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MODELLING COUNT AND RATE DATA

OBJECTIVES

After reading this chapter, you should be able to:

 1. Understand the relationship between counts of disease events and incidence rates.

 2. Fit, evaluate and interpret Poisson regression models.

 3. Be able to determine when a negative binomial model is likely to be more appropriate than a
Poisson model and to quantify and statistically assess overdispersion.

 4. Fit, evaluate and interpret negative binomial regression models.

 5. Decide when zero-adjusted models (hurdle,  zero-inflated,  zero-truncated) might  be more
appropriate than a Poisson or negative binomial model.

 6. Fit zero-adjusted models and interpret the results.
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18.1 INTRODUCTION

In previous chapters, we have looked at methods of analysing data measured on a continuous
scale  (Chapter  14)  and  2  types  of  discrete  data:  binary/binomial  data  (Chapter  16)  and
multinomial data (Chapter 17). Here, we are introduced to the situation in which the outcome
we are measuring represents a count of the number of times an event occurs in an individual or
group of individuals. 

a. It might be a simple count of events, such as the number of breedings required for a dairy
cow  to  conceive.  Poisson  regression  was  used  to  evaluate  the  effect  of  peripartum
treatment with an anthelmintic on the number of services per conception in dairy cows
(Sanchez et al, 2002).

b. It might be a count of cases of disease over a period of time with the amount of animal-
time at risk having to be taken into consideration (eg total number of cases of clinical
mastitis  in a dairy herd  over a  year  with the number of  cow-months contributed by
lactating cows as the amount of animal-time). Hence, this is a measure of the incidence
rate (I) of disease. The examples used in this chapter will focus on this kind of data: the
incidence rate of clinical mastitis in a hypothetical trial of ‘pre-dipping’ in a dairy herd
and the incidence rate of new Mycobacterium bovis infections in cattle and cervid herds
after the introduction of the agent to the herd.

c. It might be a count of cases of disease with the size of the population at risk being taken
into  consideration  (eg cases  of  lymphosarcoma in slaughtered  cattle  seen  at  various
abattoirs with the number of cattle slaughtered as  the population at  risk).  This is  an
estimate of the (lifetime) incidence risk of lymphosarcoma in cattle.

d.  It  might  be  a  count  of  an  outcome that  is  measured  over  a  geographical  area.  For
example, Poisson models are also used to investigate factors related to the number of
events per unit area. Hammond et al (2001) investigated whether land use was predictive
of the number of badgers  in 500 m2 grids  in an area in Ireland.  The study area was
overlaid by a 500 m2 grid and the number of badgers caught in each grid was recorded.
Land use within each cell of the grid was described by a set of categorical variables. The
mean number of badgers per grid was 0.6 and the variance was 1.5. A major finding was
that as the area of high-quality pasture within a grid increased, the number of badgers
also increased.

18.1.1 Approaches to analysis

We might want to evaluate the effect of ‘pre-dipping’ (disinfection of teat ends prior to milking)
on the incidence of clinical mastitis. We will assume that a controlled trial can be carried out in
3 large dairy herds and cows will be individually assigned to be pre-dipped or not. The outcome
of interest might be the total number of cases of clinical mastitis occurring in each cow over a
full lactation. Other factors that will have to be taken into consideration are the age of the cow
(it is generally accepted that the risk of clinical mastitis increases with age) and which herd the
cow is in (because incidence rates of mastitis vary among herds). While random assignment of
cows to treatment groups should balance the age and herd factors across the study groups, you
might still want to consider them in the analysis. Given the clinical trial design, we can assume
that the population is closed, but the time at risk will vary among cows. Note In this example,
we are interested in the total number of cases of mastitis. If we were interested in first cases
only, we could create a binary variable for each cow and fit a logistic model.



MODELLING COUNT AND RATE DATA 447

There are a number of ways to approach the analysis of the data generated by this study.
a. The incidence rate of clinical mastitis could be computed for each study group and the

difference between the 2 groups tested using an unconditional Z-test that was discussed
in Chapter 6. This approach does not allow for the control of other potential confounding
variables (ie  age of cow and herd), so it would rely totally on random assignment to
control for these effects.

b. Alternatively, you could determine the incidence rate (I) of clinical mastitis within each
cow and use that value as the dependent variable in a linear regression with pre-dipping
as the primary exposure (predictor) of interest and age and herd as extraneous variables.
However, most cows would have an I of zero, so it is very unlikely that the error terms
would  have  anything  close  to  a  normal  distribution.  Consequently,  one  of  the
fundamental assumptions of linear regression would be violated. It is also possible that
some combination of predictor variables could be found that predicted a negative  I for
the cow. This approach looks worse than the first.

c. The preferred approach is to use Poisson or negative binomial regression to model the
incidence of new cases while adjusting for the amount of time each cow was at risk.

A number of texts dealing specifically with the analysis of count data are available and include
Cameron & Trivedi (1998); Hilbe (2007); Long (1997); Long & Freese (2006).

18.2 THE POISSON DISTRIBUTION

The Poisson distribution is often used to model counts of ‘rare’ events:

pY =y =


y e−

y ! Eq 18.1

where  y is the observed count of events and  μ is the mean number of events. An interesting
characteristic of the Poisson distribution is that the mean and the variance are equal (ie μ).

The Poisson distribution can be thought of in 2 ways. 
a.  If  the  times  between  events  (eg cases  of  mastitis)  are  independent  and  follow  an

exponential distribution with a mean value of t, then the number of cases of mastitis (Y)
in a defined time period (T) will follow a Poisson distribution with μ=T/t. For example,
if the mean time between cases of mastitis is 150 days, then the expected number of
cases  in  a  300-day  lactation  will  be  300/150=2  cases.  The  time  between  events  is
sometimes  referred  to  as  the  ‘waiting  time’.  Using  this  formulation  of  the  Poisson
distribution,  there  is  a  natural  connection  between  the  analysis  of  counts  of  events
(Poisson regression) and the analysis of time to event occurrence (survival analysis—
Chapter 19).

b. The Poisson distribution approximates the binomial distribution if the population (n) is
large, consists of independent units and the binomial proportion (p) is small (ie  events
are  ‘rare’).  In  this  case,  μ=np.  For  example,  if  the  probability  of  the  occurrence  of
mastitis on any given day is 1/150=0.0067, then the expected number of cases in a 300-
day lactation will be 300*0.0067=2.

If the outcome follows a Poisson distribution and the mean is known, you can calculate the
probability of a specific number of events occurring. For example, if the average number of
milk fever cases in a dairy herd is 5 per year, the probability of getting 10 cases in a year is:
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pY =10=
510e−5

10 !
=0.018

This indicates that there is approximately a 2% chance of having exactly 10 cases in a year
(provided the mean for the population is not changing over time).

Poisson distributions with means of 0.5, 1.0, 2.0 and 5.0 are shown in Fig. 18.1. As this figure
indicates, as the mean increases, the Poisson distribution approaches a normal distribution.

18.3 POISSON REGRESSION MODEL

The usual form of the Poisson regression model is:

E Y ==n Eq 18.2

where E(Y) = the expected number of cases of disease
n = exposure (eg animal-time units at risk)
λ = represents a function which defines the disease incidence rate.

The exposure (n) adjusts for different amounts of time at risk (or, alternatively, different sizes
of populations at  risk) for the various study subjects (animals or groups of animals).  (Note
Throughout this text, the letter n is most commonly used to denote the number of animals in a

Fig. 18.1 Poisson distributions
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population. Here we are also using it to denote the amount of animal-time at risk.) If n is equal
for all subjects, it can be omitted but you must remember that predicted counts will refer to the
expected number of cases  in  n animal-time units at  risk.  For example,  in the badger study
referred  to,  each  count  related  to  the  same 500 m2 grid  size so no offset  or  exposure  was
required. However, the predicted counts were counts per 500 m2.

One of the ways that λ can be related to the predictor(s) is:

=e01 X   or  1n =01 X Eq 18.3

Consequently, the Poisson regression model is:

E Y =ne0 1 X or 1n EY =1n n0 1 X

or ln E I =ln E Y 

n =01 X Eq 18.4

where lnE(I) is the log of the expected value of the incidence rate (I) of disease which is being
modelled as a  linear  combination of predictors.  Note  This example assumes that  there is  a
single predictor variable (X), but the model can be extended to include multiple predictors. 

The exposure (n) may be recorded and used on the original scale (ie the amount of animal-time
at risk). Alternatively, it may be converted to a log scale and used as such (referred to as an
offset). In statistical terminology, an offset term in a model equation is a term whose regression
coefficient is restricted to be 1 (ie absent).

As  with  logistic  regression,  Poisson  regression  models  are  fit  using  an  iterative  maximum
likelihood estimation procedure.  The statistical significance of the contribution of individual
predictors  (or  groups  of  predictors)  to  the  model  can  be  tested  using  either  Wald  tests  or
likelihood ratio tests. An example of a Poisson regression analysis, based on tuberculosis data
from cattle and cervids is presented in Example 18.1.

18.4 INTERPRETATION OF COEFFICIENTS

The coefficients from a Poisson regression model represent the amount the log of  I  (lnI) is
expected to change with a unit change in the predictor. Assuming that there are 2 exposure
groups (X=0 and  X=1), then the  incidence rate ratio (IR) associated with belonging to group
X=1 (relative to group X=0) is:

IR=
1

0

=
e0 1

e0
=e 1

Eq 18.5

so the coefficients  from a Poisson regression  can  easily be converted  into  IR estimates.  In
general, the IR represents the proportional increase in I for a unit change in the predictor. For
example, if the IR for lactation number in a study of clinical mastitis cases was 1.5, that would
suggest that the incidence rate of clinical mastitis went up by 50% for each additional lactation
that a cow had (ie that it was 1.5 times as high as the rate in the previous lactation).  Note In
general eβ1 represents the ratio between mean counts in 2 groups. However, because Poisson
regression is most commonly used for incidence rate data in epidemiologic studies, this specific
use will be emphasised throughout this chapter.
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The effect of a predictor on the absolute number of cases of disease (or other outcome event)
depends on the values for other predictors in the model. For example, the IR for type=cervid in
Example 18.1 was e1.066=2.9 (compared with dairy herds). The predicted I for young (0-12 mo),
females in a dairy herd was  e-11.690=0.84  cases/100,000 animal-days at risk. For cervids,  the
predicted rate would be 0.84*2.9=2.43 cases/100,000 animal-days, or an extra 1.59 cases per
100,000 animal-days. In animals aged 12-24 mos, the predicted rate for females in dairy herds
was  e-9.017=12.1  cases/100,000  animal-days.  For  cervids  of  this  age,  the  rate  would  be
12.1*2.9=35.3 cases/100,000 animal-days, or an extra 23.2 cases per 100,000 animal-days.

Example 18.1 Poisson regression model
data = tb_real

The incidence rates of new tuberculosis (TB) infections in cattle, cervid (deer and elk) and bison herds
in 9 TB outbreaks in Canada between 1985 and 1994 were estimated (Munroe et al, 2000; Munroe et
al, 1999). These incidence rates were modelled as a function of several characteristics of the animals in
the herd (type, sex and age). The key predictors were:

type: 1=dairy, 2=beef, 3=cervid, 4=other
sex: 0=female, 1=male
age: 0=0-12 mo, 1=12-24 mo, 2=24+ mo

A more complete description of the dataset is in Chapter 31.

A Poisson regression model with the 3 predictor variables and the time at risk included as an exposure
variable produced the following results.

Number of obs = 134
Log likelihood = -238.7

95% CI for IR

Variable Coef SE P IR Lower Upper

type=beef 0.442 0.236 0.061 1.56 0.98 2.47

type=cervid 1.066 0.233 <0.001 2.90 1.84 4.59

type=other 0.438 0.615 0.476 1.55 0.46 5.17

sex=male -0.362 0.195 0.064 0.70 0.47 1.02

age=12-24 mo 2.673 0.722 <0.001 14.49 3.52 59.62

age=24+ mo 2.601 0.714 <0.001 13.48 3.33 54.59

constant -11.690 0.740 <0.001 NA NA NA

Herd type was a significant predictor (P<0.001) with incidence rates in beef and cervid herds higher
than in  dairy herds although the coefficient  for  beef  herds was  only borderline significant.  Males
appeared to have a lower incidence rate (again borderline significance) and animals over 11 months of
age definitely had higher incidence rates.

The deviance and Pearson goodness-of-fit test statistics were:

df Χ2 P dispersion

Deviance 127 348.4 <0.001 2.74

Pearson 127 1105.7 <0.001 8.71

These suggest that there are serious problems with the model (ie strong evidence of lack of fit).
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18.4.1 Poisson regression and risk ratios

Logistic regression (Chapter 16) is the most widely used multivariable model for binary (0/1)
data and it produces estimates of effect expressed as odds ratios (ORs). Risk ratios (RRs) are
more easily understood and may be preferred to  ORs in some situations. One multivariable
approach to obtaining RR is to fit a generalised linear model with a binomial distribution and a
log link  (see  Section  16.11).  However,  it  has  been  reported  that  these  models  may fail  to
converge  (Barros & Hirakata, 2003; Zou, 2004). An alternative is to use Poisson regression
(with no exposure or offset specified) even though the data are binary, to directly estimate RRs
(Barros & Hirakata, 2003; McNutt  et al, 2003). This approach produces estimates with very
little bias but a conservative CI (ie the CI is too wide). It has been shown that using robust SEs
(see Section 14.9.5) reduces the estimated SEs of the coefficients and results in a CI of the
correct width (Greenland, 2004; Zou, 2004).

18.5 EVALUATING POISSON REGRESSION MODELS

18.5.1 Residuals

Raw residuals can be computed for each observation as the observed number of cases (obs)
minus the expected number of cases (exp) predicted from the model. Residuals are computed
on the basis of one per observation.

Pearson residuals can be computed as:

res=obs - exp
var

which for the i th observations is res i=
yi− i

 i Eq 18.6

where  ‘var’ is the estimated variance of the observations. For a Poisson model, the estimated
variance is equal to the expected number of cases (μ). 

Deviance residuals are based on the overall fit of the model (formula not shown). The sum of
the squared deviance residuals gives  the deviance for the model which is defined as minus
twice the difference between the log likelihood of the model and the maximum log likelihood
achievable.  Both  Pearson  and  deviance  residuals  may  be  standardised  to  give  them  unit
variance.

Anscombe residuals are similar to standardised deviance residuals  (Hilbe, 2007) but may be
better  at  identifying  outliers  and  heterogeneity  in  the  data.  It  is  recommended  that  both
standardised  deviance  and  Anscombe  residuals  be  plotted  against  predicted  values  when
evaluating a Poisson model (Hilbe, 2007).

All of the above residuals may be further standardised, a process which makes the variance of
the residuals more constant.

18.5.2 Assessing overall fit

As with logistic regression, χ2 goodness-of-fit tests can be computed as the sum of the squared
deviance or Pearson residuals. The resulting test statistic has an approximate χ2 distribution if
there are multiple observations within each covariate pattern defined by the predictors in the
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model  (Cameron & Trivedi, 1998). However, the values of the 2 test statistics could be quite
different and, if either is indicative of a lack of fit, the model should be investigated thoroughly.
As with all overall goodness-of-fit statistics, a significant result (indicating lack of fit) provides
no information about what the cause of the lack of fit is. However,  with Poisson models, a
common cause is overdispersion (ie the variance of the counts is much larger than the mean).
The Pearson and deviance goodness-of-fit test results for the TB data are presented in Example
18.1 (both are highly significant in indicating lack of fit).

The predictive ability of the model can be evaluated by comparing the distributions of observed
and predicted counts. Fig. 18.2 shows the distributions of the observed and predicted counts
from the model presented in Example 18.1. Their apparent similarity does not reflect the serious
problems with the lack of fit for the model.

18.5.3 Overdispersion

The assumption behind a Poisson model is that the mean and the variance are equal (conditional
upon the predictors in the model); that is, the mean and the variance of the number of events are
equal for individuals with any specific covariate pattern (ie set of predictors) (also assuming
equal quantity of exposure). Consequently, one could have an overall variance greater than the
overall mean in the raw data, but still meet the assumption of equidispersion if the variance
among individuals with any set of predictor values equals the mean for that group. However, as
a simple rule, if the variance in the raw data is greater than twice the overall mean, one must be
suspicious that overdispersion will be present.

Having a variance much larger than the mean is a common problem with count data. This is
called  extra-Poisson variation or  overdispersion.  Overdispersion can arise in  a  variety of
ways (see Hardin & Hilbe (2007); Hilbe (2007)).

Apparent overdispersion
Apparent overdispersion can be caused by any errors in the model. This can include omission of
important explanatory predictors, outlying observations (potentially errors in the data?), failure
to  account  for  important  interactions  in  the  model,  or  failure  to  satisfy  the  assumption  of
linearity for continuous predictors. The solution to apparent overdispersion is to fix the model.

Real overdispersion
Real overdispersion occurs when the true variance in the counts is greater than the mean and it
can also arise in a variety of ways. It may be that the variance of the counts is much larger than
the mean value and that a model which allows for this greater variance is required. A common
cause of real overdispersion is clustering of data (see Chapter 20) and potential solutions are
discussed below. Alternatively, zero counts may either be more abundant or less frequent (or
completely absent) than expected. The solution to this problem is to use hurdle, zero-inflated or
zero-truncated models (discussed in Section 18.7).

As an example,  in the TB data described  in Example 18.1,  each  herd contributed multiple
observations to the dataset. (While most herds had only one type of animal, they would have
had multiple age classes and perhaps, males and females). The incidence rate of TB cases is
more alike among groups of animals within a herd than across different herds. Consequently,
part of the variation between groups of animals is due to the clustering in herds, and this has not
been taken into account. Thus, the model does not fit the data well.
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18.5.4 Evaluating overdispersion

The  amount  of  overdispersion  can  be  quantified  by  computing  a  dispersion  parameter  by
dividing either the Pearson or deviance  χ2 by its df (with the Pearson  χ2 generally being the
preferred value). Values of the dispersion parameter >1 indicate overdispersion and should be a
concern if >1.25 in moderate sample sizes or >1.05 in large sample sizes. The Pearson and
deviance dispersion parameters  for the TB data were 8.71 and 2.74, respectively (Example
18.1), reflecting the serious problem of overdispersion in these data.

The statistical significance of the amount of overdispersion can be assessed using the goodness-
of-fit tests described in Section 18.5.2. Two alternatives are the score test and the Lagrange
multiplier test. The reader is referred to Hilbe (2007) for details.

18.5.5 Dealing with overdispersion

There are several  ways of dealing with overdispersion, some of which are discussed in this
chapter and others which are presented elsewhere.

Scaled SEs of parameter estimates can be computed by scaling the SEs by the square root of
either the deviance or Pearson dispersion factor (simulation studies have shown that the Pearson
dispersion is preferred (Hilbe, 2007)). For example, in the model shown in Example 18.1, the
SEs of the coefficients would be increased by  √8.71 = 2.95,  resulting in a SE for cervids of
2.95*0.233=0.689 producing a Z-statistic of 1.55 with a P-value of 0.12. Alternative approaches
to adjusting the SEs include the use of robust SEs (described in Section 14.9.5) or bootstrap or
jackknife SEs (not described in this text).

One commonly used approach is to use negative binomial regression to fit a model in which
the variance is allowed to be larger  than the mean. This is  described in more detail below
(Section 18.6).

If the overdispersion is a result of clustering within the data, that clustering can be accounted
for by adding fixed effects for the clusters to the model (see Section 20.5.2), by adding random

Fig. 18.2 Comparison of observed and 
predicted counts of TB reactors
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effects for  the  clusters  (see  Section  22.4.3)  or  through  the  use  of  generalised  estimating
equations (GEE—see Section 23.5). If the overdispersion is caused by clustering, methods for
dealing with the clustering are preferable to using scaled SE or a negative binomial regression.

18.5.6 Influential points and outliers

Outliers  may  contribute  to  overdispersion,  but  even  in  the  absence  of  evidence  of
overdispersion, it is important to evaluate outlying observations. Outliers can be identified by
looking for large values of Pearson, deviance or Anscombe residuals. Influential points can be
identified by looking for large values of Cook’s distance (see Chapter 14 for introduction to
Cook’s  distance).  Examples  of  these  are  shown in  Example  18.2.  As  with  other  forms  of
regression models, ill-fitting points must be checked thoroughly. If the data are incorrect, they
must be fixed or excluded. If  the data are correct,  evaluation of poorly fitting points could
provide insight into reasons why the model does not fit well.

18.6 NEGATIVE BINOMIAL REGRESSION

Negative binomial regression models are models for count data in which the variance is not
constrained to equal the mean. These models can be derived in 2 ways: from the 2 parameter
negative binomial distribution or as a Poisson-gamma mixture distribution. Each of these will
be discussed below.

Example 18.2 Poisson regression—diagnostics
data = tb_real

Based on the model fit  in Example 18.1,  the observations with the 3 largest negative and positive
Anscombe residuals are:

age pop reactors standardised residuals Cook’s

obs type sex (mos) at risk obs. pred. dev. Pear. Ansc. distance

89 cervid male >24 27410 0 6.26 -3.99 -2.82 -3.75 0.31

54 cervid female >24 26182 1 8.59 -3.55 -2.79 -3.35 0.17

53 cervid female 12-24 12420 0 4.38 -3.16 -2.23 -3.14 0.10

25 dairy female 0-12 389 1 0.00 3.08 17.48 3.81 0.08

45 cervid female >24 21848 29 7.17 6.50 8.66 6.18 1.37

133 beef female >24 6418 20 1.13 8.87 17.94 9.24 0.87

Large negative residuals were associated with groups of animals where many cases were expected, but
few observed. Large positive residuals were found in groups of animals where many more cases were
observed than were expected. Although they only accounted for 39% of the observations in the dataset,
groups of cervids accounted for 4 of the 6 most extreme residuals suggesting that the model did not fit
as well for cervids as it did for cattle.

(continued on next page)
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18.6.1 Negative binomial distribution

The  negative  binomial  distribution  is  the  probability  of  observing  y failures  before  the  rth

success in a series of Bernoulli trials. It is computed as:

f  y : r , p= yr−1
r−1  pr

1− p 
y

Eq 18.7

where  y is the number of failures,  r is the number of successes  and  p is the probability of
success on each trial. As r→∞ (simultaneously with p→1), the negative binomial distribution

Example 18.2 (continued)
data = tb_real

The 4 observations with the largest Cook’s distance follow.

age pop reactors standardised residuals  Cook’s

obs type sex  (mos) at risk obs. pred. dev. Pear. Ansc. distance

118 cervid female 12-24 21660 17 7.64 3.28 3.81 2.92 0.55

92 other female >24 9360 0 1.64 -2.71 -1.92 -1.92 0.66

133 beef female >24 6418 20 1.13 8.87 17.94 9.24 0.87

45 cervid female >24 21848 29 7.17 6.50 8.66 6.18 1.37

Large Cook’s distances were associated with observations that had moderate or large residuals and
contributed greatly to the overall time at risk. Observations with small amounts of time at risk, tended
not to have a large impact on the model (small Cook’s distance) (eg observation 25—in the table of
large residuals).

The plot of Anscombe residuals vs predicted counts indicates that large positive residuals were more
common than negative ones.  The plot of residuals vs  Cook’s distance highlights  2 very influential
points (#133 and #45).

Fig. 18.3 Diagnostic plots for Poisson regression model
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for  the  number  of  failures  approaches  the  Poisson  distribution.  The  distribution  can  be
expressed instead in terms of the parameters μ and α , where μ=r(1-p)/p is the mean and α=1/r
is the dispersion parameter. Two special cases are α=0 (the Poisson distribution) and α=1 (the
geometric distribution, giving the waiting time distribution until the first event). Fig. 18.4 shows
4 negative binomial distributions with various combinations of parameters. Comparing these
distributions  with  the  Poisson  distributions  with  means  of  2  and  5,  you  can  see  the  more
prominent right tails on the negative binomial distributions. 

18.6.2 Poisson-gamma mixture distribution

If  the  observed  counts  for  individuals  with similar  characteristics  are  expected  to  follow a
Poisson  distribution,  but  the  individuals  exhibit  heterogeneity  caused  by  some unmeasured
characteristics,  the  observed  counts  will  be  more  dispersed  than  expected  from  a  Poisson
distribution. This situation can be modelled directly by specifying a (‘mixture’) distribution for
individual means. The standard choice is a gamma distribution (the gamma distribution is a
flexible 2 parameter distribution which can take a wide variety of shapes), leading to Poisson-
gamma mixture distributions for the observed counts.  The negative binomial  distribution of
18.6.1 can be derived in this way (with a suitably chosen gamma distribution). Focus in the
development of these distributions has been on the way the variance depends on the mean. For
example, if the variance is a constant multiple of the mean, this gives rise to an NB-1 model:

NB-1 var=1= Eq 18.8

where α is referred to as the dispersion parameter.

Fig. 18.4 Negative binomial distributions
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In the most commonly used form of the negative binomial distribution, in this context denoted
as an NB-2 model, the variance exceeds the mean by a factor which depends on the mean such
that individuals with higher average counts will have relatively larger variances:

NB-2 var=1 =2
Eq 18.9

Note In either of the above 2 formulations, if α=0, then the variance once again equals the mean
and the model is a simple Poisson model. 

18.6.3 Negative binomial regression modelling

As with the Poisson distribution, the usual form of a negative binomial regression model is:

E Y =n or E Y 

n
=

where n is a measure of exposure (possibly constant) and λ is a function of the predictors, with 
the most usual form for λ being derived from a linear equation on a log scale, eg

=e01 X

or 1n =01 X Eq 18.10

Consequently, exponentiated regression coefficients from a negative binomial model in which
the exposure was a measure of time at risk are interpreted as incidence rate ratios. 

Full  maximum likelihood  (ML)  estimation  of  the  regression  coefficients  and  the  negative
binomial  dispersion  parameter  is  available  for  distributions  with  a  tractable  form  of  the
likelihood function, in particular NB-1 and NB-2.  Example 18.3 shows a negative binomial
model (NB-2) fit to the TB data using full ML estimation. In situations in which the dispersion
parameter is very large (ie highly overdispersed data such as infectious disease data—see also
Chapter 27),  α may be underestimated if the sample size is small or zero counts are under-
represented (Lloyd-Smith, 2007). 

The generalised linear model (GLM) framework offers an alternative estimation approach (see
Section 16.11 for an introduction to GLM models). GLM estimation of the Poisson model with
a dispersion parameter (see Table 18.1, Section 18.6.4) yields estimates from a Poisson model
with scaled SEs (Section 18.5.5), as opposed to a full ML estimation of the NB-1 model. An
NB-2 distribution can be set up as a single parameter GLM with a log link, but the dispersion
parameter α must be treated as a known constant. One solution to this limitation is to obtain an
estimate of α using a full ML estimation, and then set α to this value when running the GLM
procedure.  Example  18.4  compares  NB-2  models  estimated  using  a  full  ML  estimation
procedure and the GLM framework. The value of the dispersion parameter (α) obtained from
the ML estimation procedure was provided to the GLM estimation procedure. (Note The log
link used to fit an NB-2 model is not the canonical link for the negative binomial distribution
(see Section 16.11), but is the most commonly used link function.)

The advantage of the GLM framework is that it gives access to GLM goodness-of-fit statistics
and the large number of GLM-defined residuals and other diagnostic parameters. Traditionally,
GLM models have been estimated using an iteratively reweighted least squares algorithm, but
maximum likelihood procedures are often now employed (when feasible). 
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Example 18.4 Comparison of maximum likelihood and GLM estimation of a negative 
binomial model
data = tb_real

The negative binomial model  model from Example 18.3 was refit  in the GLM framework and the
results compared. The following table compares the estimated coefficients and SEs.

Coef SE

Variable ML GLM ML GLM

type=beef 0.605 0.605 0.675 0.674

type=cervid 0.666 0.666 0.684 0.682

type=other 0.800 0.800 1.119 1.118

sex=male -0.057 -0.057 0.405 0.404

age=12-24 mo 2.253 2.253 0.903 0.898

age=24+ mo 2.481 2.481 0.882 0.878

constant -11.181 -11.181 1.061 1.053

The coefficients were identical but there were slight differences in the estimates of the SE.

Example 18.3 Negative binomial regression model
data = tb_real

The Poisson model from Example 18.1 was refit as a negative binomial model using full maximum
likelihood estimation

Number of obs = 134
LR chi2(6) = 10.77

Prob > chi2 = 0.0956
Log likelihood = -157.73596 Pseudo R2 = 0.0330

Variable Coef SE Z P 95% CI

type=beef 0.605 0.675 0.900 0.370 -0.718 1.927

type=cervid 0.666 0.684 0.970 0.330 -0.675 2.006

type=other 0.800 1.119 0.710 0.475 -1.393 2.993

sex=male -0.057 0.405 -0.140 0.887 -0.851 0.736

age=12-24 mo 2.253 0.903 2.490 0.013 0.483 4.023

age=24+ mo 2.481 0.882 2.810 0.005 0.753 4.209

constant -11.181 1.061 -10.540 0.000 -13.260 -9.103

par  (exposure)

/ln_alpha 0.554 0.253 0.057 1.051

alpha 1.740 0.441 1.059 2.860

Likelihood-ratio test of alpha=0:  chibar2(01) =  161.85 Prob>=chibar2 = 0.000

Unlike the Poisson model, herd type and sex were no longer significant predictors. Animals over 12
months of age definitely had higher incidence rates.
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18.6.4  Alternative variance functions

In addition to the NB-1 and NB-2 models described above, other multiplicative extensions to
the Poisson variance have been developed and these are summarised in Table 18.1.

Table 18.1 Poisson variance

Model Variance Model Variance

Poisson var = μ NB-1 var = μ(1+α) = μ + αμ 

Poisson with a 
dispersion parameter

var = μ(θ) NB-2 var = μ(1+αμ) = μ + αμ2

Geometric var = μ(1+μ) = μ+μ2 NB-P var = μ+αμp

NB-H var = μ(1+αμ)
α =exp( β0 + β1 X1)

The NB-1 model and Poisson model with a dispersion parameter (discussed in Section 20.5.5)
have the same variance  function (with  θ=1+α),  but  are  genuinely different  models  and are
estimated  in  different  ways  (Section  18.6.3).  In  all  of  the  above models,  if  α=0,  then  the
variance once again equals μ and the model is a simple Poisson model. The NB-P model is a
generalisation of other NB models with μ raised to the power p. (The reader is referred to Hilbe
(2007) for  details.)  The NB-H model  (heterogeneous  or  generalised  NB model)  allows the
dispersion parameter to be modelled as a function of predictors. An example of an NB-H model
is presented in Section 18.7.3.

18.6.5 Evaluating overdispersion

A likelihood ratio test which compares the usual Poisson model to the negative binomial model
is equivalent to a test of α=0. This provides a formal test for the presence of overdispersion in
the model. Because α cannot be negative, this is a 1-tailed test. As can be seen in Example 18.3,
the results of this test are highly significant (P<0.001) indicating a problem with overdispersion.

As the additional variance is now a function of both  α and  μ [var=(1+αμ)μ], the amount of
overdispersion is a  function of both values.  If  αμ>1, then  (1+αμ)>2, which would indicate
substantial overdispersion. For example, if α=0.5 and most counts are 0, 1 or 2 with a mean of
1.0, then (1+αμ)=1.5, so there is only moderate evidence of overdispersion. However, if α=0.5
and most counts range from 0 to 15, with a mean of 5.0, then (1+αμ)=3.5 which is indicative of
serious overdispersion. Example 18.5 provides an example of a negative binomial model and an
assessment of overdispersion.

18.6.6 Negative binomial regression diagnostics

Diagnostics  for  negative  binomial  models  (Example  18.5)  are  similar  to  those  for  Poisson
models. Plots of standardised deviance residuals and/or Anscombe residuals vs predicted counts
will identify particularly poorly fit observations.
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18.6.7 Generalised negative binomial models

In  Section  18.6.4,  it  was  shown that  the  variance  of  a  negative  binomial  model  could  be
modified to allow it to be a function of one or more predictors. Example 18.6 fits this type of
model to the tuberculosis data with the variance as a function of -age-.

Example 18.5 Negative binomial regression—diagnostics
data = tb_real

The negative binomial model shown in Example 18.3 forms the basis of this example. The likelihood
ratio test of α = 0 is highly significant (P<0.001) suggesting that the variance in the data is higher than
would be expected for a Poisson regression. Since the overall mean number of reactors in these data
was 1.46, the value of (1+αμ)=1+(1.74*1.46)=3.54 (ie substantial overdispersion).

The 2 goodness-of-fit tests give very discrepant results.  The deviance  χ2 goodness-of-fit test was not
significant (χ2=99.4 on 127 df, P=0.97) showing no evidence of lack of fit.  On the other hand, the
Pearson  χ2 test was highly significant (χ2=374.9 on 127 df, P<0.001) with a dispersion parameter of
2.95. However, a listing of the observations with the 4 largest Cook’s distance values showed that the
very large Pearson χ2 was due to 3 observations with very large Pearson residuals. These were singleton
reactors when none were expected (obs. #1 and #25) or a group of beef cows with many more reactors
than expected (obs #133). The model was heavily influenced by this last group. As was suggested in
Chapter 15, you might omit this group of animals and refit the model. However, this should be done
only to further evaluate the impact of this observation on the model.

age pop reactors standardised residuals Cook’s

obs type sex (mo) at risk obs. pred. dev. Pear. Ansc. distance

62 other male >24 344 1 0.12 1.33 2.38 1.40 0.06

1 beef female 0-12 525 1 0.01 2.36 8.46 2.61 0.08

25 dairy female 0-12 389 1 0.01 2.71 13.48 3.12 0.12

133 beef female >24 6418 20 1.96 2.65 6.27 5.87 0.23

The plot of the Anscombe residuals vs predicted values shows few large negative residuals but some
very large positive values in groups of animals  with  low predicted counts.  The plot of Anscombe
residuals vs Cook’s distance clearly highlights the influential role of observations #133.

Fig. 18.5 Negative binomial diagnostic plots
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18.7 PROBLEMS WITH ZERO COUNTS

The number of observations with a count of 0 in a dataset may be higher or lower than would
be expected from a Poisson (or negative binomial) distribution. If there is an excess of zero
counts,  you  can  fit  either  a  zero-inflated  model  or  a  hurdle  model  (each  discussed  briefly
below). If zero counts are not possible (as is the case if the count is the number of services
required for conception in a dairy cow), then a zero-truncated model can be fit to the data. 

Example 18.6 Generalised negative binomial regression
data = tb_real

The Poisson model from Example 18.1 was refit using a generalised negative binomial model with
-type- -sex- and -age- retained as predictors of the mean reactor count and -age- as the sole factor
influencing the variance.

Number of obs = 134
LR chi2(6) = 3.09

Prob > chi2 = 0.7973
Log likelihood = -155.15399 Pseudo R2 = 0.0099

95% CI for Coef

Variable Coef SE Z P Lower Upper

type=beef 0.827 0.646 1.280 0.201 -0.440 2.094

type=cervid 1.030 0.672 1.530 0.126 -0.288 2.347

type=other 1.130 1.107 1.020 0.307 -1.039 3.299

sex=male 0.023 0.400 0.060 0.953 -0.761 0.808

age=12-24 mos 0.252 1.425 0.180 0.860 -2.542 3.045

age=24+ mos 0.568 1.396 0.410 0.684 -2.168 3.304

constant -9.524 1.378 -6.910 0.000 -12.226 -6.823

lnalpha

age=12-24 mos -3.533 1.136 -3.110 0.002 -5.761 -1.306

age=24+ mos -2.920 1.020 -2.860 0.004 -4.918 -0.921

constant 3.599 0.984 3.660 0.000 1.669 5.528

The results suggest that the effect of age appears to be that it increases the variance in response much
more than it affects the mean response. In  fact, none of the predictors in the portion of the model
dealing with the mean response remain significant. A comparison of the 2 models was carried out using
information criteria (AIC and BIC).

Model Obs ll(null) ll(model) df AIC BIC

NB-2 134 -163.12 -157.74 8 331.47 354.65

NB-H 134 -156.70 -155.15 10 330.31 359.29

The AIC favours the NB-H model, while the BIC (which tends to favour parsimonious models) favours
the NB-2 model. In this situation the simpler model (NB-2) would be preferred for its simplicity and
for the fact that we normally expect predictors to affect means counts rather than the variance of the
responses. In the NB-2 model, age strongly affects the expected mean count, while in the NB-H model
it affects the variance and has no significant effect on the mean.
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18.7.1 Zero-inflated models

One  occasionally  encounters  situations  in  which  the  distribution  of  outcome  events  might
follow a Poisson (or  negative  binomial)  distribution,  except  that  there is  an excess  of  zero
counts in the data. This might be because there are 2 processes by which zero counts can arise.
For example, assume your outcome of interest is the number of slaughter hogs with lesions of
enzootic  pneumonia (caused  by  Mycoplasma hyopneumonia)  at  slaughter,  in  samples  taken
from many herds.  In  herds  in  which  Mycoplasma  hyopneumonia  is  endemic,  the  count  of
lesioned animals might  follow a Poisson distribution, and some herds  could still  have zero
counts (ie no animals with lesions at slaughter). However, other herds will have zero counts
because  Mycoplasma hyopneumonia is not present in the herd. Consequently, a count of zero
might arise from either of the 2 situations.

Zero-inflated models deal  with an excess  of zero counts by simultaneously fitting a binary
model (usually a logistic regression model but it could also be a probit or complementary log-
log model) and a Poisson (or negative binomial) model. The 2 models might have the same, or
different, sets of predictors. The parameter modelled in the binary model is the probability of a
zero count so coefficients have an opposite sign than they would in a usual logistic regression
(and if the same predictor is in the Poisson model, they often have opposite signs in the 2
models).

Whether or not a zero-inflated model fits the data better than the usual Poisson or negative
binomial  model  can  be  assessed  using  a  Vuong test  (V).  This  test  compares  2 non-nested
models and is asymptotically normally distributed. If the value of V is <-1.96, one model (eg
the usual Poisson or negative binomial model) is favoured. If V >1.96, the second model (ie the
zero-inflated model) is favoured. If V lies between -1.96 and 1.96, neither model is preferred.

A zero-inflated negative binomial model was used to model factors affecting fecal egg counts in
adult dairy cattle (Nødtvedt et al, 2002). Fecal egg counts are generally low in adult cattle and
might arise because the animal is uninfected or is infected but shedding eggs in numbers too
low to be detected. Example 18.7 shows the application of a zero-inflated negative binomial
model (with a subset of the original predictors) to these data.

18.7.2 Hurdle models

Like zero-inflated models, a hurdle model has 2 components but it is based on the assumption
that zero counts arise from only one process and non-zero counts are determined by a different
process (Hilbe, 2007). The enzootic pneumonia example used in the description of zero-inflated
models could also apply to hurdle models if it was believed that zero counts (ie no pneumonia)
were not possible in barns in which Mycoplasma hyopneumonia was endemic.

Hurdle models use some form of binomial model (logit, probit or complementary log-log) to
model the odds of a non-zero count (vs a zero count) and some form of zero-truncated model
(Poisson, negative binomial or geometric) to model the distribution of non-zero counts. Zero-
truncated  models  are  described  in  Section  18.7.3.  Consequently,  there  are  9  possible
combinations of models possible (eg logit-Poisson, probit-negative binomial, etc).

Example 18.8 shows the use of a logit-negative binomial hurdle model for the fecal egg count
data presented in Example 18.7. In contrast to the logit portion of the zero-inflated model, in a
hurdle model, the coefficients in the logit model reflect how the log odds of a non-zero count is
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Example 18.7 Zero-inflated negative binomial model
data = fec

Fecal egg counts (n=2,250) from 313 cows in 38 dairy herds in 4 regions of Canada were determined
over  a 1-year  period in conjunction with  a clinical trial  of eprinomectin as a treatment  for  gastro-
intestinal nematodes in Canadian dairy cattle. A more detailed description of the dataset can be found
in Chapter 27. Although the mean fecal egg count was 8.6 eggs/5 gm, one-half the observations had
zero counts. 

Counts obtained from control cows and treated cows prior to treatment were analysed using a zero-
inflated negative binomial model. Only a subset of the predictors from the original study are used in
this  example.  Lactation (2 groups),  and several  herd management  variables  were  included in both
portions of  the model.  Clustering of  observations  within  cows was  accounted for  by using robust
standard error (see Section 20.5.4) estimates. The resulting model follows.

Number of obs = 1840
Nonzero obs = 983

Zero obs = 857
Inflation model = logit Wald chi2(4) = 67.91
Log pseudolikelihood = -4573.221 Prob > chi2 = 0.0000

Variable Coef Robust SE Z P 95% CI

Negative binomial portion

multiparous -0.978 0.229 -4.270 0.000 -1.426 -0.529

past_lact 0.602 0.343 1.750 0.079 -0.071 1.274

man_heif -1.059 0.265 -3.990 0.000 -1.578 -0.539

man_lact 1.018 0.333 3.060 0.002 0.366 1.670

_cons 2.367 0.290 8.150 0.000 1.798 2.936

Logistic portion

multiparous 0.716 0.485 1.480 0.140 -0.234 1.666

past_lact -1.800 0.713 -2.520 0.012 -3.198 -0.402

man_heif -1.377 1.072 -1.280 0.199 -3.478 0.724

man_lact -19.983 0.788 -25.370 0.000 -21.527 -18.439

_cons -0.712 0.426 -1.670 0.094 -1.546 0.122

/lnalpha 1.281 0.067 19.180 0.000 1.150 1.412

alpha 3.601 0.241 3.159 4.105

The Vuong statistic was 5.00 suggesting that the zero-inflated model was clearly superior to the regular
negative binomial model. The value of  α  (3.60, 95% CI of 3.16 to 4.10) suggests that a negative
binomial model is preferable to an ordinary Poisson model. The coefficients for -multiparous- in the
negative binomial portion (-0.98) and the logistic portion (0.72) of the model indicated that multiparous
cows generally had lower fecal egg counts and were more likely to have zero egg counts, although this
latter effect was not statistically significant (P=0.14). Having lactating cows on pasture (-past_lact-)
reduced the probability of a zero count (β=-1.8) and increased the expected count if it was non-zero
(β=0.60).
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affected by the predictor. Consequently, they often have the same sign as the coefficients in the
count portion of the model.

The choice of whether to use an ordinary negative binomial model, a zero-inflated model or a
hurdle model should be based on a combination of the fit of the models (log-likelihood) and the
biology of the process being modelled. Is it reasonable to consider zeros arising from a second
process? If so, would you expect zeros to arise from both processes (zero-inflated model) or just
the second process (hurdle model).

Example 18.8 Logit–negative binomial hurdle model
data = fec

A logit–negative binomial hurdle model was fit to the same data used in Example 18.7 and with the
same predictors.

Number of obs = 1840
Wald chi2(4) = 66.75

Log pseudolikelihood = -4546.5055                                                                              Prob > chi2 = 0.0000
(SE adjusted for 311 clusters in cow)

Variable Coef Robust SE Z P 95% CI

Logit portion of the model

Multiparous -0.671 0.169 -3.970 0.000 -1.002 -0.339

past_lact 0.862 0.204 4.240 0.000 0.463 1.261

man_heif -0.311 0.248 -1.250 0.211 -0.798 0.176

man_lact 0.942 0.267 3.530 0.000 0.419 1.466

_cons -0.175 0.177 -0.990 0.324 -0.522 0.173

Negative binomial (count) portion of the model

Multiparous -0.992 0.253 -3.920 0.000 -1.489 -0.496

past_lact 0.670 0.373 1.800 0.072 -0.061 1.401

man_heif -1.032 0.297 -3.470 0.001 -1.614 -0.450

man_lact 0.909 0.357 2.540 0.011 0.209 1.610

_cons 1.135 0.894 1.270 0.204 -0.618 2.887

/lnalpha 2.928 0.929 3.150 0.002 1.107 4.749

The coefficients for multiparous suggest that multiparous cows have a reduced log odds of a non-zero
count (β=-0.67) and lower counts if it was non-zero (β=-0.99). Spreading of manure on pastures used
by heifers had a more significant effect on the fecal egg count (if it was non-zero) (P=0.001) than on
the probability of it being non-zero (P=0.21).

Log-likelihoods were computed to compare the zero-inflated and hurdle models and the comparison
showed that the hurdle model clearly fit better.  Note The AIC and BIC are unnecessary because the
models have the same number of df.

Model Obs ll(null) ll(model) df AIC BIC

zinfl 1840 -4660.742 -4573.221 11 9168.442 9229.135

hrdl 1840 -4546.506 11 9115.011 9175.704
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18.7.3 Zero-truncated models

In some situations, zero counts are not possible. For example, when recording the number of
breedings required for a cow to conceive after calving, zero is not a possibility. Similarly, the
length of stay (in days) of a dog in a veterinary hospital can not be zero. One approach to this
problem is to subtract 1 from all outcomes and model the revised outcome (which will contain
zeros). An alternative approach is to use a zero-truncated model which allows for a defined
distribution of counts but the probability of a zero is eliminated from the likelihood function for
the model. The probability of a zero count is computed from either the Poisson or negative
binomial  distribution  and  this  value  is  subtracted  from  1.  The  remaining  probabilities  (eg
probability of counts of 1,2,3 etc) are then rescaled based on this difference so they total 1.

Example 18.9 shows a zero-truncated negative binomial model fit to some data on  ‘services-
per-conception’ in dairy cows. 

Example 18.9 Zero-truncated negative binomial model
data = daisy2

A zero-truncated negative binomial model was fit to some data on ‘services-per-conception’ in dairy
cows. Three predictors: parity, days from calving to first service (both modelled as linear effects) and
presence/absence  of  vaginal  discharge  after  calving  were  included  in  the  model.  The  effect  of
clustering within herd was accounted for through the use of robust SEs clustered on herd.

Number of obs = 1744
 Wald chi2(3) = 219.30
Log likelihood = -2683.2176 Prob > chi2 = 0.0000

Variable Coef. Robust SE Z P 95% CI

parity 0.059 0.018 3.230 0.001 0.023 0.095

days_fs -0.008 0.001 -11.730 0.000 -0.009 -0.006

vag_disch 0.293 0.101 2.890 0.004 0.094 0.492

_cons 0.367 0.182 2.020 0.043 0.011 0.723

/lnalpha 0.490 0.222 0.055 0.924

alpha 1.632 0.362 1.057 2.520

As cows  aged,  the  number  of  services  required  for  conception  increased,  but  the  longer  the  first
breeding was delayed (-days_fs-), the fewer breedings that were ultimately required. Finally, cows with
evidence of vaginal discharge (-vag_disch-) after calving required, on average, 34% (e0.293=1.34) more
breedings  than  cows  without  discharge.  α was  clearly  greater  than  zero  (95%  CI=1.06  to  2.52)
indicating that a zero-truncated negative binomial  model  was preferred to one based on a Poisson
distribution.

Comparable results were obtained by subtracting 1 from the values of -spc- and modelling this new
outcome (which contained zeros) using an ordinary negative binomial model (data not shown).
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