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MODEL-BUILDING STRATEGIES

OBJECTIVES

After reading this chapter, you should be able to:

 1. Develop a ‘full’ (maximal) model which incorporates your biological understanding of the 
system being investigated.

 2. Carry out procedures to reduce a large number of predictors to a more manageable subset.

 3. Address key issues related to the predictors (eg functional form of the relationship between 
a continuous predictor and the outcome, dealing with missing values).

 4. Build regression-type models while considering statistical and non-statistical criteria.

 5. Evaluate the reliability of a regression-type model.

 6. Present the results from your analysis in a meaningful way.
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15.1 INTRODUCTION

When building a regression model, we need to decide on the goals of the analysis, to recognise
the need to incorporate both statistical considerations and our subject matter knowledge into
that process, and to balance the desire to get the model which ‘best fits’ the data with the desire
for parsimony (simplicity in the model). As will become apparent, the definition of ‘best fit’
depends on the goal of the analysis. Throughout this chapter (unless otherwise specified), the
principles discussed relate to all types of regression model but will generally be presented in the
context of a linear regression model.

Goals of the analysis
Regression models are generally built to meet one of 2 broad objectives. One goal might be to
come up with the best model for predicting future observations. In this case, the details of the
model (eg the effects of specific predictors) might be of little consequence, but we want to keep
any variables out of the model whose relationship with the dependent variable is questionable.
If these variables are included and a future observation has a relatively extreme value for one of
those variables, the prediction might be inaccurate.

More often in epidemiology, the goal is to understand the relationship(s) (potentially causal)
between one or more predictors and the outcome of interest. In this case, you want to obtain the
most precise estimates of coefficients  possible for the variables of interest.  In  this strategy,
careful attention must be paid to possible interaction and confounding effects.

Role of subject matter knowledge
Subject matter knowledge must guide model-building. If the goal is simply to build a predictive
model, the role of subject matter knowledge is to prevent the inclusion of variables not likely to
be generally related to the outcome of interest. (As noted, inclusion of these could make future
predictions inaccurate.)

If the goal is understanding biological relationships, it is important that factors which are likely
to be confounders should be retained in the model, regardless of their statistical significance.
On the other hand, inclusion of factors which are almost certainly not confounders (see Chapter
13 for criteria for confounding) may result in biased results. This is most likely to happen if
intermediate (intervening) variables are included in the analysis. Building a causal diagram is
an essential first step in any model-building exercise in which the objective is to understand the
relationships between predictors and the outcome (more on this in Section 15.3).

Subject matter knowledge may also help in the selection of variables. For example, choosing
among collinear variables is facilitated if you are able to take into consideration the difficulty of
measuring each of the predictors and their perceived reliability.

Parsimony vs fit
In general, parsimony (using as few predictors as required to obtain a good fit) should be your
guiding light, but do not exclude variables that you have reason to believe (ie  for biological
reasons) should be in the model. Remember, the goal of most statistical analyses is to extract
meaningful results from a complex dataset. If  the final results are almost as complex as the
original data, nothing has been gained. (If the number of regression coefficients equalled the
number of observations in the dataset, we could have a perfect fitting model, but would have
gained  nothing).  Simple  models  are  more  robust,  less  likely  to  be  influenced  by  specific
idiosyncrasies of the existing data, and consequently, will perform better if applied to new data.
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15.2 STEPS IN BUILDING A MODEL

The steps involved in building a regression model are:
1. Specify the maximum model to be considered (ie identify the outcome and the full set

of predictors that you want to consider).
2. Specify the criterion (criteria) to be used in selecting the variables to be included in the

model.
3. Specify the strategy for applying the criterion (criteria).
4. Conduct the analyses.
5. Evaluate the reliability of the model chosen.
6. Present the results.

15.2.1 Specifying the maximum model

The  first  step  in  specifying  the  maximum model  is  to  identify  the  outcome  variable  and
determine whether it is likely to need transformation (eg natural log transformation) or other
form of manipulation (eg recategorisation of a categorical  outcome variable).  Discussion of
issues  related  to  the  outcome  variable  is  presented  in  the  chapters  dealing  with  specific
modelling  techniques  (eg Chapter  14  for  linear  regression  models,  Chapter  16  for  logistic
models).

The maximum model includes all possible predictors of interest. There are pros and cons to
making the maximum model very large. On one hand, it will prevent you from overlooking
some  potentially  important  predictors.  However,  on  the  other,  adding  a  lot  of  predictors
increases the chances of:

• collinearity among predictor  variables  (if  2  or  more  independent  variables  are highly
correlated, the estimates of their coefficients in a regression model will be unstable), and

• including variables that are not important ‘in the real world’ but happen to be significant
in  your  dataset.  (Interpretation  of  these  results  might  be  difficult  and  the  risk  of
identifying spurious associations is high.)

When specifying the maximum model, you need to identify which variables should be included
in the model-building process, how many should be included and whether or not interaction
terms need to be considered.  Bear in mind that building the maximum model is as much a
scientific/clinical task as it is a statistical one. The steps involved in specifying the maximum
model include:

• drawing a causal diagram
• potentially reducing the number of predictors being considered
• considering the impact of missing values
• evaluating the effects of continuous predictors
• deciding what interactions are to be considered.

Each of these will be discussed below.

15.3 BUILDING A CAUSAL MODEL

It  is imperative that you have a causal model in place before you begin the model-building
process. This model is usually presented as a causal diagram. These were introduced in Chapter
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13 and a much more complete discussion of causal diagrams is presented elsewhere (Rothman
et al, 2008, Chapter 12). The diagram will identify potential causal  relationships among the
predictors and the outcome of interest. For example, if you were interested in evaluating the
effects  of  retained  placenta  on  reproductive  performance  (as  measured  by  the  calving-to-
conception interval) in multiparous dairy cows and also had recorded data on: parity,  twins,
dystocia, vaginal discharge (an indicator of metritis), calving to first service interval and first
service conception, then a putative causal diagram might look like Fig. 15.1. (These are the
variables recorded in the dataset daisy2 used in Chapter 14.) Note In the causal diagram, it is
assumed that twins and dystocia only affect reproductive performance through their effects on
retained placenta and/or vaginal discharge. (You might propose other causal relationships).

If the objective of the study was to quantify the effects of retained placenta on the calving to
conception  interval,  you  would  NOT include  any  intervening  variables  (vaginal  discharge,
calving to first service interval, first service conception) in the regression model. Inclusion of
these intervening variables would remove any of the effect  from retained placenta that was
mediated through them. On the other hand, if parity is suspected to be an important confounder,
it might be designated to remain in the model regardless of whether or not it is statistically
significant. 

Even if a study has a very large number of predictors,  it  is essential  to start  with a causal
structure in mind and this can often be drawn by grouping variables into logical clusters (eg all
farm management variables together, all measures of disease levels together).

15.4 REDUCING THE NUMBER OF PREDICTORS

It  is  sometimes necessary to  reduce  the  number  of  predictors  to  be considered  in  a  model
building  procedure.  However,  before  proceeding  with  an  overview  of  the  approaches  for
reducing  a  large  number  of  predictors,  we  must  point  out  that,  in  many  cases,  the  most
appropriate procedure would be to design a study which was much more focused and which
collected  high-quality  data  on  far  fewer  predictors.  This  will  greatly  reduce  the  risk  of
identifying associations for which making a causal inference is very precarious. 

Fig. 15.1 Putative causal diagram for effects of retained placenta on 
reproductive performance
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There are a variety of ways of reducing the number of predictors that need to be considered for
inclusion in a regression model. These include:

• screening predictors based on descriptive statistics
• correlation analysis of independent variables
• creation of indices
• screening variables based on unconditional associations
• principal components analysis/factor analysis
• correspondence analysis.

These  will  each be reviewed briefly and more detail  can be found in  Dohoo  et  al (1997).
However,  before  any reduction  in  the number of  independent  variables  is  undertaken,  it  is
essential to identify the primary variables of interest and any other variables for which there is
already evidence that they might be confounders or interacting variables. These should always
be retained for consideration in the model.

15.4.1 Screening predictors based on descriptive statistics

It is essential to become thoroughly familiar with your data before starting any model-building
(Chatfield,  2002).  Descriptive  statistics  (means,  variances,  percentiles  etc for  continuous
variables and frequency tabulations for categorical variables) can be very helpful in identifying
variables which might be of little value in your model. Keep in mind that, in general, you want
to keep variables  that  you  are confident  have been  measured  accurately and precisely,  and
which are relatively complete. Some specific guidelines  follow. 

• Avoid variables with large numbers of missing observations (see Section 15.5 for dealing
with missing data).

• Select only variables with substantial variability (eg if almost all of the animals in a study
are males, adding sex as a predictor is not likely to be helpful).

• If a categorical variable has many categories with small numbers of observations in each,
consider  combining  categories  (if  this  makes  biological  sense),  or  eliminating  the
variable. 

15.4.2 Correlation analysis

Examining all pairwise correlations among predictor variables will identify pairs of variables
that contain essentially the same information. Inclusion of highly correlated variables will result
in multicollinearity in the model, potentially producing unstable estimates of coefficients and
incorrect  standard  errors.  Collinearity  will  often  be  a  problem with  correlation  coefficients
greater  than 0.9,  but could occur at  lower levels.  If  pairs of highly correlated variables  are
found, one of them should be selected for inclusion in the model based on criteria such as:
biological plausibility, fewer missing observations, ease and/or reliability of measurement.

Note Examining correlations among variables in a pairwise manner will not necessarily prevent
multicollinearity  because  the  problem  can  also  arise  from  correlations  among  linear
combinations of predictors. However, screening based on pairwise correlations will remove one
potential source of the problem.

Note Correlations  are  really  only valid  for  continuous  predictors  but  in  practise,  checking
correlations among dichotomous predictors is a convenient way of identifying highly collinear
predictors. These relationships can be further assessed using cross-tabulations.
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15.4.3 Creation of indices

It might be possible to combine a number of related predictor variables into a single index that
represents  some  overall  level  of  a  factor.  This  might  be  done  subjectively  based  on  the
perceived  importance  of  the  contribution  of  a  number  of  factors.  For  example,  an  index
representing  the  level  of  hygiene  in  stalls  for  dairy  cows  might  be  created  as  a  linear
combination of scores for factors such as quantity of bedding present, wetness of the bedding,
amount of manure present and amount of fecal soiling of the udder and flanks of the cows. The
weights  assigned  to  each  factor  might  be  subjectively  assigned  although,  if  possible,  they
should be based on evidence from previous research. Alternatively, data on a number of factors
can be combined in an objective manner if procedures to do so exist. For example, data on fan
capacity, size and shape of air inlets and barn size might be used to compute the number of air
changes  per  hour  in  a  swine  barn.  This  might  then  be  expressed  as  the  proportion  of  a
recommended ventilation level. One drawback to the creation of indices is that it precludes the
evaluation  of  the  effects  of  individual  factors  which  were  used  to  create  the  index  (see
discussion of suppressor variables in Section 13.11.8). 

In a situation in which data on a number of related predictors have been recorded, and it is
reasonable to assume that the individual predictors are all reflective of some underlying, but
unmeasured, characteristic (also called a latent variable) those items may be combined into an
index (or  scale).  Cronbach’s alpha may be used to evaluate the internal consistency of the
scale (ie evaluate how well each predictor correlates with the scale). The scale is simply the
sum, or  average,  of  the values  of  the individual predictors  (called items) so these  must  be
standardised  if  they  are  not  measured  on  the  same  scale.  Cronbach’s  alpha  (also  called  a
reliability coefficient)  is  the square of  the correlation between the scale and the underlying
characteristic. Suggested guidelines for the interpretation of the Cronbach’s alpha are: <0.60
unacceptable,  0.60–0.65 undesirable, 0.66–0.70 minimally acceptable,  0.71–0.80 respectable,
0.81–0.90 very good, and > 0.90 consider shortening the scale by reducing the number of items
(Dukes, 2007). 

In addition to looking at Cronbach’s alpha, it is useful to evaluate the correlations between each
item and the scale (or a scale generated without the item of interest) and with other items in the
scale.  This  will  identify items which do not fit  well  in  the scale.  Example 15.1 shows the
(unsuccessful) use of Cronbach’s alpha for evaluating a scale to represent animal density in pig
barns. Cronbach’s alpha has also been used to demonstrate the internal consistency of a scale
for dairy cow hygiene measures (Mounchili et al, 2004).

15.4.4 Screening variables based on unconditional associations

One of the most commonly used approaches to reducing the number of predictor variables is to
select only those that have unconditional associations with the outcome that are significant at
some very liberal P-value (eg 0.15 or 0.2). The types of test used to evaluate these associations
will depend on the form of the outcome and predictor variables. However, simple forms of a
regression model (eg a linear or logistic regression model with a single predictor) will always
be appropriate for this investigation. 

One drawback to this approach is that an important predictor might be excluded if its effect is
masked  by  another  variable  (ie the  effect  of  a  predictor  only  becomes  evident  once  a
confounder  is  controlled)  (see  distorter  variables,  Section 13.11.7).  Using  a  liberal  P-value
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helps  prevent  this  problem.  Another  approach  is  to  build  a  model  with  the  statistically
significant predictors and subsequently add all eliminated predictors, one at a time, back into
the final model. If the confounder was included in the final model, then the eliminated predictor
might then turn out to have a statistically significant association and be added back into the
model.

This  process  of  screening  predictors  individually  can  be  extended  to  include  building
multivariable models using mutually exclusive logical subsets of predictors to identify the key
predictors  in each subset,  which are then retained for  consideration in a  final  multivariable
model. For example, Lofstedt et al (1999), when evaluating a wide range of possible predictors
of  septicemia  in  diarrheic  calves,  built  separate  models  using  demographic  and  physical
examination data, clinical chemistry data and hematology data. The important predictors from
each of these 3 models were then evaluated in an overall model.

Example 15.1 Cronbach’s alpha
data = pig_farm

Four variables related to the density of pigs in a pig barn were considered for inclusion in a scale
reflecting animal density.

strdnst—floor space per starter pig (m2)
grwdnst—floor space per grower pig (m2)
fnrdnst—floor space per finisher pig (m2)
shipm2—pigs shipped per m2 in the barn

Because the items are measured on different scales, Cronbach’s alpha was constructed as the mean of
standardised values for each predictor.

item obs sign
item-test

correlationa

item-rest
correlationb

average inter-item
correlationc

Cronbach's
alphad

strdnst 69 + 0.7161 0.4962 0.5710 0.7997

grwdnst 69 + 0.8666 0.7403 0.4128 0.6783

fnrdnst 69 + 0.8389 0.6919 0.4420 0.7038

shipm2 69 - 0.7315 0.5193 0.5548 0.7889

Test scale 0.4951 0.7969

a correlation between item and the scale (average of all items)
b correlation between item and a scale based on all other items
c average correlation among all other items
d Cronbach's alpha for a scale based on all other items

The reliability coefficient is 0.797 indicating respectable reliability (estimated correlation between the
scale and underlying characteristic is  √0.797=0.89). While the correlations between individual items
and  the  scale  are  reasonable  (0.72–0.87),  with  only  4  items  in  the  scale,  each  item  contributes
substantially to the scale.  A better evaluation of each item is found by looking at  the correlations
between  items  and  a  scale  built  without  the  item of  interest  included  (item-rest  correlation).  This
identifies -strdnst- as the item with the lowest correlation to other items. The average correlation among
the other items is also highest if -strdnst- is omitted (0.571).
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15.4.5 Principal components analysis, factor analysis and correspondence analysis

Principal components analysis and factor analysis are 2 closely related techniques that can be
used to consolidate the information contained in a set of predictor variables into a new set of
uncorrelated  (ie orthogonal)  predictor  variables.  A  detailed  discussion  of  the  techniques  is
beyond the scope of this book but they will be summarised briefly. Both are designed primarily
to  work  with  quantitative  (continuous)  predictors,  but  techniques  are  available  to  allow
categorical predictors to be included.

Principal components analysis is used to convert a set of k predictor variables into a set of k
orthogonal,  principal  components  with  each  successive  component  containing  a  decreasing
proportion of the total variation among the original predictor variables. Because most of the
variation  is  often  contained  in  the  first  few  principal  components,  a  small  subset  is  often
selected  for  use  as  predictors  in  the  regression  model.  The  composition  of  the  principal
components does not vary depending on the number of components selected for retention. Once
the regression model has been built with this subset of the principal components, the resulting
coefficients can be back-transformed to obtain coefficients for the full set of original predictors.
This resulting set of coefficients will be more stable than those from a model built directly from
the original predictors because the problem of multicollinearity has been eliminated. However,
there will be no evaluation of the statistical significance of each of the predictors and hence, no
identification of which ones are most ‘important’.

Factor analysis is a closely related technique, but is based on the assumption that a set of
factors that have inherent meaning can be created from the original  variables. For example,
Berghaus et  al (2005) used  factor  analysis  to  evaluate  interrelationships  among  variables
collected as part  of a risk assessment for Johne’s disease.  Unlike principal components,  the
composition of the factors does vary as the number of factors selected for creation varies. The
strength of a factor analysis rests with the plausibility of the assumption that the factors are
truly measuring an underlying latent structure (eg having a common environment for weaned
calves and cows). If this assumption is valid, then knowing which of those underlying structures
are associated with the outcome (eg Johne’s disease)  might  be as  important  as  information
about individual predictor variables. Determining which of the original predictors are important
determinants of the outcome is a subjective process based on determining which predictors are
highly correlated (or have high ‘factor loadings’) with factors found to be significant predictors
of  the  outcome.  As  with  principal  components  analysis,  there  is  no  statistical  testing  of
individual predictors.

Correspondence  analysis is  a  form  of  exploratory  data  analysis  designed  to  analyse  the
relationships  among  a  set  of  categorical  variables.  One  of  the  main  objectives  of
correspondence analysis is to produce a visual summary (usually 2-dimensional) of the complex
relationships that exist among a set of categorical variables (both predictors and the outcome).
The  2  axes  are  factorial  axes  which  reflect  the  most  ‘inertia’  (variability)  in  the  original
predictor variables. The result is a scatterplot which identifies clusters of predictors that are
closely  associated,  with  clusters  farther  from  the  intersection  of  the  axes  having  stronger
associations. After considering relationships among the predictors, the values of the outcome
variable (also categorical) can also be projected on the same axes to determine which clusters of
predictor  variable  values  are  associated  with  the  outcome(s)  of  interest.  A  correspondence
analysis  of  a  subset  of  the  risk  factors  for  elevated  bacterial  counts  in  bulk  tank  milk  is
presented in Example 15.2.
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Example 15.2 Correspondence analysis of risk factors for elevated total aerobic 
bacterial counts in bulk tank milk
data = tac_mca

In a study aimed at identifying risk factors for elevated total aerobic bacterial counts (TAC) in bulk
tank  milk,  a  large  number  of  factors  related  to  cow  hygiene  and  milking  system  function  were
evaluated (Elmoslemany et al, 2009a; Elmoslemany et al, 2009b). All factors were dichotomised and
coded so that the presence of the factor was a risk factor (eg X1(cow hygiene) was coded so that herds
with  clean  cows  were  coded  0  and  those  with  dirty  cows  coded  1).  Factors  identified  as  having
unconditional significant associations with being a case herd (ie elevated TAC) were as follows.

Factor Description

X1 predipping of teats (risk factor = not predipping)

X2 clipping udder hair (risk factor = not clipping)

X3 washing vs dry-wiping of udders (risk factor = washing)

X4 teat end cleanliness (risk factor = dirty)

X5 cow (udder flank and leg) hygiene (risk factor = dirty)

X6 alkalinity of pipeline wash water (risk factor = high alkalinity)

Correspondence analysis was used to visually evaluate the relationships among these variables with the
results presented in Fig. 15.2.

Absence of risk factors tended to cluster quite closely and were strongly associated with being a control
herd (ie control herds did not have any of the risk factors evaluated). On the other hand, the presence of
risk factors was more diffuse and not tightly clustered around the case herds, suggesting that case herds
did not necessarily have all of the risk factors.

  Fig. 15.2 Multiple correspondence analysis of risk factors for milk bacteria
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While principal components analysis, factor analysis and correspondence analysis can be used
to deal with the problem of large numbers of independent variables, they are perhaps better
viewed as complementary techniques to model-building procedures. They provide insight into
how predictor variables are related to each other and ultimately, into how groups of predictors
are related to the outcome of interest.

15.5 THE PROBLEM OF MISSING VALUES

Missing data are common in observational studies. Statistical programs for building regression
models work on the basis of  complete case analysis—that is they only use observations for
which  there  are  no  missing  values  for  the  outcome  variable  or  any  of  the  predictors.
Consequently,  even  a  relatively  low  overall  percentage  of  missing  values  can  result  in  a
substantial reduction of the sample available for analysis if those missing data points are spread
across observations. The complete case analysis can therefore be severely inefficient (ie have
reduced power), but it can also induce bias if the complete cases are not representative of the
full sample. To further discuss this, it is useful to distinguish between 3 possible mechanisms
underlying  missing  values,  and  also  between  whether  the  missing  data  occur  among  the
outcomes (Y) or the predictors  (X).  The missing-data mechanism concerns the reasons why
some values  are  missing,  and in particular  how these reasons might  relate  to values  in the
dataset. 

Data may be missing completely at random (MCAR) if the missing values are truly randomly
distributed throughout the dataset (eg due to a sample being spilt and the results of that test
consequently being missing).  It  could be said that the event that a particular value becomes
missing  is  to  be  likened  by  the  tossing  of  a  coin.  However,  MCAR does  not  require  the
probability of being missing to be equal to 0.5, nor even to be constant across the entire dataset.
When considering missing values of outcomes, the probability of missingness is allowed to
depend on the (observed) predictors, because the inference in regression models is conditional
on the predictors. Therefore,  for an MCAR assumption to hold it  is important to include as
predictors any variables that may be associated with the  missingness (eg time in a repeated
measures  study)  (Fitzmaurice  et  al,  2004).  Missing  values  of  predictors  may  similarly  be
allowed to depend on either outcomes or other predictors without missing values. Under MCAR
missingness, complete case analysis estimates will not be biased (Little & Rubin, 2002), but for
missingness among the predictors only this also holds true under less restrictive assumptions
(Little, 1992; Vach & Blettner, 2007). 

If  the  observed  data  do  not  constitute  a  random sample  of  the full  (unobserved)  data,  the
missingness  is  no  longer  MCAR.  If  the  probability  of  being  missing  can  be  completely
explained by non-missing values in the data, either for the subject itself (if multiple outcomes
are available at each subject) or for other subjects, then the missing data are called missing at
random (MAR—ie they are missing at random, conditional on the observed values). It may be
useful to contrast MAR with the alternative scenario (beyond MCAR): missing not at random
(MNAR, or sometimes NMAR). Here the missingness depends on the unobserved data, ie the
data  one  would  have  obtained  if  the  missingness  had  not  occurred.  If  the  fact  that  an
observation was not obtained was linked to its (potential) value, this information is part of the
evidence obtained in the study and must be included in the analysis to avoid bias. Complete
case  analysis  will  generally  produce  biased  estimates  in  MAR  and  MNAR  scenarios  for
outcomes;  the  bias  depends  on  the  proportion  of  missing  values  and  the  strength  of  their
association with the observed or unobserved outcomes. 
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The  2  main  alternative  methods  to  a  complete  case  analysis  are:  (i)  imputation,  and  (ii)
analysis of the incomplete data by methods where the missing data are ignorable, that is, the
method is robust  to missing data of  the assumed form  (Little,  2007).  Imputation involves
replacing  the  missing  data  points  with  values  predicted  from  the  available  data  for  that
observation. For missing values of a predictor variable, this prediction can be based solely on
other  predictors  or can include the observed outcome value for  that  variable  (Moons  et  al,
2006). Single imputation involves deriving a single estimate for each missing value. However,
an analysis based on single imputed data does not take into account the uncertainty associated
with the estimated values. Multiple imputation involves generating multiple imputed datasets
and combining results from the analyses of all of these datasets. It is generally accepted that
multiple  imputation  is  preferred  to  single  imputation.  Imputation  may eliminate  (MAR) or
reduce (MNAR) the bias resulting from missing values. Methods for imputation is an active
research area and a detailed discussion of the topic is beyond the scope of this text; 2 recent
review publications which introduce the subject are  Donders  et al (2006) and Harel & Zhou
(2007) and a relatively recent text on the subject is Rubin (2004). 

Maximum likelihood (ML) estimation and Bayesian estimation (which in this context is closely
linked to multiple imputation, see Chapter 24) are the main examples of procedures that make
MAR  missing  values  ignorable.  In  principle,  ML estimation  requires  specification  of  the
distribution of the missing values, but for outcome missing values, this is unnecessary under the
MAR assumption (Fitzmaurice et al, 2004; Little, 2007). Implementation of ML procedures for
missing covariates  in logistic regression has been described (Vach,  1994; Vach & Blettner,
2007).  In  addition  to  imputation  and  use  of  robust  procedures,  a  wealth  of  models  and
procedures  exist  for  dealing  with  missing  values  under  MNAR  assumptions  in  different
contexts.  This  is  also  an  active  research  area,  and  in  particular  Statistics  in  Medicine  is  a
valuable source for current (and older) developments. For further discussion of missing data,
we refer to the standard statistical text on missing data (Little & Rubin, 2002).

15.6 EFFECTS OF CONTINUOUS PREDICTORS

It is important to evaluate the structure of the relationship between a continuous predictor and
an outcome (which could be a quantity as in a linear regression, the log-odds of disease in a
logistic model, etc). The underlying assumption of linearity can be evaluated when carrying out
diagnostics  for  the  model  (eg evaluation  of  residuals)  and  this  has  the  advantage  that  it
evaluates  the  effects  of  a  continuous  predictor  after  adjustment  for  other  predictors  in  the
model. However,  for practical purposes, it is useful to explore the nature of the relationship
before starting model-building.

Some approaches to evaluating this relationship include:
• scatterplots and smoothed line plots
• converting the predictor to an ordinal variable (categorisation)
• exploring polynomial models
• using linear or cubic splines.

15.6.1 Scatterplots/smoothed line plots

Scatterplots are 2-way plots of the outcome (on the Y-axis) vs the continuous predictor (as
shown in Fig. 15.3—a plot of the relationship between milk production in the first 120 days of
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lactation (a measure of early lactation milk production) and the calving to first-service interval
from the daisy2 data. They are only useful for models with continuous outcomes (a scatterplot
of a dichotomous outcome presents as 2 lines of dots at Y=0 and Y=1). By themselves, they
rarely  provide  a  clear  indication  of  the  nature  of  the  functional  relationship  between  the
predictor and the outcome (you can imagine how difficult it would be to identify a curvilinear
relationship just looking at the ‘dots’ in Fig. 15.3).

Smoothed lines
Scatterplots can be greatly improved
by the addition of  a  smoothed line
through  the  centre  of  the  data  and
there are multiple ways that this line
can  be  constructed.  All  smoothed
lines  have  a  local-influence
property in that  the position of the
line  at  any  value  of  x (xi)  is
influenced by points close to  xi, but
not by points at a large distance from
xi.  Smoothed-line  plots  are
constructed as follows:

• for each value of the predictor
(xi), select a number of points
on  either  side  of  that  value
(usually  done  symmetrically)
—this set of points will be the
‘neighbourhood.’

• compute an expected value of
the outcome at xi—this can be computed as:
• a simple average of the y values of the observations in the neighbourhood (running

mean smoother)
• the predicted value from a simple linear regression through the observations in the

neighbourhood (running line smoother)
• the predicted value from a weighted linear regression through the observations in the

neighbourhood (lowess smoother) so that  points close to  xi get  larger  weight—the
most usual form of weighting is Cleveland’s tricube weighting (Cleveland, 1979) 

• the predicted value from a weighted polynomial regression through the observations in
the neighbourhood (local polynomial smoother)—weights can be based on a variety
of distributions (eg normal, Epanechnikov etc) (beyond the scope of this book)

• repeat the process for all values of x in the range of the dataset.

The size of the neighbourhood can be controlled by setting the bandwidth. A bandwidth of 0.8
means 80% of all of the data go into the neighbourhood used to estimate each point. The larger
the neighbourhood used for each point, the smoother the line will be, but the greater the danger
of  missing  important  features  of  the  relationship.  Fig.  15.3  shows  a  lowess  smoothed  line
(bandwidth=0.8) superimposed on the scatterplot of calving to first service interval vs 120-day
milk production. Fig. 15.4 shows running mean, running line and lowess smoothed lines for the
same data. 

Fig. 15.3 Scatterplot of 120-day milk production and 
the calving to first service interval with lowess 
smoothed curve added

Note Vertical dashed lines mark the 2.5th and 97.5th percentiles of 120-
day milk production

0

100

200

300

ca
lv

in
g

 to
 1

st
 s

e
rv

ic
e

 (
d

ay
s)

0 2000 4000 6000 8000

120 day milk production (kg)



MODEL-BUILDING STRATEGIES 377

Note All smoothed-line functions can have problems reliably portraying the data at the extreme
values of the distribution because the neighbourhood is not symmetric about xi and may, in fact,
contain relatively few data points. For this reason, it is important not to pay much attention to
the position of the line at each end. This can be facilitated by adding an element to the graph
that delineates where most of the data fall (in this case, dashed vertical lines). Adding 95% CI
to  the  smoothed  line  (Fig.  15.5)  also  shows  the  problem  of  predicting  the  nature  of  the
relationship at the extremes of the predictor.

Smoothed lines on a logit scale
(Skip  this  section  unless  you  are  familiar  with  logits  and  logistic  regression  Chapter  16. )
Although scatterplots  of  a  dichotomous outcome are  uninformative,  smoothed  lines  can  be
computed on the logit scale. They do this by computing the smoothed value (probability) for all
of the data points in the neighbourhood and then converting this value to the logit scale. Fig.
15.6 shows a lowess smoothed curve for the relationship between 120-day milk production and
the log odds of a cow conceiving at first service (relationship appears approximately linear).

15.6.2 Categorising continuous predictors

The assumption of linearity can be avoided by categorising the continuous predictor into 2 or
more categories. While this might provide some insights into the nature of the relationship, it is
not generally advisable for 3 reasons.  First,  categorisation involves the loss of information.
Second,  it  is  unlikely that  biological  processes  have a step-function relationship (ie  sudden
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Fig. 15.4 Smoothed-line estimates of the relationship between 120-day milk 
production and the calving to first service interval 

Note Vertical dashed lines mark the 2.5th and 97.5th percentiles of 120-day milk production.
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changes  in  the  outcome  at  specific
values  of  the  predictor).  Finally,  the
choice  of  the  cutpoints  is  arbitrary
and, if points are chosen based on the
observed data, this may lead to biased
results  (Royston  et  al,  2006).
However,  if  categorisation  of  a
continuous  variable  is  done,  it  has
been suggested that 5 categories will
usually  suffice  to  adequately control
the  confounding  effects  of  that
variable  (Cochran,  1968).  A  model
containing a categorised variable can
be compared to one with a continuous
variable (linear effect)  by comparing
their AIC or BIC values (see Section
15.8.1)

15.6.3 Polynomial models

Polynomials arise when power terms (eg x2 or  x3) are added to a linear model to allow the
regression line to follow a curve through the data rather than a straight line. The complexity of
the  curve  (ie number  of  bends)  depends  on  the  number  of  power  terms  included  in  the
polynomial.  Quadratic polynomials are the most commonly used, but fractional  polynomials
deserve careful consideration as well. Polynomial models have a global-influence property in
that the shape of the line is influenced by the full set of the data, not just the observations within
the  ‘neighbourhood’. One postulated advantage of global-influence models is that they may
perform  better  on  future  data.  Their  disadvantage  is  that  they  are  less  sensitive  to  local
disturbances  in  the  data  and  hence
localised effects may be overlooked.
Caution  must  be  used  when
interpreting results from polynomial
models.  They  might  be  heavily
influenced  by points  at  the  ends  of
the range of values for the predictor.
It is also very dangerous to make any
predictions  outside  the  range  of
observed values.

Quadratic models
The most common way to fit a curve
(rather  than  a straight  line)  through
the data is to add a  quadratic term
(the predictor squared, x2). This fits a
simple  curve  which  bends  in  only
one direction. The significance of the
quadratic  term  can  be  used  as  a
check of whether the assumption of
linearity is  acceptable (provided the

Fig. 15.6 Lowess smoothed-line estimates of the 
relationship between 120-day milk production and 
the logit of first-service conception

Note Vertical dashed lines mark the 2.5th and 97.5th percentiles of 120-
day milk production.
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Fig. 15.5 Running-line smoothed estimates of 
relationship between 120-day milk production and 
calving to first-service interval and its 95% CI

Note Vertical dashed lines mark the 2.5th and 97.5th percentiles of 120-
day milk production.
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data do not follow a more complex pattern than suggested by the simple curve of a quadratic
model). One issue to keep in mind is that the original value is often highly correlated with its
squared term and collinearity might be a problem in the model. The usual way to avoid this
problem is  to  centre  the original  variable  before  squaring it.  Example 15.3 shows that  the
quadratic term for 120-day milk production is highly significant indicating that a linear model is
not appropriate. If a more complex curve is required to fit the data, a  cubic term (x3) can be
added.

One way to ensure the new variables that are replacing the original variable are uncorrelated is
to create  orthogonal polynomials. These are variables that are constructed from the original
data but are on a new scale with each variable having a mean of 0 and possibly also a standard
deviation  (SD)  of  1.  The  correlation  between  any  pair  of  these  variables  is  0.  These  new
variables can be used in place of the original variables in the regression model. Removal of the
collinearity makes it possible to interpret the lower order terms, but the fact that they are not on
the original scale makes this difficult (data not shown).

15.6.4 Fractional polynomials

While any set of variables might be orthogonalised, orthogonal polynomials are usually limited
to power terms that have positive integer values (eg x2 and  x3). One way of exploring more
flexible functional forms is to use fractional polynomials (FP). FPs are power terms that can
take on both positive and negative integer values and fractional values. The most common set
of values to consider is -3, -2, -1, -0.5, 0, 0.5, 1, 2, and 3 (where the power 0 refers to a natural
log  transformation).  The  combination  of  FP  that  best  fits  the  data  (ie  the  model  with  the
smallest log likelihood) can be determined. FP of degree-2 (ie 2 power terms selected—xp1 and
xp2) can fit a wide range of shapes and it is usual to use 2 terms or less. (Note A 2-degree FP
may choose the same value for p1 and p2 in which case the 2 power terms are: xp1 and xp1ln(x).)

The main advantage of FP models is that a 2-degree FP can fit  a wide range of non-linear

Example 15.3 Quadratic model
data = daisy2

A quadratic model regressing calving to first service interval(-cf-)  on 120 day milk production was fit
after the milk production variable was centred by subtracting the mean milk production for the period
(~3000 kg). The significance of the quadratic term suggests that the quadratic model fits significantly
better than a simple linear model (which is consistent with the smoothed line plots).

Number of obs = 7720
F(2, 7717) = 17.93

Source SS df MS Prob > F = 0.0000
Model 28681.5181 2 14340.7591 R-squared = 0.0046
Residual 6171667.01 7717 14340.7591 Adj R-squared = 0.0044
Total 6200348.53 7719 803.258003 Root MSE = 28.28

cf Coef SE t P>|t| 95% CI

m120_ct -.0009293 .000461 -2.02 0.044 -.0018329 -.0000257

m120_sq .0253519 .0042909 5.91 0.000 .0169405 .0337633

_cons 76.96643 .3910863 196.80 0.000 76.1998 77.73307
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functions and may well  be the most  parsimonious way to obtain a  good fit  with the data.
However, some issues which need to be kept in mind when using fractional polynomials are as
follows.

• FP can only be used with positive values of  x so an initial transformation of  x may be
required (if the software implementation does not do this automatically, or a particular
scale is preferred).

• FP models use more df than an ordinary polynomial model (eg quadratic). For example,
when comparing a quadratic model to a linear model, the difference is one df (required to
estimate the second β). However, a 2-degree FP model uses 2 extra df compared with a 1-
degree FP model because the process involves estimating both the β for the second term
as well as the second power value.

• Scaling the  x variable may be required to make the FP estimation procedure robust (to
avoid numerical overflow or underflow in the estimation procedure). This may or may
not be done automatically by the software implementation.

• Very small values of x may induce artifacts into an FP model.

The coefficients derived from an FP are impossible to interpret in a meaningful way. The only
way to make sense of such a model is to display the function graphically (which is a good idea
whenever there is a non-linear function of x in a model). However, if you want to control for the
effect  of  a  factor  (ie  a  potential  confounder)  in  a  regression  model,  then  fitting  fractional
polynomials can be a useful approach. A much more thorough discussion of the use of FP in
regression modelling can be found in Royston & Sauerbrei (2008).

Example 15.4 shows the fitting of fractional polynomials to the dairy data used in the previous
example. The best fitting model is based on power terms of -0.5 and ln(x). The shape of the FP
model along with cubic, quadratic and linear models is shown in Fig. 15.7.

15.6.5 Splines

An alternative to fitting a polynomial model is to fit a piecewise linear function. Points at which
the slope of the relationship is observed (or expected) to change (known as knot points) are
identified and the relationship is assumed to be linear between these points. In the absence of
any  evidence  for  the  selection  of  points,  they  may be  chosen  based  on  percentiles  of  the
predictor. Fig. 15.8 shows a piecewise linear function, with knot points at the 25 th, 50th and 75th

percentiles of 120-day milk production.

One drawback to a piecewise linear function is that it is not usually biologically reasonable to
expect sudden shifts in the nature of the relationship at the chosen knot points. Piecewise linear
functions  are  also  called  linear  splines.  Generally,  spline  functions  are  pieced  together  by
polynomials  between  the  knots.  Cubic  splines  allow  more  flexible  shapes  and  smoother
transitions across the knots than linear splines. Details of cubic splines are beyond the scope of
this text, but an example of cubic splines fit is also shown in Fig. 15.8 (using the same knot
points as for the linear splines).

One final comment about the selection of a functional form of a predictor is in order. In keeping
with the idea that model-building should integrate subject  matter knowledge with statistical
considerations, it may not be appropriate to always use a ‘best fit’ functional form that has been
chosen  based  on  the  statistical  significance  of  one  form  over  another.  In  some  situations
(particularly  with  small  datasets)  there  may  not  be  sufficient  evidence  to  conclude,  with
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certainty,  that a non-linear form is preferable to a linear form. However,  if there are strong
biological reasons to believe that a relationship is not likely to be linear, it may be appropriate
to choose a polynomial function anyway. This is particularly important if the predictor is likely
to be a strong confounder. In order to remove as much confounding effect as possible, it may be
preferable to include a polynomial function of the predictor.

15.7 IDENTIFYING INTERACTION TERMS OF INTEREST

It is important to consider including interaction terms when specifying the maximum model.
There are 5 general strategies for creating and evaluating 2-way interactions. 
 1. Create and evaluate all possible 2-way interaction terms. This will only be feasible if the

total number of predictors is small (eg ≤8).

 2. Create 2-way interactions among all predictors that are significant in the final main effects
model (once you have completed the initial model-building (Section 15.8).

Example 15.4 Fractional polynomials
data = daisy2

Fractional polynomials (up to degree-2) were fit to explore the nature of the relationship between 120-
day milk production and the calving to first service interval.

Number of obs = 7720
F(2, 7717) = 22.90

Source SS df MS Prob > F = 0.0000

Model 36587.3328 2 18293.6664 R-squared = 0.0059
Residual 6163761.19 7717 798.725048 Adj R-squared = 0.0056
Total 6200348.53 7719 803.258003 Root MSE = 28.262

cf Coef SE t P>|t| 95% CI

imilk_1 295.8967 46.01638 6.43 0.000 205.6922 386.1013

imilk_2 87.36896 14.07522 6.21 0.000 59.77771 114.9602

_cons 76.95351 .378534 203.29 0.000 76.21148 77.69554
Deviance: 73498.30. Best powers of milk120 among 44 models fit: -.5 0.

Fractional polynomial model comparisons:

milk120 df Deviance Res SD Dev dif P (*) Powers

not in model 0 73543.989 28.3418 45.690 0.000

linear 1 73543.037 28.3419 44.738 0.000 1

m = 1 2 73525.418 28.3096 27.118 0.000 -2

m = 2 4 73498.300 28.2617 – – -.5 and 0
(*) P-value from deviance difference comparing reported model with m = 2 model

The best fitting 2-degree model is based on the powers -0.5 and ln(x). This fits the data significantly
better than a one-degree model (power is -2). As expected, it also fits significantly better than either a
linear model and a null model. The shape of the resulting function is shown in Fig. 15.7 along with the
fit from cubic, quadratic and linear models.
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 3. Create 2-way interactions among all predictors found to have a significant unconditional
association with the outcome.

 4. Create  2-way  interactions  only  among  pairs  of  variables  which  you  suspect  (based  on
evidence from the literature  etc) might interact.  This will probably focus on interactions
involving the primary predictor(s) of interest and important confounders.

 5. Only  create  2-way  interactions
that involve the exposure variable
(predictor) of interest.

Regardless  of  how  the  set  of
interaction  terms  is  created,  you
could subject  them to the same sort
of  screening  processes  described
above to reduce the number included
in the model-building process.  If  an
interaction term is to be included in
the model, then the main effects that
make  up  that  interaction  term must
also  be  included.  Evaluation  of  a
large  number  of  2-way  interactions
could identify spurious associations,
due to the fact that a large number of
associations  are  being  evaluated.  In
this  case,  some  form of  adjustment

Fig. 15.8 Piecewise linear function and cubic splines 
of relationship between 120-day milk production and
calving to first-service interval and its 95% CI

Note Vertical dashed lines mark the 2.5th and 97.5th percentiles of 120-
day milk production.)
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Fig. 15.7 Linear, quadratic, cubic and fractional polynomial relationships 
between 120-day milk production and calving to first- service interval
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for the fact  that multiple factors are being considered (eg Bonferroni adjustment) should be
undertaken. Two-way interactions between continuous predictors are difficult to interpret, and,
whenever  significant,  should  be  evaluated  by  fitting  a  range  of  possible  values  for  both
predictors with a graphical display of the results (see Example 14.11).

Three-way interactions might be considered, but they are usually difficult to interpret.  They
should be included only if there is good reason (a priori) to suspect the existence of such an
effect  or  if  they  are  made  up  of  variables  with  significant  2-way  interactions.  Three-way
interactions might also unnecessarily complicate the model because all of the main effects and
2-way interactions among the predictors making up the 3-way interaction need to be included in
the model.

15.8 BUILDING THE MODEL

15.8.1 Specify the selection criteria

Once a maximum model has been specified, you need to decide how you will determine which
predictors need to be retained in the model. Criteria for retention can be based on non-statistical
considerations  or  the  statistical  significance  of  the  predictor.  It  is  essential  that  both  be
considered and the non-statistical considerations will be discussed first.

Non-statistical considerations
Variables should be retained in the model if they:

• are a primary predictor of interest
• are thought, a priori, to be confounders for the primary predictor of interest
• show evidence of being a confounder in this dataset because their removal results in a

substantial change in the coefficient for one of the primary predictors of interest.  Note
Building an appropriate  causal  model before  starting the model-building process  will
help ensure that the variable is not an intervening variable (see Section 13.12.6)

• are a component of an interaction term which is included in the model.

Statistical criteria—nested models
Nested models are models which are based on the same set of observations and in which the
predictors  in one model are a  subset  of the predictors  in the other  model.  By far  the most
common approach to evaluating the statistical significance of individual predictors is to use
tests based on nested models. For a linear regression model this would involve carrying out a
partial F-test for the predictor, while in other types of regression model (eg logistic, Poisson) a
Wald test, a score test (not covered in this text) or likelihood-ratio test (LRT—see Section 16.4)
can be used. Of these, the LRT has the best statistical properties (Royston & Sauerbrei, 2008)
although the tests usually produce similar results. Consequently, the Wald test, which is often
the most  convenient,  can  be  relied  on unless  the  statistical  significance  of  the predictor  is
questionable (eg P-value close to 0.05) or the estimated SE appears suspect (as may happen
when  estimation  is  difficult).  When  evaluating  the  significance  of  a  categorical  variable
(included  in  the  model  as  a  set  of  indicator  variables),  the  overall  significance  of  all  the
indicator variables in the model should be used, not the statistical significance of individual
indicator variables.

Statistical considerations—non-nested models
A number of  information criteria have been developed for comparing models that are not
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nested. The general formula for these criteria is:

IC=-2 lnLa∗s Eq 15.1

where a is a penalty constant, s is the number of parameters in the model (s = (k+1) for a linear
regression  model  (where  k is  the  number  of  predictors)  and  lnL is  the  log-likelihood (see
Section 16.4).

The most commonly used information criteria are the Akaike’s Information Criteria  (AIC)
which has  a=2 and the  Bayesian Information Criteria  (BIC)—also known as the Schwartz
Bayesian Criteria) which has  a=log n. They are based on an overall assessment of the model
and can be used to compare different models, regardless of whether they are nested. They can
be used to compare linear regression models and discrete data models (eg logistic, Poisson).
However,  some words of  caution  are  in  order.  First,  these  statistics  should not  be used to
compare nested models—test-based comparisons (eg partial F-tests or likelihood-ratio tests) are
superior.  Second,  these  statistics  cannot  be  used  to  compare  models  which  are  based  on
different sets of observations. Finally, these criteria should not be used to compare models in
which the likelihoods are computed in different ways (eg comparing a Cox semi-parametric
survival model and a Weibull parametric model would not be appropriate—see Chapter 19).

The  smaller  the  value  of  the  IC,  the  better  the  model.  If  2  models  have  comparable  log
likelihoods, the more parsimonious model (ie fewer parameters) will have the smaller IC. The
BIC has an advantage that guidelines for assessing the evidence of superiority of one model
over  another  are  available  (Table  15.1)  (Raftery,  1996)  (guidelines  based  on  a  Bayesian
approach  to  statistics—see  Chapter  24).  However,  the  BIC  tends  to  strongly  favour  more
parsimonious models. It  also suffers from the disadvantage that it depends on the value of  n
(number of observations), but it is not always clear what value of n should be used if the data
are clustered (ie you do not have n independent units). Note Several variations in the formula
for the BIC exist in various statistical programs. However, regardless of the formula used, the
difference in the BIC between 2 models will be the same for each of the formulae.

Table 15.1 Guidelines for interpreting BIC values from non-nested models

Absolute difference in BIC Evidence for superiority of the better model

0 - <2 Weak

2 - <6 Positive

6 - <10 Strong

≥10 Very strong

Two additional approaches, applicable to linear regression models, are based on the adjusted R2

or a statistic called Mallow’s  Cp. The model which maximises the adjusted  R2 (see Section
14.3.5)  is,  in  effect,  maximising  the  amount  of  variance  explained  by  the  model,  while
precluding  the  incorporation  of  predictors  which  explain  only  a  very  small  amount  of  the
variance. This approach is equivalent to finding the model which minimises the mean square
error  (MSE).  Note  Adding unimportant  terms to the model  will  actually  increase  the MSE
because the df on which it is based becomes smaller.

Mallow’s  Cp is  computed  as  follows  (Mallows,  1973).  If  k predictors  are  selected  from a
complete set of p predictors, then Mallow’s Cp for that model is: 
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Cp=∑
Y − Y 

2


2 −n2k

Eq 15.2

where Y and Ŷ are the observed and predicted values of Y for a model based on the k predictors,
σ2 is the MSE from a model based on all (p) predictors and n is the sample size. Mallow’s Cp is
a  special  case  of  the  AIC.  Models  with  the  lowest  Cp are  generally  considered  the  best
(Example 15.5).

15.8.2 Specifying the selection strategy

Once the criteria (both statistical and non-statistical) to be used in the selection process have
been specified, there are a number of ways to carry out the selection.

All possible/best subset regressions
If the number of predictors in the maximum model is small, then it is possible to examine all
possible combinations of predictors. Once all of the models have been fit, it is relatively easy to
apply both the non-statistical and statistical criteria described above in order to identify some of
the ‘better’ models. This approach is best applied in a context that a researcher is searching for
a number of good models, such as early in an investigation on a topic.

This process is modified slightly with best subset regression. In this procedure, the software
identifies  the  ‘best’  model  (according  to  one  of  the  criteria  outlined  above),  with  a  given
number of predictors. For example, it will identify the single-term model with the largest R2, the
2-term model with the largest R2, the 3-term model with the largest R2 etc. The investigator can
then identify the point at which increasing the number of predictors in the model is of little
value in terms of improving the predictive ability of the model. Both nested and non-nested
models can be compared using ‘all possible’ or ‘best subset’ selection procedures.

Forward selection/backward elimination/stepwise
When a  forward selection process  is  used,  the  computer  first  fits  a  model  with  only  the
intercept and then selectively adds terms that meet a specified criterion. The usual criterion is
having the largest Wald test statistic, provided it exceeds the value required to produce a P-
value below a specified value (such as 0.05). The term with the largest  Wald test statistic is
added  first  and  then  the process  is  repeated.  This  continues  until  no term meets  the  entry
criterion.

With backward elimination, the process is reversed. The maximum model is fit and then terms
are  removed sequentially  until  none of  the  terms  remaining  in  the  model  has  a  Wald  test
statistic  meeting  the  specified  criterion.  An advantage  of  backward  elimination  is  that  the
statistical significance of terms is assessed after adjustment for the potential confounding effect
of other variables in the model. With forward selection, this happens to a much more limited
extent (only after confounders have been selected and incorporated into the model).

Stepwise regression is simply a combination of forward selection and backward elimination.
Forward stepwise starts  with forward selection but after  the addition of each variable,  the
criterion for backward elimination is applied to each variable in the model to see if it should
remain.  Backward stepwise starts with a full model and sequentially removes predictors but
after the removal of each variable,  all removed variables are checked to see if any of them
would meet the forward selection criterion for inclusion.
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In general,  backward stepwise regression is favoured over forward stepwise  (Mantel, 1970).
However,  forward  stepwise  may have  to  be  used  when  there  are  a  very  large  number  of
predictors or a large number of interaction terms are being considered. Backward stepwise with
a P-value for variable removal of 0.157 has been suggested as a reasonable substitute for an all-
subset procedure using Mallow’s Cp or the AIC as a selection criterion (Sauerbrei & Royston,
1999).

In general, different selection procedures will often result in the same final model. However, in
small datasets and those with large numbers of predictors, this may not be the case as can be
seen in Example 15.5.

Cautions in using any automated selection procedures
While the automated selection procedures described above are convenient, easy to apply and
quickly reduce a large complex dataset to a succinct regression model, they must be applied
judiciously  and  should  be  considered  methods  of  data  exploration  rather  than  definitive
approaches  to  building  a  model.  Some scientific  journals  will  no  longer  accept  regression
models which have been built solely using automated selection criteria.

Some of the problems with automated model-building procedures are that they:
• yield R2

 values which are too high (see more on validation in Section 15.6)
• are based on methods (eg partial F-tests) which were designed to test specific hypotheses

in the data (as opposed to evaluating all possible relationships) so they produce P-values
which are too small and confidence intervals for parameters which are too narrow (more
on this below)

• can have severe problems in the face of collinearity
• cannot incorporate any of the non-statistical considerations identified above
• make the predictive ability of the model look better than it really is
• do not differentiate between exposures, confounders and intervening variables, and
• waste a lot of paper.

However, the most serious drawback in their use is that they allow the investigator to avoid
thinking  about  their  data  and  the  questions  to  be  asked.  By  turning  the  model-building
procedure over to an automated process,  the investigator  abdicates  all responsibility for the
results  of  their  analysis.  Most  seriously,  the  ability  to  evaluate  the  confounding  effect  of
predictors which may not be statistically significant is lost. Avoiding this problem involves
combining an assessment of the statistical significance of predictors with some form of change-
in-estimate criterion (ie do estimates of other predictors change by a specified amount when the
confounder is removed or added) (Rothman et al, 2008) (see also Chapter 13).

However, when faced with a large number of predictor variables, using a variety of automated
selection procedures might be helpful in identifying all of the predictors which potentially have
statistically significant associations with the outcome. 

Three  additional  points  must  be  kept  in  mind when using any  automated  procedure.  First,
groups of indicator variables formed by breaking down a categorical variable must all be added
or  removed  together.  Second,  if  any interaction  term is  included,  the  main effects  of  both
variables that make up the interaction term must be kept in the model. Third, the analysis will
only be based on those observations for which all variables are not missing. If there are many
missing observations in the dataset, the data used to estimate the model might be a very small
subset of the full dataset.
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Example 15.5 Automated model selection for risk factors for pneumonia in swine
data = pig_farm

These  data  were  obtained  from a  study  evaluating  the  effects  of  various  management  factors  on
respiratory disease in swine  (Hurnik et al, 1994a; Hurnik et al, 1994b). Starting with a full set of 43
predictors in this dataset and using the natural log of the prevalence of pneumonia (proportion of hogs
with typical lung lesions at slaughter) as the outcome (n=66 observations), both forward and backward
selection procedures were applied using a selection threshold of P=0.05. The predictors selected by
each approach (and their coefficients) were:

Description of Predictor Variable
name

 Forward
selection

Backward
elimination

Air inlet size (prop. of recommended) inlet -0.04

Slow-growing pigs held back hldbck 0.50 0.67

Herd size ('000) size 0.43 0.67

Exhaust fan capacity (prop. of recommended) exhaust -0.37 -0.46

Producer's years of experience exprnce 0.03 0.02

Slatted floor (vs solid) floor -0.51

Only home raised pigs in barn hmrsd -0.49

constant -2.09 -2.62

Model parameters

SStot 62.9 62.9

SSE 28.2 31.6

√ MSE 0.69 0.73

-2lnL 131.1 138.7

adjusted R2 0.51 0.46

AIC 145.1 150.7

BIC 160.4 163.8

Cp -11.1 -8.1

These data were introduced in Examples 15.3 and 15.4 and a full  description of the dataset can be
found in Chapter 31. The 2 procedures arrived at different final models, which was not surprising given
the large  number  of  variables  relative  to  the  number  of  observations  in  this  dataset.  The forward
selection procedure has produced a superior model which explains more of the variation in the log-
prevalence of pneumonia,  has lower AIC and BIC scores and a lower Mallow’s  Cp.  A best subset
approach might be useful to identify a number of good models in situations such as this. However,
variables that were selected in both procedures were consistent in their direction, although there were
substantial differences in the coefficients. The model which gave the lowest Mallow’s Cp (-11.7) was
the same as the forward selection model except for one additional term (floor feeding). The model
which maximised the adjusted  R2 (at a value of 0.59) contained 19 predictors and would have been
totally unsuitable (results not shown).

Note This example is provided for  pedagogical  purposes only,  not as a recommended approach to
model-building.
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P-values and automated selection procedures
It is important to note that if you allow an automated selection procedure to sift through all of
your predictors and select a group that are significant, the actual level of significance of the
selected predictors  is  less  than the level  that  you  set  (eg 0.05).  For example,  if  you  select
‘significant’ predictors from a list of 10 unrelated variables (with α =0.05), then the probability
of finding at least one predictor significant due to chance alone is:


*
=1−1−0.05

10
=0.40 Eq 15.3 

There is a 40% chance that at least one predictor will be significant, even if none of them has
any association with the outcome. This value (40%) is called the experiment-wise error rate.

Comparing predictions from competing models
If  2 models with different predictors have comparable predictive ability,  it may be useful to
compare actual predicted values from the 2 models. One approach to this is to use the Bland
and Altman limits  of  agreement  methods described  in  Section 5.2.5 (treating the  predicted
values from the 2 models as the diagnostic test results) (Royston & Sauerbrei, 2008).

15.8.3 Conduct the analysis

Once the issues described in the preceding sections have been addressed, the analysis should be
relatively straightforward. However, it is inevitably an iterative process. As models are built
and evaluated, the investigator gains insight into the complex relationships that exist among the
variables in the dataset which allows for more refined, and biologically reasonable models to be
built. In the process, investigators must incorporate their biological knowledge of the system
being studied along with the results of the statistical analyses.

15.9 EVALUATE THE RELIABILITY OF THE MODEL

Evaluating any regression model is a 2-step process. The first step is to thoroughly evaluate the
model using regression ‘diagnostics’ (eg evaluating the normality of residuals from a linear
regression model). This assesses the  validity of the model and procedures for doing this are
described in each chapter dealing with specific model types. The second step is to evaluate the
reliability of the model. That is, to address the question of ‘how well will the model predict
observations in subsequent samples?’  Note The term reliability is used differently by various
authors, but we will use it to describe how well the conclusions from a regression model  are
likely to perform in terms of future predictions (Kleinbaum et al, 2007). Simply reporting the R2

of  a  linear  model  or  computing  the  ‘% correctly  classified’  by  a  logistic  model  does  not
evaluate reliability as these estimates will always overstate the true reliability of the model.

The 2 most common approaches to assessing reliability are a  split-sample and leave-one-out
analysis.  A  split-sample  analysis involves  dividing  the  data  randomly  into  2  groups.  A
regression model is built using the data from one of the 2 groups and the model is then applied
to  the  second  group  to  obtain  predicted  values  for  the  remaining  observations.  For  linear
regression models, the correlation between the predicted and observed values in the second
group is called the cross-validation correlation. The difference between the R2

 obtained from
the  analysis  of  the  first  group’s  data  and  the  square  of  the  cross-correlation  validation
correlation is called the  shrinkage on cross-validation. If  it is small (a subjective decision,
although 0.1 is generally considered small), then the model is considered reliable.  For non-
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linear regression models (eg logistic models), the same general approach can be used but some
other measure of predictive ability (eg replace R2

 with % correctly classified) needs to be used
to compare the 2 sets of results.

If  only  a  small  dataset  is  available,  it  might  be  desirable  to  put  more  than  50%  of  the
observations in the first group (the one used to build the prediction model). Alternatively, a 10-
fold cross-validation can be carried out in which the data are divided into 10 subsets with 9
being used to estimate the model and that model used to generate predicted values for the 10th
subset.  This  process  is  repeated  with  each  subset  being  left  out  of  the  model  estimation
procedure. Split-sample validation of a model based on the daisy2 data is presented in Example
15.6.

A  leave-one-out approach to validation is based on fitting the model many times, with one
observation  left  out  each  time (until  all  have  been  omitted).  The residuals  for  the  omitted
observations are summed to provide an estimate of the prediction error  which can  then be

Example 15.6 Cross-validation correlation
data = daisy2

The final model evaluating the effects of reproductive diseases on time to conception from Chapter 14
was used as a basis for this evaluation. (The outcome was square root transformed prior to analysis).
The model was built using half of the data and the reliability evaluated by determining the models
predictive ability in the second half of the data. The regression model was:

Number of obs = 775

F(9, 765) = 7.10

Source SS df MS Prob > F = 0.0000

Model 477.42999 9 53.0477766 R-squared = 0.0771
Residual 5717.36006 765 7.47367329 Adj R-squared = 0.0662
Total 6194.79005 774 8.00360472 Root MSE = 2.7338

wpc_sqrt Coef SE t P>|t| 95% CI

hs_ct .9891427 .1704134 5.80 0.000 .6546093 1.323676

hs_sq .560026 .2461032 2.28 0.023 .0769083 1.043144

parity1 .1413507 .0678251 2.08 0.037 .0082053 .274496

calv_spr -.7031682 .1992144 -3.53 0.000 -1.09424 -.3120964

twin 1.974691 .7838149 2.52 0.012 .4360079 3.513375

_Idyst_1 1.512377 .441814 3.42 0.001 .6450658 2.379689

vag_disch .722121 .463742 1.56 0.120 -.188237 1.632479

_IdysXvag_~1 -2.444457 1.151216 -2.12 0.034 -4.704374 -.1845398

rp -.030485 .3486269 -0.09 0.930 -.7148639 .6538939

_cons 7.503017 .2055855 36.50 0.000 7.099439 7.906596

The coefficient of determination (R2) was reduced from 0.077 to 0.071 in the second half of the data.
This represents minimal shrinkage, suggesting that the model is relatively reliable when applied to new
datasets.
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compared with the prediction error from the model based on all observations. If the 2 values are
close, it suggests that the model will predict future observations well.

An alternative approach to split-sample validation involves building separate regression models
for each of the 2 halves of the dataset and subjectively comparing the regression coefficient.
Note This can be done for any type of regression model. If the coefficients are substantially
different in the 2 models, then the model is not reliable. 

15.10 PRESENTING THE RESULTS

The standard method of presenting results from a regression model is to present the coefficients
(don’t forget  to include the intercept),  their standard errors and/or their confidence interval.
Assuming the observed effects are causal, the coefficients represent the change that would be
expected in the outcome for  a unit  change in the predictor.  For dichotomous predictors  (or
categorical  variables  that  have  been  converted  to  a  set  of  dichotomous  predictors),  the
coefficient represents the effect of the factor being present compared with when it is absent.
However, for continuous variables, assessing their impact is more difficult because they are all
measured on different scales (and hence, a ‘unit change’ might represent either a small or large
change in the predictor). Consequently, it is difficult to determine the magnitude of the impact
of each predictor on the outcome. In order to obtain a better understanding of the effect of a
predictor, it would be helpful to have an idea of what constitutes a reasonable change in any
predictor measured on a continuous scale. Two approaches to presenting results in order that
the relative impact of different predictors can be compared are to 

• use standardised coefficients or 
• compute predicted effects as a continuous predictor changes over its interquartile range. 

Each of these will be discussed briefly.  However,  before proceeding it should be noted that
there is evidence that non-numerical presentation of study results may be preferable, depending
on the target audience  (Akl et al, 2007), but this type of presentation will not be considered
further in this text.

15.10.1 Standardised coefficients

In linear regression models, standardised coefficients represent the effect on the (standardised)
outcome that results from a change of 1 SD in the predictor. They can be computed by rescaling
the coefficient by multiplying it by the ratio of the SD of the predictor to the SD of the outcome
[β*=β( σx/σy)]. In the past, they have not only been used to evaluate the relative magnitude of
effects for various predictors in a model, but to compare results across studies. However, there
are 2 problems with this approach. First, the SD might not be a good measure of the variability
of a continuous predictor variable. If the distribution is skewed to the right, a few large values
might unduly inflate the estimate of the SD. More importantly, the SD of the predictor or the
outcome might  vary from population to population. If  standardised  coefficients  are used to
compare  results  across  studies,  identical  results  from 2 studies  can  appear  different  due  to
differences  in  the  scaling  factor.  Consequently,  standardised  coefficients  are  no  longer
recommended for general use.
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15.10.2 Interquartile ranges

The effect of a predictor can be represented by computing the change in the outcome that would
be expected to accompany a change in the predictor across its interquartile range (IQR) (ie from
its 25th to 75th percentile). This avoids the problem of outlying observations having a big impact
on the standard deviation. Although the IQR might also vary across populations (as the SD
does),  the  problem  of  comparability  across  studies  can  be  avoided  by  supplementing  the
ordinary coefficients with the estimates of effect based on the IQR, rather than replacing the
ordinary coefficients with standardised ones. Example 15.7 shows the effects of the 5 predictors
used in Example 15.5 on the log-transformed prevalence of pneumonia in swine herds.

15.10.3 Predictors eliminated from a model

When  presenting  results  from  a  multivariable  model,  you  might  also  want  to  discuss  the
potential effects of predictors not included in the model. Unless the P-value is very large, it is
unwise  to  assume  that  the  effect  is  zero.  Some  investigators  will  discuss  unconditional
associations  between  those  predictors  and  the  outcome.  An  alternative,  if  a  backward
elimination procedure has been used in the model-building process, is to use the coefficient of
the predictor at the last step before it was removed from the model. A third approach is to force
the predictor back into the final model and use its coefficient from that model as an estimate of
its effect (adjusted for other predictors in the model).

15.10.4 Scale of results

In linear regression models, transformation of the outcome is often necessary to ensure that the
assumptions underlying the model are satisfied. However, this makes the interpretation of the
results more difficult and it is usually desirable to present results on a different scale than was
used in the analysis. Back-transformations following linear regressions are discussed in Section
14.9.6. Converting results from the logit scale to the probability scale after logistic regression is
discussed in Section 16.8.5. 

Example 15.7 Effects of predictors
data = pig_farm

Based on the model selected using backward elimination (Example 15.5), the effects of the various
predictors was evaluated by computing the expected change in the log-prevalence of pneumonia for
defined changes in each of the predictors.

Variable Coef Basis Estimated effect change Effect

hldbck 0.666 dichotomous 0 - 1 0.666

size(′000) 0.669 IQR 0.550 - 1.600 0.702

exhaust -0.458 IQR 0.120 - 1.407 -0.589

exprnce 0.023 IQR 8.5 – 26.0 0.401

floor -0.509 dichotomous 0 - 1 -0.509

It appears that herd size is one of the largest determinants of the prevalence of respiratory disease in
this study population although all factors have comparable effects.



392 MODEL-BUILDING STRATEGIES

In Example 15.7, the effect of each predictor is assumed to be linear on the log scale, which is
equivalent to having a multiplicative effect on the original scale. For example, holding back
slow-growing pigs (β=0.666) increases the prevalence of pneumonia by a factor of 1.95 times
(e0.666=1.95). Consequently, the effect of holding back pigs will depend on the values of other
factors in the model, because they will determine the prevalence of pneumonia that is multiplied
by 1.95. It is often useful to compute the expected effects of key predictors on the original scale
at various levels of other factors in the model.
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