific measures; they are
collapsible. And, as a result, in the absence of interaction, if no confounding is present, the data
can be collapsed (ie  summed over the levels of the confounder) and the stratum-specific risk
ratios will be the same as the crude risk ratio. However, this is not true when the odds ratio is
the measure of association. In this instance, even in the absence of confounding, the crude odds
ratio  can  be  closer  to  the  null  than  the  stratum-specific  odds  ratios;  this  is  called  non-
collapsibility. This problem usually shows up when the outcome in one or more strata is very
common as shown in Example 13.6.  As a result,  because  the crude and adjusted measures
differ, it might look as if confounding is present when it really isn’t. Be aware of this situation.
Notwithstanding the problem of non-collapsibility, the 20-30% change in odds ratio (or other
measure of association) has become the standard method of identifying confounding. 

13.5.3 Statistical identification of confounders

In this approach, a statistical algorithm is used to either select (eg through forward selection or
backward elimination, with or without stepwise methods—see Section 15.8.2) variables from
a  regression  model  based  on  their  statistical  significance.  This  approach  has  become very
convenient especially with the advancement of powerful statistical routines to select variables
when  building  models,  but  it  has  rapidly  lost  favour  in  recent  years  for  the  control  of
confounding and the estimation of causal effects. An assumption underlying this method is that
most  confounders  will  be  selected  as  ‘statistically  significant’  by  this  process  thereby
preventing confounding. The major problem is that, in using this approach, we cannot (or do
not) distinguish between intervening and other types of extraneous variable. Furthermore, the
process  flies  in  the  face  of  statements  that  the  extent  of  confounding  bias  is  a  matter  of
judgement,  not  a  matter  of  statistical  significance.  Thus,  we do  not  recommend  using  this
approach for anything other than initial pilot studies of a particular problem, or preliminary
analyses of a complex dataset. 

To explain our reticence to rely on this method, we need to recognise that  when we use a
statistical algorithm to search for multiple risk factors simultaneously, we can break a number
of ‘rules’ about what variables to control as confounders. With multiple factors under study, the
causally prior factor that might need controlling to obtain valid effect estimates of one exposure
factor  could  be  an  intervening  variable  for  another  exposure  factor.  Hence,  the  ‘adjusted’
measures of association we obtain from multivariable models are direct effects only, not total
causal effects. The latter (the sum of the direct and all indirect causal pathways) is deemed to
be the best estimate of the true causal effect.
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For example, in Fig. 13.1 (on page following), X1 has a direct causal effect on Y and an indirect
causal effect via X2. X2 has a direct effect on Y and a spurious effect via the X1-Y pathway. 

Example 13.6 Non-collapsibility of odds ratios and disease frequency

An example of non-collapsibility of  ORs between exposure (E) and disease (D) in the presence of a
non-confounding extraneous variable (Z)a. Overall disease risk=0.55

Z+ Z- Totals

E+ E- E+ E- E+ E-

D+ 870 690 430 200 1300 890

D- 130 310 570 800 700 1110

Totals 1000 1000 1000 1000 2000 2000

Risk 0.87 0.69 0.43 0.20 0.65 0.45

Risk ratio 1.26 2.15 1.44

Risk difference 0.18 0.23 0.20

Odds ratio 3 3 2.3

Note Variable Z is not a confounder because it is not associated with exposure (within both levels of Z,
50% of the individuals  were exposed);  it  is  however  associated with  the outcome  D.  Because the
stratum-specific odds ratios are equal to each other, and hence to the ORMH, but differ from the crude
odds ratio, we might be tempted to conclude that confounding by Z is present. However, the difference
in these odds ratios relates to the use of ‘odds’ as a measure of outcome frequency; there really is no
confounding present in this example. 

Non-collapsibility is a greater problem for interpretation when the outcome frequency is high (55% in
this example).  In  the table below, the average risk is much lower at  8.3%, the data are ‘virtually’
collapsible. 

An example of near-collapsibility of odds ratios between exposure (E) and disease (D) in the presence
of a non-confounding extraneous variable (Z)a. Overall disease risk=0.083

Z+ Z- Totals

E+ E- E+ E- E+ E-

D+ 211 82 29 10 240 92

D- 789 918 971 990 1760 1908

Totals 1000 1000 1000 1000 2000 2000

Risk 0.21 0.08 0.03 0.01 0.12 0.05

Odds ratio 3 3 2.8

a Example based on Greenland and Morgenstern (2001).

As this example indicates, in practical terms, confusing confounding and non-collapsibility is only a
problem when the outcome frequency is high.
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Assuming a reasonable sample size, a statistical algorithm is likely to identify the following
model:

Y =01 X 12 X 2

From this model, we could estimate the direct effect of X1 using the β1 coefficient. With respect
to  X2, its direct (and total) causal effect on Y also could be estimated using the β2 coefficient
from this regression model. However, in order to correctly estimate the total effect (direct +
indirect) of X1 we should use the β1 coefficient from the following regression (not including X2.).

Y =01 X 1  

Thus, in using the first model, for estimating the causal association between X1 and Y, (which
would likely result from using statistical criteria to control confounding), we will have ‘over-
controlled’ for intervening variables (and perhaps effects of other factors). 

We might also note that the β1 coefficient from the following regression is biased for the causal
effect of X2 since the coefficient contains some of the confounding effects of X1.

Y =01 X 2

When using statistical criteria to select variables, the lack of clarity about what the coefficients
actually estimate increases with the complexity of the model.  One conservative approach to
managing  more  than  one  exposure  variable  in  a  dataset  is  to  take  the  set  of  ‘significant’
variables and then conduct a separate analysis (as shown above) for each factor as the exposure
of interest and use this measure of association as the best estimate of the causal association. 

Now that we have the tools to identify factors needing control, we will move on to describe
processes  for  implementing  analytic  control.  In  this  respect,  the  details  about  these
multivariable  models  are  described  in  Chapters  14-23.  The  relationships  between  assumed
causal  structures  and  observed  risks  of  disease  will  be  elaborated  in  subsequent  sections
(beginning in Section 13.11).

13.6 ANALYTIC CONTROL OF CONFOUNDING

A variety of analytic procedures can be used to control for confounding. In Sections 13.6.1
through 13.6.3, we will describe methods that can be applied to stratified data (stratified by
levels  of  confounder  variable(s).  These  include  the  Mantel-Haenszel  procedure  (the  most
commonly used method for stratified data; Sections 13.6.1 and 13.6.2) and stratification by PS
(Section 13.6.3). These approaches assume homogeneity of the association measure (eg  odds
ratio) across the strata in order to validly summarise the exposure-outcome data.  In  Section
13.7, we introduce standardisation (Section 13.7.1),  and marginal  structural  models (Section

Fig. 13.1 Causal effects of 2 
predictor variables on 
outcome Y

X2

Y
X1
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13.7.2). These approaches produce summary measures of association for specified populations
regardless of the presence or absence of interaction. Subsequently,  we will describe analytic
control  of  confounding  in  multivariable  models  (Section  13.8).  Instrumental  variables  are
discussed  in  Section  13.9.  External  adjustment  and  sensitivity  analysis  for  unmeasured
confounders is covered in Section 13.10.

There are a number of approaches to the analysis of stratified data. In all of these approaches,
we physically stratify the data by creating a 2X2 table for each level of the confounder (or
combination of the confounders). The notation for each stratum is shown in Table 13.2.

13.6.1 Stratified analysis to control confounding: The Mantel-Haenszel Estimator 

This procedure was first described by Mantel and Haenszel in 1959 and it revolutionised the
work  of  epidemiologists.  It  became  the  most  widely  used  stratified  analytic  approach  for
categorical  data  with  dichotomous  exposure  and  is  known as  the  Mantel-Haenszel  (MH)
procedure (or estimator). The procedure is straightforward, easy to use, and its use can help
inform the researcher of details of the data that otherwise might be missed. Indeed, we advise
researchers to use this approach in initial analyses, whenever possible, even when planning to
use more complex analyses such as logistic regression. 

This method relies on physically stratifying the data according to the combination of levels of
the  confounding  variables  (see  Table  13.2),  examining  the  stratum-specific  measures  of
association (odds ratios for now) and, if these are deemed to be equal (apart from sampling
variation), creating a pooled ‘weighted’ or ‘adjusted’ estimate of the association. The equality
of  the  stratum-specific  measures  can  be  evaluated  visually,  or  statistically  using  a  test  for
homogeneity (described below). Demonstrating this equality is a prerequisite to calculating a
valid overall measure of association. 

In order to describe the Mantel-Haenszel procedure, we will assume that we have dichotomous
exposure  and  outcome variables  and  a  one  or  more  confounders.  If  a  single  dichotomous
confounder is present, we will have 2 tables (ie strata), one for those with the confounder and
one for those without the confounder: here we assume there are ‘J’ strata. Recall that the nj or
mj in Table 13.2 might not have a population interpretation depending on the study design (eg
nj is  not  an estimate of a  population denominator  in case-control  studies).  Nonetheless,  the
values  in  the cells  are  used for  purposes  of  calculating  the measure  of  association  and  its
variance.

Table 13.2 Data layout for stratified analyses
Exposed Non-exposed Total

Cases a1j a0j m1j

Non-cases b1j b0j m0j

Total n1j n0j nj

Note j is the stratum designator.

Eqs 13.4 to 13.9 show the necessary formulae for analysing binary data (ie risk, not rate, data)
based on the OR as a measure of association. Note The MH procedure can also be used based
on RR, RD and IR as measures of association. 
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We begin by stratifying the data as shown in Table 13.2 and calculating the stratum-specific
ORs. The OR for the jth stratum is:

OR j=a1 j∗b0 j/a 0 j∗b1 j Eq 13.4

We also need the expected values and the variance of the exposed-diseased cell value. Under
the null hypothesis (as opposed to the counterfactual basis used in Section 13.7.1), the expected
number of exposed cases in the jth stratum is:

E j=m1 j∗n1 j /n j Eq 13.5

and the variance of Ej is:

varE j =V j=m1 j∗m0 j∗n1 j∗n0 j /n j
2
∗n j−1 Eq 13.6

The ‘adjusted’ or Mantel-Haenszel odds ratio is a weighted average across the strata:

ORMH=
∑ a1 j∗b0 j /n j 

∑ a0 j∗b1 j /n j  Eq 13.7

from which we can obtain lnORMH for use in testing homogeneity (Eq 13.6).

As stated earlier, from a practical point-of-view, if the adjusted (pooled) measure differs from
the crude measure of association (by an amount deemed to be important), then confounding is
said to be present. If confounding is deemed to be present, the adjusted measure of association
is always preferred to the crude measure. 

Before interpreting the adjusted odds ratio as a valid summary measure of association, we need
to  examine  the  stratum-specific  odds  ratios  and  see  if  they  are  ‘approximately’  equal.
Otherwise, the adjusted odds ratio oversimplifies the association. Inequality of stratum-specific
odds ratios is an indicator of the possible presence of interaction—we say possible presence
because confounding by an unknown factor can produce effects that resemble interaction. There
is a Wald-type χ2 test for interaction; but in general, it has low power, so we might benefit from
relaxing the P-value for significance to the 10-15% level. The  Wald χ2 test for homogeneity
with (j-1) df is:

 homo
2 =∑ [1nOR j−1nORMH ]

2

var [1nOR j] 
Eq 13.8

where var[1nOR j ]=
1

a1 j


1

b1 j


1

a0 j


1

b0 j

.

Whether or not interaction is deemed to be present depends in part on the scale of measurement
of association. Here we present only odds ratios but we could use risk difference, relative risk,
or rate ratio as measures. The finding of interaction in one scale does not necessarily translate
into the presence of interaction in another (see Section 13.6.2).

An overall test statistic, with 1 df, for the significance of the summary odds ratio is:

MH
2 =

∑ a 1 j−∑ E j 
2

∑ V j Eq 13.9
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An example of the use of this approach is given in Examples 13.7 and 13.8.  Formulae for
stratified analyses of risk and rate data from cohort studies are available elsewhere (Rothman et
al, 2008). 

13.6.2 The Mantel-Haenszel estimator when interaction is present

In Chapter 1, we demonstrated how 2 or more factors that were members of the same sufficient
cause exhibited biological synergism which, in turn, could lead to differences in risk depending
on the  presence  or  absence  of  other  component  causes.  In  the  section  just  completed,  we
indicated that the exposure of interest had to have the same association across all levels of the
confounder (or PS) in order to support the use of a single summary measure of association. A
test of the equality of the stratum-specific measures of association served to assess this feature.
If the stratum-specific measures were declared different, this was an indication that interaction
was present and that the stratum-specific measures should not be averaged into a single overall
measure such as the ORMH.

Interaction is a somewhat confusing term. Its  presence could provide clues about biological
mechanisms or pathways of action, but whether it is deemed to be present or not depends on the
statistical model and the scale of measurement. However, regardless of the scale or measure of
association, interaction is said to occur when the combined effect of 2 variables differs from
the sum of the individual effects in that scale. For current purposes, there are 3 types of joint
effect  that 2 (or more) exposure factors  can produce: additive,  synergistic  (if  the combined
effect is greater than the sum of the individual effects) and antagonistic (if the combined effect
is less than the sum of the individual effects). VanderWeele and Robins, (2007) have described
the identification of synergism in the context of the sufficient-component-cause framework. In
order to explain interaction, it will be helpful to return to some basic measures of single and
joint-exposure risks. For this discussion, we will assume that we use the risk of disease as the
outcome. Risk will be denoted as:

• R11 when the study subjects have both exposure factors 1 and 2; as 
• R10 when the study subjects have only exposure 1; as 
• R01 when the study subjects have only exposure 2; and, as 
• R00 when the study subjects have neither exposure factor. 

Now, the effect of each variable can be measured by either a difference measure such as the risk
difference (ie RD10=R10-R00) or a relative measure such as the risk ratio (ie RR10=R10/R00). With
these as the basis, we can examine the joint effects of 2 variables. Example 13.9 indicates some
possible  joint-exposure  results  when  stratification  is  used  to  control  confounding  in  the
presence of interaction.

Additive scale of association
Using risk difference as the measure of association, additive interaction would be present if

RD10RD01≠RD11 Eq 13.10

Generally, if the effects are measured as RD, and the effects are additive (scenario b in Example
13.9),  this might be taken to indicate that the 2 factors  operate through different  biological
pathways  or mechanisms (ie they are not members of the same sufficient  causes).  The risk
difference describes the excess number of cases that an exposure might cause.
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Example 13.7 Stratified analysis of respiratory agents and bovine respiratory disease: 
no confounding
data = feedlot

In this dataset, there are data on the titres to a variety of putative respiratory pathogens in feedlot calves
and on the occurrence of bovine respiratory disease (BRD). Experimentally, an interaction has been
demonstrated  between  infectious  bovine  rhinotracheitis  (IBR)  virus  and  Mannheimia  haemolytica
(Mh), and as we have data on these, we can summarise the relationship of each of these agents, alone
and together,  on the occurrence of BRD. The exposure of interest is Mh, and our proposed causal
model is:

We include a direct causal arrow from IBR to BRD because of our belief that IBR could enhance the
respiratory pathogenicity of other unmeasured agents, besides Mh, and hence cause BRD. Thus, to
ascertain the causal association of  Mh with  BRD, we  need to control for  IBR.  The unconditional
relationship of Mh with BRD has an OR of 1.69 and the χ2 test is 5.19 with a P-value of 0.023. Hence,
when we ignore the effects of IBR, seroconversion to Mh is associated with an increased risk of BRD
of about 1.7 times. 

In order to obtain the adjusted OR, we use the joint distribution of -Mh- and -IBR- to create the strata
shown below:

Stratification of BRD by Mh and IBR, prior to Mantel-Haenszel analysis

IBR BRD Mh+ Mh- Total
1 1 83 18 101
1 0 85 48 133

Total 168 66

0 1 84 12 96
0 0 215 43 258

Total 299 55

The layout of the essential calculations for the Mantel-Haenszel procedure is:

Stratum OR lnOR var(lnOR) aj Ej var(Ej) a1j*b0j/nj a0j*b1j/nj

1 2.6 0.96 0.10 83 72.51 11.67 17.03 6.54

2 1.4 0.34 0.12 84 81.08 9.21 10.20 7.29

Totals 167 153.60 20.88 27.23 13.83

The ‘adjusted’ or Mantel-Haenszel odds ratio is:

ORMH=
27.23
13.83

=1.97

Based on these calculations, it appears that the strength of the association is slightly increased in the
presence of IBR virus but perhaps not to the extent of being declared different from the effect when
IBR virus  is  absent.  However,  we  will  perform a formal  test  of  equality (or  homogeneity)  of  the
stratum-specific ORs.

(continued on next page)

Mh

BRD
IBR
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Multiplicative scale of association
Using a ratio measure of association, multiplicative interaction would be said to be present if:

RR10∗RR01≠RR11 Eq 13.11

As this involves multiplying the relative measures, it is known as the multiplicative model or
scale. Returning to our earlier definition of interaction,  if we take logarithms of Eq 13.9, we
have lnRR10+lnRR01=lnRR11 showing that additive effects on the logarithmic scale are equivalent
to multiplicative effects (ie interaction) on the original scale. As we pointed out in Example
13.9, the risks of disease in jointly exposed individuals that are consistent with an additive
arithmetic-scale model (scenario b) differ greatly from those that are consistent with an additive
multiplicative-scale model (scenario c).

Returning to the stratified approach to data analysis, when the multiplicative-scale model holds,
it can be shown that the RR for the primary exposure of interest will be the same in all strata of
the extraneous variable(s).  Thus, the equality of stratum-specific  RRs, provides a convenient
test for interaction in the multiplicative scale. This is also the basis of the test of homogeneity
of ORs in the Mantel-Haenszel procedure (Eq 13.6)—we used RRs in Example 13.9 instead of
ORs to keep the arithmetic simple. A significant test result indicates that the stratum-specific
ratios are not equal, or equivalently, that the joint effect of the 2 factors is not what would be
predicted based on the singular effects of the 2 variables (ie the effect of one exposure factor
depends on the level of the other exposure). This phenomenon is referred to as interaction or
effect modification (Susser, 1973) in the multiplicative scale. 

The  multiplicative  model  is  widely  used  for  assessing  associations  between  dichotomous
outcomes and exposures. It is applicable in a variety of contexts and study designs and appears
to ‘fit’ observed data well. As Example 13.9 demonstrates, when the stratum-specific ORs are
equal, the RR and RD measures will not be, and conversely if the RD measures were equal, then
RR and OR would not be. Thus, in large sample-size studies, if the data are consistent with the
additive model in one scale, they will be consistent with interaction in another scale. 

Example 13.7 (continued)

The Wald test for homogeneity is:

 homo
2

=
0.96−0.678 2

0.100

0.34−0.6782

0.120
=0.7950.952=1.747

where 0.678 is the ln(1.97). Although the stratum specific  OR appears different (2.6 vs 1.4), this test
result is non-significant (P=0.189); thus, we conclude that they do not differ statistically. An overall
test statistic of the null hypothesis that ORMH=1 is:

MH
2

=
167−153.62

20.88
=8.6

with 1df, P=0.003 so we can accept that ORMH >1.

Based on this test, because P=0.003, we can reject the null hypothesis and conclude that there is good
evidence that seroconversion to Mh increases the risk of BRD, after controlling the effects of IBR. 

Compared with the crude  OR of 1.69, the increase in size of  ORMH is only about 17%, so with our
guideline of a change greater than 30%, we might say that serious confounding was not present and we
might choose to use the crude OR to describe the causal association.
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In Chapter 1, we demonstrated clear evidence of interaction arising from the sufficient cause
model. Indeed, the sufficient cause model implies synergism which can show up statistically as
interaction. However, we also demonstrated that, with the presence of unknown or unmeasured
extraneous  variables,  interaction  is  not  always  detectable  (even  though  the  occurrence  of
synergism is the basis for the causal model). We also know that confounding can produce data
that looks as if interaction is present, or conversely hide it.  Thus, it  is important  to control
confounding  from other  factors  while  trying  to  identify if  interaction  is  present  between 2
factors of interest. Example 13.10 demonstrates the detection of interaction when attempting to
adjust for the effects of a confounder.

A biological  example of  known synergism is  the  combined effect  of  viral  exposure of  the
respiratory tract of calves 4-6 days prior to exposure with Mh. Experimentally, this was a useful
‘model’ for reproducing the disease using aerosol challenges. Notwithstanding this, when the
disease  is  observed in feedlots,  even  when a large  number of organisms are  measured  and
included in the model, it has not been possible to detect interaction (Examples 13.7 and 13.8).

Example 13.8 Stratified analysis when confounding is present
data = feedlot

Here we use the same dataset but control for Province (this is a surrogate for location of feedlot, partly
for source of calves, and weight of calves on arrival). Our causal diagram is:

The data summary is:

Stratification of BRD by Mh and Province prior to Mantel-Haenszel analysis

Province BRD Mh+ Mh- OR

1 1 84 21 2.75

1 0 80 55

2 1 83  9 1.51

2 0 220 36

The test of homogeneity of the stratum ORs had a χ2 (1 df)=1.47 (P=0.23), so it is probably legitimate
to calculate and interpret a weighted average OR as a summary measure. The crude OR is 1.69, and the
ORMH is 2.19. This is a 30% change in the coefficient and certainly suggestive of moderate confounding
by Province being present. The test that the ORMH=1 had a χ2 (1 df)=11.20 with a P-value of <0.001 so
we conclude that Mh and BRD are associated (or that ORMH >1) after controlling for Province.

Thus, based on the crude  OR, we might suggest that seroconversion to Mh was associated with an
increased risk of BRD. After controlling for province where the feedlot was located, the relationship
gets considerably stronger; thus, we would say that confounding by Province was present and the larger
ORMH (2.2) is the better indicator of the true causal association. 

Mh

BRD
Prov
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13.6.3 Stratification using propensity scores to obtain average treatment (exposure) 
effects

This stratification involves dividing the observed data into strata (blocks) that  were used to
evaluate the ‘balancing properties’ of the PS procedure. A stratified analysis is then carried out
and a summary estimate of att (see Section 13.4.4) obtained. An example of stratified analysis
based on PS is shown in Example 13.11.

13.7 OTHER APPROACHES TO CONTROL CONFOUNDING AND ESTIMATE CAUSAL 
EFFECTS

The next 2  methods are  related  although one uses  standardisation  to  estimate the expected
number of cases (or risk) and the other uses ‘weights’ to produce an unconfounded pseudo-
population from which we can estimate the causal effect of interest using a crude (ie marginal)
measure of association such as a risk ratio (we could also use risk difference or odds ratio as our
effect  measures).  These approaches provide a valid summary of the effect  of exposure in a
specified population whether  or not interaction  is present;  the stratum specific  measures  of
association do not need to be homogeneous. These 2 features—that the population of interest is
specified  and  that  the  summary  measure  is  valid  in  the  presence  of  interaction—are  key
elements for choosing this approach to estimating causal effects, although this putative benefit
has been debated (Shah et al, 2005b).

13.7.1 Using standardised risks/rates to estimate causal coefficients

The use of direct  and indirect  standardisation was introduced in Chapter 6 as a descriptive

Example 13.9 An example of identifying interaction between exposure factors for BRD 
using different scales of measurement

Mh BRSV
BRD

(cases/1000) Risk RD

Additive
scale

interaction RR

Multiplicative
scale

interaction

Effects of individual factors by scale of measurement

+ - 10 0.01 0.009 10

- + 20 0.02 0.019 20

- - 1 0.001

Four possible scenarios (ie levels of combined risk) for joint effects

a + + 100 0.100 0.099 synergism 100 antagonism

b + + 29 0.029 0.028 none 29 antagonism

c + + 200 0.200 0.199 synergism 200 none

d + + 300 0.300 0.299 synergism 300 synergism

Note Any joint effect above 29/1000 would be considered as synergism on the additive scale (a and c);
whereas a joint risk of 200/1000 indicates no interaction on the multiplicative (ie log) scale (c).
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Example 13.11 Stratification using propensity scores
data = feedlot

The propensity scores computed in Example 13.4 were used as a basis for a stratified analysis of the
effects  of  -mhcysc-  on  -brd-.  Four  blocks  of  PS  contained  data  (0.6-0.7,  ...,  0.9-1.0)  and  all  585
observations  that  fell  in  the  region  of  common  support  were  used  in  the  analysis.  The  summary
estimate of att was 0.144 (SE=0.049, P=0.003). This result was similar to the one obtained using radius
matching (Example 13.4).

Example 13.10 Detection of interaction when controlling for a confounder
data = Nocardia

The data for this example are from a case-control study of dairy farms with and without  Nocardia
mastitis  (these data  are  used extensively  in  Chapter  16).  The  exposure  of  interest  was  neomycin-
containing  dry-cow  treatments.  However,  it  was  believed  important  to  examine  other  dry-cow
treatments also, both as possible risk factors and as potential confounders. Our causal model is:

We  use  a  non-headed  line  between  the  2  types  of  dry-cow  treatment  to  indicate  a  non-causal
correlation, likely because of a third common-cause factor such as management style. Even though the
association is unlikely causal, using the rules of causal diagrams set out in Section 13.5.3, we need to
control for cloxacillin to determine the causal effect of neomycin-containing treatments.

Stratification of case/control herds by neomycin and cloxacillin

 
Cloxacillin

Nocardia
mastitis Neomycin+ Neomycin-

Stratum-specific 
ORs

1 1 5 3 1.5

1 0 10 9

0 1 44 2 29.3

0 0 15 20

In the herds not using cloxacillin, the OR between neomycin use and case status was 29.3, whereas, in
those herds using cloxacillin, the OR was 1.5. The test of homogeneity had a χ2 of 6.44 (1 df) with a P-
value of 0.011. This is considerable evidence of a difference in OR and is consistent with the presence
of interaction. Hence, controlling for confounding is moot; we should not compute an adjusted  OR
because the association between neomycin use and case-control status (Nocardia mastitis) depends on
the presence or absence of cloxacillin use on the farm. Thus, when interaction is present we should not
interpret the summary measure because it varies with the level of other extraneous variables.

Cloxacillin

Neomycin

Case Herd
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means to summarise data and adjust for confounders. However, this approach also can be used
to estimate causal  effect  coefficients  (Sato & Matsuyama,  2003).  Essentially,  whenever  we
have a risk factor (eg age) that has a different risk of the outcome at some or all of its levels, the
overall number of cases for the group (or population) is the stratum specific risk multiplied by
the number of subjects in that stratum as shown below: 

obs num cases=∑ n j∗r j  

For purposes of demonstrating this method, we will use the data from Table 1.3. in which we
discussed counterfactual approaches to the investigation of causal effects. The summarised data
are shown in Table 13.3. 

Table 13.3 Exposure, disease (cases) and confounder distribution in study-subject 
population

Stratum 1; confounder=0 (subjects have a low risk of infection; p(D+)=2/8=0.25)

Exposed
(vaccinated)

Non-exposed
(non-vaccinated) Total Risk Ratio

Cases 1 1 2

Non-cases 3 3 6 1

Total 4 4 8

Stratum 2; confounder=1 (subjects have a high risk of infection; p(D+)=8/12=0.67)

Exposed
(vaccinated)

Non-exposed
(non-vaccinated) Total Risk Ratio

Cases 6 2 8

Non-cases 3 1 4 1

Total 9 3 12

Using the levels of the confounder to form strata and, applying the previous formula, we would
have (8)*0.25+(12)*0.67=10 observed cases overall. 

Now, suppose we have 2 exposure groups (say the vaccinated and the non-vaccinated in Table
13.3). Their overall risks could differ even if their strata specific risks are equal. One way to
obtain a fair comparison of the risks (or number of cases) by group is to indirectly standardise
the groups such that they use a common set of risks (or rates) and apply these to the number of
subjects in each strata as shown below 

exp num cases=∑ n j∗std r j

This allows us to contrast  the observed and expected number of  cases  and then estimate a
standardised risk ratio (SRR).

SRR=obs num cases /exp num cases

We can use this approach to standardise a stratified set of counterfactual risks also; all we need
to decide is what population we will choose to be the ‘standard’. This will allow us to calculate
the  SRR which is a non-parametric way of estimating causal parameters. Because it relies on
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physical stratification based on the combination of levels of the measured confounders, it can
suffer from sparse data problems which can lead to unstable estimates. Little and Rubin (2000)
published  a  review  on  the  use  of  potential  outcomes  for  causal  modelling,  and  the
standardisation process is described by  Hernan & Robins (2006b); Newman (2006); Sato &
Matsuyama (2003). 

Using  the  data  from Table  13.3,  let’s  contrast  the  observed  number  of  cases  (n=7)  in  the
vaccinated group (n=13) with the expected number of cases had exposure (ie vaccination in our
example) not occurred. The counterfactual number of cases, if everyone in the vaccinated group
was non-vaccinated, is found by using the risks a0j/n0j  derived from the non-vaccinated group.
(Note This is not the expected number of cases if vaccination and disease were independent of
each other which could be estimated using m1j/nj.) To begin the standardisation, we note that the
risk of disease in the non-vaccinated subjects with a low risk of infection was 0.25 and in non-
vaccinated in the high risk of infection group it was 0.67 and these become our standard set of
risks (see data=ind_vacc_summ). Thus, in terms of number of cases, we would have expected
to see (4*0.25)=1 case in the 4 vaccinated members of the group with a low risk of infection.
We would have expected to see (9*0.67)=6 cases in the 9 vaccinated members of the group
with  a  high  risk  of  infection.  The  standardised  risk  ratio  in  the  vaccinated  is  SRRE+ is
(Σ obs # cases)/(Σ exp # cases)=7/7=1.0. In general, the SRRE+ is the proportionate increase in
risk in the exposed (here the vaccinated) due to being exposed—none in our example. This is
the most common population to standardise for when making causal inferences and it allows us
to estimate the average causal effect. 

Using a similar approach, we could standardise the observed number of cases in the unexposed
(non-vaccinated) group for the expected number of cases had vaccination occurred using the
same approach as above. This would indicate the proportionate change in risk that would have
occurred in the non-vaccinated group if they had been vaccinated. We also can standardise the
observed number of cases in the total group for the expected number of cases under complete
vaccination  and  complete  non-vaccination  by  combining  the  above  findings.  The  SRRtot

describes the proportionate increase in risk in the total population due to exposure (if everyone
was exposed) compared with the risk if no one was exposed (see Sato & Matsuyama (2003) for
worked examples). 

13.7.2 Marginal structural models

In  the  marginal  structural  model  (Robins  et  al,  2000;  Suarez  et  al,  2008) the  marginal
distribution of the counterfactual risks is modelled as:

log pD + = 0 1 X

where X is the dichotomous counterfactual exposure variable and exp(α1) is the causal risk ratio.

The corresponding model for the observed data would be:

log pD + =01 X

where X is the dichotomous exposure factor and exp(β1) is the crude risk ratio. However, α1 ≠ β1

unless exposure is unconfounded. Robins et al (2000) have proposed a weighted analysis that
gives unbiased estimates of the causal parameter α1. Note that this is a ‘marginal’ model in that
we do not need to condition on potential confounders; their effect has been removed through the
construction of the pseudo-population. Thus, we can pursue the analysis in a 2X2 table format.
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We will first develop the weights then explain how constructing the pseudo-population works
to prevent confounding.

The idea behind this approach is to describe and account for the distribution of ‘exposure’
(vaccination in our example). For example, the data in Table 13.3 likely would not have arisen
from  a  totally  random  distribution  of  vaccination,  and  we  would  have  drawn  the  wrong
conclusion about the effect of vaccination if the data were analysed with this randomisation
process in mind. However, if it was recognised that the researchers had stratified their study
group into those with high and those with low risk of infection and had randomly assigned 75%
of the high-risk group and 50% of the low-risk group to receive vaccination then an appropriate
analysis would have reached the correct conclusion about the effects of vaccination. Now, if
this was an observational study, and we were sufficiently clever to identify the confounder (risk
of infection from column 1 of Table 13.4), we could use that fact to ‘explain’ the distribution of
vaccination  in  the  2  groups.  Once  recognised,  we could  ‘control’  the  confounder  (thereby
explaining the exposure) and obtain the correct  causal effect  of vaccination. One method of
achieving the ‘control’ is to create a pseudo-population by ‘weighting’ the groups.

The first component of the weight is the probability of receiving the exposure (ie E+ or E-) each
subject  actually  received,  conditional  on the confounder  information which is pE=p(E=e|Cj)
with ‘e’ taking the values 1 or 0 depending on whether the subject was exposed (1) or not (0),
and ‘j’ representing the strata formed by different levels of the confounder (or combinations of
the confounders)  (see Table 13.4).  The weight  Wi we assign to each subject  is equal to the
inverse  of  this  probability  which  is  1/pE.  The  resultant  estimator  is  called  the  inverse
probability  of  treatment  weighted  (IPTW)  estimator (Cole  &  Hernan,  2008;  Hogan  &
Lancaster, 2004). Recall that, in Chapter 2, we introduced sampling weights and stated that they
described  the  number  of  subjects  each  study subject  represented.  Well,  the  same approach
applies here, and we use the weights to construct the pseudo-population. Not surprisingly, the
total  pseudo-population  is  twice  the  size  of  the  observed  population  because  it  contains
information on the counterfactual outcome (1 per subject) in addition to the observed outcome
for each subject. This IPTW measure contrasts the outcome frequency if everyone in the study
group was exposed versus the outcome if no one was exposed, and is equivalent to the SRRtot

(See Hernan & Robins (2006b) for a worked example). We can also obtain an estimate of the
SRRE+ (our more usual population of interest) using weights (WE) of  WE+=1 if the subject is
exposed  and  WE- =  the odds of  exposure  in  each  level  of  the  confounder  if  the  subject  is
unexposed, as shown below: 

W E-=
nE=1|C j

nE=0|C j
=

b1 j

b0 j

In using these weights to create the pseudo-populations we are assuming no confounding within
the  levels  of  the  measured  confounders  which  produces  exchangeability  and  allows  us  to
estimate the causal effects. However, we need to remind ourselves that this assumption is not
verifiable  from  the  available  data  and  is  an  assumption  that  must  be  defended  on  other
substantive grounds by the researcher. Recall the discussion in Chapter 7, about deciding on the
exact composition of the groups that we wish to compare before seeing the outcome data (as
suggested  by Rubin,  (2007)).  Given that  we cannot  verify the exchangeability,  it  is  vitally
important that we at least have a consensus about what constitutes ‘comparable groups’ before
potentially being biased by seeing the outcome data. 
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Table 13.4 Conditional probability of exposure, p(E=e|C), inverse probability of total 
exposure weights (WT) and pseudo-population (popT), exposed group weights (WE) and 
pseudo-population (popE) compositions and propensity scores for data in Table 13.3
data = vacc_factual

C E D
Obs no.

nj

pE=
p(E=e|C)

WT

=1/pE

Pseudo popT

no.
=WT * nj WE

Pseudo
popE no.
=WE * nj

Propensity
Score

1 1 1 6 0.75 1.33 7.98 1 6 0.75

1 1 0 3 0.75 1.33 3.99 1 3 0.75

1 0 1 2 0.25 4 8 3 6 0.75

1 0 0 1 0.25 4 4 3 3 0.75

0 1 1 1 0.5 2 2 1 1 0.5

0 1 0 3 0.5 2 6 1 3 0.5

0 0 1 1 0.5 2 2 1 1 0.5

0 0 0 3 0.5 2 6 1 3 0.5

If  we collapse the total  pseudo-population over  the confounder  we obtain the  total  ‘crude’
pseudo-population data (Table 13.5). The marginal (or crude) risk ratio estimates the causal risk
ratio which as we have seen earlier is 1 (apart from rounding error). Here, the IPTW estimate is
the same as the SRRtot estimate. 

Table 13.5 The crude total pseudo-population composition and risk ratio

Exposed Non-exposed Risk Ratio

Cases 9.98 10
1

Non-cases 9.99 10

If we wanted to use the exposed (ie vaccinated) population as our standard (which is the ‘usual
standard’),  we use  the weights  WE and  this  leads  to  the  exposed  pseudo-population shown
below in Table 13.6. Again, the marginal standardised risk ratio estimates the causal risk ratio
in the exposed population which as we have seen earlier is 1. 

Table 13.6 The crude exposed pseudo-population composition and risk ratio

Exposed Non-exposed Risk Ratio

Cases 7 7
1Non-cases 6 6

As with  other  examples  of  applying  this  method,  if  we  use  the  marginal  structural  model
approach  with  the  exposed  as  the  population of  interest  on the  data  in  Example  13.8,  the
exposed have WE+=1 and the unexposed WE-=0.76 (stratum 1) and WE-=0.36 (stratum 2). Using
these weights to create a pseudo-population (multiply the weights by the observed number of
subjects), we can create a marginal table. The odds ratio in this table is 2.19, the same as was
obtained by the Mantel-Haenszel approach, which implies that the risk of BRD was increased
2.2  times  in  the  exposed  subjects  relative  to  what  it  would  have  been  had  they remained
unexposed. 
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Similarly,  if  we  use  the  marginal  structural  model  with  the  exposed  as  the  population  of
interest, on the data in Example 13.10, the exposed have  WE+=1 and the unexposed  WE-=0.42
(stratum  1)  and  WE-=1.31  (stratum  2).  Using  these  weights  to  create  a  pseudo-population
(multiply the weights by the observed numbers), we create a marginal table. The odds ratio in
this  table is  12.3.  We would interpret  this to mean that  the population of  farms who used
neomycin had an average of 12.3 times increase in their risk of  Nocardia mastitis relative to
what their risk would have been had they not used neomycin. (Note This is an estimate of the
effect of neomycin for this set of farms. It does not provide any insight into the interaction
between neomycin and cloxacillin.)

Newman (2006) shows how to extend the marginal-structural approach to the analysis of case-
control studies and demonstrates the relationship between the standardised odds ratio (where
the strata specific odds ratio is weighted by b0j) and the Mantel-Haenszel odds ratio (where the
strata  specific  odds  ratio  is  weighted  by  nj).  Kurth  et  al (2006) compared  the  results  of
standardising, using IPWT, and propensity scores in the analysis of a large dataset; some of the
measures  differed  greatly  and  reasons  for  these  discrepancies  were  investigated  and
recommendations about the choice of analysis given.

13.8 MULTIVARIABLE MODELLING TO CONTROL CONFOUNDING

The  most  commonly  used  analytical  method  for  controlling  confounding  is  to  include
confounders in a multivariable model such as a linear regression model (Chapter 14) or other
type of multivariable model (Chapters 16-24). In all these models, the effect of an exposure of
interest is estimated given that other factors are held constant (or controlled). For example, in a
logistic model in which -mh- was examined as a risk factor for BRD, along with IBR as a
predictor,  the effect  of -mh- would be an estimate of its effect  when comparing animals of
comparable  IBR  status  (effectively  controlling  confounding  from  IBR).  This  approach  to
controlling confounding is discussed in much more detail in Chapter 15. However,  we will
discuss the use of PSs and instrumental variables in multivariable models in the next 2 sections.

13.8.1 Multivariable modelling using propensity scores

As noted in Section 13.4, propensity scores can be used as an alternative to including individual
covariates to control confounding in a multivariable model. At this point the question arises,
“does using a PS in a multivariable model do a better job than controlling for confounding by
including all of the potential confounders directly in the model?” (Austin, 2008a; Seeger et al,
2007). Martens et al (2006) summarised the findings of 2 recent major reviews of manuscripts
which analysed data using both approaches and reported finding little evidence of a difference
(Shah et al, 2005a; Stürmer et al, 2006). Closer analysis indicated that in general, studies using
PS to control for confounding produced estimates closer to the null and this was especially true
when the odds ratio was >2 or <0.5. The difference was exacerbated as the incidence proportion
of the outcome increased and as the number of prognostic factors increased (Austin, 2007). The
non-collapsibility of the odds ratio (Section 13.6.2) seemed to be the reason for most of these
differences. Further, a simulation study of logistic regression models suggested that, if there are
fewer than 7 outcome events per confounder, controlling confounding using a PS (included in
the model as a categorical variable based on quintiles of the PS) was preferred. If there were 8
or more outcome events per confounder, a logistic model with the original confounders was the



302 CONFOUNDING:
DETECTION AND CONTROL

technique of choice (Cepeda et al, 2003). In any event, the more factors that we try to match on,
the  greater  the  value  of  using  the  PS  approach.  If  interaction  is  present  (ie the  effect  of
treatment varies with level of PS), then the way in which the PS is used may have a big impact
on the overall effect estimate (Kurth et al, 2006). However, if interaction is present, the value of
a summary measure of effect is questionable in the first place. 

Thus,  there  is  merit  in considering  the  use  of  PSs  instead  of  the  traditional  multivariable
regression approaches,  at least in the selected instances mentioned above. As Månsson  et al
(2007) have stated “if it is sufficient to adjust for individual covariates, then it is sufficient to
adjust for the propensity scores”. Perhaps the biggest benefit of this approach is that it changes
the strategy of analysis. In traditional approaches, we focus on relationships between predictors
and the outcome from the early stages of investigation and expend much energy on ‘getting the
association correct’ (ie linearity etc). However, with propensity scores we place our emphasis
on  getting  the  groups  ‘comparable’  so  that  our  subsequent  comparison  of  the  outcome
frequency in each group is valid. The focus on comparability is not biased (or should not be) by
knowledge  of  predictor-outcome  associations.  However,  as  Stuart  (2008) notes  “Applied
researchers  wish to know ‘best practices’ for the use of propensity score methods in practice,
but unfortunately clear advice does not yet exist”. So we advise the reader to ‘stay tuned’  to
future publications on the topic. Example 13.12 shows the use of PSs in multivariable models.

13.9 INSTRUMENTAL VARIABLES TO CONTROL CONFOUNDING

We begin this discussion by assuming that we wish to estimate the true causal effect of an
exposure  (or  treatment)  in  a  randomised  controlled  trial.  In  a  perfect  experiment  (random
selection of study subjects, randomisation of treatment (ie randomised exposure;  Z), complete

Example 13.12 Use of propensity scores in a multivariable model
data = feedlot

The PSs from Example 13.4 were used in logistic models evaluating the effect of -mhcysc- on -brd-.
Four models were fit: 

• an unconditional model, 
• a model in which the PS was included as a continuous variable, 
• a  model  in  which  the  PS  was  included  as  a  categorical  variable  (based  on  the  blocks

generated when evaluating the balancing properties of the PS, and
• a model in which the covariates that were used to compute the PSs were included directly.

The resulting OR and CI were:

Model OR 95% CI

Unconditional 1.733 1.095 2.744

PS - continuous 2.236 1.380 3.622

PS - categorical 2.389 1.464 3.898

Original covariates 2.250 1.387 3.652

All models suggest that -mhcysc- increased the risk of -brd-. In all cases, controlling for the covariates
increased the strength of this association, with very little difference between the model with PS as a
continuous variable and the model with the original covariates.
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compliance  and follow-up of study subjects  and the lack of measurement  error  in outcome
status), the causal effect of a realised exposure (E) can be estimated as the difference (or ratio)
in the mean value of the outcome (D) in the assigned exposed (treated) and non-exposed (non-
treated or placebo) groups. However, one of the reasons that a field experiment (randomised
controlled trial) can be ‘imperfect’ includes the lack of compliance—that is, not all subjects
randomised to treatment (Z+) complete the treatment and some of the subjects randomised to
the placebo (Z-) group may actually undergo the treatment (see Chapter 11 for a discussion of
compliance).  Hence,  the  difference  (or  ratio)  in  outcome between  the assigned  treated  and
placebo groups does not estimate the true causal effect of the exposure, but rather the likely
effect  of  the  exposure  (the  intention  to  treat  analysis)  if  it  were  to  be  introduced  to  that
population. If the data, on compliance, were available, we might wish to use this to estimate the
true causal effect of treatment among subjects who actually complied; however, we might be
concerned  about  the effect  of  confounding variables  (C;  measured  and unmeasured)  which
might account for the failure to comply with the assigned treatment and also impact on the
outcome risk and hence, bias the measure of association. A causal diagram of this scenario is
shown in Fig. 13.2. 

It  turns out that we can estimate the true causal effect by using variable  Z (the assigned ‘or
intent  to  treat’  group)  as  an  instrumental  variable  (IV).  A  valid  IV  (Z)  must  meet  3
requirements: it has a direct causal effect on exposure (or actual treatment; E); is unrelated to
the outcome (D)  except  through  its  association with the  exposure,  and  shares  no  common
causes with the outcome. Here the IV is the randomised or intended exposure (Z); clearly this is
related to the observed exposure and is unrelated to the outcome except through the observed
exposure. And,  Z shares no common causes with Y so it is unrelated to confounder(s) (C) be
they measured or unmeasured. In the analysis of randomised controlled trials with incomplete
compliance,  the randomised treatment  assignment  serves  as  the IV  for  the  actual  exposure
which is based on whether or not the subject complied with the randomisation process. The
approach  bypasses  the need to adjust  for  confounders  by estimating the  true causal  effect
(TCE) (shown here on the difference scale) of the exposure based on the effects of the IV as
shown below:

TCE=
pD| Z=1−p D|Z =0
pE| Z=1−p E|Z=0 

Note We use  D here as a dichotomous realisation  Y.  The numerator estimates the effect  of
exposure as randomised (ie Z; this would also be the causal effect of the exposure with perfect
compliance).  The denominator reflects the association between the randomised exposure (Z)
and the actual exposure (E). With perfect compliance the denominator becomes 1 and the TCE
of E on D becomes the same as the effect of Z on D (ie the ratio estimates the causal effect of
the exposure among those that actually were exposed in comparison to those who were not
exposed). As the non-compliance increases, the denominator becomes smaller and inflates the

Fig. 13.2 Causal diagram showing instrumental 
variable Z

E Y

C

Z
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quotient so that the ratio consistently estimates the TCE. Most importantly, we do not have to
correct for any potential confounders such as variable C.

Given the concern over unmeasured confounders in observational studies, finding an IV would
clearly be an advantage. However, finding an IV that meets the criteria for a valid IV is rather
difficult.  Researchers  have  used  context  specific  knowledge  to  try  and  identify  suitable
surrogate  IVs,  however,  verifying  the  assumptions  for  a  valid  IV  remains  a  challenge.
Furthermore, specific IV methods are needed if the exposure is time-varying and if there is
interaction between E and D (Bond et al, 2007). The situation is even more complex in that the
direction of bias from the use of imperfect IVs is not intuitive (Bang & Davis, 2007; Hernan &
Robins, 2006a; Johnston K et al, 2008; Martens et al, 2006; Rassen et al, 2009a; Rassen et al,
2009b). Terza  et al (2008) caution researchers about using an IV that is adequate in a linear
model, but then applying it in a non-linear model such as logistic regression. To date, we have
not seen an application of IV methods in veterinary epidemiology.

13.10 EXTERNAL ADJUSTMENT AND SENSITIVITY ANALYSIS FOR UNMEASURED 
CONFOUNDERS

Sometimes we might have conducted a study without measuring or otherwise controlling the
effects of one or more potentially important extraneous variables. We might have calculated a
crude odds ratio between our exposure (E) and disease (D), but wonder what value it would
have had if we had measured and controlled a particular confounder (C). Can we gain some
insight into how much bias this unmeasured confounder might produce. The short answer is
yes, but we would need to know 3 things, only one of which can be gleaned from the available
data. They include the:
 1. prevalence of the exposure variable, E (we can get an estimate of this from the control group

in a case-control study)
 2. strength of association between the confounding variable (C) and disease having adjusted

for the exposure (ORCD|E; sometimes we can obtain this value from other studies) and, 
 3. prevalence  of the confounding variable among the exposed  (PC1) and non-exposed  (PC0)

groups. We know these have to differ from each other, or else the factor would not be a
confounder.  We  might  obtain  these  estimates  from  other  studies,  or  be  able  to  make
educated guesses about their values.

The  adjustment  procedure  is  as  follows:  first,  we  will  assume the  confounding  variable  is
dichotomous, and thus, if we stratify on it, there will be 2 tables. These tables have the usual
risk-based 2X2 structure, the first representing the data when the confounder is absent, and the
second the data when the confounder is present. Now if the prevalence of the confounder is PC1

among  the  exposed  and  PC0 among  the  non-exposed,  then  within  the  exposed  group,  our
predicted number of non-cases with the confounder (C+) will be  b11'=PC1b1. Within the non-
exposed the predicted number of non-case subjects with C+ is b01'=PC0b0 (see Example 13.13). 

If it is reasonable to assume a common disease-confounding variable odds ratio (ORDC), we can
use  these  estimates  of  the  number  of  non-cases  to  solve for  a11 and  a01 (ie the number  of
exposed and non-exposed cases with the confounder). The formulae (Rothman K et al, 2008)
are:
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a11=
ORDC a1b11 '

ORDC b11 'b1−b11 '  and 
a 01=

ORDC a 0b01 '

ORDC b01 'b0−b01 '  Eq 13.12

Example 13.13 Effects of unmeasured confounders

Suppose we had observed the following hypothetical data on bovine respiratory disease (BRD) and
Mannheimia haemolytica (Mh) in calves.  Our interest  was  to ascertain if  calves  with  Mh were  at
increased risk of BRD; however, we had not controlled for an important confounder such as BRSV.
Our summary 2X2 table data would be:

Mh+ Mh- Totals

BRD+ 78 (a1) 11 (a0) 89

BRD- 86 (b1) 74 (b0) 160

164 85 249

The odds ratio would be 6.11 with a χ2 statistic of 29.2 (P<0.001); it appears that Mh+ calves were at
increased risk of BRD. But, perhaps this relationship was largely explicable by BRSV infection. What
effect might this have on our observed association if we had measured it? Suppose there is evidence
that BRSV (Z+) doubles (ie OREZ =2) the risk of BRD. We will also suppose that 60% of Mh+ calves
and 40% of Mh- calves were infected with BRSV. 

Based on this,  the predicted number of non-case Mh+ calves that are also infected with  BRSV is
b11=0.6*86=51.6 and the predicted number without  Mh but with BRSV is  b10=0.4*74=29.6. Hence,
solving for the expected number of Mh+ calves with BRD and BRSV we have:

a 11 '= 2∗78∗51.6
2∗51.686−51.6 

=58.5

and for the Mh- cases with BRSV we have: 

a10 '= 2∗11∗29.6
2∗29.674−29.6 

=6.3

We can now complete the first table for the BRSV-infected subjects (ie the C+ group).

BRSV+ Mh+ Mh- Totals

BRD+ 58.5 6.3 64.8

BRD- 51.6 29.6 81.2

The OR between Mh and pneumonia here is 5.3. Now, data for the second table for those without the
confounder BRSV (ie the C- group) is obtained by subtraction from the original observed cell values
(eg a10= a1-a11).

BRSV- Mh+ Mh- Totals

BRD+ 19.5 4.7 24.1

BRD- 34.4 44.4 78.8

The OR between Mh and pneumonia here is 5.4. The summary OR would be close to 5.3. Thus, at least
with this set of estimates, the presence of BRSV infection in these calves would not explain very much
of the observed crude association between Mh and BRD (ie  the adjusted OR is only slightly smaller
than the crude OR).
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With these 2 cell numbers, we have complete information for the 2X2 table of subjects with the
confounder.  The  table  values  for  the  subjects  without  the  confounder  can  be  obtained  by
subtracting the values  for  the subjects  with the confounder  from the original  observed  cell
values.  Given that we rarely know the true values of the parameters,  the process should be
viewed  more  as  a  ‘what  if’  investigation  than  a  true  ‘correction’  of  association  measures.
However,  by  substituting  a  reasonable  range  of  prevalences  and  confounding-disease  odds
ratios, we can investigate the likely impact of this unmeasured confounding variable on the
exposure-disease association. One ‘what-if’ example is shown in Example 13.14. 

Similar approaches have been incorporated into software packages  (Orsini N et al, 2008) and
these  allow a  sensitivity  analysis  of  confounding  effects  (see  Example  13.14).  Chiba  et  al
(2007) and  MacLehose  et  al (2005) have  developed  ‘bounds’  for  confounding  effects.
McCandless  et al (2008) demonstrate Bayesian sensitivity analysis for effects of unmeasured
confounders. Yin et al (2006) discuss the use of information from secondary samples to control
confounding.

13.11 UNDERSTANDING CAUSAL RELATIONSHIPS

In this section, we are interested in the effect of an extraneous variable given that we know the
underlying causal structure. Hopefully,  this will be of use for purposes of understanding the
relationship between causal structures and the data we obtain in our studies. We do need to be
careful however if, based on our analyses, we try to predict the causal structure. Although a
number  of  researchers  have  tried  to  develop  a  general  process  for  doing  this  successfully,
regrettably, except in limited situations, our ability to infer causal structures from observed data
is very limited, largely because we might be missing one or more important extraneous factors
in our model (Thompson, 1991).

Example 13.14 Sensitivity analysis of unmeasured confounder effects

In Chapter 12, we used data from Nødtvedt et al, (2007), who reported that dogs born to bitches fed a
commercial ration had a 2.3 times higher risk of atopic dermatitis than dogs from bitches fed home-
cooked rations. For purposes of this example (and we do not claim this to be true), we might assume
that  the results  are biased by the unmeasured confounder  ‘socio-economic class (SEC)’ of owner.
Specifically, we might posit that dogs from a high SEC (HiSEC) family are more likely (RR=2) to be
taken to a veterinarian and diagnosed with atopic dermatitis than dogs from a lower SEC family. We
could also posit that 50% of the dogs fed home-cooked meals were from the HiSEC and only 20% of
those fed commercial rations were from the HiSEC. What impact might this have had on the findings if
we had measured it and controlled for it? We used the Stata program -episens- (Orsini et al, 2008) to
investigate this question.

Bearing  in  mind  the  observed  OR and  95%  confidence  interval  were  2.33  and  [1.04,  5.19],  the
externally ‘adjusted’ OR was 1.86 giving a bias of 25%.

Our results suggest  that if  our assumptions about the strength of confounding were valid,  the data
would  still  have  suggested  an increased risk of  atopic  dermatitis  in  dogs  fed  commercial  rations.
However, if the detection bias by HiSEC dogs being taken to veterinarians was stronger (RR=5), then
the authors most likely would have concluded there was no association of lactation diet and risk of
atopic dermatitis because the adjusted OR would have been only 1.4.

While we rarely know the values of these ‘what-if factors’ we can at least posit a reasonable range of
values and examine the likely affect on our results, and then interpret our results accordingly. 
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In the discussion that follows, we focus on causal structures and their impact on the disease
frequencies  that  we  observe.  In  reality,  there  are  a  number  of  ways  in  which  factors  can
combine to  produce  disease  and it  is  rare  that  we identify all  of  the component  factors  of
particular sufficient causes. Thus, if we measure 2 potentially causal exposures, they might be
members of the same or different sufficient causes or they might turn out not to be causes at all.
Sometimes,  because  of  the  arrangement  of  some  of  the  underlying  causes,  we  might  find
spurious relationships (ie statistical associations when no causal relationship exists). Here we
show  some  of  the  ways  of  detecting  and  understanding  these  relationships.  Not  all  the
relationships  we  demonstrate  relate  to  confounding  factors;  however,  they  are  intended  to
demonstrate the impact that different types of extraneous factors can have on the association
between the exposure and outcome of interest. Because of their central value prior to and during
analysis,  we  continue  the  discussion  on  causal  diagrams  that  we  began  in  Chapter  1  and
elaborated on in Section 13.5.1. 

13.11.1 Graphical aids to understanding multivariable systems 

As a simple biological example we will continue to focus on identifying factors that might be of
causal importance for bovine respiratory disease (BRD). We will suppose that our principal
objective is to investigate the association between infection with the bacterium  Mannheimia
haemolytica (based on seroconversion) and the occurrence of BRD. Suppose the additional
factor  we  measure  is  infection  with  bovine  respiratory  syncytial  virus  (BRSV;  based  on
seroconversion). BRSV is only one extraneous factor but we can think of situations where there
are  numerous  factors  each  with  an  underlying  relationship  with  the  exposure  and/or  the
outcome. In the more general setting we are modelling relationships between an outcome (D)
and an exposure of interest (E) in the presence of an extraneous variable (Z) which may or may
not be a confounder or effect modifier). 

The presumed causal  relationship between pairs  of  variables  will  be shown using a  causal
diagram. In this instance, our predictor (or exposure) variables are BRSV and Mh. There are a
number of possible causal models involving just 2 predictors that we will outline subsequently.
When describing the causal (structural) relationships between variables using line diagrams, an
arrow (directed edge) implies a cause-and-effect relationship, a double-headed arrow indicates
unresolved  causal  correlation,  a  non-headed  arrow  (ie line)  non-causal  correlation  (likely
because of another unmeasured factor), and no arrow implies no causal relationship. In general,
we would expect all relationships except the latter to result in significant statistical associations
(exceptions will be noted subsequently).

We will  describe the statistical  results we expect,  based on the causal  structure  in the line
diagram,  both  visually  using  Venn  diagrams and  descriptively  in  the  text.  In  the  Venn
diagrams, each circle represents a factor, or outcome, and the amount of overlap in the circles
the extent (strength) of their association whether measured on a difference or a relative scale. If
the circles do not overlap, this indicates that the factors are not associated statistically; it does
not mean that they are mutually exclusive (ie do not occur together). The position (left to right)
of  each  circle  represents  (where  possible)  the  relative  temporal  (and  potentially  causal)
positioning of the variables.

In describing these models we will assume all variables are dichotomous, similar to the factors
used in Chapter 1, Example 1.1 where we use a relative measure of association (the risk ratio).
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We continue to  use that  approach  here  except  that  we will  use the  OR as  our measure  of
association  (see  Chapter  6).  In  the  multivariable  setting,  when  examining  the  Mh–BRD
association, any factor that is not the exposure of primary interest is an extraneous variable.
Susser (1973) named each type of extraneous variable based on their causal relationships with
the  exposure  and  outcome;  we  continue  that  practice  with  some  revisions  from  his
nomenclature.  As noted previously,  we can accomplish control of the extraneous variable(s)
using matching, stratification or a multivariable regression approach—the latter are the subjects
of detailed discussion later in this text (Chapters 14-23). 

Hence, 
 1. OR is the unconditional (crude) OR between Mh and BRD. This is the measure we would

obtain from a 2X2 table (or by analogy from a simple logistic regression model) when we
ignore all other factors. When we ‘adjust’ or ‘control’ for other factors, the crude measure of
association might  change and it  is  referred  to  as a  conditional,  or adjusted,  measure  of
association. Hence,

 2. OR|BRSV  is  the  conditional,  or  adjusted,  OR (eg  ORMH)  between  Mh  and  BRD  after
controlling for the relationships with the extraneous variable BRSV. We could estimate this
in a multivariable regression model by including BRSV in the model.

In each of the following sections we will: 
• describe the causal relationships among the exposure, extraneous variable(s) and the

outcome of interest,
• draw the causal  relationships between the 2 predictor variables and the outcome to

display the underlying causal structure, 
• note the crude statistical association between Mh and BRD that we expect to observe

given the causal model, and 
• examine the association (in the absence of any sampling error) between the exposure

and  outcome  after  the  extraneous  variable  is  ‘controlled’  (ie through  a  stratified
analysis of by addition of the extraneous variable to the regression model).

Mehio-Sibai et al (2005) provide a simple method for determining the direction of confounding,
which  builds  on  that  of  Susser.  VanderWeele  and  Robins  (2007) have  described  how  to
incorporate sufficient causes into a causal diagram and how this can help in deciding if a factor
should be controlled. One of the constraints in using causal diagrams is how to incorporate
interaction effects and we will describe some recent suggestions (Weinberg, 2007) in Section
13.11.9.  VanderWeele  et  al (2008) have elaborated  on the use of causal  diagrams and the
conditions necessary to infer the direction of bias from an unmeasured confounder.  Streiner
(2005) extends causal diagrams into a more formal path analysis with the important caveat that
path  analysis  cannot  prove  causality.  Bearing  in  mind  the  limitations  of  inferring  causal
structures from observed risks, we will now present a series of assumed causal structures and
the most likely resultant statistical associations that researchers would observe. 

13.11.2 Exposure-independent variable(s)

See the causal model in Example 13.15. The underlying causal structure is that both Mh and
BRSV cause BRD but they are unrelated causally to each other; hence, BRSV is called an
exposure-independent variable. Because of their lack of causal association with the exposure,
unless they are correlated because of the effect of other factors, exposure-independent variables
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are  expected  to  be  uncorrelated  with  the  exposure.  In  observational  studies,  exposure-
independent  variables  might  arise naturally.  In  other  situations the extraneous  variables  are
causes of the outcome but also are related to the exposure of interest, and might be treated as a
confounding variable. However, when matching is used to control these extraneous variables in
cohort studies, the matched variables are converted into exposure-independent variables. Thus,
they  do  not  bias  the  measure  of  association  and  need  not  be  ‘controlled’  analytically.  In
controlled  trials  (Chapter  11),  we  rely  on  randomisation  to  convert  a  number  of  causal
extraneous cofactors into treatment-independent variables so they will not bias the measure of
effect.

Exposure-independent  variables  do  not  distort  the  crude  measure  of  association.  This  is
displayed in Example 13.15 by noting that the portion of the outcome explained by BRSV does
not overlap with the proportion explained by Mh. Thus, whether BRSV is included in the model
or not makes no difference to the  OR. However, exposure-independent variables account for
some of the unexplained variation in BRD, often referred to as the residual variation. Thus,
accounting for them in the analysis improves the precision of the estimate of association by
reducing the unexplained variability in the outcome. In this context, the exposure independent
variable  may  be  manipulated  to  prevent  future  disease  and  may prove  to  be  as,  or  more,
important in this regard than the exposure of interest.

13.11.3 Simple antecedent variable 

See Example 13.16. The underlying causal  structure is that BRSV (the  simple antecedent)
increases susceptibility to -mh- which directly causes BRD. A simple antecedent is a variable
that occurs temporally before the exposure variable, and is causally related to the outcome only
through the exposure variable of interest. In our example, if BRSV is the simple antecedent,
adding this variable to our model merely traces the sequence of causation backward in time.

Example 13.15 An exposure-independent variable

Causal model Mh = Mannheimia haemolytica
BRSV = Bovine respiratory syncytial virus
BRD = Bovine respiratory disease

Statistical model Comment
The two predictor variable circles do not overlap 
indicating their independence. Both exposure 
circles overlap with the outcome circle indicating 
their significant statistical association with BRD.Mh

BRSV

BRD

BRD

BRSV

Mh
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(This can be of importance in our understanding of the causal  web, and in our attempts to
control disease, so simple antecedents should not be dismissed as ‘unimportant’.)

Assuming no sampling error, when BRSV is added to the model (ie its effects are controlled) it
does not change the Mh–BRD association. By itself, BRSV might or might not be statistically
associated with BRD; this depends on how much of Mh susceptibility is caused by BRSV and
how much of BRD is attributable to Mh. However, when added to the model containing Mh,
BRSV will not be statistically significant; any association it has with the outcome is already
contained within the association explained by the exposure factor. Hence, in a forward model-
building  approach  when  -mh-  is  in  the  model,  BRSV would  not  be  added  and  the  likely
inference might be that it is causally unimportant. Technically however, it just means it has no
direct effect on the outcome. The sample statistics are:

• Crude: OR(Mh) significant
• Crude: OR(BRSV) might or might not be significant—but OR(Mh) >OR(BRSV)
• Conditional: OR(Mh|BRSV)=OR(Mh) 

Note When  describing  relative  relationships  with  ‘>’,  we  assume that  the  associations  are
positive,  that  is,  producing  odds  ratios  greater  than  1.  To  include  the  possibility  of  both
associations  being  negative,  the  >  symbol  might  be  read  ‘farther  from 1’  rather  than  just
‘greater than 1’.

The OR(BRSV|Mh) is not a valid indicator of the causal association of BRSV with BRD; this
OR reflects only the direct effect (which in this instance is 0). The crude  OR(BRSV) is the
correct estimate of the total causal effect of BRSV on BRD in this example.

13.11.4 Explanatory antecedent variable—complete confounding

See Example 13.17. The underlying causal  structure  is  that  BRSV precedes and causes  (or
predicts)  both -mh- and BRD, but  -mh- is  not a  cause  of BRD. Statistically,  we expect  to
observe a significant crude relationship between -mh- and BRD because of the common cause
BRSV.  This  association  is  causally  spurious.  When  BRSV  is  added  to  the  model,  the

Example 13.16 A simple antecedent variable

Causal model

Statistical model
Comment
Often there is a weak overlap between variables 
such as BRSV and the outcome, but statistical 
associations favour direct causes over indirect 
causes so the strength and significance level of 
the BRSV association might be low. The Mh–
BRD association would not change when 
BRSV is controlled.

Mh = Mannheimia haemolytica
BRSV = Bovine respiratory syncytial virus
BRD = Bovine respiratory disease

Mh

BRSV
BRD

BRDBRSV Mh
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association between -mh- and BRD becomes non-significant, because BRSV now ‘explains’ the
original  association.  Thus,  we  would  infer  (correctly)  that  -mh-  was  not  a  cause  of  BRD.
Adding BRSV to the model usually reduces the residual variance also. Many extraneous factors
function as explanatory antecedents in this manner. The sample statistics are:

• Crude: OR(Mh) and OR(BRSV) are significant, usually with OR(BRSV) >OR(Mh)
• Conditional: OR(Mh|BRSV)=1, (BRSV biases the OR for -mh- if it is ignored), 

OR(BRSV|Mh) >1

Note The results of the model with both BRSV and -mh- included as predictors is not optimal
for estimating the BRSV total causal effect. Once we remove all arrows emanating from BRSV,
(item 2 in Section 13.6.3) there is no pathway from BRSV through -mh- to BRD, hence the
model with BRSV only is preferred for estimating this causal effect. Controlling -mh- might not
change the BRSV coefficient greatly, but it is better NOT to control unnecessary variables as
controlling them can necessitate having to control even more variables.

13.11.5 Explanatory antecedent variable—incomplete confounding

Example 13.18 shows a very common causal structure. The underlying causal structure is that
BRSV causes (or predicts) both -mh- and BRD, but -mh- is also a cause of BRD. The sample
statistics are:

• Crude: OR(Mh) and OR(BRSV) are significant
• Conditional: OR(Mh|BRSV) <OR(Mh) but OR(Mh|BRSV) ≠1

The model with both predictors included is appropriate for estimating the total causal effect of
Mh.  Statistically,  as  Mh still  has  an  association with BRD after  control  of  the confounder
BRSV, this is the best estimate of its causal association with BRD. Thus, we would infer that
Mh was a cause of BRD, and that the reduced ‘strength’ was the best estimate of magnitude of
causal effect because the spurious causal component (from BRSV) was removed. Again, adding
BRSV to the model usually decreases the residual variance of the model. 

Example 13.17 An explanatory antecedent variable with complete confounding

Causal model

Statistical model Comment
The Mh circle overlaps with the outcome, as 
they are statistically related until BRSV is 
added to the model (ie controlled). Then, the 
association becomes non-significant as all of 
the previous crude association between Mh and 
BRD is covered by the BRSV-BRD association.

Mh = Mannheimia haemolytica
BRSV = Bovine respiratory syncytial virus
BRD = Bovine respiratory diseaseBRDBRSV

Mh

Mh

BRSV

BRD
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Note  The  results  of  the  model  with  both  BRSV  and  -mh-  included  as  predictors  are
inappropriate to estimate the total causal  effect of BRSV as only the direct  effect would be
reflected  in  the  OR or  regression  coefficient.  Mh  would  function  as  a  partial  intervening
variable and should not be controlled when estimating the BRSV causal association with BRD.
Again, the model with only BRSV is preferred for this purpose.

13.11.6 Intervening variable 

See  Example  13.19.  An  intervening  variable is  one  that,  in  causal  or  temporal  terms,
intervenes in the causal  or temporal  pathway between exposure and disease.  Now, although
unlikely from a biological point of view (humour us on this), the underlying causal structure is
that Mh causes (or predicts) BRSV and BRSV causes BRD. The sample statistics are:

• Crude: Likely both OR(Mh) and OR(BRSV) significant
• Conditional: OR(Mh|BRSV)=1 

Although  this  conditional  model  is  improper  in  the  context  of  ascertaining  the  causal
association of Mh on BRD, the model with both Mh and BRSV would provide a reasonable
estimate of the causal association of BRSV with BRD. Nonetheless, the model with only BRSV
included would be preferable for estimating the BRSV causal effect.

As noted, we recognise that this is, biologically, a silly example because we have no evidence
that  Mh would cause increased susceptibility to BRSV in the context of feedlot  respiratory
disease. However, often it is not so obvious. Thus, it is very important to identify intervening
variables and not ‘control’ them (ie do not put them in the model). Intervening variables might
be totally or only partly caused by the exposure but should not be ‘controlled’. They are not
confounders  but  they  cause  similar  changes  in  the  measure  of  association  to  explanatory
variables; thus, we must know the likely causal structure and time sequence between variables
to  differentiate  explanatory  from  intervening  variables.  They  cannot  be  differentiated

Example 13.18 An explanatory antecedent variable with partial confounding

Causal model

Statistical model
Comment
The Mh circle overlaps with the outcome. The 
association remains statistically significant 
when BRSV is added to the model (ie 
controlled), but some of the previous 
association is now attributed to BRSV. Thus, 
the Mh–BRD association is not as strong when 
BRSV is controlled as when it was not included. 
Adding BRSV to the model explains more of 
the variation in BRD than just knowing Mh 
status.

Mh = Mannheimia haemolytica
BRSV = Bovine respiratory syncytial virus
BRD = Bovine respiratory diseaseBRDBRSV

Mh

Mh

BRSV

BRD
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analytically. This is a major reason for our stressing the development and use of explicit causal
diagrams before initiating analyses.

Before  leaving  this  example,  we  wish to  make note  of  the  discussion  of  direct  effects  by
Petersen et al (2006). Suppose our causal model had a direct arrow going from Mh to BRD, as
well as the path through BRSV. If we did wish to estimate the direct effect of Mh we could
achieve that by controlling for BRSV, provided Mh and BRSV did not interact in their effects
on BRD. If they did interact, we would need to create an Mh*BRSV term to ascertain the direct
effect when BRSV was absent and the direct effect when BRSV was present. Note that in either
instance (interaction present or not) controlling for BRSV also blocks effects of other variables
whose effect might be mediated through BRSV. This was termed the ‘controlled direct effect’
Petersen describes an approach to estimate the direct effect of an exposure (eg Mh) when the
effect of the exposure on the intermediate is blocked, but the effects of the intermediate and
variables that cause it are not ‘controlled’. This was termed the natural direct effect. In order
to obtain this  effect,  a  second regression  of  the intermediate  (BRSV) on the exposure  and
confounders is necessary to obtain the likely level of the intermediate at the reference level of
exposure. Then the effects obtained form the controlled direct estimates are weighted to obtain
the natural direct effect. The necessary assumptions about confounding for this approach to be
valid  are  explained  (chiefly  no  unmeasured  confounding  of  the  exposure-  intermediate
association (ie  Mh-BRSV) and no confounding of the intermediate-outcome (ie BRSV-BRD)
association). 

13.11.7 Distorter variable 

Causally this is the same model setup as for explanatory variables except that at least one of the
causal  effects  is  of  a  different  sign  than  the  other  2  (ie one  of  the  causal  arrows  reflects
prevention not causation).  In our example, there are 2 possible underlying causal structures,
assuming Mh is a cause of BRD. In the model on the left, Mh is a cause of BRD and BRSV

Example 13.19 An intervening variable

Causal model

  
Statistical model

Comment
The Mh circle might or might not overlap with the 
outcome. However, any association of Mh with BRD 
disappears when BRSV is added to the model (ie 
controlled). It might well be that all of the effect of 
Mh on BRD is mediated through BRSV (and in that 
sense Mh is still a cause of BRD), but adding BRSV 
to the model would lead us to conclude that Mh was 
not associated with BRD and therefore we might 
infer that Mh was not a cause of BRD. Intervening 
variables should be identified and should not be 
controlled when estimating the causal effect of an 
exposure.

Mh = Mannheimia haemolytica
BRSV = Bovine respiratory syncytial virus
BRD = Bovine respiratory diseaseBRDMh BRSV

Mh
BRSV

BRD
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prevents BRD but is causally and statistically positively correlated with Mh. In the model on
the right, Mh is a cause of BRD and BRSV is also a cause of BRD, but BRSV is causally and
statistically negatively correlated with Mh. Thus, the causal structures could be either:

The sample statistics for both models are:
• Crude: OR(Mh) and OR(BRSV) might be <1, =1 or >1
• Conditional: OR(Mh|BRSV) >1

OR(BRSV|Mh)<1 (left side model)
OR(BRSV|Mh)>1 (right side model)

In either model, to estimate the causal association of Mh with BRD, we need to control for
BRSV. Controlling BRSV will increase the strength of association between Mh and BRD (eg a
non-significant OR(Mh) might become significant when BRSV is controlled). This potential for
increasing the OR is of significance in model-building. When it occurs it signals an underlying
relationship  similar  to  that  described  here.  It  is  also  possible  that  a  significant  positive
association can become a significant negative association, and only  distorters can cause this
reversal  in  the  direction  of  association.  The  preferred  model  to  estimate  the  total  causal
association of BRSV with BRD is the model with only BRSV included. When Mh is included,
only the direct effects of BRSV are obtained.

13.11.8 Suppressor variables and refinement of exposure and outcome variables

See Example 13.20. Here the underlying causal structure is that Mh is a cause of BRD and
BRSV is not. What distinguishes this from the other examples of relationships with extraneous

Mh

BRD
BRSV

+
+

-

Mh

BRD
BRSV +

+
-

Example 13.20 A suppressor variable

Causal model

Statistical model

Comment
Before control of BRSV the variable ‘cattle 
contact’ is not, or only weakly, associated with 
BRD. Once BRSV is controlled by refinement 
(usually) or analysis, the Mh circle overlaps 
with the outcome indicating an association of 
‘cattle contact’ with BRD. By controlling the 
non-causal component of our global variable, 
we increase the strength of the remaining 
factors’ association with the outcome.

Mh = Mannheimia haemolytica
BRSV = Bovine respiratory syncytial virus
BRD = Bovine respiratory diseaseMh

BRSV
BRD

cattle contact

Mh

BRSV

BRD
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variables is that both Mh and the suppressor BRSV are members of the same global variable as
defined by the researcher. For example, we might have measured ‘cattle contact’ as a surrogate
for exposure to infectious agents. However, because we are assuming that BRSV is not a cause
of BRD (in this example), when BRSV is controlled, it will reveal or strengthen the suppressed
association between Mh and BRD. BRSV is the (or one of the) irrelevant components of the
global variable ‘cattle contact’. The refined variable,  without BRSV included, would have a
stronger association with BRD. Control in situations such as this is usually by refinement  of
the predictor variable(s), but can be accomplished using analytical methods also. 

Suppression often occurs with portemanteau-type (global) predictor variables (these are crudely
defined or complex variables that contain a number of components). By refinement (stripping
away the  useless  parts),  the components  of  the  original  variable  that  are  important  can  be
identified. For example, ‘ration’ might need to be refined to locate which components (if any)
of  ration  (type  of  roughage,  length  of  roughage,  amount  of  roughage  etc)  are  related  to
abomasal displacement in dairy cows. We had suppression in mind when discussing combining
length of exposure with dose of exposure to make a composite variable (in cohort and case-
control studies; Chapters 8 and 9). Hence, we stated that it is best to examine the relationship of
the components separately before assessing the composite variable for this reason.

Suppression of the dependent variable can also occur. As an example, perhaps only fibrinous
pneumonia, not other types of respiratory disease, is related to Mh. Thus, if crude morbidity is
the outcome variable,  the association between Mh and BRD will be weak. If cause-specific
BRD is used as the outcome, the stronger association between Mh and fibrinous pneumonia can
be uncovered. Thus, whenever possible, refine the exposure factors and outcome variables to
the point that suppression is unlikely. The extent of refinement used will, however, depend on
the objectives of the study as well as practical constraints. 

13.11.9 Moderator variable

See Example 13.21. Moderator variables produce statistical interaction. The underlying causal
structure is that Mh causes BRD, but only when BRSV is present. Hence, the statistical strength
of its association with BRD depends on the presence or absence of BRSV. In the first model,
we show this with arrows of different density; in the second we use the approach of Weinberg
(2007) to show that BRSV affects the strength of the Mh-BRD association. Recall from Chapter
1, that interaction is the statistical result of the joint causal effect of 2 or more factors on an
outcome parameter. Interaction can, but doesn’t necessarily, reflect a biological property of the
joint  effect  of  variables  (ie either  synergism or antagonism).  Moderator  variables  might  or
might not be confounders, but since the summary measure of association is misleading we do
not summarise over the strata. Assuming no residual or unmeasured confounding within strata,
confounding is no longer of concern. The sample statistics are

•  Crude: OR(Mh) and OR(BRSV) usually≠1, but might=1
•  Conditional: OR(Mh|BRSV) might not be meaningful because OR(Mh|BRSV+) ≠ 

OR(Mh|BRSV-), and χ2
homo is significant (Eq 13.8)

13.12 SUMMARY OF EFFECTS OF EXTRANEOUS VARIABLES

We summarise the previous discussion in Table 13.7. We indicate the likely impact of adding
each type of extraneous variable (ie BRSV) to an analysis of the Mh–BRD association on the
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magnitude (or direction) of the association of Mh with BRD. The association is measured as a
regression coefficient (βMh) denoting the magnitude and direction of association in simple linear
(Chapter 14), logistic (Chapter 16), ordinal (Chapter 17) and Poisson (Chapter 18) regression
models, and in survival models (Chapter 19).

Example 13.21 A moderator variable

Causal model (Model 2 drawing is based on Weinberg (2007)

Statistical model

When BRSV is present, the effect 
of Mh is present:

When BRSV is absent, the effect 
of Mh is absent:

Mh = Mannheimia haemolytica
BRSV = Bovine respiratory syncytial virus
BRD = Bovine respiratory disease

Mh

BRSV+

BRD

Mh

BRD

BRDMh
BRSV +

BRSV

BRSV -

BRDMh

Comment
The Mh circle overlaps with the outcome only when BRSV is present. This is the exact basis of the causal 
models shown in Examples 1.1 and 1.2. No disease occurs unless the two factors are present. Interaction is 
extremely important to identify as it has large implications for disease prevention.



CONFOUNDING: 317
DETECTION AND CONTROL

Table 13.7 Effect of controlling BRSV on Mh–BRD association as measured in a 
simple regression-type model

BRSV is a(n) ...
variable

Effect on βMh Comments
(including impact on regression models)

Exposure 
independent

no change BRSV explains some of BRD incidence, so the 
residual σ2 is smaller and the significance of βMh 
increases

Simple antecedent no change No effect on the analysis by BRSV might be 
important to know about, from a preventive 
perspective, if it is easier to modify than Mh

Explanatory 
antecedent (complete
confounding)

becomes 0

Control of BRSV will remove any Mh association 
with BRD. The R2 of the model should increase as 
the residual variance decreases

Explanatory 
antecedent 
(incomplete 
confounding)

Controlling BRSV will impact on the significance of 
βMh depending on the strength of the BRSV effect 
on Mh and on BRD. The R2 of the model should 
increase

Intervening Because BRSV is more closely related to BRD, it 
probably has a stronger association and explains 
more variability. The βMh is reduced in size and 
significance. If all of the effect passes through the 
intervener, it will remove all of the Mh effect on 
BRD

Distorter  Essentially the same impact as an explanatory- 
antecedent variable except the Mh effect is 
increased, or in the opposite direction, to the crude 
association

Suppressor As the global variable containing Mh is refined, it 
will now have a stronger relationship with BRD, it 
will probably explain more of the variation in the 
outcome

Moderator not applicable In the presence of interaction, the effect of one 
variable depends on the level of the other variable, 
hence separate estimates of effect are required
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