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LOGISTIC REGRESSION

OBJECTIVES

After reading this chapter, you should be able to:

 1. Understand logistic regression
a. Understand log odds as a measure of disease and how it relates to a linear combination

of predictors.

 2. Build and interpret logistic regression models
a. Compute and interpret odds ratios derived from a logistic regression model.
b. Evaluate the effects of predictors on the outcome of interest on a probability scale.
c. Statistically compare logistic models using both Wald tests and likelihood ratio tests.

 3. Understand how logistic regression fits in the family of generalised linear models (GLMs).

 4. Evaluate logistic regression models
a. Understand covariate patterns and how they impact the computation of residuals for

logistic regression models.
b. Understand overdispersion and how it relates to goodness-of-fit tests.
c. Compute residuals on the basis of one per covariate pattern and one per observation.
d. Select  and  use  the  appropriate  test(s)  to  evaluate  the  goodness  of  fit  of  a  logistic

model.
e. Determine  the  effect  of  changing  the  threshold  (‘cutpoint’)  on  the  sensitivity  and

specificity of the model.
f. Generate ROC curves as a method of evaluating the goodness of fit.
g. Identify and determine the impact of influential observations on a logistic model.

 5.  Fit a model to a small dataset using exact logistic regression.

 6. Fit conditional logistic regression models for matched data.
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16.1 INTRODUCTION

In veterinary epidemiology,  we are often in the situation where the outcome in our study is
dichotomous (ie  Y=0 or  1).  Most  commonly,  this  variable  represents  either  the absence  or
presence of disease or mortality. We can’t use linear regression techniques to analyse these data
as a function of a set of linear predictors X=(Xj) for the following reasons.

(a) The error terms (ε) are not normally (Gaussian) distributed. In fact, they can only take on
2 values.

if Y=1 then =1−0∑  j X j 

if Y=0 then =−0∑  j X j Eq 16.1

(b) The probability  of  the  outcome occurring  (ie p(Y=1))  depends  on  the  values  of  the
predictor variables (ie X). Since the variance of a binomial distribution is a function of
the probability (p), the error variance will also vary with the level of X and consequently,
the assumption of homoscedasticity will be violated.

(c) The mean responses should be constrained as:

0≤E Y = p≤1
However, with a linear regression model, the predicted values might fall outside of these
constraints.

In this chapter, we will explore the use of logistic regression to avoid the problems identified
above. The primary dataset used in the examples in this chapter is one derived from a case-
control study of Nocardia spp mastitis that was carried out during an outbreak of this disease in
dairy herds in Nova Scotia, Canada. The data consist of observations from 54 case herds and 54
control herds. The predictors of interest were primarily related to the management of the cows
during the dry period and, in particular, the use of specific types of dry-cow mastitis treatment.
The variables used in this chapter are presented in Table 16.1. Details of the dataset can be
found in Chapter 31.

Table 16.1 Selected variables from the Nocardia dataset

Variable Description

casecont Case or control status of the herd (the outcome)

dcpct Percentage of cows treated with dry-cow treatments

dneo Use of neomycin-based dry-cow products in the last year (yes/no)

dclox Use of cloxacillin-based dry-cow products in the last year (yes/no)

dbarn Categorical variable for barn type (1=freestall; 2=tiestall, 3=other)

16.2 THE LOGISTIC MODEL

One way of getting around the problems described in Section 16.1 is to use a logit transform of
the probability of the outcome and model this as a linear function of a set of predictor variables.
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1n[ p
1− p ] = 0∑  j X j

Eq 16.2

where  ln(p/(1-p))  is  the  logit  transform.  This  value  is  the  log  of  the  odds of  the  outcome
(because odds=p/(1-p)), so a logistic regression model is sometimes referred to as a log odds
model.

Fig. 16.1 shows that while the logit of p might become very large or very small, p does not go
beyond the bounds of 0 and 1. In fact, logit values tend to remain between -7 and +7 as these
are associated with very small (<0.001) and very large (>0.999) probabilities, respectively.

This transformation leads to the logistic model in which the probability of the outcome can be
expressed in one of the 2 following ways (they are equivalent).

p =
1

1e− 0∑  j X j
=

e0∑  j X j

1e 0∑  j X j
Eq 16.3

16.3 ODDS AND ODDS RATIOS

Let’s look at the simple situation in which the occurrence of disease is the event of interest (Y=0
or 1) and we have a single dichotomous predictor variable (ie X=0 or 1). The logistic model is:

1n[ p
1− p ] = 01 X 1

Eq 16.4

so the odds of disease is:

odds =
p

1− p
= e 0 1 X

Eq 16.5

Fig. 16.1 Logit and inverse logit functions

Note Dashed lines are at + 4.595 which is the logit of 1% and 99%.
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From this it is a relatively simple process to determine the odds ratio (OR) for disease that is
associated with the presence of factor ‘X’.

if X =1 odds = e 01

if X =0 odds = e0

The odds ratio is then:

OR =
e01

e0
=

e0 e1

e0
= e 1

Eq 16.6

This can be extended to the situation in which there are multiple predictors and the OR for the
kth variable will be eβk.

16.4 FITTING A LOGISTIC REGRESSION MODEL

In linear regression, we used least squares techniques to estimate the regression coefficients (or
at least the computer did this for us). Because the error term has a Gaussian distribution, this
approach produces maximum likelihood estimates of the coefficients. In a logistic model, we
use a different maximum likelihood estimation procedure to estimate the coefficients. 

The key feature of maximum likelihood estimation is that it estimates values for parameters (the
βs)  which are  most likely to have produced the data that  have been  observed.  Rather  than
starting  with  the  observed  data  and  computing  parameter  estimates  (as  is  done  with  least
squares estimates), one determines the likelihood (probability) of the observed data for various
combinations of parameter values. The set of parameter values that was most likely to have
produced the observed data are the maximum likelihood (ML) estimates. 

The  following  is  a  very  simple  example  which  demonstrates  the  maximum  likelihood
estimation process. Assume that you have a set of serologic results from a sample of 10 cows
from a dairy herd and the parameter you want to estimate is the prevalence of the disease. Three
of the 10 samples are positive (these are the observed data).

The likelihood (L) of getting 3 positive results from 10 cows if the true prevalence is P is: 

L P = 10
3 P3

1−P
7

The log likelihood (lnL) is:

1nLP = 1n{10
3 }31n P 71n 1−P

In this situation, the maximum value of the lnL can be determined directly, but in many cases
an iterative approach is required. If such a procedure was being followed, the steps would be:

(a) Pick a value  for  the prevalence  (perhaps  your  first  guess  is  0.2).  The probability of
observing 3 positive cows out of 10, if the true prevalence (P) is 0.2, is:

L 0.2 = n
xP x

1−P 
n−x

= 10
3 0.23

1−0.210−3
= 0.201

Eq 16.7
The lnL is -1.60.
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(b) Pick another prevalence (perhaps your next guess is 0.35) and recompute the likelihood.
This turns out to be 0.252 (lnL=-1.38).

(c) Keep repeating this process until you have the estimate of the parameter that gives you
the highest  likelihood (ie maximum likelihood). This would occur at  P=0.3 (but you
already knew that, didn’t you?).

A graph of the relationship between lnL and prevalence (Fig. 16.2) shows the maximum value
at P=0.3.

Of course, the computer doesn’t just
pick values of parameters at random;
there are ways of estimating what the
parameter  is  likely  to  be  and  then
refining  that  estimate.  Since  it  is
possible  to  keep  refining  the
estimates to more and more decimal
places,  you  have  to  specify  the
convergence  criterion.  Once  the
estimates  change  by  less  than  the
convergence criterion, the process of
refining  the  estimates  is  stopped (ie
convergence has been achieved).

16.5 ASSUMPTIONS IN LOGISTIC REGRESSION

As with linear regression, there are a number of assumptions inherent in fitting a logistic model.
In a logistic model, the outcome Y is dichotomous:

Y i={1
0

p(Y i=1)= pi=1− p(Y i=0)
Eq 16.8

and 2 important assumptions are independence and linearity.

Independence It is assumed that the observations are independent from each other (the same
assumption was made in linear regression). If animals are maintained in groups or, if multiple
measurements  are  being  made  on  the  same  individual,  this  assumption  has  probably  been
violated. For example,  if  animals are kept in herds,  variation between animals in the study
population results from the usual variation between animals plus the variation that is due to
differences between herds. This often results in ‘over-dispersion’ or ‘extra-binomial variation’
in the data. Some methods of checking this assumption will be presented in Section 16.12.4 and
methods of dealing with the problem are discussed in Chapters 20-23.

Linearity As with linear regression, any predictor that is measured on a continuous scale is
assumed  to  have  a  linear  (straight-line)  relationship  with  the  outcome.  Techniques  for

Fig. 16.2 Log likelihood versus prevalence
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evaluating this assumption are presented in Section 15.6.1.

Note Because the logistic model models the expected probability of disease on the logit scale,
but the original data are binary (0/1 or no/yes), the logistic model does not have an error term
and consequently,  there is no assumption about the distribution of errors. It  also means that
coefficients in a logistic model represent the effect of a predictor on the logit of the outcome.
Presenting effects on the original probability scale is discussed in Section 16.8.5

16.6 LIKELIHOOD RATIO STATISTICS

Although  the  maximum  likelihood  estimation  process  produces  the  largest  possible  (ie
maximum)  likelihood  value,  these  values  are  always  very,  very  small  because  they  are
describing  the  probability  of  an  exact  set  of  observations  given  the  parameter  estimates
selected.  Because  of  this  (and  the  fact  that  the  estimation  process  is  simpler),  computer
programs  usually  work  with  the  log  likelihood which  will  be  a  moderately  sized  negative
number. Most computer programs print out the log likelihood of the model that has been fit to
the data. It is a key component in testing logistic regression models.

16.6.1 Significance of the full model

The test used to determine the overall significance of a logistic model is called the likelihood
ratio test  (LRT) as it  compares the likelihood of the ‘full’ model (ie with all the predictors
included) with the likelihood of the ‘null’ model (ie a model which contains only the intercept).
Consequently,  it  is  analogous  to  the  overall  F-test  of  the  model  in  linear  regressions.  The
formula for the likelihood ratio test statistic (G2

0) is:

G0
2

= 21n
L
L0

= 2 1nL−1nL0
Eq 16.9

where L is the likelihood of the full model and L0 is the likelihood of the null model. The
statistic (G2

0) has an approximate χ2 distribution with k degrees of freedom (df) (k=number of
predictors  in  the  full  model).  If  significant,  it  suggests  that,  taken  together,  the  predictors
contribute significantly to the prediction of the outcome. 

Note When computing an LRT statistic, 2 conditions must be met.

 1. Both models must be fit using exactly the same observations. If a dataset contains missing
values for some predictors in the full model,  then these would be omitted from the full
model but included when the null model is computed. This must be avoided.

 2. The models must be nested. This means that the predictors in the simpler model must be a
subset of those in the full model. This will not be a problem when the smaller model is the
null model, but might be a problem in other situations.

In  Example  16.1,  a  logistic  regression  model  from the case-control  study of  Nocardia  spp
mastitis has been fit with 3 predictor variables (-dneo-, -dclox-, -dcpct-). The likelihood ratio
test  evaluating  the  3  predictors  as  a  group  is  highly  statistically  significant
G0

2
=41.72,df=3, P0.001.
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16.6.2 Comparing full and reduced models

In the preceding section, the LRT was used to compare the full and null models but an LRT can
also be used to test the contribution of any subset of parameters in much the same way as a
multiple partial F-test is used in linear regression. The formula is:

G0
2

= 21n
L full

L red

= 2 1nLfull−1nL red
Eq 16.10

where Lfull and Lred refer to the likelihood of the full and reduced models, respectively. As can
be  seen  in  Example  16.1,  the  2  antibiotic  specific  predictors  (-dneo-,  -dclox-)  are  highly
significant  predictors  of  case-control  status.  This  test  is  sometimes  referred  to  as  the
‘improvement χ2’.

16.6.3 Comparing full and saturated models (deviance)

A special case of the likelihood ratio test is the comparison of the likelihood of the model under
investigation to the likelihood of a fully saturated model (one in which there would be one

Example 16.1 Comparing logistic regression models 
data = Nocardia

The log likelihoods from 4 different models were:

Model Predictors # of predictors Log likelihood

null intercept
β

0

1 -74.86

full intercept, dcpct, dneo,
dclox

β
0
, β

1
, β

2
, β

3

4 -54.00

reduced intercept, dcpct
β

0
, β

1

2 -69.07

saturated 108 ‘hypothetical’
predictors
β

0
, β

1
…β

n-1

108 0

Overall likelihood ratio test of the full model:
G0

2 = 2(-54.00 - (-74.86)) = 41.73 with 3 df (P <0.001)

    Taken together, the 3 predictors are highly significant predictors of case-control status.

Likelihood ratio test comparing the full and reduced models:
G0

2
= 2(-54.00 - (-69.07)) = 30.16 with 2 df (P <0.001) 

    The 2 antibiotic specific predictors (-dneo- and -dclox-) are highly significant predictors.

Likelihood ratio test comparing the saturated and full models:

G0
2

= 2(0 - (-54.00)) = 108.00 with 104 df.
    Note This does not have a χ2 distribution.



402 LOGISTIC REGRESSION

parameter fit for each data point). Since a fully saturated model should perfectly predict the
data,  the likelihood of the observed data,  given this model,  should be 1 (or 1nLsat=0).  This
comparison  yields  a  statistic  called  the  deviance  which  is  analogous  to  the  error  sum of
squares (SSE) in linear regression. The deviance is a measure of the unexplained variation in
the data.

D=2 1n
Lsat

L full

=2 1n L sat−1n L full=−21nLfull
Eq 16.11

Note  The deviance  computed  in  this  manner  does  not  have  a  χ2 distribution.  (See  Section
16.12.2 for more discussion of deviance.)

16.7 WALD TESTS

An alternative approach to evaluating the significance of a single coefficient is to use a test that
relates the coefficient to its SE. A Wald test is the ratio of the coefficient to its SE and it follows
(asymptotically)  a  standard  normal  (Z)  distribution.  This  tests  whether  the  coefficient  is
significantly different from zero. It is routinely computed by most computer programs and is the
most  widely  used  test  of  the  significance  of  coefficients.  However,  the  estimates  of  the
coefficient  and its SE are only estimates and consequently,  the normal approximation of its
distribution might  not  be reliable  particularly if  the sample size is  small.  Consequently,  to
evaluate the significance of variables with a P-value close to the rejection region, it is best to
use a likelihood ratio test.

Just as with multiple partial F-tests in linear regression, multiple parameters in a logistic model
can be tested with a multiple Wald test. For example, comparing the full and reduced models in
Example 16.1 would be equivalent to testing the null hypothesis: 

H 0 : 2=3=0

In this case, the test statistic is compared with a χ2 distribution with the df equal to the number
of predictors being tested. In Example 16.1, the Wald χ2 for comparing the full and reduced
models has a value of 21.4 and 2 df. This is a more conservative test statistic (although this is
not generally the case) than the likelihood ratio test ( χ2 =30.16), but it is still highly significant. 

16.8 INTERPRETATION OF COEFFICIENTS

The coefficients in a logistic regression model represent the amount the logit of the probability
of the outcome changes with a unit increase in the predictor.  Unfortunately,  this is hard to
interpret  so we usually convert  the coefficients  into odds ratios.  The following sections are
based on the model shown in Example 16.2.

1n[ p
1− p ] = 01dcpct2dneo3dclox 4dbarn _ 2 5dbarn _ 3 

16.8.1 Dichotomous predictor

Coefficients  for  a  dichotomous predictor  represent  the amount  that  the log odds of  disease
increase (or decrease) when the factor is present. These can be easily converted into  OR by
exponentiating the coefficient. For example, the OR for -dneo- in Example 16.2 is:
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OR = e2 = e2.685
= 14.7

If the outcome of interest is relatively rare, the OR provides a good approximation of the risk
ratio (RR). If the data come from a case-control study in which incidence density sampling was
employed, the OR is a good estimate of the incidence rate ratio (IR) in the original population
(see Chapter 6).

16.8.2 Continuous predictor

For a continuous predictor, the coefficient (β1) represents the change in the log odds of disease
for a one-unit change in the predictor.  Similarly,  the computed  OR  represents the factor by
which the odds of disease are increased (or decreased) for each one-unit change in the predictor.
However, we are often interested in changes of multiple units of the exposure variable(s), such
as from x1 to x2 For example, for a change from 50% to 75% of cows dry-treated, the log odds
of disease changes by:

log odds x1, x2= x 2−x 1∗ 1=75−50∗0.022=0.55 Eq 16.12

For this 25% change in -dcpct-, the odds of disease change by:

e0.55
=1.73, or OR  x1, x2=ORx2−x1=1.02275−50

=1.72 Eq 16.13

16.8.3 Categorical predictor 

As in linear regression, predictors with multiple categories (eg ‘j’ categories) must be converted
to a series of indicator variables (also called ‘dummy’ variables) with j-1 variables put into the
model. The coefficient for each indicator variable represents the effect of that level compared
with the category (ie the ‘baseline’) not included in the model. The coefficients are interpreted
in the same manner as for any other dichotomous predictor. 

Note There  are  other  ways  of  coding  categorical  variables,  such  as  hierarchical  indicator
variables, and these are used in the same way as described in Chapter 14.

When creating indicator variables, the choice of the baseline might be important. In general, we
choose one that makes biological sense (ie makes some sense as a reference level) and one that
has a reasonable number of observations so we are not comparing everything with a category
for which the effect  can only be estimated very imprecisely.  When evaluating the statistical
significance of coefficients for categorical variables, it is important NOT to pay much attention
to the P-values of individual coefficients. This P-value indicates whether or not the chosen level
is statistically different from the baseline level. However, because the choice of the baseline is
arbitrary, any category has a range of possible P-values that could be computed. Instead, you
should evaluate the statistical significance of all of the categories together with a multiple Wald
test or a likelihood ratio test. 

In Example 16.2, the variable -dbarn- was converted to a series of 3 dummy variables and 2 of
these (-dbarn_2-, -dbarn_3-) were included in the model. These represented tiestall and ‘other’
types of housing, respectively and, consequently, the coefficients represent the effects of these
types of housing on the risk of  Nocardia mastitis compared with freestall barns (the category
that was omitted).
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16.8.4 Interpretation of the intercept 

Interpretation of the intercept (constant) in the regression model depends on how the data were
collected.  The intercept  represents  the logit  of  the probability  of  disease  if  all  of  the ‘risk
factors’ are absent (ie equal to zero). This can be expressed as:

Example 16.2 Interpreting logistic regression coefficients
data = Nocardia

The tables below present results from a logistic regression of -casecont- on -dcpct- -dneo- -dclox- and 2
levels of -dbarn-. The first table presents the effects of the predictors on the logit of the outcome (case-
control status), while the second shows the same results expressed as odds ratios.

Number of obs = 108
LR chi2 (5) = 47.40
Prob > chi2 = 0.000

Log likelihood = -51.158

Predictor Coef SE Z P 95% CI

dcpct 0.022 0.008 2.82 0.005 0.006 0.037

dneo 2.685 0.677 3.96 0.000 1.358 4.013

dclox -1.235 0.581 -2.13 0.033 -2.374 -0.096

dbarn_2 -1.334 0.632 -2.11 0.035 -2.572 -0.095

dbarn_3 -0.218 1.154 -0.19 0.850 -2.481 2.044

constant -2.446 0.854 -2.86 0.004 -4.120 -0.771

Predictor OR SE 95% CI

dcpct 1.022 0.008 1.007 1.037

dneo 14.662 9.931 3.888 55.296

dclox 0.291 0.169 0.093 0.908

dbarn_2 0.263 0.166 0.076 0.909

dbarn_3 0.804 0.928 0.084 7.722

Effect  of -dneo- Use of neomycin-based products  in the herd increased the log odds of  Nocardia
mastitis by 2.685 units. Alternatively, one can say that using neomycin-based products increased the
odds 14.7 times.  Since  Nocardia mastitis  is  a  relatively rare  condition,  it  would  be reasonable  to
interpret the odds ratio as a risk ratio and state that use of neomycin-based products increased the risk
of Nocardia mastitis by approximately 15 times.

Effect of -dcpct- Changing the percentage of dry cows treated from 50% to 75% increases the log odds
of disease by: (75-50)*0.022=0.55 units. Alternatively, it increases the odds of disease by: 
(1.022)(75-50)=1.72.  An increase of  25% in the percentage  of  cows dry-treated increases  the risk of
disease by about 72% (ie 1.72 times).

Effect of -dbarn- Tiestall barns (-dbarn_2-) and other barn types (-dbarn_3-) both had lower risks of
Nocardia mastitis (ie OR <1) than did freestall barns (-dbarn_1- was the omitted baseline). However,
the multiple Wald test and the likelihood ratio test of the 2 included categories were 0.08 and 0.06,
respectively, suggesting that barn type was only borderline significant (0.1 >P >0.05).
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1n p0

1− p0  = 0

Eq 16.14

where p0 equals the probability of disease in this ‘non-exposed group’. In a cross-sectional or
cohort study,  p0 has real meaning because it represents the frequency of disease in the non-
exposed group. However, in a case-control study,  p0 will vary depending on how many cases
and controls are selected for inclusion in the study. We don’t really know what the frequency of
disease  is  in  the  non-exposed  group  because  we  didn’t  take  a  sample  from  that  group.
Consequently,  the value of the intercept cannot be meaningfully interpreted if the data came
from a case-control study.

16.8.5 Presenting effects of factors on the probability scale

As has been presented above, the coefficients from a logistic model represent the change in the
log odds of disease that is associated with a unit change in the factor of interest. These can be
relatively easily converted to an odds ratio (by exponentiating the coefficient) but there is a
limitation to the usefulness of this parameter.

We normally think about the probability of disease (rather than the odds) and the probability of
disease is not linearly related to the factor of interest. Consequently, the effect of a unit increase
in the factor usually does not increase the probability of disease by a fixed amount. The amount
that a unit increase in the factor changes the probability of disease depends on the level of the
factor and the levels of other factors in the model. 

In Example 16.3, you can see that the effect of a 10% increase in the percentage of cows dry-
treated depends heavily on whether it occurs in a herd that uses neomycin or one that uses
cloxacillin. It also depends on whether the change is from 10-20% or 80-90%. It is very helpful
to generate some graphs of predicted probabilities to get a full understanding of the effects of
key variables in your model. 

As can be seen, a 10% increase in the level of -dcpct- has a greater effect on the probability of
Nocardia mastitis in herds using neomycin;  furthermore,  in the cloxacillin herds,  there is a
bigger increase in the predicted probability of mastitis going from 80–90% than from 0–10%.

16.9 ASSESSING INTERACTION AND CONFOUNDING

Assessment  of  interaction  and  confounding  in  logistic  regression  models  is  similar  to  the
process used in linear regression. Confounding is assessed by adding the potential confounding
variable to the model and making a subjective decision as to whether or not the coefficient of
the variable of interest has changed ‘substantially’. In Example 16.4, it appears there is some
degree of confounding between -dcpct- and -dclox-. 

Interaction is  assessed  by  adding  the  cross-product  term (X1* X2)  and  determining  if  the
coefficient  for  the  term  is  statistically  significant.  Estimation  of  ORs  in  the  presence  of
interaction deserves some attention though. If interaction is present, the OR for the variable of
interest has to be determined at a predefined level of the interacting variable because it will vary
with the level of the interacting variable.

If the interaction is between 2 dichotomous predictors, the coefficients for the main effects and
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the interaction term have straightforward interpretations. The coefficient for each main effect
represents the effect of that variable in observations in which the other variable is absent. In
Example 16.5, the coefficient for -dneo- (3.184) is a measure of the effect of neomycin used in
herds that don’t use cloxacillin. The interaction term represents the additional effect of having
both factors present, over the sum of the 2 individual effects. The results shown in Example
16.5 are summarised in Table 16.2.

Table 16.2 Effect of neomycin and cloxacillin use on the log odds of Nocardia mastitis 
compared with using neither (from Example 16.5)

cloxacillin
0 1 

neomycin 0 0 0.446 
1 3.184 1.078 

Note 1.078=3.184+0.446–2.552

Example 16.3 Effects of factors on the probability scale
dataset = Nocardia

In this example, a model containing -dcpct-, -dneo- and -dclox- was fit and the predicted probability of
Nocardia mastitis computed as -dcpct- rose from 0 to 100%. Predicted probabilities were computed
separately for neomycin-using herds and cloxacillin-using herds.

Predictor Coef SE Z P 95% CI

dcpct .023 .007 3.15 0.002 .008 .037

dneo 2.212 .578 3.83 0.000 1.080 3.345

dclox -1.412 .557 -2.53 0.011 -2.505 -.320

constant -2.984 .772 -3.86 0.000 -4.498 -1.471

The effect of a 10% increase in -dcpct-
depends  on  whether  the  herd  is  a
neomycin-using or not (ie the effect is
much  greater  in  neomycin-using
herds). It also depends on where on the
scale  of  -dcpct-  the  increase  occurs
(going  from  10-20%  in  a  non-
neomycin  using  herd  has  a  smaller
effect than going from 80-90%).

Fig. 16.3 Effect of dry-cow treatment
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Higher-order interactions (eg 3-way interactions) might also be evaluated (see Section 15.7).
Note: Interactions in logistic regression are assessed on a multiplicative scale (ie in the absence
of interaction, the effect of one factor multiplies the log odds of disease by a constant amount,
regardless of the level of a second factor). Methods for evaluating interaction on an additive
scale have recently been published (Knol et al, 2007). (See Section 13.6.2 for a discussion of
additive and multiplicative interaction.)

Example 16.4 Assessment of confounding
data = Nocardia

First a ‘full’ model containing -dcpct-, -dneo- and -dclox- was fit, and then -dcpct- was dropped from
the model.

Full model Reduced model 

Predictor Coef SE Coef SE

dcpct 0.023 0.007

dneo 2.213 0.578 2.377 0.550

dclox -1.413 0.557 -1.010 0.532

constant -2.984 0.772 -1.480 0.501

When -dcpct- was removed from the model, the coefficient for -dneo- changes very little (-7%), but the
coefficient for -dclox- changes by almost 40% suggesting that -dcpct- and -dclox- might be related
(acting as confounders for each other).

Example 16.5 Assessment of interaction
dataset = Nocardia

Interaction between -dneo- and -dclox- was evaluated by adding their cross-product term:

Predictor Coef SE Z P 95% CI

dcpct 0.023 0.008 2.93 0.003 0.007 0.038

dneo 3.184 0.837 3.80 0.000 1.543 4.825

dclox 0.446 1.026 0.43 0.664 -1.565 2.457

neoclox -2.552 1.205 -2.12 0.034 -4.914 -0.190

constant -3.777 0.993 -3.80 0.000 -5.724 -1.830

The effect of neomycin and cloxacillin use can be summarised as follows:

neomycin only log odds goes up by: 3.18 units

cloxacillin only log odds goes up by: 0.45 units

using both log odds goes up by: 3.18 + 0.45 -2.55 = 1.08 units

Consequently,  using neomycin-based products is much more harmful  (increase of 3.18 units in log
odds of Nocardia mastitis) in herds using neomycin exclusively. If the herd uses cloxacillin as well, the
effect of neomycin is only an increase of 0.63 units (1.08-0.45). Alternatively,  cloxacillin seems to
have a small (insignificant) detrimental effect when used in herds that don’t use neomycin (increase of
0.45 units), but in herds that use neomycin, it is highly beneficial (reduces log odds by 2.1 units (3.18-
1.08).
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16.10 MODEL-BUILDING

In general, the process of building a logistic model is very similar to that of building a linear
regression model (see Chapter 15 for details). It might involve any of the following steps.

• laying out a tentative causal diagram to guide your thinking
• unconditional analyses of relationships between predictors and the outcome of interest

using a ‘liberal’ P-value (eg unconditional logistic models)
• evaluating linearity of effects of continuous predictors
• evaluation of relationships (correlations) among predictor variables
• automated model-building processes (used with caution)

• forward selection
• backward elimination
• stepwise selection
• best subset regression

• manual model-building guided by a causal diagram (preferred method) including:
• evaluation of confounding
• evaluation of interaction.

One particular feature that must be kept in mind when fitting a logistic model is that data used
to build logistic regression models may be binary (0/1) data (also called Bernoulli data) with
one observation per study unit or binomial (also called grouped data) with each observation
containing the number of positive responses and the number of trials for study units with a
certain  set  of  characteristics.  A  covariate  pattern is  a  unique  combination  of  values  of
predictor variables. For example, if the model contains only 2 dichotomous predictors, there
will be 4 covariate patterns: (1,1) (1,0) (0,1) (0,0). The original binary data (n=number of study
units)  can  be  converted  to  binomial  data  (n=4)  with  each  of  the  4  observations  having  4
variables: 2 that define the covariate patterns along with variables for the number of positive
outcomes and the number of study units within each covariate pattern. On the other hand, if the
model contains many continuous variables, there might very well be as many covariate patterns
as there are data points (ie each covariate pattern will have only one observation in it) and these
data are referred to as binary data. This distinction becomes crucial when computing residuals
and evaluating the fit of logistic regression models (see Section 16.12.1).

A  second  fundamental  difference  relates  to  the  process  of  evaluating  the  shape  of  the
relationship  between  a  continuous  predictor  variable  and  the  outcome  of  interest.  The
assumption is that the relationship between the continuous predictor and the log odds of the
outcome (not the outcome itself) is linear. Methods of evaluating the linearity of relationships
are presented in Chapter 15 and issues related specifically to binomial data are discussed in
Section 15.6.1. 

Finally, logistic models can be fit directly using maximum likelihood procedures specific for
logistic regression models, or they can be fit within the framework of generalised linear models,
which are described in the following section.

16.11 GENERALISED LINEAR MODELS

Generalised linear models (GLMs) were developed in the 1970s (Nelder & Wedderburn, 1972)
to  provide  a  common  framework  for  a  wide  range  of  statistical  models,  including  both
continuous and discrete distributions, with model-building and analysis similar to linear models
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based on the normal distribution  (McCullagh & Nelder, 1989). There are  2 key components
which need to be specified to fit a general linear model: the link function and the distribution
of the observations.

Link function The cornerstone of GLMs is the link function: the idea that linear modelling of
predictors  should  be  allowed  to  take  place  on  a  different  scale  from  the  scale  of  the
observations. The link function makes that transition between the observation’s mean and the
linear  modelling.  This  idea  may  have  been  triggered  by  realising  the  problems  of  linear
modelling  of  the  observation’s  mean  for  bounded  distributions.  As  noted  in  Section  16.1,
modelling disease probabilities as a linear function of predictors may easily lead to predicted
values outside the allowed range of probabilities (ie between 0 and 1). Consequently, in logistic
regression,  we  model  the  logit(p)=ln[p/(1-p)]  as  a  linear  function  of  predictors.  In  GLM
terminology,  the logit function is the link function. The logit function, which maps the unit
interval (0,1) onto the entire real axis (-∞,+∞) is shown on the left of Fig. 16.1. Intuitively, this
is like ‘stretching’ the interval. The graph on the right shows its inverse function, logit -1(s)=es/
(1+es).

Distribution Data with a wide range of distributions can be modelled in the GLM framework,
but the most commonly used distributions are: binomial (including binary), Poisson, negative
binomial, Gaussian (normal), inverse Gaussian and gamma.

In theory, the link function used with any specific distribution can be arbitrary, but in practice,
it  is restricted to a few common choices for each distribution of Y. Each distribution has a
‘natural’ link  function  associated  with  it  that  is  called  the  canonical  link.  For  Gaussian
(normal) data, the canonical link is the identity link because the outcome (Y) is linked directly
to the predictors. For binary/binomial data, the canonical link is the logit link but 2 occasionally
used non-canonical links are the probit function (inverse cumulative probability for the standard
normal) and the complementary log-log function. The statistical inference using logit and probit
links is usually similar, but parameter estimates are scaled roughly by the factor π/√3 (ie logistic
regression estimates are numerically larger than those from a probit regression). Table 16.3 lists
the canonical  links and some commonly used non-canonical  links for  several  distributions.
Also, for ordinal data (and a multinomial distribution), the logit is the most common link.

Table 16.3 Selected distributions of outcomes and links used in fitting models in the GLM
framework

Distribution of Y Canonical link Selected non-canonical links

Gaussian (normal) identity log

binary/binomial logit probit, complementary log log

Poisson log identity

negative binomial negative binomial log, identity

Poisson and negative binomial models are discussed in more detail in Chapter 18. The logit (or
probit) links are also used for modelling ordinal and multinomial data (see Chapter 17). When
choosing among link functions, we would usually use the most common one for the data type at
hand, but if the model shows lack of fit, try some of the alternatives and choose the one that
gives the best fit to the data. For the sake of completeness, we summarise the discussion by
listing all the components of a generalised linear model:

(a) a link function,
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(b) a distribution of the outcome Y,
(c) a set of explanatory variables (in a design matrix X), linked to the mean of the ith 

observation, μi=E(Yi), by the equation:

link  i =01 X 1 i... k X ki Eq 16.15
(d) an assumption of independence between the outcomes.

One important feature of all GLMs with a non-identity link, is that all of the parameters are
obtained on a transformed scale and, in order to give meaningful interpretations, we need to do
2 things. First, predicted values need to be back-transformed to the original scale, using the
inverse link function. Second, coefficients need to be converted to a more meaningful quantity.
This is model specific and for the logistic model, exponentiating the coefficients produces odds
ratios.

16.11.1 Estimation methods for GLMs

The standard estimation procedure for GLMs is maximum likelihood (ML) estimation. Due to
similarities between different  GLMs,  generic  algorithms for ML estimation applicable for  a
range of different GLMs were developed early on (the scoring method of Newton-Raphson
estimation  (McCullagh  & Nelder,  1989)).  These  algorithms  were  noted  to  depend  only on
assumptions about the distribution related to its mean (through the link function) and variance.
This triggered an extension of GLMs to include partially specified models involving only the
mean and variance but not the full distribution (and likelihood function). When a real likelihood
function  no  longer  exists,  the  estimation  is  based  on  a  so-called  quasi-likelihood  function
(McCulloch et  al, 2008). Examples of GLMs with different variance specifications than those
derived from the distributions in Table 16.3 are discussed in Chapter 18 on negative binomial
models and in Chapter 20 on overdispersion models. 

16.11.2 GLM model evaluation 

One advantage of the GLM framework is that it has a wide range of statistics and techniques
useful for assessing the fit of the model. These include GLM goodness-of-fit statistics (Pearson
and deviance χ2) and the large number of GLM-defined residuals (including Pearson, deviance,
Anscombe, partial and score residuals) and other diagnostic parameters (eg Cook’s distance).
Some of these are covered in the following sections.

16.12 EVALUATING LOGISTIC REGRESSION MODELS

There are 2 steps in assessing the fit of the model. The first is to determine if the model fits, in
general, using summary measures of goodness of fit or by assessing the predictive ability of the
model. The second is to determine whether there are any specific observations (or groups of
observations) that do not fit the model or that are having an undue influence on the model.
However,  before  proceeding  with either  of  these  2 areas,  it  is  important  to  understand  the
distinction between residuals computed on the basis of ‘covariate patterns’ (see Section 16.10
and those computed on the basis of ‘observations’.
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16.12.1 Residuals and covariate patterns

The concept of  covariate patterns was introduced in Section 16.10.  Residuals from logistic
models  can  be  computed  on  the  basis  of  one  residual  per  observation  or  one  residual  per
covariate pattern. To get a feeling for the difference between these 2 approaches, imagine a
covariate pattern ‘A’ with 2 observations, one disease ‘+’ and one disease ‘-’. Further assume
that the predicted value for the probability of disease in animals with this covariate pattern is
0.5 (Table 16.4).

Table 16.4 Residuals computed on the basis of one per observation and one per covariate
pattern

Residuals

Observation Covariate
pattern

Disease Predicted
value

One per
observation

One per
covariate pattern

1 A 1 0.5 positive 0

2 A 0 0.5 negative

With one residual per observation, we have 2 residuals, of which one will be positive and one
will be negative. With residuals computed on the basis of covariate patterns, the predicted value
(0.5)  exactly  equals  the  observed  value  (0.5)  so  the  residual  is  zero.  For  logistic  models,
residuals are normally computed on the basis of one per covariate  pattern and some of the
desirable properties of the residuals only apply if there is a reasonable number of observations
in each covariate pattern.

In the following discussion, we will use j to represent the number of covariate patterns,  mj to
represent the number of data points in the  jth covariate pattern,  k to represent the number of
predictors in the model (not including the constant) and n is the number of data points in the
dataset.

All  of  the examples  in  this  section are  based  on the model  shown in Example 16.5 (with
-dcpct-, -dneo-, -dclox- and the -dneo*dclox- interaction term as predictors). The values of the
predictors in this model make up 30 distinct covariate patterns.

16.12.2 Pearson and deviance residuals

Computing residuals for a logistic model is not as straightforward as it is following a linear
regression model (ie observed value-expected value). A number of different types of residual
have  been  proposed,  but  the  2  most  commonly  used  are  Pearson  residuals  and  deviance
residuals.

Pearson residuals are roughly analogous to standardised residuals in linear regression. They are
based on the difference between the observed and expected values for a given covariate pattern,
but are adjusted based on the precision of the estimate of the observed value (ie covariate
patterns with a large number of observations will have a more precise estimate than those in
which there are few observations). Pearson residuals are computed as:

r j=
y j−m j p j

m j p j1− p j
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where  yj=the  number  of  positive  outcomes  in  the  jth covariate  pattern  and  pj=the  predicted
probability for the  jth covariate  pattern.  Pearson residuals computed on the basis of one per
covariate pattern and one per observation are presented in Example 16.6.

Deviance residuals represent the contribution of each observation to the overall deviance. The
sum  of  deviance  residuals  computed  on  the  basis  of  individual  observations  (rather  than
covariate patterns) is the deviance (-2*log likelihood) that was observed when comparing the
full and saturated models (Section 16.6.3).

Both Pearson and deviance residuals may be standardised to have a mean of zero and unit
variance.  Standardised  residuals  are  generally  used  for  graphical  examination  of  residual
patterns and in particular, standardised deviance residuals are most likely to follow a Normal
distribution (Hilbe, 2009). Other residuals (Anscombe, score and partial residuals) are available
within the GLM framework, but are beyond the scope of this text.

16.12.3 Goodness-of-fit tests

A variety of tests are available to provide an overall assessment of how well the model fits the
observed data. All of these tests are based on the premise that the data will be divided into
subsets and within each subset, the predicted number of outcome events will be computed and
this will be compared with the observed number of outcome events. Two tests (the Pearson χ2

and the deviance χ2) are based on dividing the data up into the natural covariate patterns. A third
test (Hosmer-Lemeshow test) is based on a more arbitrary division of the data. Other measures
of fit are also described.

Example 16.6 Residuals and covariate patterns
data = Nocardia

A logistic regression model of -casecont- on -dcpct-, -dneo-, -dclox- and the -dneo*dclox- interaction
term was fit (see Example 16.5).

It  turns  out  that  there  were  30 distinct  covariate  patterns  represented in  this  model.  The  data  for
covariate pattern #9 (herds that dry-treated 20% of their cows, and used neomycin-based products but
not cloxacillin-based products) are shown below.

cov.
pattern id

case-
control dcpct dneo dclox

pred.
value

Pearson
residual

(covariate)

Pearson
residual
(observ.)

9 22 no 20 yes no 0.465 0.099 -0.932

9 86 yes 20 yes no 0.465 0.099 1.073

There were 2 observations in covariate pattern #9 and an observed probability of a positive outcome of
0.5 (1 of the 2 herds was  positive).  The predicted probability was 0.465 and the Pearson residual
computed  on  the  basis  of  one  residual  per  covariate  pattern  was  a  small  positive  value  (0.099).
However, when residuals were computed for each observation individually, there was one moderately
large  positive  residual  value  (1.073  for  the  case  herd)  and  a  negative  residual  value  of  a  similar
magnitude (-0.932) for the control herd.
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Pearson and deviance χ2 tests
The sum of Pearson residuals squared is known as the Pearson χ2 statistic. When computed on
the basis of one per covariate pattern, this statistic has a χ2 distribution with (j-k-1) df provided
that  j is much smaller than  n (ie on average, the  mj are large).  j  being much smaller than  n
ensures that the observed probability of the outcome in each covariate pattern is based on a
reasonable sample size. If  j=n (ie binary data), or almost so, the statistic does not follow a χ2

distribution, so this goodness-of-fit statistic cannot be used.

The Pearson χ2 indicates whether or not there is sufficient evidence that the observed data do
not fit the model (ie H0 is that the model fits the data). If it is not significant, it suggests that
there is no reason to assume that the model is not correct (ie we accept that the model generally
fits  the  data).  Note In  general,  goodness-of-fit  tests  do  not  have  a  lot  of  power  to  detect
inadequacies in the model.

The sum of the squared deviance residuals computed on the basis of 1 per covariate pattern ( ie
only applicable to binomial data) is called the deviance χ2. Note The term deviance χ2 is used to
differentiate this deviance from that computed on the basis of 1 per observation (discussed in
Section 16.6.3). As with the Pearson  χ2, it has a  χ2 distribution with (j-k-1) df. If  either the
Pearson χ2 or the deviance χ2 are significant, you should be suspicious that the model does not
fit the data. Example 16.7 shows the Pearson  χ2 and deviance  χ2 for the model presented in
Example 16.5.

Hosmer-Lemeshow goodness-of-fit test
If you have binary data (or any situation where  j is not much less than  n), you can’t rely on
covariate patterns to divide your data into subsets of sufficient size for a valid goodness-of-fit
test. One way to get around this problem is to group the data using some method other than
covariate patterns and compare the observed and predicted probabilities of disease (if that is the
outcome of interest) in each group. This is the basis of the Hosmer-Lemeshow test (Hosmer &
Lemeshow, 2000).

There  are  2  ways  to  group  the  data.  The  first  is  on  the  basis  of  percentiles  of  estimated
probability and the second is on fixed values of estimated probability. For example, if you want
10 groups, the first method would take the 10% of the data points with the lowest predicted
probabilities of disease and put them in group 1, the next 10% in group 2  etc.  The second
approach would take all data points for which the predicted probability of disease was less than
0.1 and put them in a group (regardless  of  how many data points fell  into that  group).  In
general, the first approach is preferable because it avoids the problem of some groups having
very small sample sizes.

Once the data are grouped, a 2*g table is set up (g is the number of groups and should not be
<6)  with  the  observed  and  expected  number  of  cases  included  in  each  cell.  The  expected
number of cases in the g=1 row of the table is simply the sum of the estimated probabilities for
all subjects in the group. The observed number of cases is simply the number of observations
with Y=1. The observed and expected values are compared using a  χ2 statistic with  g-2 df. A
visual comparison of the observed and expected values will also identify areas where the model
might not fit well. Example 16.7 shows the Hosmer-Lemeshow χ2 along with the observed and
expected values.
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16.12.4 Overdispersion and Goodness-of-fit tests

Overdispersion occurs when there is more variation in a set of binomial proportions than would
be expected based on the variance of the binomial function. One of the common causes of
overdispersion is clustering of data which is discussed in much more detail in Chapters 20 and
22. However, consider the following simple example. Hypothetical data were computed for 10
herds, each with 20 cattle. Each animal was then given a 40% chance of being disease positive
(regardless of the herd they were in). The distribution of herd prevalences is shown in the top
row of Table 16.5 (labelled ‘not clustered’) and it has a mean of 0.40 and a standard deviation
of 0.098. However, if the disease was highly infectious and affected all of the cows in 4 herds,
but was not present in the other 6, the mean prevalence would still be 0.4 but the distribution

Example 16.7 Goodness-of-fit tests
data = Nocardia

Goodness-of-fit tests were carried out on the model from Example 16.5. The Hosmer-Lemeshow test
was computed with just 7 groups because of the small sample size.

Test P2 df P

Pearson P2 53.49 25 0.001

Deviance P2 29.41 25 0.247

Hosmer-Lemeshow 3.85 5 0.572

As can be seen from the P values,  there  is  quite a range of estimates.  Since goodness-of-fit  tests
generally have low power for detecting inabilities of models to adequately fit  the data, the general
guideline is that if any goodness-of-fit  test is statistically significant,  you should assume there is a
problem with the model and try to correct it. It is also worth noting that with 108 observations and 30
covariate  patterns,  the  average  number  of  observations  per  covariate  pattern  is  quite  low,  so  the
Hosmer-Lemeshow test provides the most reliable evaluation.

A table of the observed and expected values from the Hosmer-Lemeshow test provides some insight
into where the model does not fit the data very well.

Group p(D+)
Cases

observed
Cases

Expected # of herds

1 0.04 1 0.3 11

2 0.18 2 2.2 14

3 0.26 3 3.0 12

4 0.38 1 2.5 7

5 0.41 4 3.9 10

6 0.75 8 8.5 14

7 0.84 35 33.6 40

Proportionally, the largest differences between the observed and expected number of cases is in the first
group (lowest predicted probabilities). One possible explanation of this is that some cases might have
arisen from mechanisms not included in the model.
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would look like that shown in the second row (labelled ‘clustered’) and the standard deviation
of these values is 0.516. There is clearly much more variability in the herd prevalences as a
result of the clustering.

Table 16.5 Hypothetical data showing overdispersion as a result of clustering

Herd 1 2 3 4 5 6 7 8 9 10 mean sd

Not 
clustered

0.5 0.3 0.4 0.6 0.45 0.3 0.35 0.4 0.35 0.3 0.395 0.098

Clustered 1 1 1 1 0 0 0 0 0 0 0.400 0.516

The example above shows overdispersion in terms of binomial data (herd proportions). Indeed,
the concept of overdispersion really only applies to grouped (binomial) data. Individual level
(binary) data cannot be overdispersed. (If the SDs of the above data are computed on the basis
of the individual cow observations, both sets of data have a SD of 0.49). Nevertheless, clustered
binary data may be ‘implicitly’ overdispersed because reformatting the data into a grouped data
format makes the overdispersion obvious (Hilbe, 2009).

Overdispersion  can  arise  in  a  variety  of  ways  and  can  be  classified  as  apparent  or  real
overdispersion.  Apparent overdispersion can be caused by any errors in the logistic model.
This  can  include  omission  of  important  explanatory  predictors,  outlying  observations
(potentially errors in the data?), failure to account for important interactions in the model, or
failure to satisfy the assumption of linearity for continuous predictors. The solution to apparent
overdispersion is to fix the model. 

Real overdispersion occurs when the true variance in the observed proportions is greater than
what would be expected from binomially distributed data. As noted, a common cause of real
overdispersion  is  clustering.  Overdispersion  may be  detected  by  evaluating  the  Pearson  χ2

dispersion parameter (and its affiliated Pearson χ2 statistic) or the Hosmer-Lemeshow goodness-
of-fit  test. However,  both have limitations when you are dealing with binary (or ungrouped
binomial) data as can be seen in Example 16.8. (Note some references suggest that the deviance
χ2 can also be used to evaluate overdispersion, but recent work (Hilbe, 2009) suggests that the
Pearson  χ2 is preferred).  Methods of dealing with overdispersion arising from clustering are
presented in Chapters 20 and 22.

R2 (pseudo-R2)
A number of pseudo R2-type measures for estimating the amount of variation explained by a

Example 16.8 Detecting overdispersion
data = hypothetical

Some  hypothetical  data  consisting of  100 observations  (cows)  in  each  of  10  groups  (herds)  were
constructed so that 5 of the groups had a high proportion of positive outcomes and the other 5 had a
low proportion. A group-level  predictor (x) which increased the logit of the outcome (y) by 1.0 was
then incorporated and the data generated. 

If these data are analysed as binary data, the Pearson  χ2 is 0.0 (P-value=1.0) and the overdispersion
parameter  is 1.002.  Both would  suggest  no problem with  overdispersion.  However,  if  the data are
collapsed to binomial data and analysed as such, the dispersion parameter is 49.5 which clearly shows
the serious problem of overdispersion. This highlights the limitations of goodness-of-fit  statistics to
detect problems with clustering when binary data are used to build the model.
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logistic regression model have been proposed and reviewed (Long & Freese, 2006; Mittlböck &
Schemper, 1996; Mittlböck & Schemper, 1999). Details of the various methods are beyond the
scope of  this text.  Unfortunately,  the various methods often give widely varying  results  so
interpretation of a value requires specific knowledge of how the measure was computed and
what it  represents  (Hoetker,  2007). For example, for the  Nocardia mastitis model, estimates
from a variety of pseudo-R2 measures range from 24% to 80% (data not shown). In general,
Hosmer and Lemeshow (2000) argue that the pseudo-R2 is equivalent to the likelihood ratio test
for all of the parameters in the model (ie comparing the likelihood of the full model to one with
only the intercept).  It  does  not compare the fit  of  the model with the observed values and
consequently is better suited for comparing models than for assessing the goodness of fit of a
selected model.

16.12.5 Predictive ability of model

A second general  approach to assessing the overall  usefulness of the model is to assess its
predictive ability (ie how good a job does it do in predicting the outcome?). This can involve
computing the sensitivity and specificity of the model at various probability thresholds and/or
generating a receiver operating characteristic (ROC) curve.

Sensitivity and specificity 
The ability of the model to correctly classify individuals (or in this example, herds) can be
assessed by computing the classification statistics after fitting a model. By default, these are
computed by classifying every observation that has a predicted probability $0.5 as positive and
those with values <0.5 as negative.  However,  this cutpoint can be lowered (to increase the
sensitivity of the model) or raised (to increase the specificity) similar to the cutpoints for tests
(Section 5.6.3). A graph of the sensitivity and specificity vs the potential cutpoint values (2-
graph  ROC curve—Section  5.5.1)  is  helpful  in  selecting  an  appropriate  cutpoint  (Example
16.9). 

Receiver operating characteristic curves
An ROC curve for the model can also be generated to evaluate the performance of the model at
all possible cutpoints. The closer the curve comes to the upper left corner of the graph, the
better the predictive ability of the model. If  the ROC curve is close to the diagonal line,  it
indicates that the model has very little predictive ability.  The maximum area under an ROC
curve is 1.0 (ie sensitivity=100% and specificity=100%) while the area will be 0.5 if the curve
falls on the diagonal line (ie has no predictive ability at all). (See Section 5.5.2 for a more
complete discussion of ROC curves.) The predictive ability of the model for Nocardia mastitis
is shown in Example 16.10.

16.12.6 Identifying important observations

Detecting observations which either do not fit the model well, or which might have an undue
influence on the model is an important component of evaluating a logistic regression model,
particularly if any of the goodness-of-fit statistics indicate problems with the model.

Outliers 
Pearson residuals and deviance residuals represent the square root of the contribution of the
covariate pattern to the Pearson and deviance  χ2 statistics, respectively.  As with standardised
residuals from linear regression, large positive or negative standardised residuals identify points
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which are not well fit by the model. If outliers are observed, it is important to try to determine:
(a) Why they are outliers (what are the characteristics of the observations that make them

outliers?).
(b) If the data are found to be erroneous, they should be corrected, or failing that, deleted.
(c) If the data are correct, determine if they are having an undue effect on the model.

This last point can be evaluated by looking at other diagnostic  parameters  (leverage,  delta-
betas, etc (see below) or by refitting the model with the outliers omitted. (Deleting the outliers
should only be done for the purpose of evaluating their impact on the model and they must be

Example 16.9 Predictive ability of a model—2-graph ROC curve
data = Nocardia

For the model presented in Example 16.5, the classification statistics are:

Classified (predicted) status

True status
T+

p(D+)>0.5
T-

p(D+)<0.5 Total

D+ 41 13 54

D- 9 45 54

Total 50 58 108

Sensitivity pr (T+|D+) 75.93%

Specificity pr(T-|D-) 83.33%

Positive predictive value pr(D+|T+) 82.00%

Negative predictive value pr(D-|T-) 77.59%

At a cutpoint of 0.5, the sensitivity and
specificity  of  the  model  are  roughly
balanced.  The  effect  of  changing  the
cutpoint  can  be evaluated  visually  in
the graph.

In this situation, reducing the cutpoint
would  reduce  specificity  quite
dramatically  and  raising  it  beyond
about  0.75  would  seriously  affect
sensitivity.

Fig. 16.4 Use of a 2-graph ROC to show the effect of 
changing cutpoint
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put back in the dataset.) In general, outliers contribute to the lack of fit of a model but often do
not have an undue influence on it. An index plot of standardised Pearson residuals (one per
covariate pattern) is shown in Example 16.11 and the effect of removing the single observation
with a very large standardised residual is shown in the continuation of that example.

Hat matrix and leverage
Another quantity central to the discussion of logistic regression diagnostics is the hat matrix. It
is used to calculate leverage values and other diagnostic parameters. The hat matrix is a square
matrix of dimension j * j (j=number of covariate patterns) or n * n (n=number of data points)
depending on whether the data are binomial or binary. The diagonal elements of the hat matrix
are the logistic regression leverage values (hj) (see Hosmer and Lemeshow, 2000 for details).

As in linear regression, leverage measures the potential impact of an observation (or covariate
pattern)  on  the  model.  Points  with  high  leverage  certainly  deserve  evaluation  given  their
potential impact.

Unlike leverage values in linear regression models, the leverage of a data point in a logistic
model  is  not  exclusively  a  function  of  the  values  of  the  predictors.  Data  points  that  have
extreme values of predictor variables (which would have high leverage in linear regression)
might, in fact, have low leverage in logistic regression if the predicted value is very large or
very small. Observations with extreme values of the predictor(s) will have leverage values that
are:  highest  if  the predicted  probability lies  between 0.1 and  0.3 or  0.7 and 0.9,  moderate
between 0.3 and 0.7, and low if the predicted probability is <0.1 or >0.9. The covariate patterns
with the highest leverage are shown in Example 16.12.

Delta-betas 
Values of delta-beta provide an estimate of the effect of the jth covariate pattern on the logistic
regression  coefficients.  These  values  are  analogous  to  Cook’s  distance  in  linear  regression

Example 16.10 Predictive ability of a model—ROC curve
data = Nocardia

An  ROC  curve  for  the  Nocardia
mastitis  model  is  presented  in  Fig.
16.5.

The  ROC  curve  extends  reasonably
well into the upper left-hand corner of
the graph and the area under the curve
is 0.85. Both of these indicate that the
model  has  a  moderate  predictive
ability.

Fig. 16.5 ROC curve
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Example 16.11 Identifying important observations 
data = Nocardia

From the model fit in Example 16.3, an index plot of standardised residuals with the covariate pattern
identification number used as the marker label and the size of the circles proportional to the number of
observations in the covariate pattern identifies one large positive residual. There were no covariate
patterns with particularly large negative residuals. 

Covariate pattern 7 consisted of a single-case herd which had a very low predicted probability of being
a case herd (2.8%). This suggests that  Nocardia mastitis might have arisen in this herd from some
mechanism  other  than  those  covered  by  the  predictors  in  the  model,  although  the  possibility  of
misclassification bias (ie false positive cases) cannot be ruled out.

If the model is refit with covariate pattern 7 omitted, the results are as follows:

full dataset (n=108) cov. pattern #7 omitted (n=107)

Predictor β SE β SE

dcpct 0.023 0.008 0.027 0.008

dneo 3.184 0.837 4.035 1.111

dclox 0.446 1.026 1.155 1.244

dneo*dclox -2.552 1.205 -3.369 1.408

constant -3.777 0.993 -4.964 1.289

The effect of removing this outlier is that the coefficients for all 4 predictors have moved away from
the null (ie either larger positive or negative values). This suggests that the model based on the full
dataset might provide slightly conservative estimates of the effects of these predictors, but it should be
noted  that  deleting  this  observation  also  increases  the  SEs.  However,  there  is  no  justification  for
removing this observation, so the full model should be used).

Fig. 16.6 Index plot of standardised residuals
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models.

A single set of values of delta-beta can be calculated—one value for each covariate pattern—
and this represents the overall effect of the covariate pattern on the regression model. It  is a
measure of the distance between the observed set of regression coefficients and a similar set
that would be obtained if the observations in the covariate pattern of interest were omitted when
building the  model.  Alternatively,  separate  sets  of  delta-betas  could be determined for  each
predictor variable to measure the effect of the covariate pattern on each coefficient in the model.

Values of delta-beta will depend on the leverage that the covariate pattern has, the predicted
value, whether or not the model fits the data point well (ie is it an outlier?) and also on the
number of  observations in  the covariate  pattern.  Covariate  patterns  with a  large  number of
observations will naturally tend to have a large influence on the model, so we want to identify
covariate patterns with a large influence but a small mj, for further investigation.

If a particular pattern has a large delta-beta, it is important to determine why that is. As noted in
our example (16.12), when mj is large, that covariate pattern will likely have a big impact on the
model. This is as it should be and need not concern us. However, if it is a covariate pattern with

Example 16.12 Identifying influential observations
data = Nocardia

Based on the model fit in Example 16.5, the covariate patterns with the largest leverage values are:

covariate
pattern

# of
herds p(D+) dcpct dneo dclox

predicted
value leverage

30 9 0.444 100 yes yes 0.392 0.682

27 8 0.125 100 no no 0.180 0.721

29 38 0.868 100 yes no 0.841 0.796

28 11 0.182 100 no yes 0.256 0.932

None of the covariate patterns have a particularly large leverage value, and the outlying observation
(covariate pattern 7) did not have high leverage. The covariate patterns with the largest overall delta-
betas were determined:

covariate
pattern

# of
herds p(D+) dcpct dneo dclox

predicted
value delta- beta

27 8 0.125 100 no no 0.180 1.525

29 38 0.868 100 yes no 0.841 3.953

28 11 0.182 100 no yes 0.256 62.935

The covariate pattern with the largest delta-beta is pattern #28. This covariate pattern is very influential
for the coefficients for -dclox- and the interaction term. In fact, if these 11 herds are omitted, it is not
possible to get sensible estimates for those terms (data not shown). It is not surprising that covariate
pattern  29  also  has  a  large  delta  beta  since  this  covariate  pattern  contained  38  observations
(approximately 1/3 of the data). Neither the evaluation of the leverage values nor the delta-betas cause
particular concern for this model.

The observation that was previously identified as an outlier (covariate pattern 7) is also the covariate
pattern with the largest delta-chi-square and delta-deviance values (data not shown).
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relatively few observations, then it is important to verify that the data are correct and determine
if there is a logical explanation for the influence it is exerting.

Other parameters
Two other parameters which measure the overall influence of a covariate pattern on the model
are the delta-χ2 and the delta-deviance. The delta-χ2 provides an overall estimate of the effect of
the  jth covariate  pattern  on  the  Pearson  χ2 statistic.  The  delta-deviance  provides  an  overall
estimate of the effect of the jth covariate pattern on the deviance χ2. These 2 measures are overall
evaluations of the fit of the model (ie they are based on the unexplained variation) so points that
are outliers will tend to have large values for the delta-χ2 and delta-deviance. However, as noted,
these observations can only be deleted if you are certain that the data are erroneous.

16.13 SAMPLE SIZE CONSIDERATIONS

There are 2 important issues related to sample size in logistic regression analyses.  The first
relates to the power of the study to detect effects of interest. For a simple logistic regression
model with a single dichotomous predictor, the formula for comparing 2 proportions in Eq 2.6
will provide a reasonable estimate of the sample size. For multivariable models, the sample size
adjustment shown in Eq 2.10 or 2.11 can be used. The simulation approach described in Section
2.11.8 provides a very flexible method of addressing all sample size issues.

The second issue relates  to the adequacy of the obtained sample to support  the fitting of a
logistic model.  In  addition to considering the total  sample size, the number of positive and
negative  outcomes  in  the  observed  data  influence  the  precision  of  the  estimates  of  the
coefficients  in  the  model.  If  positive  outcomes  are  rare,  then  variances  might  be  over-  or
underestimated and hence parameter estimates and test statistics might be affected. It has been
suggested that the dataset should contain a minimum of 10(k+1) positive outcomes where k is
the number of predictors in the model (not counting the intercept) in order to adequately fit the
model (Hosmer & Lemeshow, 2000). The same rationale applies if negative outcomes are rare:
there should be 10(k+1) negative outcomes in the dataset. It has recently been shown that in
some situations this  ‘rule of 10’ is  conservative  (Vittinghoff  & McCulloch, 2007),  but  it  is
probably still useful as a general principle.

16.14 EXACT LOGISTIC REGRESSION

In  situations  in  which  your  dataset  is  very  small  or  severely  unbalanced,  ML  (or  IRLS)
estimates of coefficients (and their P-values) may be biased because the estimation procedures
rely on asymptotic properties. An alternative approach in these situations is to use exact logistic
regression.  Exact  logistic  regression  constructs  a  statistical  distribution  which  can  be
determined completely and estimates the coefficient and P-value for each independent variable
separately,  while  conditioning  out  the  other  predictors  in  the  model.  Consequently,  the
estimates are referred to as conditional maximum likelihood (CML) estimates. The procedure is
very computationally intensive and in practical terms can only be used on small datasets with
relatively  simple  models.  It  is  possible  to  simplify  the  estimation  procedure  somewhat  by
identifying  some  predictors  which  need  to  be  conditioned  on,  but  for  which  you  are  not
interested in the coefficients (eg confounders  you want to control for).  The details of exact
logistic regression are beyond the scope of this text, so the reader is referred to (Mehta & Patel,
1995) for more information. Hilbe (2009) suggests that P-values comparable to those obtained
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from exact logistic regression can often be obtained in small datasets by using ordinary logistic
regression with robust SE (see Sections 14.9.5 and 20.5.4). An example showing the application
of exact methods to the Nocardia dataset is shown in Example 16.13.

In small datasets, it is also often the situation in which a predictor may predict the outcome
perfectly  (eg all  animals  in  one  age  group  are  positive).  In  this  situation,  ML and  CML
estimates  are  unbounded  and  cannot  be  estimated.  In  these  situations,  some  software
implementations for exact logistic regression switch automatically to computing an estimate of
the coefficient using a procedure called median unbiased estimation. This at least provides a
reasonable estimate of the parameter of interest.

16.15 CONDITIONAL LOGISTIC REGRESSION FOR MATCHED STUDIES

In  our  discussions  of  procedures  to  control  confounding,  we  discussed  the  technique  of
matching. The most common application of this technique is in matched case-control studies in
which a case is matched with one or more controls on the basis of some factor such as age,
breed, herd of origin etc. Because there might be one case and a variable number of controls,
this is often referred to as 1-M matching, of which 1-1 matching is a special case. 

We could analyse  the data using regular  logistic regression procedures  by simply including
dummy variables to represent the  j strata, where a case and its control(s) make up a stratum.
Unfortunately, the generally desirable properties of maximum likelihood estimation of a logistic
regression model only hold if the sample size is large relative to the number of parameters

Example 16.13 Exact logistic regression
data = Nocardia

An exact logistic regression model was fit to the Nocardia data. The predictor -dcpct- was included in
the model but conditioned out so its effects on the terms reflecting the use of neomycin, cloxacillin and
their  interaction  would  be  controlled  for,  but  the  coefficient  for  -dcpct-  was  not  estimated.  For
comparison purposes, the model (with -dcpct-) was fit using ordinary logistic regression with robust
SEs.

Number of obs = 108

Exact logistic regression Robust SE

Predictor Coef P-value 95% CI Coef P-value

dcpct not estimated 0.023 0.006

dneo 3.079 0.000 1.412 5.425 3.184 0.000

dclox 0.428 1.000 -1.969 3.114 0.446 0.671

dneo*dclox -2.424 0.102 -5.470 0.365 -2.552 0.042

constant -3.580 0.000 -6.233 -1.662 -3.777 0.001

The interaction term is no longer significant, which calls into question the validity of the interaction
effect  observed in the ordinary logistic  regression model.  The P-value for  the interaction term did
remain significant (P=0.042) when the model was fit using ordinary logistic regression with robust SE
(and this estimate was not much different from the one based on ordinary SEs (P=0.034)). However,
the P-value from the exact model would likely be the best estimate of the significance of this term. An
exact model without the interaction term was refit using exact logistic regression and the coefficients
(and P-values) for -dneo- and -dclox- were 2.13 (P=0.0001) and -1.37 (P=0.020), respectively.
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estimated and this wouldn’t be true in a matched study with j-1 dummy variables to indicate the
strata in addition to the predictors of interest.  With matched-pair data ( ie one case and one
control in each matched set), an unconditional logistic regression model including j-1 dummy
variables produces estimates of the odds ratios of interest that are the square of their true value
(eg 9 vs 3) (Hosmer & Lemeshow, 2000). This is clearly undesirable. 

As we don’t really care about the coefficients for the j strata variables, we can use a technique
known as conditional logistic regression (also called conditional fixed effects logistic regression
or McFadden’s Choice Model) to analyse matched data. (The conditional likelihood for the jth

stratum is simply the probability of the observed data conditional on the number of observations
in the stratum and the total number of cases in the study). Instead of estimating a parameter for
each matched set (stratum) in the data (as an unconditional fixed effects model with indicator
variables  for  strata  would  do),  a  conditional  model  conditions  the  fixed  effects  out  of  the
estimation. A conditional logistic model has the following structure.

logit  pi=1 X 1 i... k X ki  Eq 16.16

There are 3 limitations associated with the use of conditional models in terms of what can be
estimated and which data contribute to the estimation. First coefficients cannot be estimated for
predictors  that  are  constant  within  all  matched  sets,  even  if  they  vary  between  sets.
Consequently, there can be no analysis of the factors used for matching as they will be constant
within a set. However, it is possible to include interaction terms between the matching variable
and  a  predictor  which  varies  within  sets.  Second,  conditional  models  do  not  estimate  an
intercept (it is conditioned out). Finally,  only sets in which a predictor varies within the set,
contribute information to the estimation of the coefficient  for that predictor.  Example 16.14

Example 16.14 Lack of information from groups with no within-group variation
data = sal_outbreak

An outbreak of Salmonella in Funen County of Denmark in 1996 was investigated (see Chapter 31 for
description of dataset). The data consisted of 39 cases of Salmonella typhimurium phage type 12 and 73
controls matched for age, sex and municipality of residence. Data on numerous food exposures were
recorded and a small subset of those data are included in the dataset -sal_outbrk-.

The  following  table  shows  the  cross-tabulations  of  case-control  status  with  4  predictor  variables:
recently  eating  pork  (-eatpork-),  recently  eating  beef  (-eatbeef-),  buying  meat  produced  at
slaughterhouse A (-slt_a-) and buying meat that came through dealer A (-dlr_a-) for a single matched
set.

eatpork eatbeef slt_a dlr_a

set + - + - + - + -

23 case 1 0 0 1 1 0 0 1

23 control 2 0 1 1 1 1 0 2

OR no info. 0 ∞ no info.

As can be seen within set 23, the case and both controls had recently eaten pork, but not products from
dealer A, so this matched set provides no useful information with regard to these predictors. While the
OR for -eatbeef- and -slt_a- are extreme (0 and ∞ respectively), they do provide evidence of negative
and positive associations with being a case respectively.
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shows why this is true, using data from a matched case-control study of a Salmonella outbreak.
One consequence of this is that if either the case or all the controls within a set have a missing
observation, the entire set is excluded from the analysis because there is no within-set variation.
It has been shown that the use of GEE methods (Chapter 23) may be a suitable alternative to
conditional logistic regression in situations in which there are many sets with missing data or no
within-set variation (Lin et al, 2007).

Hypothesis testing in conditional models can be done using Wald tests or (preferably) LRTs in
much the same way as for ordinary logistic regression models. Example 16.15 shows simple
and multiple conditional logistic regression models for the Salmonella data along with a simple
ordinary logistic regression. 

If  data  that  were  collected  in  a  matched-design  study are  analysed  using  an unconditional
logistic regression model, one of 2 effects can occur. If the matching was done on variables that
are  confounders  (ie matching  was  required  to  prevent  bias)  then  the  estimates  from  the
unconditional  analysis  will  be  biased  toward  the  null  (ie a  conservative  estimate).  If  the
matching was not necessary to avoid bias, then the coefficients from the unconditional analysis
will  not  be  biased,  but  will  be  less  efficient  (ie will  have  wider  confidence  intervals).

Example 16.15 Simple and multiple conditional logistic regression
data = sal_outbreak

Simple (-slt_a- as the sole predictor) and a multivariable (-slt_a- and its interaction with -gender-) were
fit using conditional logistic regression and the results shown below.

Conditional (fixed-effects) logistic regression 
Number of obs = 112

LR chi2(1) = 10.00
Prob > chi2 = 0.0016

Log likelihood = -35.820042
Pseudo R2 = 0.1225

casecontrol OR SE Z P>z 95% CI

slt_a 4.416 2.288 2.870 0.004 1.600 12.191

The odds ratio for -slt_a is 4.42 which is close to the estimate provided by a Mantel-Haenszel stratified
(by matched set) analysis (OR=3.87).

Conditional (fixed-effects) logistic regression  
Number of obs = 112

LR chi2(2) = 11.24
Prob > chi2 = 0.0036

Log likelihood = -35.197693
Pseudo R2 = 0.1377

casecontrol OR SE Z P>z 95% CI

slt_a 2.895 1.784 1.730 0.084 0.866 9.683

slt_a * gender 3.609 4.456 1.040 0.299 0.321 40.587

As can be seen, the main effect of -gender- was dropped from the model because there is no within-
group variation in gender (it was one of the matching variables). The Wald test for the significance of
the interaction term yields a P-value of 0.299 which is comparable to a LRT P-value of 0.265 (results
not shown).
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Consequently, matching should be accounted for in the analysis if it was incorporated into the
design of the study (Breslow & Day, 1980). If an ordinary logistic model with -slt_a- as the sole
predictor is fit to the  Salmonella data, the resulting  OR is 3.21, reflecting the expected bias
toward the null.

The evaluation of these models (ie regression diagnostics) is not as straightforward as it is for
ordinary  logistic  models  (eg the  Hosmer-Lemeshow  goodness-of-fit  test  is  inappropriate).
However, some diagnostic parameters are available. Leverage can be computed from the hat
matrix  and  delta  χ2 and  delta  β statistics  can  be  computed  on  either  an  individual  basis
(reflecting the influence of that individual) or a matched group basis (reflecting the influence of
the matched group. Example 16.16 shows some diagnostics for the Salmonella outbreak data.

Example 16.16 Conditional logistic regression diagnostics
data = sal_outbreak

Leverage, Δ χ2 and Δ β statistics were computed from the model with -slt_a- as the sole predictor. The 3
sets with the largest Δ β values are shown below. 

match
group casecontrol slt_a leverage Δ χ2 Δ β 

group 

Δ χ2

group
Δ β 

55 contr yes 0.007 0.821 0.006 4.545 0.133

55 case no 0.033 3.723 0.127 4.545 0.133

2 contr yes 0.001 0.450 0.001 9.012 0.184

2 contr yes 0.001 0.450 0.001 9.012 0.184

2 case no 0.022 8.112 0.183 9.012 0.184

9 contr yes 0.001 0.450 0.001 9.012 0.184

9 contr yes 0.001 0.450 0.001 9.012 0.184

9 case no 0.022 8.112 0.183 9.012 0.184

Two sets (2 and 9) had large Δ βs. These were sets in which the case did not consume products from
slaughterhouse A but both controls did. If these 2 sets are left out of the analysis, the  OR for -slt_a-
increases to 8.01.
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