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MODELLING ORDINAL 
AND MULTINOMIAL DATA

OBJECTIVES

After reading this chapter, you should be able to:

 1. Select an appropriate model from the following based upon the objectives of your study and
the nature of your data
• multinomial logistic model
• proportional-odds model
• adjacent-category model
• continuation-ratio model.

 2. Fit all of the models listed above.

 3. Evaluate the assumptions on which the models are  based and use one or  more  tests  to
compare different models.

 4. Interpret OR estimates from each of the models.

 5. Compute predicted probabilities from each of the models.
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17.1 INTRODUCTION

In some studies, the outcome of interest might be categorical but have more than 2 categories
(ie multinomial). These data could be recorded on either a nominal or ordinal scale. Nominal
data arise when the outcome categories have no specific ordering (eg reason for culling might
be classified as due to low production, reproduction, mastitis or other). Ordinal data arise when
the outcome categories have a distinct order to them (eg severity of disease might be classified
as absent, mild, moderate or severe). Clinical outcome data may better be analysed by treating
the results as ordinal data rather than dichotomising the result (Norris et al, 2006; Valenta et al,
2006).

Nominal  data  can  be  analysed  using  log-linear  models  or  multinomial  logistic  regression
models. Log-linear models can simultaneously evaluate the effects of multiple predictors on
multiple outcomes but are limited to the evaluation of  categorical  variables  (predictors  and
outcomes).  Log-linear  models  are  used  less  frequently  than  regression-type  models  in
veterinary epidemiology so they will not be discussed further. 

An  overview  of  a  variety  of  regression  models  applicable  to  nominal  and  ordinal  data  is
presented in Section 17.2. Each of the 4 models introduced in that section is described in more
detail  in Sections 17.3 to 17.7.  All  of  the examples  used in this chapter  are  based on data
derived from a study designed to determine if ultrasound evaluation of beef cattle at the start of
the feeding (fattening) period could be used to predict whether the carcass from the animal
would eventually be graded as 1=AAA (highest grade), 2=AA, or 3=A (lowest grade in terms
of  price)  (Keefe  et  al,  2004).  This  classification  is  based  on  the  amount  of  ‘marbling’
(intramuscular fat  in the loin region) present in the carcass  after slaughter  with grade AAA
selling for the highest price. The dataset (beef_ultra) is described more fully in Chapter 31, but
the main variables used in this chapter are shown in Table 17.1.

Table 17.1 Variable from beef ultrasound dataset (beef_ultra)

farm farm id

id animal id

grade carcass grade 1=AAA 2=AA 3=A 
(AAA is the “best” grade)

bckgrnd 'backgrounding' (animal spends time on pasture between weaning and entering 
the feedlot) (0=no, 1=yes)

sex 0=heifer (female) 
1=steer (castrated male)

backfat backfat thickness (mm)

ribeye area of ribeye muscle (sq cm)

imfat intramuscular fat score (%)

carc_wt carcass weight (kg)
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17.2 OVERVIEW OF MODELS

An overview of the 4 models to be discussed in this chapter is presented here. In each case we
will assume that the outcome has J categories with j being used to designate the categories from
1 to J (ie j=1,...,J). For the sake of simplicity, we will assume that there is a single dichotomous
predictor in the model, but these models can easily be extended to multiple predictors. A simple
example, based on the data in Table 17.2, will be used to demonstrate most of the models. All
models discussed in this Chapter  are presented as logistic  models;  they can be fit  as other
binomial models (eg probit, complementary log log) but these are beyond the scope of this text.
More details about these models can be found in  (Hilbe, 2009; Long, 1997; Long & Freese,
2006).

Table 17.2 Cross-tabulation of grade and backgrounding from dataset beef_ultra

Category Grade Backgrounded Not backgrounded Totals

1 AAA 149 15 164

2 AA 198 79 277

3 A 20 26 46

367 120 487

17.2.1 Multinomial logistic model

Nominal data can be analysed using a multinomial logistic model which relates the probability
of being in category j to the probability of being in a baseline category (which we will refer to
as category 1). The model can be written as follows.

ln
p Y = j 
p Y =1 

=0
 j 

 1
 j X

Eq 17.1

A complete set of coefficients (β0 and β1) is estimated for each of the J-1 levels being compared
with the baseline (these are designated as  β(j)). Graphically, the effect of the predictor can be
seen in Fig. 17.1. 

Based  on the data in Table 17.2,  the odds ratio  (OR)  for  a  backgrounded animal being in
category 2 (AA) (compared with category 1) is:

OR2=
15∗198
149∗79

=0.25

Similarly, the OR for category 3 (A) compared with category 1 (AAA) is: 

Fig. 17.1 Multinomial logistic model

OR(2)

AAA AA A

OR(3)

1 2 3
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OR3
=

15∗20
26∗149

=0.08

17.2.2 Proportional odds model

The multinomial model does not make any assumptions about the ordering of the categories. An
approach  for  analysing  ordinal  data  is  to  use  a  proportional  odds  model  which  relates  the
probability of being at or above a category to the probability of being in any lower category.
The model assumes that this relationship is the same at each of the categories. The model can
be written as follows.

ln
p Y ≥ j
p Y  j

=0
 j

1 X
Eq 17.2

Fitting  this  model  requires  that  J-1  intercepts  (β0)  be  estimated,  but  only  a  single  β1.
Graphically, the effects of the predictor can be seen in Fig. 17.2.

Based on the data in Table 17.2, the OR associated with being backgrounded for category 2 or 3
(compared with category 1) is:

OR2
=

19820∗15
7926∗149

=0.21

while the OR associated with being backgrounded for category 3 (compared with being <3) (ie
A vs AA or AAA) is:

OR3
=

1579∗20
149198∗26

=0.21

Because the 2 ORs are the same, the assumption of proportional odds seems to hold. However,
this may not be true for all of the predictors we are interested in.

17.2.3 Adjacent-category model

If the categories are ordered, and in some sense ‘equidistant’, then a constrained multinomial
model,  or  adjacent-category  model can  be  fit  to  the  data.  This  model  is  based  on  the
assumption that the predictor increases (or decreases) the log odds of a category occurring by a
fixed amount as you go up through the categories. Consequently, the model can be written as
follows.

ln
p Y = j 

pY = j−1
=0

 j 
 J −1 1 X

Eq 17.3

Fig. 17.2 Proportional odds model

OR
AAA AA A

OR

1 2 3
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Fitting  this  model  requires  that  J-1  intercepts  (β0)  be  estimated,  but  only  a  single  β1.
Graphically, the effects of the predictor can be seen in Fig. 17.3.

The estimate of β1 cannot be derived easily from the data in Table 17.2, but the OR for AA vs
AAA is 0.276 while that for A vs AAA is (0.276)2=0.076.

17.2.4 Continuation-ratio model

An alternative for analysing ordinal data is to use a continuation-ratio model which relates the
probability of being in a category to the probability of being in any lower category. The model
can be written as follows.

ln
p Y = j
p Y  j

=0
 j

1
 j X

Eq 17.4

A complete set of coefficients (β0 and β1) is estimated for each of the J-1 categories above the
baseline. Graphically, the effect of the predictor can be seen in Fig. 17.4.

Based on the data in Table 17.2, the  OR  associated with being backgrounded for category 2
(compared with category 1) is:

OR2
=

15∗198
149∗79

=0.25

while the OR associated with being backgrounded for category 3 (compared with being <3) (ie
A vs AA or AAA) is:

OR3
=

1579∗20
149198∗26

=0.21

17.3 MULTINOMIAL LOGISTIC REGRESSION

In  multinomial  logistic  regression  of  an  outcome that  has  J  categories,  the  probability  of
membership  in  each  of  the  outcome  categories  is  computed  by  simultaneously  fitting  J-1

Fig. 17.3 Adjacent-category model

OR
AAA AA A

1 2 3

OR

Fig. 17.4 Continuation-ratio model
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separate  logistic  models  (with  one  category  serving  as  the  baseline  or  reference  category).
Consequently,  for a dependent variable with 4 levels (leaving the first level as the baseline
category),  we estimate  3 sets  of  coefficients  (β(2),  β(3),  β(4))  corresponding  to  the  remaining
outcome categories. Because β(1)=0, the predicted probability that an observation is in category
1 is:

pY =1=
1

1exp X 2expX 3exp X  4 Eq 17.5

while the probability of being in category 2 is:

pY =2 =
exp X 

 2


1exp X 
 2

exp X 
3 

exp X 
4 

 Eq 17.6

and similarly for categories 3 and 4.

17.3.1 Odds ratios

For any given predictor (eg -bckgrnd-), there is a separate estimate of the effect of that predictor
on  each  outcome  (relative  to  the  base  level).  Exponentiation  of  the  coefficients  from  a
multinomial  regression  model  produces  odds  ratios  as  a  measure  of  effect.  Note  Strictly
speaking, these effect measures are not odds ratios. They are actually the ratio of 2 relative risks
(or risk ratios) with each relative risk describing the probability of the outcome in the category
of interest relative to the baseline category. Consequently, it would be more appropriate to refer
to them as relative risk ratios and some computer programs do so. However, the term odds ratio
is commonly applied and will be used in this chapter.

Example 17.1 shows a very simple model for carcass classification with -bckgrnd- as the single
predictor. The odds ratios are exactly the same as were found in Section 17.2. They indicate that
an animal that was backgrounded was 0.25 times as likely to grade AA (compared with AAA)
as an animal that was not backgrounded. Similarly, backgrounded animals were 0.08 times as
likely as a non-backgrounded animal to grade A.

Both of the  ORs in Example 17.1 suggest that backgrounding decreased the risk of a lower
carcass  grade  and  this  effect  was  clearly  statistically  significant  (see  Section  17.3.3  for
assessment of significance).

As with ordinary logistic regression, multinomial logistic regression can be extended to model
the effects of multiple predictors that might be categorical or continuous in nature. Example
17.2 shows a model for carcass grade including predictors with results presented as coefficients.

17.3.2 Interpretation of coefficients

Estimates (coefficients or ORs) from multinomial logistic regression models are interpreted in a
manner similar to those from ordinary logistic regression. The OR for the predictor -imfat- in
Example  17.2  suggests  that,  for  a  unit  increase  in  the  intramuscular  fat  reading  from the
ultrasound examination, the odds of being downgraded from AAA to AA goes down by a factor
of e-0.444=0.64 (36% reduction) while the odds of being graded A goes down by a factor of
e-1.041=0.35  (65% reduction).  In  Example  17.2,  all  of  the  predictors  have  more  pronounced
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effects on the A vs AAA comparison compared with the AA vs AAA comparison. This was
expected given the ordinal nature of the data, but nothing in the model guarantees this. This
pattern would not be expected if unordered nominal data were being analysed.

17.3.3 Testing significance of predictors 

The significance of predictors can be assessed using either a Wald test or a likelihood ratio test
(LRT). Overall tests of significance can be carried out (for all logistic models fit) as well as tests
for  coefficients  within  individual  models.  Note  however,  that  tests  of  significance  for  a
predictor within a given logistic model (eg for grade=A) will change if the baseline category is
changed.  Consequently,  overall  tests  of  significance  provide  a  better  estimate  of  the
significance of the predictor. Unconditionally, -sex- was not a significant predictor (Wald test
P-value = 0.46—data not shown). However, based on the model in Example 17.2, while the

Example 17.1 Simple multinomial logistic regression
data = beef_ultra

A simple multinomial logistic regression of carcass grade (3 levels) was carried out with -bckgrnd- as
the sole predictor. Carcass grade AAA was the baseline (referent) level. 

The first table presents the results in terms of coefficients of the logistic models.
Number of obs = 487

LR chi2 (2) = 49.33
Prob > chi2 = <0.001

Log likelihood = -418.670

Coef SE Z P 95% CI

AA

bckgrnd -1.377 0.302 -4.560 0.000 -1.969 -0.786

constant 1.661 0.282 5.900 0.000 1.109 2.213

A

bckgrnd -2.558 0.402 -6.360 0.000 -3.347 -1.770

constant 0.550 0.324 1.700 0.090 -0.085 1.186

Being a backgrounded reduced the logit of the probability of grading AA or A by 1.38 and 2.56 units,
respectively. 

The second table presents the results in terms of odds ratios.

OR SE 95% CI

AA

bckgrnd 0.252 0.076 0.140 0.456

A

bckgrnd 0.077 0.031 0.035 0.170

Backgrounded animals were 0.25 and 0.08 times as likely to be downgraded to AA or A compared with
non-backgrounded animals.
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Wald and likelihood ratio tests for -sex- give slightly different values (χ2 of 15.0 and 15.5,
respectively  on  2 df);  both  were  highly  significant  (P<0.001).  Control  of  other  factors
(intervening variables), has made sex an important predictor of carcass grade.

17.3.4 Obtaining predicted probabilities

Predicted probabilities of the occurrence of each outcome category can be computed from the
multinomial logistic regression (see Eqs 17.5 and 17.6). These will, of course, vary with the
values of the predictors for the animal. Table 17.3 shows those values for a small subset of the
cattle based on the model shown in Example 17.2. 

Example 17.2 Multiple multinomial logistic regression
data = beef_ultra

Prediction of carcass grade based on the background status, sex and weight of the animal and three
ultrasound measurements determined at the start of the feeding period.

Number of obs = 487
LR chi2 (10) = 146.08

Prob > chi2 < 0.001
Log likelihood = -370.298

Coef SE Z P 95% CI

AA

bckgrnd -1.282 0.337 -3.800 0.000 -1.944 -0.621

sex 0.906 0.266 3.400 0.001 0.384 1.429

backfat -0.249 0.116 -2.140 0.032 -0.477 -0.021

ribeye 0.373 0.081 4.620 0.000 0.215 0.532

imfat -0.444 0.123 -3.610 0.000 -0.684 -0.203

carc_wt -0.019 0.004 -5.490 0.000 -0.026 -0.012

constant 6.806 1.276 5.330 0.000 4.304 9.307

A

bckgrnd -1.830 0.483 -3.790 0.000 -2.777 -0.884

sex 1.486 0.458 3.250 0.001 0.589 2.384

backfat -0.667 0.258 -2.580 0.010 -1.173 -0.161

ribeye 0.493 0.152 3.240 0.001 0.195 0.791

imfat -1.041 0.236 -4.400 0.000 -1.504 -0.578

carc_wt -0.040 0.007 -6.160 0.000 -0.053 -0.027

constant 13.976 2.221 6.290 0.000 9.624 18.329

Carcass grade=AAA was the baseline (referent) level.

Once again, -bckgrnd- significantly reduces the risk of  lower grades (AA and A). -carc_wt-, -backfat-,
-ribeye- and -imfat- are intervening variables between -bckgrnd- and -grade- so the estimate of effect of
-bckgrnd- is just the direct effect. See Chapter 13 for a discussion of intervening variables.
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Table 17.3 Predicted probabilities from a multinomial logistic regression model

probability of grade

id grade bckgrnd sex backfat ribeye imfat carc_wt AAA AA A

1 AA bckg steer 2.5 8.9 4.5 357.7 0.03 0.55 0.42

2 AA bckg steer 5.9 11.8 5.2 323.2 0.02 0.68 0.30

3 AAA bckg steer 3.1 9.7 3.5 360.0 0.05 0.65 0.30

4 AA bckg female 2.5 7.5 5.2 307.3 0.02 0.37 0.62

5 AAA bckg steer 1.9 8.0 4.9 354.5 0.03 0.48 0.49

The sum of the probabilities for each animal equals 1.

17.3.5 Assumption of independence of irrelevant alternatives (IIA)

The multinomial regression model is based on an assumption that the odds of one level of the
outcome being observed is independent of what other alternatives are available. For the carcass
data discussed, this would mean that if the odds of an AA were twice those of an A, they should
always be twice, regardless of whether there were no alternatives or if the alternatives consisted
of just AAA or also included other levels (B, C etc). 

Two of the most commonly used tests of this assumption are the Hausman & McFadden (1984)
and Small-Hsiao (1985) tests of IAA. Both are based on the principle of fitting a full model and
comparing the coefficients from that model to a model with one or more of the alternatives
deleted (partial model). The null hypothesis is that the coefficients from the full model are the
same as  from the partial  model.  If  the P-value of the the test  is  >0.05 there is  insufficient
evidence to reject the null hypothesis (ie the assumption has been met). For the Hausman test,
the statistic may be negative which is also assumed to support the null hypothesis. 

Unfortunately, the two tests often give conflicting results and recent simulation studies (cited in
Long & Freese (2006)) suggest  that they may be of limited use in determining whether the
assumption has been met. In the face of conflicting results, the best advice may be from the
early statement of McFadden cited in Long & Freese (2006)) that multinomial models should
only be used when the alternatives  “can  plausibly be assumed to be distinct  and weighted
independently in the eyes of the decision maker”. For the beef carcass data, it seems unlikely
that the effects of factors on the choice of a grade by an inspector would be independent of the
range of choices available. Example 17.3 contains the results of these two tests for the beef
carcass data.

Example 17.3 Evaluating assumption of independence of irrelevant alternatives (IIA)
data = beef_carcass

The P-values for  the Hausman test  of IIA  were  0.768 and 0.993 if  levels  AA or A were  left  out
respectively. Both values strongly support the notion that the assumption of IIA had been satisfied. The
Small-Hsiao test of IIA produces different estimates each time it is run (due to a random element in the
calculations) and the results were very unstable. 

A likelihood ratio test of whether or not any of the levels could be combined produced P-values <0.001
for all pairwise combinations of levels, suggesting that no pairs of outcome levels could be combined.
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It is also possible to statistically evaluate (using a Wald or likelihood ratio test) whether any of
the outcome levels are not significantly different from other levels. If some are not, one might
want to consider combining those levels. (See Example 17.3.)

17.3.6 Regression diagnostics

Specialised diagnostics for multinomial logistic regression are not as readily available as they
are for ordinary logistic regression. One approach is to fit ordinary logistic models for pairs of
comparisons (eg grade=A vs AAA and AA vs AAA) and evaluate the regression diagnostics for
those models. An overall  goodness-of-fit  test has recently been developed  (Fagerland  et  al,
2008) but at the time of writing was not readily available in standard software packages.

17.3.7 Models for outcomes with alternative specific data

In the beef carcass data example, none of the predictors vary across outcome alternatives ( ie the
carcass weight of the animal was constant, regardless of whether outcome A, AA or AAA was
being considered). This is not always the case. Consider the situation in which a dog owner has
to choose among 3 options for dealing with a recently diagnosed case of cancer in their dog.
The options might include: treatment at their local clinic, treatment at a private referral hospital
or  treatment  at  a  university  based  teaching  hospital.  Factors  which  might  influence  their
decision might include: the age of the dog, their income level and the distance to the various
clinics. While the first two factors (age and income) are independent of the alternatives, the last
(distance) varies with the alternatives being considered (eg the local clinic is closer than the
other alternatives).  Various approaches for dealing with this situation exist (one of which is
conditional logistic regression—Section 16.15) and the reader is referred to (Hilbe, 2009; Long
& Freese, 2006) for an explanation of how to structure the data and fit an appropriate model for
this situation.

17.4 MODELLING ORDINAL DATA 

Ordinal data can arise in a variety of ways. For example, an observed continuous variable might
be divided into categories. Alternatively, levels of an ordinal variable could represent categories
of an unobserved (but hypothesised) continuous variable (eg  opinions ranging from strongly
agree  to  strongly  disagree,  or  disease  severity  ranging  from  absent  to  severe).  Finally,
categories might represent total values of a composite variable made up of a series of scored
variables (eg  a hygiene score that represents the sum of scores from several questions about
hygiene in a barn).

While the multinomial models described above can also be used to analyse ordinal data, they
ignore the fact that the categories fall in a logical, ordered sequence. There are a number of
different ways of fitting ordinal models. We will consider 3 of them: proportional-odds models
(Section 17.5), adjacent-category models (Section 17.6) and continuation-ratio models (Section
17.7).
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17.5 PROPORTIONAL ODDS MODEL (CONSTRAINED CUMULATIVE LOGIT MODEL)

This is the most commonly encountered type of ordinal logistic model. In a proportional odds
model, the coefficients measure the effect of a predictor on the log odds of being at or above a
specified level compared with the log odds of being below the specified level. It is based on the
assumption  that  the  coefficients  do  not  depend  upon  the  outcome  level,  so  only  a  single
coefficient for each predictor is estimated. A graphic representation of this model is presented
in Fig. 17.2.

A proportional odds model assumes that the ordinal outcome variable represents categories of
an underlying continuous latent (unobserved) variable. Assume that the value of the underlying
latent variable (or ‘score’) (Si) is a linear combination of predictor variables. 

S i=1 X 1 i2 X 2 i⋯k X kii Eq 17.7

where εi is a random error term from a continuous distribution.

The latent  variable (S) is  divided by cutpoints (τj)  so that  the  ith individual is  classified as
category 1 (AAA) if Si≤ τ1 and is classified as category 2 (AA) if τ1< Si≤τ2, and so on.

The probability of observing outcome j in the ith individual is:

p outcomei= j = p  j−1S i j  Eq 17.8

If  the random term (εi)  is  assumed to have a logistic  distribution (with a  mean of 0 and a
variance of π2/3), then

pS i j=
1

1eS i− j

Eq 17.9

Note  Assuming the latent  variable has a normal  distribution gives  rise to an ordinal  probit
model, but those are not discussed in this chapter.

The model  fit  by assuming a  logistically  distributed  latent  variable  can  also be  written  as
(presented with a single predictor X for simplicity):

logit p Y≤ j =0 j X

where the β0j are intercepts and β is the effect (slope) of the predictor. Thus, the model is one in
which the log odds of the outcome can be viewed as being represented by a series of parallel
lines with different intercepts.

Example 17.4 presents a proportional-odds model for the carcass grade data.

1 (AAA) 2 (AA) 3 (A)
Y
S

τ
1

τ
2
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17.5.1 Predicted probabilities

The first  observation in the dataset  is a backgrounded steer  (sex=1) with a backfat=2.51,  a
ribeye=8.94, an imfat=4.46 and a carc_wt=357.7. For this animal, the latent variable (S1) is:

S i=−8.329

Consequently, the probability of this animal being in category 1 (AAA) (from Eq 17.9) is:

pY =1=
1

1e−8.329−−8.635=0.42

Similarly, the probability of this animal being graded AA is 0.54 and A is 0.03.

The probabilities of each grade outcome for the first 5 animals from this dataset (and the values 
of the predictor variables for those animals) are shown in Table 17.4.

Example 17.4 Proportional-odds model 
data = beef_ultra

A proportional-odds  model  was  fit  to  the carcass  grade  data  with  the  same  predictors  as  used in
Example 17.2 and 17.3.

Number of obs = 487
LR chi2 (6) = 138.53
Prob > chi2 < 0.001

Log likelihood = -374.070

Coef SE Z P 95% CI

bckgrnd -1.214 0.263 -4.620 0.000 -1.729 -0.699

sex=steer 0.862 0.231 3.730 0.000 0.410 1.315

backfat -0.287 0.106 -2.690 0.007 -0.495 -0.078

ribeye 0.335 0.070 4.790 0.000 0.198 0.472

imfat -0.520 0.109 -4.760 0.000 -0.734 -0.306

carc_wt -0.022 0.003 -7.140 0.000 -0.028 -0.016

cutpoint 1 -8.635 1.105 -10.801 -6.470

cutpoint 2 -4.928 1.038 -6.962 -2.894

The odds ratio associated with being a steer, compared with being a female is:

e0.862=2.37

This  suggests  that  being a  steer  increases  the odds of  being at  or  above  any given  carcass  grade
compared with being below that grade by 2.37 times. (Remember that the data are coded so that A is
grade  3—ie  greatest  economic  loss).  As  such  it  measures  the  overall  increased  chance  of  a  poor
(higher) grade that is associated with being a steer.
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Table 17.4 Values of predictor variables, latent variables (Si) and predicted probabilities of
each of the carcass grades from the proportional-odds model

probability of
grade

id grade bckgrnd sex backfat ribeye imfat carc_wt S AAA AA A

1 AA bckg steer 2.5 8.9 4.5 357.7 -8.33 0.42 0.54 0.03

2 AA bckg steer 5.9 11.8 5.2 323.2 -7.99 0.34 0.61 0.05

3 AAA bckg steer 3.1 9.7 3.5 360.0 -7.82 0.31 0.64 0.05

4 AA bckg fem. 2.5 7.5 5.2 307.3 -8.93 0.57 0.41 0.02

5 AAA bckg steer 1.9 8.0 4.9 354.5 -8.60 0.49 0.48 0.03

The effect of a single predictor (-imfat-) on the predicted probability can best be viewed by
generating smoothed curves of the probability of each grade against -imfat-. Fig. 17.5 shows a
graph of lowess smoothed probabilities (smoothed with a bandwidth of 50%) of each grade
against the intramuscular fat level (over the range of 3.0 to 6.0—the range in which most -imfat-
values fall). Note As the probability of each outcome depends on the value of all predictors in
the model, the smoothed curves shown in Fig. 17.5 represent average probabilities of the grade
as -imfat- changes.

As  can  be  seen,  the  probability  of  a  carcass  being  graded  AA  or  A  goes  down  as  the
intramuscular  fat  level  at  the  start  of  the  feeding  period  goes  up.  On  the  other  hand,  the
probability of a grade of AAA goes up substantially.

Fig. 17.5 Smoothed mean probabilities of grades
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17.5.2 Evaluating the proportional-odds assumption 

A rough assessment of the assumption of proportional odds can be obtained by comparing the
log likelihood of the ordered logit model (L1) with one obtained from the multinomial logit
model (L0) using a likelihood ratio test. If there are k predictors (not counting the intercept) and
J categories  of  outcome,  the  multinomial  model  will  fit  (k+1)(J-1)  parameters,  while  the
proportional-odds model  will  fit  k+(J-1)  so the difference  in  degrees  of  freedom is  k(J-2).
Consequently,  -2(L1-L0)  should  have  an  approximate  χ2 distribution  with  k(J-2) degrees  of
freedom.  Note  This is only an approximate test because the proportional-odds model is not
nested within the multinomial model. However, it gives a rough assessment of the assumption
of the proportional-odds assumption.

In  our example,  the log likelihoods of  the multinomial  and proportional  odds models were
-370.30 and -374.07, respectively so the LRT is:

LRT=−2 −370.30−[−374.07]=7.54

The  χ2 statistic  has  k(J-2)=6 df  which  yields  a  P-value  of  0.27.  Consequently,  there  is  no
evidence that the proportional-odds assumption does not hold. As an alternative to comparing
the  ordinal  logistic  model  to  a  multinomial  model,  the  comparison  can  be  made  with  a
generalised ordinal logistic model (described below—Section 17.5.3). This comparison yields a
χ2 of 6.50 (P=0.37).

An alternative approximate LRT based on fitting J-1 separate binary models has been developed
(Wolfe & Gould, 1998). The models are fit first assuming the βs are constant across all models
(proportional-odds assumption) and the sum of these log likelihoods are compared with the sum
of those obtained by fitting the models without the assumption of constant  βs. For the beef
ultrasound model, this test produces a χ2 value of 6.42 (P=0.38).

The likelihood ratio tests described above are omnibus tests which evaluate the assumption of
proportional odds over all predictors. A Wald test which will provide an overall assessment as
well as an evaluation of the assumption for each predictor separately is available (Brant, 1990).
The results of this test for the model fit in Example 17.4 are presented in Table 17.5.

Table 17.5 Brant (Wald) test of proportional-odds assumption

Variable Χ2 P df

all 6.66 0.35 5

bckgrnd 1.42 0.23 1

sex 0.18 0.67 1

backfat 0.59 0.44 1

ribeye 1.47 0.23 1

imfat 0.80 0.37 1

carc_wt 0.43 0.51 1

The P-value of the overall Wald test is comparable to the last two approximate likelihood ratio
tests described above. None of the individual predictors have significant test results suggesting
that the proportional-odds assumption is valid. Other tests of the proportional-odds assumption



MODELLING ORDINAL 441
AND MULTINOMIAL DATA

are available but there are no clear guidelines for choosing one test over another. In general, if
any  of  the  tests  discussed  above  yields  a  significant  result,  the  assumption  should  be
investigated further.

17.5.3 Dealing with non-proportional odds

In the event that one or more predictors appears to violate the assumption of proportional odds,
there are a number of potential approaches to dealing with the problem. A generalised ordinal
logistic regression model is one in which a complete set of coefficients are estimated for each
cutpoint in the ordinal model (eg A vs AA/AAA and A/AA vs AAA). Consequently, it is no
more parsimonious than the multinomial model, but it does take into account the ordering of the
categories. The log-likelihood of this model can be compared with that of a model assuming
proportional odds to see if the assumption is valid (see Section 17.5.2).

If  the  proportional  odds  assumption  appears  to  hold  for  some predictors,  but  not  all,  it  is
possible to fit  a  partial proportional odds model in which the assumption of proportional
odds is  removed  for  selected  predictors.  For  our  example,  there  were  no predictors  which
showed significant evidence of violating the proportional odds assumption (Table 17.5), but the
2 with the smallest  P-values  were  -bckgrnd-  and -ribeye-.  If  the coefficients  for  these two
predictors  are  allowed  to  vary  across  cut-points,  but  the  remainder  are  constrained  to  be
constant  (proportional  odds),  the  log-likelihood  for  the  model  is  -371.70  which  yields  a
likelihood ratio test  χ2 of 4.73 (P=0.09), providing some limited evidence that the effects of
these 2 predictors might differ across the 2 cutpoints.

Two other approaches for dealing with non-proportional odds are the stereotype logistic model
and the heterogeneous choice logistic model. These are beyond the scope of this text and the
reader is referred to (Hilbe, 2009; Long & Freese, 2006) for details.

17.5.4 Regression diagnostics

As with multinomial models, regression diagnostics for ordinal models are not well developed.
Hosmer and Lemeshow (2000) suggest  fitting ordinary logistic models to data based on the
cutpoints in the ordinal data (eg  one model which compares A to AA/AAA and one which
compares  A/AA to AAA).  Residuals  from these  models can be evaluated  using techniques
described in Chapter 16.

17.6 ADJACENT-CATEGORY MODEL

In  an adjacent-category logistic  regression model,  each coefficient  measures  the effect  of a
factor on the logit of the probability of being in a specified level compared with the probability
of being in the level below. For any given predictor, this results in the estimation of a single
effect that expresses how the predictor influences the log odds of the outcome moving up to the
next (adjacent) category. This model is also known as a constrained multinomial model because
it is estimated as a multinomial model with the constraint that the coefficient for categories  n
levels  apart  be  n times  the  coefficient  for  adjacent  categories.  (Alternatively,  the  OR for
categories n levels apart will be the OR for adjacent levels raised to the power n.) This model is
based on the assumption that, as you go from one level  to the next, the  OR is constant.  A
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graphic representation is shown in Fig. 17.3.

Example  17.5  presents  an  adjacent-category  model  based  on  the  multinomial  model  fit  in
Example 17.2. A likelihood ratio test can be used to compare this ‘constrained multinomial
model’  with  the  usual  multinomial  model.  If  the  test  is  significant,  it  suggests  that  the
multinomial model is superior. The LRT for the model in Example 17.5 had a χ2 of 7.14 with 6
df (because 6 fewer coefficients were estimated) with a P-value of 0.31, suggesting that there is
little  evidence  that  the  unconstrained  model  fits  the  data  better  than  the  adjacent-category
model. In this case, for the sake of simplicity, the adjacent-category model is preferable.

Example 17.5 Adjacent-category model 
data = beef_ultra

An  adjacent-category  model  was  fit  using  the  same  predictors  presented  in  Example  17.2.  The
constraint that coefficients  for categories two levels apart be twice those of the adjacent categories
reduces the number of parameters which need to be estimated. 

Number of obs = 487
LR chi2 (6) = 138.94
Prob > chi2 < 0.001

Log likelihood =  -373.87

Coef SE Z P 95% CI

AA

bckgrnd -1.040 0.235 -4.420 0.000 -1.501 -0.579

sex=steer 0.784 0.210 3.730 0.000 0.372 1.196

backfat -0.276 0.097 -2.850 0.004 -0.465 -0.086

ribeye 0.296 0.063 4.670 0.000 0.172 0.420

imfat -0.477 0.101 -4.740 0.000 -0.675 -0.280

carc_wt -0.020 0.003 -6.970 0.000 -0.026 -0.014

constant 7.844 1.036 7.570 0.000 5.813 9.876

A

bckgrnd -2.080 0.471 -4.420 0.000 -3.002 -1.157

sex=steer 1.568 0.420 3.730 0.000 0.744 2.391

backfat -0.552 0.194 -2.850 0.004 -0.931 -0.172

ribeye 0.592 0.127 4.670 0.000 0.343 0.840

imfat -0.955 0.202 -4.740 0.000 -1.350 -0.560

carc_wt -0.040 0.006 -6.970 0.000 -0.051 -0.029

constant 12.462 1.967 6.340 0.000 8.607 16.317

Outcome grade=AAA is the comparison group.

Note The coefficient for each predictor for  grade=A is twice that for grade=AA because it  is  two
categories away from AAA. For example, being a steer increases the log odds of being graded A by
1.57 units but the log odds of being graded AA by only 0.78 units. 
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17.7 CONTINUATION-RATIO MODEL

In continuation-ratio models, the log OR measures the effect of a factor on the odds of being in
a specified level compared with the odds of being in any of the lower levels. This type of model
is useful in situations where the dependent variable represents the number of attempts required
to achieve an outcome (eg  number of breedings required for conception in dairy cows). The
individual must pass through all lower levels to reach the current level (you can’t have your 3rd

breeding until you have had your 1st and 2nd), hence the name ‘continuation-ratio’. A graphic
representation is shown in Fig. 17.4.

This model can be fit as a series of simple logistic models in which the dependent variable (Y)
is recoded to be 1 for the level of interest, 0 for all lower levels and missing for all higher
levels.  For  example,  a  continuation-ratio  model  evaluating  the  effects  of  predictors  on  the
probability of conception for up to 4 breedings would require 3 separate logistic regressions.
The data would be recoded as shown in Table 17.6.

Table 17.6 Coding of data for a continuation-ratio model of effect of predictors on number
of services required for conception

Breeding

1 2 3 4

Y1 0 1 missing missing

Y2 0 0 1 missing

Y3 0 0 0 1

In this example, the coefficient for a predictor represents the effect of the factor on the log odds
of conceiving on the jth breeding, conditional on not conceiving on any previous breedings.

The model contains the same number of parameters  as the multinomial model presented in
Section 17.3. Consequently, the model is no more ‘parsimonious’, but it results in estimates of
the OR which have different interpretations than those from a multinomial logistic regression
model.  A  constrained  continuation-ratio  model  can  be  fit  with  the  OR  for  each  predictor
constrained to be equal for each increment in the outcome. A likelihood ratio test, comparing
the constrained and unconstrained models, can be used to evaluate the assumption of equal
ORs.

The OR from the separate logistic models for the beef ultrasound data are not presented because
it  does  not  make  biological  sense  to  fit  these  data  with  a  continuation-ratio  model  ( ie
movements between grades are not sequential events).
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