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LINEAR REGRESSION

OBJECTIVES

After reading this chapter, you should be able to:

 1. Identify  if  least  squares  regression  is  an  appropriate  analytical  tool  for  meeting  your
objectives given the characteristics of your data. 

 2. Construct  a  linear  model to meet your  objectives,  including control  of confounding and
identification of interaction. 

 3. Interpret the regression coefficients from both a technical and causal perspective.

 4. Convert  nominal,  ordinal  or  continuous  predictor  variables  into  regular  or  hierarchical
variables and interpret the resulting coefficients correctly. 

 5. Assess  the model  for  linearity  between continuous predictors  and the  outcome,  and for
homoscedasticity,  and  normality  of  residuals.  You  should  also  be  able  to  identify
appropriate transformations of the outcome or predictor variables to help ensure that the
model meets these assumptions. 

 6. Detect and assess individual observations as potential outliers, leverage observations and/or
influential observations. 

 7. Identify study designs whose data require a time-series approach to analysis.
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14.1 INTRODUCTION

Up to this point, most of our examples in which we relate an outcome to an exposure, have been
based on qualitative outcome variables—that is, variables that are categorical or dichotomous.
Here  we describe  linear  regression which is suitable for  modelling the outcome when it  is
measured on a continuous, or near-continuous scale. Examples of these would include weight
gain, milk production, somatic cell counts, and in some circumstances, disease frequency at the
herd level. Recent work has also shown that linear regression can be used to model incidence
risk differences (Cheung, 2007). One example to demonstrate the use of linear models is Abu-
Zidan & Rao (2003)  in which multiple regression was used to identify factors related to the
severity of  injury in falls  from horses.  For a  readable  introduction to linear  regression,  see
Marill (2004a) and Marill (2004b).

In regression analysis, the relationship between the outcome and the predictors is asymmetric in
that we think the value of one variable (the outcome) is caused by (or we wish to predict it by)
the value  or state  of  another  variable  (the  predictor(s)).  (Note The outcome and predictor
variables are sometimes referred to as dependent and independent variables respectively.). We
will refer to the predictor variable(s) of primary interest as the exposure variable(s) and other
predictors as extraneous variables. The predictor variables can be measured on a continuous,
categorical or dichotomous scale.

14.2 REGRESSION ANALYSIS

When only one predictor variable is used, the model is called a simple regression model. The
term ‘model’ is used to denote the formal statistical formula, or equation, that describes the
relationship we believe exists between the predictor and the outcome. For example, the model

Y =01 X 1 Eq 14.1

is  a  statistical  way of  describing  how the value  of  the  outcome variable  Y changes  across
population groups formed by the values of the predictor variable X1. More formally it says that
the mean value of the outcome Y for any value of the predictor variable is determined using a
starting point,  β0,  when  X1 has the value 0, and for each unit increase in  X1 the outcome  Y
changes by β1 units. β0 is usually referred to as the constant or the intercept term whereas β1 is
usually referred  to as  the  regression  coefficient.  The  ε  component  is  called the  error and
reflects the fact that the relationship between X1 and Y is not exact. The errors are assumed to be
normally and independently distributed (ε~N(0,σ2). We estimate these errors by residuals; these
are  the  difference  between  the  observed  (actual)  value  of  the  observation  and  the  value
predicted by the model for a given value of X1. 

The βs represent population parameters which we estimate based on the observed data and our
model. We will refer to predictor variables as  Xs. In general, we will denote the number of
observations as n. Thus, our predicted values are:

Y i=01 X 1 i , i=1, , n Eq 14.2

where Y i is the predicted value of the outcome for the ith observation at the observed value of
the predictor X1i. (Note While it is common practise to use a ‘^’ to designate predicted values
Y i  or  estimated  coefficients  ,  we  will  generally  omit  the  ‘^’ because  whether  we  are

referring to observed data and true population parameters or predicted values and estimates of
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parameters is generally obvious from the context. Similarly, in Eq 14.2, specific observations
are denoted by the subscript  i; but in most instances, for simplicity we will omit reference to
specific observations.) 

Bear in mind that in using X-variables to predict Y in a regression model there is no necessary
underlying  assumption  of  causation;  we  might  just  be  estimating  predictive  associations.
Nonetheless,  we often use terms such as ‘X affects  Y’,  or the ‘effect  of  X on  Y  is...’  when
interpreting the results of our models. For clarity we will always try and indicate if we are
making ‘causal’ assumptions.

Almost without exception, the regression models used by epidemiologists will contain more
than one predictor variable. These belong to the family known as multiple regression models, or
multivariable  models (Note that  multivariate indicates  2  or  more  outcome  variables;
multivariable  denotes  more  than  one  predictor).  With  2  predictor  variables,  the  regression
model could be written as: 

Y =01 X 1 2 X 2

which suggests that we can predict the value of the outcome Y knowing the baseline (intercept
or constant) β0 and the values of the 2 predictor variables (ie the Xs). The parameters β1 and β2

describe the direction and magnitude of the association of  X1 and  X2 with  Y.  More generally,
there can be as many X-variables as needed (the number of predictors is often denoted with k).
A major difference from the simple regression model is that in the above multivariable model,
β1 is an estimate of the effect of  X1 on  Y after controlling for the effects of  X2, and  β2 is the
estimated effect of X2 on Y after controlling for the effects of X1. Expressed another way, β1 is
an estimate of the effect of  X1 on Y among individuals that have the same value of  X2. As in
simple regression, the model suggests that we cannot predict  Y exactly,  so the random error
term (ε) takes this into account. Thus, our prediction equation is: 

Y =01 X 12 X 2

where Y is the predicted value of the outcome for specific values of the 2 predictors X1 and X2.
In this equation,  β1 describes the number of units change in  Y as  X1 changes by one unit,  X2

being held constant, whereas β2 describes the number of units change in Y as X2 changes by one
unit, X1 being held constant. 

In observational studies, incorporating more than one predictor almost always leads to a more
complete understanding of how the outcome varies and it also decreases the chance that the
regression  coefficients  for  exposures  of  interest  are  biased  by  confounding  (extraneous)
variables. Assuming that we have not included intervening variables (see Chapter 13), or effects
of the outcome in our model, the βs are not biased (confounded) by any variable included in the
regression equation, but can be biased if confounding variables are omitted from the equation.
From a causal perspective, if intervening variables are included, the coefficients do not estimate
the causal  effect  (see Section 14.7). Unfortunately,  one can never be sure that there are not
other variables that were omitted from the model that also affect  Y and are related to one or
more of  the  Xs.  These  X-variables  could be unknown,  not thought  (at  least  initially)  to  be
important, or (as it often happens) not practical/possible to measure. In other circumstances, we
might  have  numerous  potential  confounders  and  need  to  decide  on  the  important  ones  to
include.  As  noted in  Chapter  15,  a  major  trade-off  in  model-building  is  to  avoid  omitting
necessary  variables  which  could  confound  the  relationship  described  by  the  βs,  while  not
including variables of little importance in the equation, as this will increase the number of βs
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estimated and may lead to poor performance of the equation on future datasets. Also, having to
measure unnecessary variables increases the cost of future work. 

In  order  to  assist  with  the  principles  of  describing  multiple  regression,  we  will  develop
examples from a dataset  concerning the impact  of diseases  on reproductive performance in
dairy cows in Australia. However, the initial outcome variable will be milk production in the
first 120 days of lactation (-milk120-) and we will regress it on -parity- to ascertain if parity
changes are associated with changes in milk production. Subsequently,  we will focus on the
effects of reproductive events and diseases on the length of the interval from the time at which
the owner starts breeding cows (end of the  ‘wait period’) to conception (-wpc-). These data
were obtained from a longitudinal study in 4 states in Australia, but they are a subset from the
original  database  and  the  analyses  in  this  chapter  are  limited  to  data  from  7  herds  with
particularly high rates of reproductive diseases. The names of the variables used in this Chapter,
and their descriptions are shown in Table 14.1; further details are in Chapter 31. The diseases
are listed in order of their average time to occurrence (eg dystocia occurs before retained fetal
membranes which occurs before vaginal discharge). 

Table 14.1 Selected variables from the dataset -daisy2-

Variable Scale of measurement Description

herd nominal herd number

cow nominal cow number (unique)

herd_size continuous herd size

calv_dt date date of calving

mwp continuous minimum wait period for herd

parity continuous lactation number

milk120 continuous litres of milk in first 120 days of lactation

wpc continuous interval from wait period to conception

twin dichotomous twins born

dyst dichotomous dystocia at calving

rp dichotomous retained placenta at calving

vag_disch dichotomous vaginal discharge observed

14.3 HYPOTHESIS TESTING AND EFFECT ESTIMATION

14.3.1 The ANOVA table

The idea behind using regression is that we believe that information in the X-variables can be
used to predict the value of  Y. Now, if we have collected the data, we know the observed  Y-
values and we can describe the distribution of Y using the mean, variance and other statistics.
Relevant statistics for -milk120- were:  median and mean (average) were both 3,215 litres, the
standard deviation was 698 l and the range was 1,110 to 5,630 l. 

With no further information, the best estimate of the value of Y for a particular subject would be
an estimate of central tendency such as the median or mean value (here they are equal so we
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know  the  distribution  of  -milk120-  is  symmetric).  However,  if  the  X-variable  contains
information about the Y-variable, we should be able to do a better job of predicting the value of
Y for a given individual (cow) than if we did not have that information. The formal way this is
approached  in  regression  is  to  ascertain  how much of  the  sums of  squares  (SS)  of  Y (the
numerator of the variance of Y) we can explain/predict with knowledge of the X-variable(s). 

Table 14.2 Analysis of variance showing decomposition of sums of squares in regression
model with k predictor variables

Source 
of variation

Sum 
of squares

Degrees of
freedom

Mean 
square F-test

Model (or regression) SSM=∑i=1

n

 Y −Y 
2 dfM = k MSM = SSM/dfM MSM/MSE

Error (or residual) SSE=∑i=1

n

Y i−
Y i

2 dfE = n-(k+1) MSE = SSE/dfE

Total SST=∑i=1

n

Y i−Y 
2 dfT = n-1 MST = SST/dfT

In the formulae in the table, Y  is the mean of the Ys, and k is the number of predictor variables
in the model (not counting the intercept). When the SS are divided by their degrees of freedom
(df), the result is a mean square, here denoted as MSM (model), MSE (error) and MST (total)
—in other settings we might call these variances, but the jargon in regression is to call them
mean squares. Formally, this decomposition of the total sum of squares (SST) is shown in the
second column of Table 14.2 (ie SST=SSM + SSE; also, dfT=dfM + dfE). For our example,
parity will be the  X-variable of interest.  The MSE is our estimate of the error variance and
therefore also denoted as σ2. Furthermore, σ, the square root of σ2, is called the root MSE, or
the standard error of prediction (see Example 14.1).

The sums of squares are partitioned by choosing values of the  βs that minimise the SSE (or
MSE); hence, the name ‘least squares regression’. There is an explicit formula for doing this,
which, in general, involves matrix algebra, but for the simple linear regression model, the  βs
can be determined using:

0=Y −1
X 1 and 1=∑ X 1i− X 1 Y i−Y /SSX1 with SSX1=∑ X 1i− X 1

2
 Eq 14.3

For a small dataset, these computations could be done by calculator, but in practise we always
use computer software. 

14.3.2 Assessing the significance of a linear regression model

To  assess  whether  or  not  the  predictors  in  the  model  (collectively)  have  a  statistically
significant  relationship  with  the  outcome,  we  use  the  F-test  from the  analysis  of  variance
(ANOVA) table. The null hypothesis is H0: β1=β2=...βk=0 (ie all regression coefficients except
the intercept are zero). The alternative hypothesis is that this is not true—that is, at least one
(but  not  necessarily  all)  of  the  βs  is  non-zero.  The  distribution  of  the  F-statistic  is  an  F-
distribution with the numerator degrees of freedom equal to dfM and the denominator degrees
of freedom equal to dfE (as given in Table 14.2). In Example 14.1, the F-value 262.3 is highly
significant (p<0.001) indicating that the  X-variable(s) in the model (-parity-  in this instance)
explains  some of  the  variation  in  -milk120-.  One feature  of  the  ANOVA table  we should
always pay attention to is the number of observations included in the model. In multivariable
models with missing data, this number can decrease considerably. 
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Some care is necessary when interpreting the model F-statistic as its meaning changes with the
method  of  model-building  (Livingstone  and  Salt,  2005).  The  F-test  probably  has  only  a
straightforward meaning when the  Xs are manipulated treatments in a controlled experiment,
and all comparisons are appropriately planned a priori. In observational studies, the F-statistic
is influenced by the number of variables available for entry, their correlations with each other,
the  number  actually  selected  for  inclusion  in  the  model,  and  the  total  number  of  subjects
(sampling units). Most variable selection methods (Chapter 15) choose variables in a manner
that tends to maximise  F; hence the observed  F overestimates the actual significance of the
model.  On the other  hand,  if  useless  variables  are  forced  into the  model  with the  hope of
controlling all confounding, the F-statistic might be biased downwards. Sometimes with highly
correlated variables in the model, the F-test might be significant yet the test of the individual
coefficients might suggest that none of them differ significantly from zero (see Section 14.5).

Example 14.1 A simple linear regression model of -milk120- on -parity-
data = daisy2

A linear regression model with -milk120- as the outcome and -parity- as the sole predictor was fit to the
7 herd subset of -daisy2- data. The top left of the table below shows the decomposition of the sums of
squares, the top right gives details about the regression model.

Number of obs = 1536
F(1, 1534) = 262.27

Source SS df MS Prob > F = 0.0000
Model 109234227 1 109234227 R-squared = 0.1460
Residual 638905966 1534 416496.7 Adj R-squared = 0.1455
Total 748140192 1535 487387.7 Root MSE = 645.37

Note that the variance (MS) of -milk120- is 487387.7 and this is somewhat larger than the MS residual
suggesting that parity does explain some of the variation in -milk120-. The root MSE has the same
scale as -milk120- (ie litres) and because -parity- is associated with -milk120- it is smaller than the
standard deviation (698 l) reported above. 

The regression coefficients from the model are shown below.

milk120 Coef SE t P>t 95% CI

parity 178.347 11.013 16.190 0.000 156.746 199.948

constant 2727.080 34.340 79.410 0.000 2659.722 2794.438

The coefficient for parity suggests that, for each unit increase in parity, -milk120- increases by 178.3 l.
Given the SE (11.0) of this statistic,  the  t-statistic (16.2) is significant  at  the 5% level  so we can
assume, at this point, that -parity- has an association with (or effect on) -milk120-. This is consistent
with the 95% confidence interval values which does not include 0 (the no-effect level). The CI suggests
that a reasonable range for the effect of a unit change in parity is between 157 l and 200 l.

We usually do not test the intercept, but it is essential for interpretation of this model as it represents
the value of the outcome (-milk120- in this instance) when the values of all X-variables in the model
have the value 0. Of course cattle of -parity-=0 do not have a real -milk120- value, so subsequently, we
will describe how to scale the predictor variable(s) so that the intercept has a sensible interpretation
(Section 14.4.1).
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14.3.3 Testing the significance of a regression coefficient

A t-test with n-(k+1) degrees of freedom (dfE) is used to evaluate the significance of any of the
regression coefficients (eg the  jth coefficient).  The usual null hypothesis is H0:  βj=0 but any
value of β* other than 0 can be used in H0: βj=β* depending on the context. The t-test formula
is: 

t=
 j−*

SE  j Eq 14.4

where SE(βj) is the standard error (SE) of the estimated coefficient. This SE is always computed
as the root MSE times a constant that depends on the formula for the estimated coefficient and
the values of the  X-variables in the model. Except for the simplest situations, it is not easily
computable;  however,  it  is  always  given in the computer output from the estimation of the
model. For a model with only one predictor (X1), the SE of the regression coefficient is: 

SE 1=MSE/SSX1 Eq 14.5

As the formula indicates, both the variance of  X1 and the MSE affect  the standard error.  In
Example  14.1,  the  t value  of  16.2  has  a  P-value  of  <0.001  so  we  would  reject  the  null
hypothesis  that  the true  regression  coefficient  has  the  value  β1=0 which  would indicate  no
association of -parity- with -milk120-. Fig. 14.1 shows the trend of increasing milk production
with increasing parity.

Similar to the  F-statistic, the inference to be made based on the P-value associated with the
calculated t-statistic is often difficult to assess in non-experimental studies. In experiments, the
Xs are manipulated treatments, or blocking factors, and the observed t-value can be referred to
tables (of the t-distribution) for a P-value (observed level of significance). The same is probably
true if the variable being tested in an observational study was of  a priori interest (eg if the
observational study was conducted to determine the effect of a specific X on Y, given control of
a set of other variables). However, if a variable selection programme was used to sort through a
list  of  variables,  selecting  those  with  large  t-values  in  the  absence  of  a  specific  a  priori
hypothesis, then the actual level of significance is higher than the nominal level of significance
(usually termed  α) that you specify for a variable to enter/stay in the equation. Nonetheless,
using the P-value as a guideline is a convenient and accepted way of identifying potentially
useful predictors of the outcome. 

14.3.4 Estimates and intervals for prediction

Calculating the point estimate for predictions in regression is straightforward.  The complex
component is determining the appropriate variance associated with the estimate, because there
are 2 types of variation in play.  One source of variation results from the estimation of the
parameters  of  the  regression  equation  (ie this  is  the  usual  SE).  The  other  is  the  variation
associated with a new observation (ie the variation about the regression equation for the mean).
The prediction (confidence) interval for a new observation involves both of these sources of
variation. 

For  example,  in  a  simple  linear  regression  model,  the  predicted  value  for  a  population  of
individuals with X1=x* has a SE (designated SEmean; sometimes called the prediction error) of:
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SEmean Y∣x *=  1
n


 x *
− X 1

2

SSX1 Eq 14.6

which can be interpreted as the variation associated with the expectation (ie mean) of a large
number of new observations, with the particular value x* chosen for prediction. Using the data
in Example 14.1, for a parity 5 cow (the mean parity is 2.73), the predicted outcome is 3,618.8 l
with a prediction SE of 29.9 l. 

The standard error for a new single observation (designated SEobs; sometimes called the forecast
SE) with predictor value x* is increased because we must account for the additional σ2 because
the individual predicted value is unlikely to equal its expectation (ie unlikely to exactly equal
the average value for all individuals with X=x*):

SEobsY∣x*= 1
1
n


 x *
− X 1

2

SSX1 Eq 14.7

Using the data in Example 14.1, for a specific parity 5 cow, the predicted outcome is 3618.8 l
with a forecast SE of 646.1 l. Two points can be made here. First, the variation associated with
predicting the mean outcome is much less, and prediction intervals much more narrow than
those for a specific subject. Second, the further that x* is from the mean value of X1, the greater
the variability in the prediction. The 95% confidence limits for the predictions are found using:

95 % CI=Y ±t.05SE  Eq 14.8

where the t-statistic has the dfE and SE is either SEmean or SEobs (as noted above).

The  association  between  -parity-  and  -milk120-  in  dairy  cows  as  determined  by  a  linear
regression  of  -milk120-  on  -parity-,  with  prediction  intervals  for  the  mean  and  for  a  new
observation are shown in Fig. 14.1.

14.3.5 Interpreting R2 and adjusted R2

R2 describes the amount of variance in the outcome variable that is ‘explained’ or ‘accounted
for’  by  the  predictor  variables  and  usually  is  called  the  coefficient  of  determination (in
Example  14.1,  this  is  14.6%).  Given  that  more  than  85% of  the  variation  in  -milk120-  is
unexplained, this suggests that we cannot predict  milk production very precisely if we only
know the parity of a cow. Perhaps additional variables can add to the explained proportion (a
rationale for a multivariable model). One formula for R2 is R2=SSM/SST=1-(SSE/SST). It also
is  the  squared  correlation  coefficient  between  the  predicted  and  observed  Y-values.  The
contribution of a specific variable to R2 is one way of measuring the relative importance of that
variable in the final model. Several indices of importance based on this approach have been
evaluated (Chao et al, 2008). 

Unfortunately, R2 always increases as variables are added to a regression model which makes R2

useless for variable selection. However,  R2 can be adjusted for the number of variables in the
equation (k), and this adjusted value will tend to decline if the variables added contain little
additional  information  about  the  outcome.  The  formula  for  the  adjusted  R2 is:  adjusted  
R2=1-(MSE/MST).

In multivariable models, the adjusted R2 is slightly lower than the R2. The adjusted R2 is useful
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for comparing the relative predictive abilities of models, with different numbers of variables in
them. For example, if one model has 7 variables and another equation 3, the R2 for the model
with 7 might exceed that for the model with 3 (and it always will if the smaller model is a
submodel of the larger one), but its adjusted  R2 might be less. The adjusted  R2 is sometimes
used  as  a  basis  for  selecting  potentially  good  models,  but  this  approach  is  not  without  its
drawbacks (see Section 15.8.1). 

When assessing R2 we should be aware that non-random sampling can have a pronounced effect
on its value. For example, if you select subjects on the basis of extreme X-values, as in a cohort
study, you might artificially increase the R2. It would be okay to use regression to estimate the
effect of X on Y, but the R2 per se would be of little value. In a similar manner, if the X-values
are limited to a narrow range, the R2 might be very low. It is perhaps useful to point out that if
subjects are sampled based on their  Y-values, we cannot  use linear  regression to assess the
effect of selected X-variables on Y.

Before moving on to multivariable models, we include Example 14.2—a regression model with
a dichotomous predictor; namely one of our key exposure variables -dyst-.

14.3.6 Assessing the significance of groups of predictor variables

Often it is necessary to simultaneously evaluate the significance of a group of X-variables, as
opposed to just one variable. For example, this approach should be used when a set of indicator
variables has been created from a nominal variable (Section 14.4.2), or if it is desired to add or
remove more than one variable at a time (eg a set of variables relating to housing or feeding
practices) from the model. 

In order to assess the impact of the set of variables, we note the change in the error (residual)
sum of squares (SSE) before and after entering (or deleting) the set of variables. (Alternatively,

Fig. 14.1 Prediction (confidence) intervals for mean & new observation
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one might use the model sum of squares, as indicated below.) That is, note SSE full with the
variable-set of interest in the model (called the ‘full model’), then remove the set of variables
(eg Xj and Xk) and note the SSEred (for the ‘reduced model’). If variables Xj and Xk are important,
then SSEfull « SSEred (and SSMfull » SSMred).

The increase in SSE (or reduction in SSM) by deleting the variables from the model is divided
by the number of variables in the set (which equals dfE red - dfEfull) to give us the MS from these
variables. Dividing this MS by the MSEfull provides an  F-test of the significance of  Xj and Xk

conditional  on the other variables in the model. In summary,  the formula to assess a set of
variables is: 

F group=
(SSE red−SSEfull

df E red−df E full
)

MSEfull

~ F ([df E red−df E full] ,df E full)under H0

Eq 14.9

where the null hypothesis (H0) is that the reduced model gives an adequate description of the
data,  and  large  values  of  the  F-test  are  considered  as  evidence  against  H0.  As  noted,  the
numerator  of the formula might  alternatively be calculated  from differences of  SS- and df-
values for the model (instead of error); as SSMfull-SSMred=SSEred-SSEfull, it gives the same result.
Most software contains specific procedures to automate this process. Example 14.3 shows the
calculation of an F-test for 4 reproductive events that were added to the simple linear model of
Example 14.1.

Example 14.2 A simple regression with a dichotomous predictor
data = daisy2

A simple linear regression model of 120-day milk production (-milk120-) with dystocia (-dyst-) as the
only predictor was fit.

Number of obs = 1536
F(1, 1534) = 4.58

Source SS df MS Prob > F = 0.0325
Model 2227805.7 1 2227805.7 R-squared = 0.0030
Residual 745912387 1534 486253.2 Adj R-squared = 0.0023
Total 748140192 1535 487387.7 Root MSE = 697.32

Note  that  in  this  model,  the  X-variable(s)  in  the  model  is  deemed  to  be  significantly  (P=0.032)
associated with -milk120-. Nonetheless, the variable -dyst- explains very little (0.3%) of the variation
in -milk120-. 

milk120 Coef SE  t P>t 95% CI

dyst -160.493 74.981 -2.140 0.032 -307.569 -13.418

constant 3224.708 18.350 175.730 0.000 3188.714 3260.703

The regression coefficient for -dyst- is -160.5 indicating that as -dyst- increases by 1 unit the -milk120-
decreases by 160.5 l (recall that the coding for -dyst- is 0 if dystocia did not occur and 1 if dystocia did
occur; so an increase of 1 unit is the difference in outcome between 2 cows, one of which had -dyst-
and the other did not). The P-value indicates that the apparent effect of 160.5 l is significantly different
from 0 so ‘chance’ is not a likely explanation for the association. However, given the low R2 we should
temper  our  interpretation  until  we  have  looked  at  the  effect  of  -dyst-  in  combination  with  other
variables.
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14.4 NATURE OF THE X-VARIABLES

The X-variables can be continuous or categorical with the latter being either nominal (meaning
that  the  variable’s  values  constitute  ‘levels’  (or  categories)  with  no  meaningful  numerical
representation) or ordinal (in which case the values represent ordered levels of the variable, eg
high,  medium, low).  Examples of  nominal variables  include: farm identification,  categories
representing different ways of feeding colostrum, categories representing different breeds of
dog etc. Nominal and ordinal variables with more than 2 levels should not be used as predictors
in their numerical form, they need to be converted to indicator variables (see Section 14.4.2).
This is because the corresponding  βs would be meaningless (eg because herd 4 is not twice
something in herd 2, or breed 5 is not 3 units more than breed 2 etc), and would not achieve the
desired effect (eg of removing herd-to-herd variation when examining the relationship between
disease and production in cattle, or noting the weight of different breeds of dog). 

However, a nominal predictor with only 2 levels (a dichotomous variable) can be used directly,
especially when it is coded as 1 or 0 (eg the variables -rp- and -dyst-; see Table 14.1). Such
variables often serve as answers to questions about present/absent,  alive/dead, sick/well  etc.
The regression coefficient  represents the difference in the outcome between the 2 levels (ie
level 1 minus level 0) representing the disease status. 

For categorical (nominal or ordinal) variables with multiple levels, we use indicator variables
(also called dummy variables) to code the information into a set of dichotomous variables. See
Sections  14.4.2  for  a  discussion of  regular  indicator  variables that  can  be used  for  both
nominal  and  ordinal  variables,  and  Section  14.4.3  for  hierarchical  indicator  variables
applicable only to ordinal or quantitative variables. However, we first examine how to improve
the interpretation of regression parameters.

Example 14.3 Testing the significance of multiple variables
data = daisy2 

In this example, we added the 4 reproductive events/disease predictor variables (-twin-, -dyst-, -rp-,
-vag_disch-)  to  our  model  containing  -parity-  to  evaluate  the  effects  of  reproductive  events  on
-milk120-. In the full model, only -vag_disch- is significant on its own (data not shown), but we want
to check the overall significance of the reproductive events. The ANOVA table from the full model is
shown below: 

Number of obs = 1536
F(5, 1530) = 54.40

Source SS df MS Prob > F = 0.0000
Model 112932560 5 22586512 R-squared = 0.1510
Residual 635207633 1530 415168.4 Adj R-squared = 0.1482
Total 748140192 1535 487387.7 Root MSE = 644.34

In the simple model with only -parity- as a predictor, we had SSEred=638905966 with 1,534
df. Hence the F-test is:

F=
638905966−635207633/1534−1530

415168.4
=2.23

This F-statistic is borderline significant with 4 and 1,530 df (P=0.064) so, we are left unsure
whether, collectively, the reproductive parameters have an effect on -milk120-.
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14.4.1 Scaling variables to improve the interpretation of the regression parameter(s)

Often, the predictor variables have a limited range of possible, or sensible values. For example,
many cannot  be  interpreted,  sensibly,  at  the  value  0  (ie if  age,  parity,  weight,  or  days  to
breeding were predictor variables, they have no meaningful interpretation at the value 0). Yet,
the intercept reflects the value of the outcome when the predictor has the value 0. Thus, it is
often useful to scale these variables by subtracting the lowest possible sensible value from each
observed value before entering the variable into the model. Then, the intercept coefficient  β0

will  be the value of  the outcome at  this lowest  possible value of  the original  X-variable(s)
instead of at zero. As an example, only parity 1 or greater cows can have a -milk120- value, so
we could scale parity by subtracting 1; thus a scaled parity (-parity1-) value of 0 is a parity 1
cow. In other situations, for example -age-, the minimum values could be 2 years (age of first
calving) so we would subtract this value from -age- to scale it. Scaling has no effect on the
regression coefficient or its SE, but it does change the value of the intercept (constant) (see
Example  14.4).  The  scaling  can  also  be  done  by  subtracting  values  other  than  the  lowest
possible value, for example a centre value (mean or median) of the distribution of X. 

Another use of scaling is when the  X-variable is measured with much greater accuracy than
needed (eg regressing -milk120- in litres on -herd_size- in our example). In its original form,
even if herd_size has a large ‘effect’ on -milk120-, its coefficient might be very small reflecting
the change in -milk120- for each additional cow in the herd. This problem can be circumvented
by dividing the value of X by a suitable constant (eg 100). Here, a unit change in the scaled herd
size (-hs100-)  reflects  the change in milk production from adding 100 cows to a  herd.  As
another example, if one was predicting badger numbers using the area of pasture, if the latter
was measured in square metres, it might be more practical to divide this by 100 2 so that the X-
variable is now measuring hectares. Now the coefficient would reflect the change in the number
of badgers as pasture is increased by one hectare. 

14.4.2 Coding regular indicator variables

Indicator variables (also called dummy variables) are created variables whose values have no
direct physical relationship to the characteristic being described. For example, suppose there is

Example 14.4 Scaling predictor variables 
data = daisy2

Here  we scale  -parity-  by  subtracting  1  from the  actual  parity,  so  our  new variable  is:
parity1=parity-1. 

milk120 Coef SE t P>t 95% CI

parity1 178.347 11.013 16.190 0.000 156.746 199.948

constant 2905.427 25.235 115.140 0.000 2855.928 2954.925

The effect of an increase of one parity in the scaled variable is the same as in the unscaled
variable (Example 14.1; 178 l). In the original scale, -milk120- was predicted to be 2,727.1 l
for  a  0-parity  cow;  here  it  is  2,905.4  l  for  a  parity  1  cow (parity1=0).  In  general,  the
coefficient  for  an appropriately scaled variable will  be a sensible number that  is  easy to
interpret and explain.
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a variable called -herdnum- that  identifies what herd the animals in your study came from.
Further, suppose there are 3 herds coded as 1, 2, or 3 (or A, B, C) and we wish to control for
‘herd  effect’  when  examining  the  potential  effect  of  calfhood  disease(s)  on  growth  rate  in
calves. To do this, we create 2 regular indicator (sometimes called disjoint) variables (X1 and
X2) as logical answers to the following questions: Is this calf from herd 1?; if yes, then  X1=1
else X1=0. For the next indicator variable we ask: is this calf from herd 2?; if yes, then X2=1 else
X2=0. With respect to these variables, the following values would be present in the dataset: 

herdnum X1 X2

1 1 0

2 0 1

3 0 0

Thus, herd 3 is identified as the herd with both indicator variables equal to 0, and will be the
referent (or comparison level or reference category) for assessing the effect of herds 1 and 2
on the outcome. So, in general, to code j levels of a nominal variable, j-1 indicator variables are
required, and the jth herd takes the value 0 for all the indicators (see Example 14.5). As the third
herd has become the referent level (when all the indicator variables are in the equation), β1 (the
coefficient of  X1) estimates the difference in the outcome between herds 1 and 3, whereas  β2

estimates the difference in the outcome between herds 2 and 3.

One of the levels of the nominal variable will be the referent, so there is merit in considering
which level it should be. In terms of the information provided to the model, it does not matter,
but  careful  consideration  can  enhance  the  interpretation  of  the  coefficients.  In  essence,
considerations about biological interpretation and the precision of estimates in each level of the
nominal variable should be weighed in choosing a referent (eg if body temperature is recorded
as below normal, normal or above normal, it might make sense to use ‘normal’ as the referent
value). In addition, the referent should have a sufficiently large sample size so that the contrasts
(comparisons with the referent) have reasonable precision. Sometimes the level of the nominal
variable that has an ‘average’ response (eg close to the mean of the dependent variable) is the
desired referent; however, this can lead to a situation where no design variables are significant,
as the extreme categories might differ from each other but not from the outcome in the middle
(mean) indicator. (Note The significance of the indicator variables as a set (Section 14.3.6) is
unaffected by the choice of reference category.) In other instances, the choice of the referent
can be arbitrary, as for example when the indicators are herd indicators and the herd effects are
not of primary interest,  but  they must be controlled to prevent  confounding.  Example 14.5
shows the creation of a set of indicator variables for method of colostrum feeding.

Most  software  programs  have  automated  procedures  to  create  indicator  variables,  and  the
coding can be more flexible than shown here. By default, some use the first category of the
nominal variable as the referent, others use the last category as the referent. Most allow the user
to set the referent using the contextual considerations just mentioned. In Example 14.6, we use
regular  dummy variables  to  code for  herd  when predicting the association of  parity  (in its
continuous form) with milk production. 

As noted earlier, all indicator variables (of each nominal variable) usually should be entered or
excluded from the model as a set using the  F-test in Section 14.3.6. Once the set has been
deemed  important  in  a  statistical  sense  or  from the  perspective  of  confounding  control,  it
sometimes is desirable to allow only some (eg the statistically significant or the ‘important’
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indicators) to remain in the model. Removal of unnecessary indicators can aid the development
of a more parsimonious model but should be done with caution. The decision about removing
some of the indicators can be assisted by testing the equality of selected indicator coefficients.
(Note To select indicators in a statistically correct sense, multiple comparison procedures which
make the P-value for significant differences smaller, must be applied—see Section 11.9.1.) One
must be aware that removal of some indicators changes the interpretation of the coefficients for
the remaining indicators. For example, when using indicator variables for herd (as above), if
only indicator X1 is in the model, the referent will be the weighted average of the outcome in
herds 2 and 3 and the coefficient associated with  X1 will represent the difference in response

Example 14.6 Using and interpreting regular indicator variables in linear regression
data = daisy2

A model for -milk120- was fit with parity, and 6 indicator variables for herds as the predictors. 

milk120 Coef. SE t P>t 95% CI

parity1 201.807 9.291 21.72 0.000 183.583 220.031

herd=2 -117.701 49.079 -2.40 0.017 -213.969 -21.433

herd=3 -678.784 45.371 -14.96 0.000 -767.780 -589.789

herd=4 -380.858 50.494 -7.54 0.000 -479.904 -281.813

herd=5 -563.714 59.074 -9.54 0.000 -679.589 -447.839

herd=106 357.972 47.621 7.52 0.000 264.563 451.381

herd=119 62.074 53.391 1.16 0.245 -42.653 166.800

constant 3047.921 35.931 84.83 0.000 2977.441 3118.401

In this instance, the referent herd is herd 1; the -milk120- in herd 1 for parity 1 cows (parity1=0) is
3,047.9 (the intercept). The coefficient for each herd reflects the difference in -milk120- between each
herd and herd 1. We already know that collectively these variables explain a significant proportion of
the variance of -milk120-. Individually, all are significantly different from herd 1, except for herd 119
with a P-value of 0.25. 

Example 14.5 Coding indicator (regular dummy) variables 

We will  demonstrate forming regular  (ie disjoint) indicator variables  from a nominal  variable.  For
example, when conducting a study in which one predictor is method of colostrum feeding we might
have  coded  the  answers  in  the  variable  -colfeed-  as  1=suckling,  2=nipple  pail,  3=open  pail,  and
4=intubation. Let’s assume that ‘nipple pail’ is a sensible referent and has sufficient sample size. The
coding of the 3 disjoint variables could be completed by writing logical code to answer the following: 

If colfeed=1 then suckle=1 else suckle=0

If colfeed=3 then openpail=1 else openpail=0

If colfeed=4 then tube=1 else tube=0

The effect and significance of each new variable (-suckle-, -openpail- and -tube-) would be in relation
to  nipple-pail  feeding.  Whether  or  not  the  information  in  the  original  variable  -colfeed-  added
significantly to the model should be assessed by an F-test as shown in Example 14.3.
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between herd 1 and this average. Any effects from indicators not included in the model are
present in the constant term. 

14.4.3 Coding hierarchical indicator variables

If  the  predictor  variables  are  ordinal  in  type  (eg reflect  relative  changes  in  an  underlying
characteristic,  eg severity of milk fever),  it  is  sometimes difficult  to associate the levels of
severity with specific numerical values that would make it meaningful to use the variable as a
continuous predictor. As an example, when coding a variable representing severity (eg using 1,
2, or 3 to represent stages 1, 2 or 3 milk fever), there might be concern when using these codes
as a continuous predictor (eg is the biological effect of the difference between stage 1 and stage
2 milk fever the same as between stage 2 and stage 3?). It  is always possible to use regular
indicator  variables,  but  they  do  not  reflect  the  ordering  of  levels.  Therefore,  the  use  of
hierarchical  (or  incremental) indicator variables is often the preferred approach, in order to
maintain the ordering inherent in the original variable. This approach can also be used to recode
a continuous variable based on using appropriate cutpoints. 

Hierarchical indicator variables contrast the outcome in the categorised version of the original
variable against the level just preceding it (assuming all hierarchical variables are in the model).
As with regular indicator variables, it is possible to just include a subset of the indicators. One
such situation occurs if we are interested in identifying cutpoints of an ordinal or continuous
variable where the relationship with the outcome changes. In this setting, we can select the most
significant  incremental  variable(s)  for  entry.  The  corresponding  coefficient  contrasts  the
outcome in  each  level  of  the  categorised  X-variable  to  the  outcome in the  levels  below it
(Walter  et al, 1987). Other codings are available, but are beyond the scope of this book—see
http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter5/statareg5.ht   m.

In Example 14.7, we coded parity levels using disjoint (ie dummy) and hierarchical indicators.
The  disjoint  coefficients  reflect  the  difference  in  -milk120-  in  each  parity  relative  to  the
baseline  parity  1  cows;  the  referent  is  the  lowest  level  (unless  you  change  it).  With  the
hierarchical  indicators,  say for  parity  5,  the regression  coefficient  reflects  the difference  in
-milk120- between parity 5 cows and parity 4 cows. For some reason, parity 5 cows did not
have the increased milk production that was experienced by cows in the the other lactations (a
general trend toward increased production with age). 

14.4.4 Errors in the X-variables

In the regression model, the X-variables are ‘fixed’ (ie constant), and assumed to be measured
without error.  In  reality,  they might be fixed because they are set by the experimenter in a
controlled trial (eg treatment or dose) or because they represent values that are constant (eg site
or year). However, when the X-variables are measured quantities (eg in observational studies),
these measurements might contain error: either a natural variation related to the measurements,
or error in the sense of misrecordings. The consequence of this error is that relations between
the outcome and the observed X-values are not the same as those with the true X-values. The
regression model estimates the relationship between the observed  X-values and the outcome,
and this is the appropriate relationship for purposes of prediction. However, when attempting to
describe a causal relationship between the X-variables and the outcome, it is desirable to have
the true values of the X-variables. 

http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter5/statareg5.ht
http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter5/statareg5.htm
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Special models exist for taking error in the  X-variables into account, so-called  measurement
error models, but they are beyond the scope of this book  (Fuller, 2006). Nonetheless, many
software programs support the use of regression calibration (see Section 12.8) which is useful
for adjusting for measurement errors. Murad and Freedman  (2007) have extended this to the
situation when an interaction term between 2 covariates,  each measured with error  is being
assessed. Austin and Hoch (2004) describe methods to adjust the regression when one or more
X-variables  are  censored.  However,  as  indicated  in  Chapter  12,  if  the  magnitude  of  the
measurement error is small relative to the range of the X-values in the model, we need not be
unduly  worried  when  using  the  ordinary  regression  model.  Ignoring  measurement  errors
generally tends to bias the parameters towards the null (ie effects will be (numerically) smaller
than if the completely accurate  information was present). On the other hand, if the errors are
large relative to the range of  X-values serious consideration of the need for validation studies
(see Chapter 10) is in order.

14.5 DETECTING HIGHLY CORRELATED (COLLINEAR) VARIABLES

Despite  the fact  that  multiple regression  is  used to  adjust  for  correlations  among predictor
variables in the model, if the variables are too highly correlated then a number of problems
arise.  Before discussing these,  recall  that  in a  multivariable regression model the estimated
effect of each variable generally depends on the other variables in the model. On one hand, this
is the advantage of a multivariable analysis—that the effect of a variable is studied while taking
into account the correlations between that variable and others in the model and their effects on
Y thereby  avoiding  duplication  of  effects.  On  the  other,  this  means  that  the  effect  of  any
variable might change when other variables are added to, or removed from, the model. If, for a
particular  variable,  such  changes  are  large  (eg involving  a  shift  of  sign),  its  interpretation
becomes difficult.  Only in the special  case  that  all  the  X-variables  are uncorrelated are the
effects of different variables estimated completely independently of each other. Thus, the first
problem arising from highly correlated (or collinear) predictors is that estimated effects (ie the
regression coefficients) will depend strongly on the other predictors present in the model. As a
consequence, it might be difficult to statistically select the ‘important’ predictors from a larger

Example 14.7 Indicator vs hierarchical coding of variables
data = daisy2

The effect of parity on -milk120- was estimated by using ordinary (disjoint) indicator and hierarchical
dummy variables in a linear regression model

variable indicator coding hierarchical coding

parity=2 708.213 708.213

parity=3 789.843 81.630

parity=4 848.514 58.670

parity=5 787.609 -60.905

parity=6 878.161 90.552

parity=7 925.955 47.794

constant 2639.645 3345.116
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group of predictors. Both of these concerns are less serious when the purpose of the analysis is
prediction than when interpretation of causal effects is the objective. If we express this problem
in a more technical manner, the standard errors of regression coefficients become very large in
a  highly  collinear  model  (Section  14.5.1),  and hence  we become less  certain  of  the  likely
magnitude of the association (ie of the true value of β). 

In a multivariable model, one X-variable should not be a perfect mapping of another X-variable
or be perfectly predictable by a combination of the other  X-variables in the regression model.
However,  even  before  the  correlations  become ‘perfect’,  as  a  general  rule,  if  2  (or  more)
variables are highly correlated (|ρ|  > 0.8–0.9), it will be difficult to select between (among)
them for  inclusion  in  the  regression  equation.  When 2  variables  are  highly  and  positively
correlated, the resulting coefficients (βs) will be highly and negatively correlated. In extreme
situations,  none  of  the  coefficients  of  the  highly  correlated  variables  will  be  declared
significantly different from zero, despite the fact that the F-test of the model might indicate that
the variable(s) collectively contributes significantly to the model. 

Extreme values of odds ratios (eg 8-10 of more) can be used to detect collinearity between
dichotomous variables, and extreme correlation coefficients (>0.7-0.8) for continuous variables.
In linear models, a convenient way to detect either collinearity or multicollinearity is through
the use of the variance inflation factor (Section 14.5.1). Pitard and Viel (1997) describe more
formal methods for detecting collinearity and provide some solutions when using regression
models.

One way of eliminating collinearity problems is through considered exclusion of one of the
collinear variables, or by making a new combination of the variables on substantive grounds. In
extreme situations specialised regression approaches, such as ridge regression, might be needed.

Most software provide indicators about possible collinearity using a variance inflation factor
(Section 14.5.1) or its reciprocal  tolerance. Unfortunately,  the methods we use for including
interaction terms (Section 14.6) and power terms (Section 14.9.3) in models sometimes leads to
a  high  collinearity  between  the  variables.  Thus,  we  describe  a  general  method  for
circumventing high correlations between the latter constructed variables, known as  centring
(Section 14.5.2).  Before  doing that  we will  discuss the problem of collinearity in terms of
variance inflation.

14.5.1 Variance inflation factors

The effect of entering a new variable into the model, on the variance of the coefficients for
variables  currently  in  the  model  can  be  assessed  with  a  statistic  known  as  the  variance
inflation factor (VIF). The formula for VIF is:

VIF=
1

1−RX
2

Eq 14.10

where R2
X is the coefficient of determination from regressing the variable that is about to enter

the model on the other variables in the model. As this coefficient gets larger (as it does if it is
collinear) so does the VIF. We illustrate the importance of the VIF in a simple linear regression
model, in which the variance of the regression coefficient β1 for X1 is from Eq 14.5.
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var 1 1=
MSE1 

SSX1 Eq 14.11

where the superscript (1) refers to the simple linear regression model. When we place X2 in the
model, if it is correlated with X1, 3 things will happen: 

1. the coefficient β1 will change because we account for the correlation of X1 with X2, 
2. the residual sum of squares (and in most cases also the MSE(2)) will become smaller

because X1 and X2 together can predict Y better than X1 on its own, and
3. the  standard  error  of  β1 might  increase  by  an  amount  roughly  equal  to VIF ;

specifically, var(β1) in the combined model (2) with both X1 and X2 is:

var 2 1=
MSE2

SSX1

×
1

1−R2
2 Eq 14.12

where  R2
2 is the coefficient  of determination from a regressing  X2 on  X1.  Thus, the standard

error of β1 increases unless the reduction in MSE(2) from MSE(1) by adding X2 more than offsets
the increase due to the VIF. Adding variable X2 also can cause the variance of β1 to decrease if
X2 is a good predictor of the outcome and X1 and X2 are nearly (or totally) independent of each
other in which case VIF is approximately 1. 

The role of the  VIF  in multiple regression models is similar to this. A (conservative) rule of
thumb for interpreting VIFs is that values above 10 indicate serious collinearity. As discussed
above, this does not necessarily mean that the model is useless or that one is obliged to remove
one or more X-variables from the model; it should, however, always be taken as a warning for
the interpretation of regression coefficients and the increase in their standard errors. 

14.5.2 Centring variables to reduce collinearity

Centring a continuous variable  is  performed by subtracting the mean value (or  some other
central value) from each observed X-value, similarly to the scaling discussed in Section 14.4.1.
Centring a variable prior to creating a power term (or an interaction term between 2 continuous
variables) reduces the correlation between the variables to a low level (provided the variables
are symmetrically distributed about their mean). If the distribution is not symmetric, then larger
(or  smaller)  values  than  the  mean  might  need  to  be  subtracted.  It  should  be  stressed  that
centring only affects correlations between variables constructed from each other, and it does not
change  the  predictions  or  the  fit  of  the  model,  only  the  values  and  interpretation  of  the
regression coefficients. See Example 14.8 for a discussion of VIFs and centring.

14.6 DETECTING AND MODELLING INTERACTION

In Chapter 1 we developed the view that, given the component cause model, we might expect to
see interaction when 2 factors act synergistically or antagonistically.  Whereas, within limits,
this might be true, the significance of an interaction term need not indicate anything about the
causal model; it might merely describe the nature of the relationship being modelled. In the
previous Section, the model contained only main effects of the Xs; hence it assumes that the
association of X1 to Y is the same at all levels of X2 and the association of X2 to Y is the same at
all levels of X1. A test of this assumption (whether or not the effect of one variable depends on
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the level of another variable(s)) is to examine if an ‘interaction term’ adds significantly to the
regression model.

In the situation where X-variables are not indicator variables, the interaction term is formed by
the product X1*X2 which can be tested in the following model: 

Y =01 X 12 X 23 X 1 X 2

by assessing if β3=0 (see Example 14.9). If interaction is absent (β3 is deemed to be not different
from 0), the main effects (or ‘additive’) model is deemed to describe the effects adequately. It is
not necessary to centre the variables X1 and X2 to see if an interaction term is needed, because β3

and its standard error will be unaffected by centring. However,  if the interaction is needed,
centring might be useful because it allows us to interpret  β1 and β2 as linear effects  when the
interaction cancels  (eg β1 applies to the situation when (the centred version of)  X2 is  zero).

Example 14.8 The use of centring to avoid collinearity problems
data = daisy2

Our outcome of interest is now the time from the end of the  ‘wait  period’ (ie  the time at which a
producer will start breeding his/her cows) to conception (-wpc-; median 53, mean=68.8, SD 51.6, and
range 1—298 days). One of the potential confounders of the effects of diseases and -milk120- on -wpc-
is herd size. In order to prevent bias from herd size, we need to include it in our model. However, the
relationship  between  herd  size  and  -wpc-  appeared  non-linear  (see  Chapter  15  for  methods  of
assessment), so a quadratic model with -hs100- (herd size scaled by dividing by 100) and -hs100_sq-
(scaled herd size squared) was built.

wpc Coef SE t P>t 95% CI

hs100 -29.516 15.044 -1.960 0.050 -59.024 -0.008

hs100_sq 9.744 3.105 3.140 0.002 3.654 15.835

constant 77.748 17.475 4.450 0.000 43.472 112.024

Both terms are statistically significant. However,  the correlation between -hs100- and -hs100_sq- is
0.99 with a resulting VIF of 54. We can see the impact of this by noting that the SE of the herd size
coefficient  increased by over  7 times (from 2.1 (simple  linear model  not shown)  to 15)  when the
quadratic term was added.

In order to deal with this problem of collinearity, we can centre the herd size variable by subtracting its
mean (for -hs100- this is 2.5) to create the centred variable -hs100_ct-, and then, we create the squared
centred herd size -hs100_ctsq-. The summary of this model is shown below:

wpc Coef SE t P>t 95% CI

hs100_ct 19.400 2.158 8.990 0.000 15.167 23.633

hs100_ctsq 9.744 3.105 3.140 0.002 3.654 15.835

constant 65.052 1.742 37.340 0.000 61.635 68.470

First, we should note that the coefficients and SEs for the quadratic terms are exactly the same in the 2
models, but the coefficient for the linear term has changed. The 2 models also have identical R2 (0.049)
and MSE (2,535.3). Second, we note that the SE of the linear component -hs100_ct- is approximately
back to what it was when only the linear term (-hs100-) was in the model. Centring has reduced the
correlation between -hs100_ct- and -hs100_ctsq- to -0.32 and the VIF is now reduced to 1.11. Because
herd size was scaled, the constant in this model  represents the predicted -wpc- in a 250-cow herd
(-hs100_ct-=0).
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Higher order interactions can be investigated by extending this process to an interaction term
that is the product of 3 (or more) variables (see Chapter 15). 

Interactions involving categorical variables (with more than 2 levels) are modelled by including
products between all indicator variables needed in the main effects model. For example, the
interaction between a 3-level and a 4-level categorical variable requires (3-1)*(4-1)=6 product
variables. These 6 variables should be tested and explored as a group (Section 14.3.6). In many
multivariable analyses, the number of possibilities for interaction is large and there is no single
correct way to assess if interaction is present. Section 15.7 discusses some options for deciding
which interaction terms to include when building a multivariable model. However, in general
we suggest that, unless the potential number of interactions is small, interactions be limited to
those of biological relevance and that 3- and 4-way interactions only be investigated when there
are  good,  biologically  sound,  reasons  for  doing  so.  Example  14.9  demonstrates  interaction
between 2 dichotomous variables, and Example 14.10 between a dichotomous and a continuous
predictor.  There  are  no statistically  significant  interactions  between continuous variables  in
-daisy2-, but Example 14.11 shows a non-significant  interaction for demonstration purposes
only.

14.7 CAUSAL INTERPRETATION OF A MULTIVARIABLE LINEAR MODEL

So far in this chapter we have focused on the technical interpretation of regression coefficients.
Example 14.12 is presented to focus on the development of,  and causal  interpretation of,  a
multivariable  linear  model  designed  to  assess  the  effects  of  3  diseases  (-dyst-,  -rp-,  and
-vag_disch-)  on the time to conception.  When making causal  inferences,  care  is  needed to
ensure that only the appropriate variables are included in the analysis (see Section 13.3). In this
regard, a causal diagram is very helpful (see Fig. 14.4).

Based on this diagram, and our objective which is to ascertain the effects of the 3 diseases on
-wpc-, we will not include -milk120- or days to first service in our model because they are
intervening variables between these diseases and -wpc-.

Before  presenting  the  model,  a  few  comments  are  in  order.  Herd  effects  can  be  potent
confounders so we need to control for herd; we could do that by including a set of 6 indicator
variables in the model. However, this would preclude having any herd level predictors in the
model (they are perfectly collinear with the herd indicator variables). One aspect of the herd
effect  is  herd  size  and  when we  examined  its  relationship  to  -wpc-,  we  noted  that  it  was
curvilinear so we created a quadratic term after centring herd size. Because we only have 7
herds,  and because we want to include a continuous variable in our model for  pedagogical
purposes, we chose to include herd size instead of herd (using dummies). (Note Because herd
size is a herd-level predictor and we are not taking the clustering of cows within herds into
account, we might expect the SE for the effect of herd size to be underestimated. See Chapters
20-24 for methods for dealing with clustered data.) Month of calving could also have an impact
on -wpc- and when we examined this we noted that cows that calved in February through July
had a shorter time to conception; hence, we created a new variable called -aut_calv- ( ie autumn
calving) to denote these cows. Finally, although the variable parity was always non-significant
we forced it into the causal model based on previous evidence that, in general, higher parity
cows do not have as good reproductive performance as lower parity cows and that parity is
related to the 3 diseases of interest (so it could/should be a confounder). Other comments on
model-building are contained in Chapter 15, but here we include all potential confounders, then
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added our disease variables of interest (these were our key exposure variables). Interactions
between the diseases and other variables (except for herd size where we assumed no interaction
was  present)  were  selected  based  on  prior  biological  knowledge.  Had  we  used  statistical
significance as our method of detecting interactions, we would have discovered an interaction
between -vag_disch- and -dyst- that defied (at least to us) explanation. We are also aware that
had we selected a subset of variables from a larger ‘pool’ we should alter the F-statistic critical
value for significance (Livingstone & Salt, 2005). 

14.8 EVALUATING THE LEAST SQUARES MODEL

Valid regression analyses are based on a set of assumptions, and once our initial model is built
we need  to evaluate  whether  the model meets  these (we say initial  because  after  checking

Example 14.9 Interaction between 2 dichotomous variables
data = daisy2

A model was built with only -rp- and -vag_disch- as predictors of -wpc-.

wpc Coef SE t P>t 95% CI

rp 10.240 4.541 2.260 0.024 1.333 19.146

vag_disch 9.067 5.982 1.520 0.130 -2.666 20.800

constant 67.358 1.381 48.770 0.000 64.649 70.067

In this model, -rp- has a significant association with -wpc-, but -vag_disch- does not. In order to assess
if the effect of one variable depends on the level of the other variable we form an interaction term (a
product of the 2 variables) and add it to the model. 

wpc Coef SE t P>t 95% CI

rp 6.340 4.914 1.290 0.197 -3.300 15.979

vag_disch 0.543 7.265 0.070 0.940 -13.708 14.794

rp * vag_disch 26.349 12.774 2.060 0.039 1.293 51.404

constant 67.669 1.388 48.760 0.000 64.946 70.391

Note that since both -rp- and -vag_disch- are dichotomous and coded 0 for  ‘no’ and 1 for  ‘yes’, the
interaction term has the value 1 only when both diseases are present. In this sense, if it is significant, it
says that we need to adjust (using β3) the predicted outcome when both diseases are present to better
reflect what was observed. Otherwise the combined effect of the 2 is just the sum of their individual
effects.

In daisy2, it is apparent that the effect of -rp- depends on the presence or absence of -vag_disch- as the
coefficient  is  significant  statistically.  Note  also  that,  although  the  main  effect  terms  of  -rp-  and
-vag_disch- are not significant, we leave them in the model for interpretation.

• When neither disease is present, the predicted outcome is 67.67 days
• When only -rp- is present, the predicted outcome is 67.67+6.34=74.0 days
• When only -vag_disch- is present, the predicted outcome is 67.67+0.54=68.21 days
• When both diseases are present, the predicted outcome is 67.67+6.34+0.54+26.35=100.9 days
• The VIF from adding the interaction is small (1.8), so centring of variables is not needed

What this model implies is that neither disease by itself has much of an impact on -wpc- but when both
are present, -wpc- is delayed by about 33.2 days (relative to neither disease being present).
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whether the model meets the key assumptions we might have to alter it). We will use the model
shown in Example 14.12 for the purposes of this evaluation. 

The key assumptions of the model are: 
• independence—the values of the dependent variable are statistically independent from

one another (ie the -wpc- value of one cow does not depend on the -wpc- value of other
cows in the dataset). Usually we do not worry about independence unless the context is
such that the assumption is likely to be broken. For example, the structure of the data
might signal a lack of independence when there are multiple observations on a single
animal, or on multiple animals within herds (as we have in -daisy2-). Methods for dealing
with clustered data are presented in Chapters 20-23. A specific type of clustering (serial

Example 14.10 Interaction between a dichotomous and a continuous variable
data = daisy2

We  began  this  analysis  by  scaling  -milk120-  by  dividing  it  by  1,000  (denoted  as  -milk120k-);
otherwise, the effect of a one kg change in -milk120- was very small. We then regress -wpc- on -dyst-
(dystocia), -milk120k- and their interaction (denoted as -dyst_milk-) to see if the effect of -milk120k-
on -wpc- depends on whether or not the cow has -dyst- (or conversely, if the effect of -dyst- depends on
the level of milk production. (Note Neither -dyst- nor -milk120k- were statistically significant when fit
without an interaction term.)

wpc Coef SE t P>t 95% CI

dyst -85.488 29.601 -2.890 0.004 -143.551 -27.426

milk120k -3.447 1.929 -1.790 0.074 -7.229 0.336

dyst_milk 29.142 9.468 3.080 0.002 10.571 47.714

constant 79.838 6.365 12.540 0.000 67.352 92.323

The interaction term is clearly significant. Dystocia appears to shorten the -wpc- which is a surprising
result,  but  this  coefficient  represents  the  effect  of  -dyst-  when  -milk120k-  is  zero  (which  is  not
possible). Increasing milk production appears to have a small negative effect (-3.4 days per 1,000 kg of
milk) in cows without dystocia (P=0.074) but potentially a larger positive effect in cows with dystocia.
In a situation such as this, a graph is more likely to make the interaction effects apparent. This is easily
accomplished by obtaining the predicted -wpc- from the model and graphing it against the continuous
predictor  (-milk120-)  in  cows  with
and without dystocia (Fig. 14.2). 

Here  we  can  see  the  difference  in
effect  of  -milk120k-  between  when
-dyst- is present (the solid sloped line)
and  when  it  is  absent  (the  dashed
nearly  horizontal  line).  The  graph
indicates that increasing levels of milk
production  is  detrimental  (longer
-wpc-) in cows that start the lactation
with dystocia, but not in cows without
dystocia. If interaction was absent, the
regression  lines  on  -milk120k-  in
cows  with  and  without  -dyst-  would
be parallel. 

Fig. 14.2 Interaction between -dyst- and -milk120k-
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Example 14.11 Interaction between two continuous variables
data = daisy2

Here we regress -wpc- on -parity-, -milk120k- and their interaction (denoted as -p_m-) to see if the
effect of -milk120k- on -wpc- depends on the parity of the cow (or conversely if the effect of parity
depends on the level of -milk120k-). 

wpc Coef SE t P>t 95% CI

parity 4.890 4.438 1.100 0.271 -3.815 13.595

milk120k -1.666 4.213 -0.400 0.692 -9.929 6.597

p_m -0.876 1.364 -0.640 0.520 -3.551 1.798

constant 69.022 12.777 5.400 0.000 43.961 94.083

It turns out that the interaction term is
no where near significant statistically;
however, we show the plot (Fig. 14.3)
to demonstrate  this.  The lines reflect
the  expected  decrease  in  -wpc-  as
-milk120k-  increases.  Because  the
interaction term is not significant  we
expect the lines (representing different
levels of parity) to be parallel which,
for practical purposes, they are. 

Fig. 14.4 Causal diagram of 3 diseases and 4 
confounders 'wait-period-to-conception interval' in 
dairy cows 

Note Variables to the left are assumed to be correlated and have
potential effects on all variables to the right (causal arrows 
omitted for clarity of presentation)
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Example 14.12 An initial causal model of the impact of reproductive diseases on -wpc- 
data = daisy2

A model was fit based on the causal diagram shown in Fig. 14.4.
Number of obs = 1574

F(9, 1564) = 13.22
Source SS df MS Prob > F = 0.0000

Model 296062.7 9 32895.9 R-squared = 0.0707
Residual 3892027.9 1564 2488.5 Adj R-squared = 0.0653
Total 4188090.6 1573 2662.5 Root MSE = 49.885

wpc Coef SE t P>t 95% CI

aut_calv -8.264 2.538 -3.26 0.001 -13.242 -3.286

hs100_ct 19.857 2.163 9.18 0.000 15.614 24.101

hs100_ctsq 11.138 3.111 3.58 0.000 5.036 17.241

parity_sc 1.137 0.858 1.32 0.185 -0.546 2.821

twin 20.683 9.845 2.10 0.036 1.372 39.994

dyst 11.700 5.463 2.14 0.032 0.986 22.415

rp 5.987 4.812 1.24 0.214 -3.452 15.425

vag_disch 1.228 7.161 0.17 0.864 -12.819 15.275

rp*vag_disch 22.852 12.516 1.83 0.068 -1.698 47.402

constant 64.330 2.634 24.42 0.000 59.164 69.497

Subject to this model meeting the major assumptions of linear regression (Section 14.9) and a case-by-
case analysis of the residuals (Section 14.10), we offer the following interpretation:

The model is highly significant (F=13.22 p<0.001) although it only explains 7% of the overall variation
in -wpc-. The SE of prediction (49.9 days) is only slightly smaller than the original crude SD of 51
days. 

Cows calving in the autumn had a decreased -wpc- by 8d relative to those that calved at other times.
The effect of herd size was to increase the time to conception in a curvilinear manner with greater
effects  as herd_size increased. Scaled parity (-parity_sc-) was left  in the model in the belief that it
should have been an important confounder. Cows with twins took 21d longer to conceive than cows
with single calves. Having controlled for the effects of these variables, and assuming there was no
additional uncontrolled confounding we can make causal inferences on the effects of the 3 diseases. 

• Cows with -dyst- had a significant delay in -wpc- of 11.7 days
• Cows with -rp- but not -vag_disch- did not have a significant delay in -wpc- 
• Cows with -vag_disch- but not -rp- did not have a significant delay in -wpc- 
• Cows with both -rp- and -vag_disch- had a significant delay in -wpc- of approximately 

23+6+1=30 days (The estimate in Example 14.9 is slightly different because the earlier model 
had fewer variables included).
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correlation) is likely to occur when assessing if the daily average temperature affects the
daily milk production of cattle during a period of time (eg summer). Repeated data that
are collected at equal time intervals over an extended period such as this are called time-
series  and  specific  methods  are  required  to  adjust  for  the  fact  that  the  value  of  the
outcome on one day is likely highly correlated with the value on the previous day; hence,
the errors are correlated and not independent (see Section 14.11).

• homoscedasticity—the variance of the outcome is the same at all levels of the predictor
variables (ie the variance in -wpc- in cows that have a -parity- of 3 should be the same as
the variance for those that have a -parity- of 5  etc) and within all combinations of the
values of the predictor variables. If this is true, then the MSE will be constant. This is an
important assumption, perhaps more so than having a normal distribution of residuals. 

• normal distribution—the residuals should be normally distributed at all levels of the
predictors, or at all combinations of predictors in the model (ie residual values for cows
that did not have an -rp- should be normally distributed as they should for cows that had
an -rp-). We often try to get  a quick assessment of this before starting the regression
analysis by assessing the normality of the distribution of the outcome. The residual errors
from  very  non-normally  distributed  outcomes  are  unlikely  to  be  ‘normalised’  by
regression on the predictor variables unless the R2 of the model is very high. On the other
hand, as a simple example, if a strong dichotomous predictor for the outcome exists, then
the raw distribution of the outcome will show as bimodal and therefore non-normal, but
the residuals from the model might be normally distributed. 

• linearity—because  the  relationship  between  the  outcome  and  continuous  or  ordinal
predictors (modelled as continuous) is described by a single coefficient, this assumes that
the association is a straight-line relationship (ie a 1-unit increase in -parity- from 2 to 3
affects  -wpc- by the same amount as a 1-unit  increase  from 5 to 6 kg).  There is  no
assumption involved for dichotomous variables as 2 points can always be connected by a
straight line. 

Each of the last 3 assumptions will now be discussed in more detail, and we can learn much
about them by examining residuals, often using graphical methods, although formal tests are
also available. (Note Whether or not the observations are independent is usually known from
the structure of the data and will not be discussed further in this section (see Chapters 20-23 for
further discussion of this issue.)) At this point, we would note that ensuring our model meets
the  3  major  assumptions  (homoscedasticity,  normality,  linearity)  is  very  important,  and
alterations  to  meet  one  of  these  assumptions  can  influence  the  validity  of  the  other  2
assumptions. In order to expedite model-building, we suggest a cursory examination of these
major assumptions early in the model-building process. If  any of the major assumptions are
obviously violated at this stage, we would suggest instituting whatever changes are necessary to
‘improve’ the fit before serious model-building. We have ignored that principle to date in order
to keep the model  ‘simple’ and explain the basic features of linear regression. Once we are
satisfied that  these 3 major assumptions have been met,  we should pursue a more detailed
search for specific observations that might be outliers, leverage points, and/or influential points.
Because of the importance of residuals in these assessments, we begin by describing different
types of residual. 

14.8.1 Residuals

The  raw residual (ri) is the difference between the observed and predicted value for the  ith
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observation and has the same units as the outcome variable, 

r i=Y i− Y i Eq 14.13

where  the  subscript  i denotes  the  particular  observation  on  subject  ‘i’ from  the  ‘n’ study
subjects. The raw residual  ri  is our ‘estimate’ of the error for observation i, by subtracting its
predicted mean from the observed value.

The mean of all residuals is zero, and the variance of each residual is: 

var r i =
2
1−hi Eq 14.14

where  hi  is the weight of the ith observation in determining ri. The hi is called the leverage of
that observation and indicates the potential for this observation to have a major impact on the
model. In a simple regression model, hi has the following formula:

hi=
1
n


X 1i−X 1
2

SSX1 Eq 14.15

indicating that  as the value of the predictor  gets  farther  from its mean, the leverage  of the
observation increases. Note that this ‘potential’ impact depends only on the predictor, not on the
value of the outcome. Leverage has a more obvious meaning when the predictor is measured on
the continuous scale. We return to the subject of leverage in Section 14.10.2. 

The raw residuals can be scaled by dividing them by their SE. If all observations are used to
estimate  σ2 this produces what are called  standardised (std) residuals (these are also called
internally studentised residuals): 

r si=
r i

 1−hi Eq 14.16

The reference distribution for standardised residuals is a t with (dfE), so for sample sizes with
n>30, based on the Gaussian distribution, there should be only about 5% of values outside of
the interval (-2, 2). The major advantage of standardised residuals relative to raw residuals is
that we have this absolute scale for what constitutes a large residual. 

The raw and standardised residuals are computed from the prediction for the  ith observation
from  the  regression  equation  based  on  all  observations.  That  is,  the  observation  itself
contributes to the prediction. An influential observation might not show a large residual because
of its impact on the prediction. To ‘truly’ examine whether the ith observation is in agreement
with the model, we should compare it with the prediction based on the other n-1 observations.
Such (standardised) residuals are called  studentised (stu)  residuals or externally studentised
residuals (others denote them as deletion residuals, or jackknife residuals):

r ti=
r−i

−i 1−hi Eq 14.17

where  the ‘-i’  notation indicates  that  observation  i  is  not  included  in the prediction or  the
model’s variance. These residuals are distributed as a  t-distribution (with dfE-1; Table 14.2),
assuming the model is correct.

To summarise, standardised residuals might yield a large value if: 
•  the observation is an outlier in the response (Y) variable (ie ri is large), or 
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•  the observation is an outlier in the predictor variable(s) (ie hi is large). 

Studentised residuals might be large if either of the above is true, or if the observation strongly
affects  the  fit  of  the  model  (ie the  model  changes  considerably  when  the  observation  is
removed). 

We now proceed to use data on the residuals to assess the overall fit of the model. Although we
separate the study of homoscedasticity from normality, in practice one should look at both, as
well as linearity before deciding on modifications (eg transformations) to the variables.

14.9 EVALUATING THE MAJOR ASSUMPTIONS

In general, evaluating the model assumptions relies heavily on graphical methods, although a
large  battery  of  statistical  tests  exists  for  evaluating  different  assumptions.  However,  we
recommend the tests to be used only as a supplement to the graphical methods, and that caution
should be exercised when tests and graphics lead to different conclusions. 

14.9.1 Homoscedasticity

A  constant  variance  of  residuals  is  an  important  assumption  in  linear  regression.  Without
equality of variance (a situation called  heteroscedasticity), the significance tests are at best
only approximate because the standard error  is too small for some values and too large for
others.  One  can  examine  the  homoscedasticity  assumption,  by  plotting  the  standardised
residuals against the predicted values. If the variance is constant across the range of predicted
Y-values, then a scatter of points resembling a horizontal band will result. If the variance is not
constant, a pattern such as fanning (increased variance with larger predicted values), or coning
(decreased variance with larger predicted values) might result. These patterns suggest that the
dependent variable might need to be transformed (or a weighted regression used). It might also
be useful to plot standardised residuals against individual (continuous) predictors and look for
similar  patterns,  and  to  compare  the  residual  variances  in  the  groups  formed  by levels  of
categorical variables. 

A number of statistical tests for heteroscedasticity exist and a commonly used one is Breusch-
Pagan  test (also  known  as  the  Cook-Weisberg  test)  (Cook  &  Weisberg,  1983).  The  null
hypothesis is homoscedasticity so a significant (P<0.05) test results indicates the presence of
heteroscedasticity. An evaluation of heteroscedasticity is presented in Example 14.13.

14.9.2 Normality of residuals

To examine for normality,  one can plot  the residuals in the form of a histogram (Example
14.14).  An alternative,  and more sensitive display,  is  a  normal  probability plot  (sometimes
called Q-Q (quantile-quantile) plot) for the residuals. If the residuals are normally distributed,
the resulting plot will be (approximately) a straight line at 45° to the horizontal (see right side
figure in Example 14.14). If the residuals are skewed to the right, the normal plot will curve
below the 45° line (the curve is convex), whereas, if the residuals are left skewed, the normal
plot  will  curve  above  the  45°  line  (the  curve  is  concave).  If  the  residuals  are  too  peaked
(platykurtic), the normal plot will be sigmoid curved. Whether such departures from normality
are most easily visualised in the normal plot or the histogram is largely a matter of taste. As an
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aid for the interpretation, the skewness and kurtosis of the standardised residuals can also be
computed. 

Many statistical tests for normality are available, with one of the commonly used tests being the
Shapiro-Wilk test. The null hypothesis is that the distribution is normal, so a significant P-value
(<0.05) is an indication of non-normality. However, our experience is that with large sample
sizes,  this test  often yields  a  significant  result  when only mild departure from normality is
evident. Consequently, we often rely more heavily on visual assessment (especially of a Q-Q
plot. 

14.9.3 Correcting error distribution problems: transformations of the outcome

There are a number of possible transformations of the outcome variable,  but only the more
frequently used ones are mentioned here. Most software programs provide a variety of easily
accessed transformations so that we can readily try different approaches. The selection of the
correct transformation also is aided by knowledge of what has worked in similar situations in
the past, although formal assessment of the appropriate transformation remains useful (Afifi et
al, 2007). Some general rules are: 

• if the variance of the residuals increases mildly (ie proportional to the mean) with the
outcome, a square-root transform of Y may prove useful , 

• if  the  ‘fanning’  is  stronger  (proportional  to  the  mean  squared)  a  logarithmic
transformation of Y often works, 

• if the ‘fanning’ decreases with the outcome and the relationship of  X  and  Y  is nearly
linear, a reciprocal transformation of Y could prove helpful, 

Example 14.13 Evaluation of homoscedasticity (equal variances) with -wpc- as the 
outcome
data = daisy2

A scatterplot of standardised residuals
vs  predicted  values  based  on  the
model  presented  in  Example  14.12
was generated.

An approximately equal-width band of
points  suggests  the  model  meets  the
assumption  of  equal  variances.
Visually,  it  is  difficult  to  detect  any
pattern to the residuals. However, the
Cook-Weisberg  test  for  hetero-
scedasticity  yields  a  χ2-statistic  of
20.58 with 1 df. This very significant
result  (P<0.001)  indicates  a  non-
constant variance. Computing the SD
of the residuals in ranges of predicted
values with cutpoints of 40, 60, 80 and
100,  suggests  that  the  variance  is
smaller  at  low  and  high  values  of
predicted values than in the middle 2
categories (data not shown).

Fig. 14.5 Scatterplot of standardised residuals vs 
fitted values
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•  if Y is a proportion (p) (or more generally, an outcome in a bounded interval but without
a binomial denominator) the variance-stabilising transformation for proportions is: 
arcsin(p1/2). 

Sometimes a more formal approach to identifying the optimal transformation is needed. In this
regard, if we are concerned about a lack of normality, there is a family of transformations called
Box-Cox transformations. The intent here is to determine the power transformation Yλ (except
for  λ=0, see below) which will make the distribution of the errors as close to an independent
Gaussian sample as possible. The Box-Cox analysis, available in most software, computes the
value of λ which best ‘normalises’ the errors using an iterative maximum-likelihood procedure.
These transforms can only be used on positive numbers (ie >0), but they can be applied to the
outcome variable, the predictor(s) or both. Some examples of Box-Cox transformations (where
Y* is the transformed value of Y) are: 

•  if λ = 1, we use Y* = Y 
•  if λ = 1/2, we use Y* = √Y (square root of Y)
•  if λ = 0, we use Y* = lnY,
•  if λ = -1, we use Y* = -1/Y. 

Usually it is sufficient  to round the estimated  λ to the nearest 1/4 unit (ie λ=0.45 would be
λ=1/2), or to pick a ‘nice’ value within the 95% confidence interval for  λ. In the model from

Example 14.14 Evaluating normality of residuals with -wpc- as the outcome
data = daisy2

The histogram on the left and the  Q-Q plot (which displays the quantiles of the residuals versus the
quantiles of the normal probability distribution) indicate moderate non-normality. Here we have a dish-
shaped (convex) Q-Q plot consistent with the right skewed distribution of residuals. 

Further evidence of a lack of normality can be obtained from a test for a normal distribution. The
Shapiro-Wilk’s statistic has a value of W=0.88 (small values of W are critical for a normal distribution)
with p<0.001, indicating non-normality. The residuals are clearly not normally distributed so we need
to consider improving this aspect of our model, as is discussed in subsequent examples and summarised
in Section 14.9.3.  Following transformation using  -wpc_sqrt-  the graphs appeared  ‘visually better’;
however, W=0.96, and the Shapiro-Wilk’s test remained highly significant.

Fig. 14.6 Histogram and Q-Q plot of standardised residuals
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Example  14.12,  λ=0.11  which  is  close  to  0,  indicating  that  a  log  transformation  might  be
appropriate. As noted above, we used this in the next formulation of our model.  Note If there
are 0 values to be transformed, you should add a small number (usually the lowest observed
value of Y in your data) to Y before making the log transform (Afifi et al, 2007).

Note that  the analysis  for  homoscedasticity and normality should be based on the residuals
(from an appropriate linear model), not on the distribution of the outcome itself. It should also
be noted that Box-Cox is only one (but commonly used) type of transformation; there is no
guarantee that the optimal λ works well (only that it is the best among the power transforms),
and many other transformations might be relevant. For example, if the distributional problem
with the residuals is mainly one of skewness, an alternative transform is of the form Y*=ln(Y-c),
where c is a value to be selected to help correct the skewness. An advantage of this transform is
that it is not constrained to transforming only positive numbers; but Y-c must be positive.

14.9.4 Linearity of predictor-outcome association

In a regression model, we assume that the relationship between the continuous predictor and the
outcome  is  linear.  Most  software  regression  packages  will  allow  graphical  assessment  of
linearity,  some only in  a  univariable  model,  others  in  multivariable  models.  With multiple
continuous  variables  in  the  model,  one  approach  to  detecting  non-linearity  is  to  plot  the
residuals  against  each  of  the  continuous  predictor  variables  (see  Example  14.15).  The
sensitivity of this process can be increased by using a kernel smoothing function to help you
visualise any pattern that might be present, but be careful of patterns in areas where the data are
sparse. Methods for assessing linearity and dealing with non-linearity are discussed much more
fully in Section 15.6. However, 3 possible approaches to resolving a nonlinearity problem will
be mentioned here. The first is to add a power term of X (eg quadratic). The second approach is
to try to transform the Y-variable (as discussed below). The third is to categorise the continuous
predictor and include either regular or hierarchical indicator variables in the model in place of
the  continuous  predictor  variable.  Example  14.15  shows a  lowess  smoothed  curve  to  help
evaluate the linearity of the relationship between herd size and -wpc-. 

Suggestions for correcting a lack of linearity by transformation 
In order to correct a lack of linearity, we can transform the outcome or the predictor(s) or both.
As will become apparent, we often have to use transformations to correct for heteroscedasticity
and lack of normality also. Sometimes correcting for one problem solves others, but sometimes
correcting one problem makes a new problem on the other fronts. If we transform the outcome
variable to improve linearity, this will definitely affect the variance and normality of residuals
so these must be checked after transforming the outcome variable. Indeed, we might have to
rebuild the model. If we transform the offending predictor(s), then the variance and normality
of residuals are likely to remain relatively stable. Thus, often the route of choice for improving
linearity is to test quadratic, or other power transformations of the predictor(s) within a power
of ±2 to assess their significance. The following are guidelines: 

•  if the outcome increases, at a decreasing rate with X, then try a lnX or a X1/2 
 transformation

•  if the outcome increases, at an increasing rate with X, then try X2 or eX 
• if the outcome decreases, at a decreasing rate with X, then try X -1 or e-X

If  the relationship is  more complex, it  may be necessary to use more complex polynomial
models or hierarchical indicators instead of the continuous-scaled variable (see Section 15.6).
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We can choose the important cutpoints for the hierarchical indicators by identifying which ones
are statistically significant (Section 14.4.2). 

14.9.5 Correcting distribution problems using robust standard errors

A number of distributional problems can be dealt with using robust standard errors. These are
discussed  in  more  detail  in  Section  20.5.4  as  they  might  also  play  a  role  in  dealing  with
clustered data. Robust SEs are generally larger than regular SEs and hence, the resulting CIs for
the coefficients are wider. If robust errors are used, be careful not to use the F-test to assess the
model as  it  is  no longer valid.  Also, the MSE no longer estimates  σ2 as there is  no single
parametric value. After examining the residuals on a case-by-case basis, we refit the model of
Example  14.16  using  robust  standard  errors  to  help  assess  the  importance  of  our  disease
variables and interactions. The variable -dyst- became non-significant but the coefficients and
remaining P-values were similar to the non-robust error model (data not shown).

14.9.6 Interpreting transformed models

The assumptions of homoscedasticity and normality for the model presented in Example 14.12
were  both  violated.  Subsequently,  a  Box-Cox  analysis  suggested  that  a  log  transformation
might be appropriate (details not shown). The log transformation improved the normality of the
residuals but resulted in totally unacceptable heteroscedasticity.  Thus, we tried a square root
transform  of  -wpc-  (-wpc_sqrt-)  and  the  Breusch-Pagan/Cook-Weisberg  test  for
heteroscedasticity  had  a  P-value  of  0.52  indicating  no  significant  departure  from
homoscedasticity. This solved the heteroscedasticity problem but normality remained a problem
(visually  the  normality  assumption  seemed  reasonable,  but  the  formal  test  was  still  highly
significant). After examining the residuals, and trying to correct distributional problems, with
emphasis on homoscedasticity,  we decided to use the square root transform of -wpc- as the
outcome for our final model. This model is shown in Example 14.16 and is the model we will

Example 14.15 Evaluating linearity between herd size and -wpc_sqrt-
data = daisy2

A lowess smoothed curve was fit to a
scatterplot  of  the  standardised
residuals  (derived  from  a  model  in
which -hs100_ct- was entered only as
a  linear  term)  against  herd  size
(-hs100_ct-).

The  lowess  curve  shows  the
curvilinear nature of the association so
adding a quadratic term for -hs100_ct-
was deemed necessary.

Fig. 14.7 Lowess smoothed curve through 
scatterplot of residuals vs herd size
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use  for  assessment  of  individual  observations.  Since  the  residuals  of  our  model  still  lack
normality, we used robust standard errors when assessing the significance of each predictor, as
suggested by Pires and Rodrigues (2007). (Note This means that we cannot interpret the  F-
statistic of the model.)

One  problem  with  transformations  is  that  they  change  the  structure  of  the  model  and
interpretation can become more difficult. Among transformations of the outcome, only the log
transformation allows for back-transformation of regression coefficients (to give multiplicative
effects on original scale). In general, rather than trying to explain the model in a mathematical
sense, we suggest that you make extensive use of graphical techniques, compute the predicted
values and plot the back-transformed outcomes. The key is to obtain the predicted outcome (and
any confidence limits) in the transformed scale and then use the back-transform to determine
the outcome in the original scale—on the assumption that explanations of effect are much easier
in the original scale. Sometimes it is advantageous to leave the model in its transformed format.
For example, it has now become standard practise to use log transformed somatic cell counts in
models of risk factors that affect cell counts (or mastitis).

Because our main interest is on the effect (association) of the diseases on -wpc-, we obtained
predicted values of -wpc_sqrt- only for combinations of the diseases in first parity cows in an
average size herd, with no autumn-born calves or twins (this sets all these values to 0 so the
arithmetic is easy). 

Example 14.16 Our final model of disease impact on -wpc_sqrt-
data = daisy2

A model was built with square root transformed -wpc- as the outcome and with robust SEs.
Number of obs = 1574

F(9, 1564) = 16.19
Source SS df MS Prob > F = 0.0000

Model 1133.93219 9 125.992465 R-squared = 0.0852
Residual 12172.3347 1564 7.78282267 Adj R-squared = 0.0800
Total 13306.2668 1573 8.45916519 Root MSE = 2.7898

wpc_sqrt Coef SE t P>t 95% CI

aut_calv -0.514 0.142 -3.62 0.000 -0.792 -0.235

hs100_ct 1.230 0.121 10.17 0.000 0.993 1.467

hs100_ctsq 0.709 0.174 4.07 0.000 0.367 1.050

parity1 0.058 0.048 1.21 0.225 -0.036 0.152

twin 1.385 0.551 2.52 0.012 0.305 2.465

dyst 0.542 0.305 1.78 0.076 -0.057 1.141

rp 0.389 0.269 1.45 0.148 -0.138 0.917

vag_disch -0.013 0.400 -0.03 0.974 -0.799 0.772

rp*vag_d_1 1.491 0.700 2.13 0.033 0.118 2.864

constant 7.517 0.147 51.03 0.000 7.228 7.806

The interpretation of the results of this model are presented in the text (Section 14.9.6).
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Table 14.3 Predicted days from waiting period to conception by disease status 

dyst - dyst +

vag_disch - vag_disch + vag_disch - vag_disch +

rp - 59.9 56.7 60.9 63.7

rp + 66.1 95.6 67.2 101.8
Note Estimates derived from a model based on the -wpc_sqrt- (Example 14.16) are averaged over other predictors in the
model.

Note In  our interpretation that follows, for simplicity,  we ignore the SEs of these predicted
times. If vaginal discharge is not present, -rp- delays conception by approx. 6 days. If -rp- is not
present, -vag_disch- has very little effect (+3 days). If both -rp- and -vag_disch- are present,
conception is delayed by approximately 35-41 days depending on whether -dyst- was absent or
present. Although there was no interaction between -dyst- and the other 2 diseases, the effect of
-dyst- does vary across -rp- and -vag_disch- categories (varying from 1 to 7 days) as a result of
modelling on a transformed scale. For a more detailed discussion of back transformations see
Afifi et al (2007).

When applying transformations to multivariable models we need to be careful when making
predictions because additive and linear models in one scale become (possibly strongly) non-
linear and non-additive (ie showing interaction) in another scale. Thus, the outcome depends on
the values of all of the variables in the model even though there is no actual interaction. A
recommended practise here is to use the mean values for variables not of direct interest and a
range of values for those variables of primary interest when computing the predicted values.
Again,  all  confidence  limits  etc are  determined  in  the  transformed  scale  and  then  back-
transformed into the original scale as necessary.

14.9.7 Specification bias

If the model is correct, the residuals are uncorrelated with the predicted outcome ( Y). However,
if an important variable is missing from the equation, the model suffers from specification bias.
This  might  reflect  itself  in  a  linear  pattern of  the standardised  residuals  with the predicted
values of Y. For example, small (negative) residuals might be associated with lower values of
Y  and large (positive) residuals with large values of Y  suggesting that one or more important

predictor variables are missing. Specifically,  the sampling units with positive residuals have
something in common that also gives them large observed values of Y, and this feature might
help identify the missing variable. Unfortunately, with a ‘weak’ (low R2 as in our model) model,
it is difficult to discern some of these patterns because of the relatively large variability in  ri.
There are formal tests for specification bias, but they are beyond the scope of this text.

14.10 ASSESSMENT OF INDIVIDUAL OBSERVATIONS

Our previous efforts were directed toward evaluating the major assumptions on which linear
regression  models  are  based.  Here  we  assess  the  fit  of  the  model  on  an  observation  by
observation basis. Specifically, we look for:

• cases that are not well fit by the model and hence, have large residuals; some of these 
might be deemed outliers. In a technical sense, outliers have large values of -rstu- that 
are very unlikely to have arisen due to chance.
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• cases with unusual X-values; these are called leverage observations. 
• cases that have an unduly large impact on the model; these are influential observations. 

Our rationale for pursuing this observation-by-observation analysis is that we want to be sure
the model is  correct  for  the majority of  the study subjects,  and if we can  identify specific
instances of observations that do not fit, or have a big influence on our model, it can help us
identify the reason(s) for that impact. In addition, this pursuit can often provide insight into
features of the data that can be useful in clarifying the model results or in planning studies. 

There are 2 general approaches to assist in this task, one is to use graphical techniques to detect
observations with an unusual value (ie atypical relative to the others) on the test statistic, and
the other is based on identifying observations that exceed a specific cutpoint. Both have their
advantages. The key is to try a variety of approaches and see which you prefer, but there is no
need to use all possible approaches in a given dataset. Although we use graphical techniques
regularly, here we present only tabular results. If a predictor variable is interval censored ( ie
treated  as  a  continuous  variable  but  only  takes  selected  values  (such  has  -hs100-  in  our
examples)) special methods, beyond the level of this text, are available for the assessment of the
residuals (Topp and Gomez, 2004).

14.10.1 Outliers 

In general,  an outlier is an observation in a dataset which is far removed in value from the
others in the dataset. In multivariable datasets, we need to make precise the meaning of ‘far
removed in value’,  because  it  may be only in the combination of several  variables  that  an
observation becomes unusual (eg having twins and the other diseases of interest). In regression
analysis,  we  distinguish  between  outliers  in  the  outcome  variable  and  outliers  among  the
predictor variables (not involving the outcome). 

An outlier in the outcome is detected by a (numerically) large residual, where ‘large’ is viewed
relative to the other observations and to what would be expected for a dataset of the same size.

It is important to note that, although we are interested in identifying outliers, we do so largely to
try and explain/understand why they fit poorly,  not to remove them without reason. Outliers
inflate  the  standard  error  of  the  estimate  and  hence,  reduce  the  power  of  statistical  tests.
Unusual values of the outcome, or predictors, might reflect the state of nature, they might arise
because of transcription or data entry errors, or they might signal that we are missing important
covariates  that  could ‘explain’ the poor fitting points. In  most instances,  one should not be
unduly concerned  about these data points unless  their  standardised  value is  greater  than 3,
although values between 2 and 3 might be having an impact on the model. Recall that with
normally distributed residuals, a small percentage (0.3%) of standardised residuals would be
expected to lie outside of +3.

If an observation is suspected to be an outlier, it can be assessed with a 2-tailed t-test based on
the studentised (stu) residual. However,  the probability associated with this test depends on
whether the observation was suspected of being an outlier a priori or not. If an observation was
suspected beforehand, then the P-value is found by comparing the studentised residual to the
value of a  t-distribution with dfE-1 degrees of freedom. However, if we are testing a specific
data point subsequent to observing the residuals, we should multiply the above probability by
the number of observations (n) which is equivalent to using the Bonferroni  adjustment (Eq
14.18). If the studentised residual is larger than this number then it can be considered to be a
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statistically confirmed outlier. In this dataset, a studentised residual greater than 4.17 would be
considered to be an outlier.

P=2∗n∗t (dfE-1 , r ti ) Eq 14.18

Some general rules in managing outlier observations include: 
• identify observations with large studentised residuals; 
• try and find an explanation for them, such as a recording error or erroneous test result (ie 

equipment or operator problem); 
• if there is no recording error, then think about what factors the outliers might have in 

common that, if measured, could explain their lack of fit; 
• try refitting the model without the outliers to see the effect on the model; and
• if the observations are to be deleted (which they rarely are), be sure to explicitly record 

this for yourself and those who read your research report. (It is hard to justify the deletion
of observations.)

Although deleting outliers will improve the fit of the model to the sample data, it might actually
decrease the model’s validity as a predictor for future observations. In Example 14.17, we have
presented the 5 largest positive and negative residuals from our model along with the values of
the key predictor  variables;  this  presentation often helps  you  understand  the reason  for  the
departures from expectation. 

14.10.2 Detecting ‘unusual’ observations—leverage

This activity focuses on identifying subjects with unusual values in the Xs and is particularly
applicable when many continuous variables are present in the model. For this purpose, we use
the leverage from Eq 14.15 which indicates the potential for the ith observation to have a major
impact on the model. 

In general, observations with at least one of the predictors that is far from the mean will tend to
have a large leverage; note that leverage lies between  1/n < hi <1. Observations with a very
high leverage may have a large influence on the regression model;  whether they do or not
depends  on  the  observed  Y-values.  A  common  rule  is  to  examine  observations  that  have
leverage values >2(k+1)/n, where k is the number of predictors in the model (or the number of
regression  parameters,  excluding  the  intercept).  There  is  a  fair  bit  of  arbitrariness  in  this
cutpoint (another commonly used value is 3(k+1)/n), and hence, one should initially look for
observations with relatively extreme leverage values regardless of the cutpoints. Using the latter
guideline, for our example, any observation with a leverage above 0.019 can be considered as
extreme in its  predictor  values.  The 5 cases  with the  largest  leverage  values  are  shown in
Example  14.18.  Having  identified  potentially  influential  observations,  we  then  proceed  to
evaluate their actual influence on the model. 

14.10.3 Detecting influential observations—Cook’s distance and DFITS

An intuitive test of an observation’s overall influence is to omit it from the model, recalculate
the  model  and  note  the  amount  of  change  in  the  predicted  outcome.  If  an  observation  is
influential, the change will be large; if not, the change will be small (see Example 14.19). This
approach forms the basis of  Cook’s Distance Di which is the sum of squared differences in
fitted values with and without observation  i (summed over all other observations and scaled
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suitably). A more direct interpretation of Cook’s distance derives from the formula: 

Di=
rsi

2

(k +1)
∗

hi

(1−hi) Eq 14.19

emphasising that  a  large  standardised residual,  a  large  leverage,  or both can lead  to undue
influence. 

A  commonly  suggested  cutpoint  is  to  compare  the  Cook’s  value  with  the  F(k+1,  n-k-1)
distribution.  If  it  exceeds  the  50%  percentile  (not  5%),  which  is  essentially  1,  then  the
observation should be investigated. However, in our practical experience, the values of Di rarely
exceed this cutpoint, so it is recommended to look instead for values that are extreme relative to
the others in the data. In our data set if we use 4/n as the cutpoint, a large Cook’s Di would have
a value exceeding 0.0025 and 91 cows have this value or greater.

Example 14.17 Examination of standardised and studentised residuals from model with
-wpc_sqrt- as outcome
data = daisy2

Standardised and studentised residuals were computed based on the model presented in Example 14.16
with ordinary SEs. Given the relatively large size of the dataset, the differences between the 2 sets of
residuals were minimal. The 5 smallest standardised residuals were:

cow
herd
size parity twin dyst rp

vaginal
discharge

wpc
sqrt

pred.
value

std.
resid.

2272 263 2 no no no no 1.00 7.73 -2.42

1032 201 2 no no no no 1.00 6.62 -2.02

403 235 4 no no no no 1.73 7.00 -1.89

983 201 4 no no no no 2.00 7.25 -1.89

1130 201 5 no no no no 2.24 7.31 -1.82

These generally are cows that were predicted to have a longer than average -wpc- interval, but instead
had very short intervals.

The 5 largest standardised residuals were:

cow
herd
size parity twin dyst rp

vaginal
discharge

wpc
sqrt

pred.
value

std.
resid.

199 294 2 no no no no 15.91 7.72 2.94

4939 185 4 no yes no no 15.49 7.22 2.99

805 333 4 no no no no 17.26 8.66 3.09

1226 125 2 no no no no 15.30 6.64 3.12

1257 125 5 no no no no 15.91 6.81 3.27

These are cows that had -wpc- intervals much longer than predicted. (None of the 3 cows with the
largest standardised residuals had any of the 3 diseases of interest, but they had long -wpc-). Based on
our data,  with 1,574 cases and 1,564 degrees of freedom,  a case with  a studentised residual more
extreme than +4.17 would be ‘unusual’ with a P-value of <0.05. Since we have no cows with such an
extreme residual we conclude there are no serious outliers.
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A similar approach is used with a statistic known as DFITS (or DFFITS) (Example 14.19). It is
an acronym that stands for ‘difference in fit’ between when the observation is in the model
versus when it is out. DFITS indicates the number of standard errors change to the model when
that observation is deleted. The following formula for DFITS shows its strong similarity to
Cook’s distance:

DFITSi=r ti  hi

1−hi  Eq 14.20

Thus, the DFITS statistic is based on the studentised residual and retains its sign. Again, if the
DFITS numerically exceeds a value of, for example, 1 for  n<120 or  2√((k+1)/n) in a larger
dataset, it means that if that observation was deleted, the model would change by a relatively
large amount (recall that k is the number of predictor variables in the model). As with outliers,
we should be hesitant to remove influential observations without good reason. In general, we do
not remove influential observations unless the data are known to be incorrect, or there is a clear
explanation for their influence. If observations are removed, the reason(s) for their removal,
must be drawn to the attention of those reading your research results.

In our model, a large value for DFITS is 0.16. There are a number (68) of cases with larger
values than these, almost all have one or more of the 3 diseases of interest. While it is true that
these diseases increase the time to conception, the cases shown in Example 14.19 fit the model
reasonably well (ie reasonable -rsta- values) and there seems little reason to remove them. 

14.10.4 Detecting influential values of specific predictors

Given  an  exposure  variable  of  interest,  one  can  assess  the  impact  of  deleting  a  specific
observation on the value of the regression coefficient for that variable. The statistic used for this
is known as a delta-beta (DB) and reflects the number of standard errors by which the specific
regression  coefficient  changes  when that  observation  is  deleted.  Thus it  helps  identify if  a
particular observation has a large influence on the β for that variable. Critical values for n<120

Example 14.18 Examination of leverage cases from model with -wpc_sqrt- as outcome
data = daisy2

Leverage values were computed based on the model presented in Example 14.16 with ordinary SEs.
The 5 largest values were:

cow
herd
size parity twin dyst rp

vaginal
discharge

std. 
resid. leverage

2389 263 5 yes no no yes -0.57 0.059

2433 263 3 yes no yes yes -0.52 0.063

163 294 2 yes no yes yes 0.06 0.064

1122 201 4 yes no yes yes -1.24 0.064

4916 185 4 yes no yes yes -0.66 0.064

Cows with twins (but without dystocia) and with one or more of -rp- or -vag_disch- have high leverage.
Because delivering twins without dystocia is unusual and the diseases are infrequent, these cases are
essentially ‘unusual’ and are highlighted by the leverage statistic.
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are 1 and for larger datasets 2/√n. Again,  this value might be too sensitive and initially one
should just focus on observations with very extreme DB values.

In our model, the critical DB values for the variable -rp- are  ±0.05. All cows with -rp- were
influential;  however,  this  is  not  surprising  given  that  cows  with  -rp-  are  definitely  in  the
minority. The same is true for DBs on -vag_disch- and -dyst-. There were 30 cows with both
-rp- and -vag_disch- and they had large DBs also. There is no need to remove any of these
cases  in our dataset.  In  general,  the DB statistics  are much more useful  if  the variables  of
interest are continuous rather than dichotomous. 

Example 14.19 Examination of influential cases from model with -wpc_sqrt- as outcome
data = daisy2

The 5 largest negative DFIT cases are:

cow
herd
size twin dyst rp

vaginal
discharge

Std.
resid.

Cook's
D dfit

713 333 yes no no no -1.63 0.012 -0.346

444 235 yes no no no -1.68 0.011 -0.339

1122 201 yes no yes yes -1.24 0.010 -0.323

2480 263 no no yes yes -1.68 0.010 -0.320

5029 185 yes yes no no -1.34 0.009 -0.305

Cows with twins or one of the diseases and hence predicted to have long -wpc- intervals, but with short
-wpc- intervals had an influence on the model. The 5 largest positive DFIT cases are:

cow
herd
size twin dyst rp

vaginal
discharge

std.
resid.

Cook's
D dfit

4939 185 no yes no no 2.99 0.012 0.349

1124 201 no yes no no 2.85 0.012 0.351

238 294 no no no yes 2.69 0.016 0.398

4999 185 no no yes yes 2.09 0.016 0.405

1238 125 no no no yes 2.63 0.020 0.447

Cows  without  twins  but  with  one or  more  of  the diseases  were  the  most  influential  cases.  In  all
instances, had the  ‘influential’ cows possessed covariate values that were of little interest to us, we
might remove them and assess their impact as part of considering their complete removal from the
model.  Since  we  are  interested  in  the  effect  of  the  diseases,  we  will  not  remove  any cases.  Not
surprisingly, among the 10 most influential cases, those with high leverage had smaller residuals than
those with lower leverage. Other factors that appeared to lead to influential cases included 1 herd that
accounted for 40% of the 10 most influential cases, and cows with twins (1.7% of calvings) accounted
for 4 of the 5 largest negative DFIT cases.

Due to the influence of cows with twins, we reran the model excluding cows with twins. None of the
coefficients changed by more than 20%; however, the coefficient for dystocia became non-significant
with P=0.076. 
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14.10.5 Comments on the model deficiencies

In our examples, we have taken you through the basic steps of assessing a linear regression
model.  We  did  have  a  few  problem  cows  (subjects)  in  the  dataset  that  were  minimally
influential, or poor fitting, but we had a serious problem relating to the lack of normality with
more positive residuals than negative residuals. The reality is that if we correct the normality
assumption, we create unequal variances. On balance our square root transformation corrected
heteroscedasticity so we stayed with that model. We might be bothered by the lack of normality
and hence we ran a model using robust variances just to check the significance of coefficients
(we can’t use the  F-statistic in this instance).  As indicated in Example 14.16, the variables
selected for the model, with -wpc_sqrt- as the outcome, do not change drastically when robust
standard errors are used. This provides some support for the likely validity of the former model
despite the non-normality of residuals and the low R2.

14.11 TIME-SERIES DATA

Time-series  data  are  characterised  by an  outcome measured  at  equal  time intervals  over  a
reasonably long time period, such as hospital admissions per day for 1-5 years, or herd-level
milk production per day for at least a year. In this setting, the outcome in one time period (eg
day) is likely to be correlated with the outcome in adjacent time periods. This correlation of
outcomes often leads to correlation of residuals and breaks one of the major assumptions of
(ordinary  least  squares;  OLS)  linear  regression.  Often,  we  can  predict  that  data  will  be
correlated given the structure of our sampling of subjects (for example measuring the same
outcome on selected animals within a herd, or taking repeated measurements of an outcome on
the same individuals over time). Pires and Rodrigues  (2007) describe methods for use when
only some of the errors are correlated, such as would occur if a dataset had data from some
cows  with  multiple  lactations,  when  most  data  came  from  cows  with  only  one  lactation.
Analyses to control for the correlations between repeated measurements on a group of study
subjects are described in Chapter 23. 

In time-series data, a correlation between residuals on adjacent time periods (eg days) arises
because  we make repeated  observations,  at  equally spaced  intervals,  on our  study subjects
regularly (for example taking daily measurements of milk production on a cow, or on a herd.
The set of predictors could be disease occurrence and/or daily somatic cell counts (SCC)). If we
analyse such data, to estimate the impact of SCC on milk production, the coefficients reflecting
the ‘effect’ of the predictors are unbiased but the standard errors are likely to be incorrect. The
correlation of residuals can lead to either inflated or deflated standard errors.  If  we suspect
serial  correlation,  we can  use  the  Durbin-Watson test to  assess  this.  In  general,  a  Durbin-
Watson test  value of approximately 2 indicates  no correlation,  and as the test  statistic gets
smaller  this  indicates  increasing  correlation  between  adjacent  residuals.  There  are  more
advanced tests of serial correlation such as the  Ljung-Box  Q-test (Ljung & Box, 1978), that
provide a specific P-value that is easier to interpret than the Durbin-Watson test. 

Examples of time series analysis include the analysis of temporal patterns of  Campylobacter
spp in humans and poultry (Hartnack et al, 2009); relationships between ambient temperature
and enteric infections in humans (Fleury  et al, 2006), and temporal patterns of fox rabies in
Ontario (Tinline et al, 2004). Poirier et al (2008) give an example of modelling the effect of an
intervention in poultry production on the future monthly number of isolations of poultry-related
Salmonella spp in humans. A useful text on time-series is Diggle (1990).



362 LINEAR REGRESSION

One of the early steps in analysing time-series data is to plot the outcome data and, in this
regard, a smoothed curve is a good way to enhance visualisation of trends and other patterns
such as seasonal changes in the outcome. If the time counter is ‘t’ (eg for daily measurements
t=day) we can use a variety of smoothing functions of length 2m+1 (m>=t). The larger m is, the
greater the smoothing (of all fluctuations of duration less than m). For example, if we have a
daily time series and m=1, then a 3-day moving average will remove variation in the outcome
measure of periodicity of 3 days or less. Before proceeding to detailed analyses it is important
that the data be  ‘stationary’; that is, any trend, or seasonal variation be removed (beyond the
level of this text).

Once  this  is  accomplished,  we  should  examine  the  correlation  between  residuals  over  a
specified number of lag periods (for example, correlations between residuals over a 7-day lag
(m=7)  indicates  the  correlations  between  observations  ranging  from  1  to  7  days  apart).
Typically, the correlation is greatest for time points that are closest together (ie observations on
the same subjects made close together in time tend to be strongly correlated with one another).
For example, the residuals from predicting milk production of dairy cows are most strongly
correlated between adjacent days and the correlation tends to decrease as the number of days
between  milk production  measurements  increases  up to  about  4  days  when  the  correlation
becomes essentially non-existent).  The autocorrelation function can be used to ascertain the
correlation  structure  for  outcomes  in  periods  up  to  m time  units  apart.  The  partial
autocorrelation function between 2 outcomes m units apart takes into account the correlations
between time units between 1 and m and is useful for identifying where sudden changes in the
correlation structure occur. Most software packages have convenient commands to allow you to
examine  these  correlations  over  a  variety  of  lag  periods.  Knowledge  of  these  correlations
provides guidance about the desired model structure. 

14.11.1 Adjusting for serial correlation

One way to correct  for the correlation between residuals is to use a weighted least  squares
estimator,  and 2 such estimators  are the Cochrane-Orcutt  and the Prais-Winsten estimators.
These do not take the dynamic nature of the time series (eg trends, weekly or seasonal patterns)
into account but they do make corrections to the standard errors, assuming a lag of 1 time unit
suffices. Again, many software packages will allow you to run these regressions, and it is usual
practise to rerun the tests for correlated residuals after running these models to ensure that the
correlations have been removed.

A more advanced approach involves the use of what are termed autoregressive models (Zeger
et al, 2006). The details of these are beyond the level of this text and will not be pursued here.
However,  we  will  (barely)  introduce  the  subject  at  this  point.  Essentially,  we  model  the
outcome (Yt) on a given day as a function of a number of predictors (ie the Xs). The Xs can be
variables that we have reason to believe will account for some of the patterns evident in the
time series such as seasonal and/or annual trends, or they could be time-dependent exposure
variables (Xts) whose ‘effect’ we are attempting to estimate. The choice of these would depend
on our beliefs about what processes are ‘driving’ the patterns seen in the time series. Once these
fixed  effects  are  included  it  is  common to  find  that  the  nature  and  strength  of  the  lagged
correlations  have  changed  from  the  original  naive  values.  The  equation  below  is  an
autoregressive (AR) model because we have included the outcome on the previous 2 days as
predictors; this would be an AR-2 model.
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Y t=01 X 1 t 2 X 2 t1Y t−12Y t−2t  Eq 14.21

This model also implies that the predictor variables are time dependent (and measured on the
same time scale as Y) variables. For example Yt could be milk produced on day t and X1t could
be somatic cell count on day t, and X2t could be a measure of daily temperature on day t.  As
shown in Fleury et al (2006), Yt could be the daily number of enteric disease cases and the Xts
could be weather variables.

With an AR1 structure, correlations have an exponential decay over time (the structure of the
decay is more complex for AR2, AR3  etc). It  is useful to verify this, for example, visually
through correlograms, in order to ensure that the expected decay is consistent with the data. If
there are sudden changes in the correlation structure, or if the correlation of Y t with Yt-1 drops
very quickly, then a moving average model could be helpful to account for these. The moving
average (MA) component uses the residuals of time periods at the specified lags to account for
the correlation structure. As the name suggests, ARMA models use both  autoregressive  and
moving  average  processes. An  ARMA(1,1) model  of  AR-1  and  MA-1  is  useful  if  the
AR-1 model includes measurement error. As noted above, for their validity,  ARMA models
must be stationary (this indicates that the mean, variance, and autocorrelation structures are the
same over time) and this needs to be verified. Stationarity does not mean that we cannot model
events  that  change  over  time,  but  we  may  need  to  adjust  for  them  by  removing  trend,
seasonality etc.
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