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MODELLING SURVIVAL DATA

OBJECTIVES

After reading this chapter, you should be able to:

 1. Distinguish between non-parametric,  semi-parametric and parametric analyses of survival
time data.

 2. Carry  out  non-parametric  analyses  using  either  actuarial  or  Kaplan-Meier  lifetables  and
compare the survival experiences of groups of animals using a variety of statistical tests.

 3. Generate survivor and cumulative hazard function graphs to display survival data.

 4. Understand  the  relationships  among  survivor  functions  S(t),  failure  functions  F(t),
probability density  functions  f(t),  hazard  functions  h(t) and  cumulative hazard  functions
H(t).

 5. Carry out  a  semi-parametric  analysis  of survival  data using a Cox proportional  hazards
model.
(a) Evaluate the model to:

 i. assess the validity of the assumption of proportional hazards,
 ii. assess the validity of the assumption of independent censoring,
 iii. evaluate other aspects of the model such as its overall fit, the functional form of the

predictors in the model, and check for outliers and influential points.
(b) Incorporate  time-varying  effects  into  the  model  to  evaluate  or  account  for  non-

proportional hazards.

 6. Carry out a parametric analysis of survival data based on an assumption that the survival
times have an exponential, Weibull or log-normal distribution.

 7. Incorporate  frailty  effects  into  a  model  to  account  for  unmeasured  covariates  at  the
individual or group level.

 8. Analyse multiple failure-type (recurrence) data.

 9. Fit discrete time survival models when appropriate.
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19.1 INTRODUCTION

In  previous  chapters,  we have  looked at  statistical  models  for  evaluating  how much of  an
outcome occurred (linear regression), whether or not an event occurred (logistic regression),
which category of event occurred (multinomial models) and the number of events that occurred
(or the rate of event occurrence) (Poisson regression). However, we are often interested in how
long it  took for  an event  to  occur  (time-to-event  data).  These  data are often referred  to as
‘survival’ data because the outcome of interest is often the time until death (eg time to death in
Cryptococcus  gattii infected  dogs  and  cats  (Duncan  et  al,  2006)).  However,  the  analytical
approaches discussed in this chapter apply equally to any time-to-event data (eg interval from
calving to conception in dairy cows (Meadows  et al, 2006; Meadows et al, 2007), or time to
recurrence of  Mycoplasma infections in swine barns after an eradication program). As these
examples suggest, the unit of analysis could be an animal or a group of animals (litter, pen,
herd) although, in general, we will present the discussion in terms of animals. The occurrence
of the event of interest is often referred to as a ‘failure’ even though in some cases the outcome
is  desirable  (eg  time  to  conception  after  calving  in  dairy  cows).  Some relatively  recently
published texts which cover the analysis of survival data include  (Cleves et al, 2008; Collett,
2003; Hosmer & Lemeshow, 2008; Therneau & Grambsch, 2000).

There are specific issues that affect how we quantify and express time to occurrence of an event
and how we evaluate the effects of factors (predictors) on that time. However, before discussing
these issues, let’s look at a simple hypothetical example (Example 19.1).

19.1.1 Features of survival data

Later  in  this  chapter,  a  dataset
derived  from  a  clinical  trial  of
prostaglandin treatment in dairy cows
is  used  for  many  examples.  The
outcome of interest in that dataset is
‘days  to  conception’ which  is  the
time from the  ‘end of the voluntary
wait period’ (ie the time at which the
farmer will start breeding the cow if
she is seen in heat) to conception. A
distribution of those time intervals is
shown in Fig. 19.1.

Three  common  features  of  survival
data follow.
1.  There  is  strict  left  truncation
which means that there are no values
<0.
2. Survival data often have a highly
right-skewed  distribution with
many individuals ‘failing’ early and a
small number having long times to ‘failure’.
3.  Survival  data are  often  censored (ie the animal  is  lost  to follow-up before  the event  of
interest (failure) is observed (see Example 19.1).

Fig. 19.1 Distribution of survival times in 
prostaglandin dataset
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19.1.2 Quantifying survival time

How should the time to recurrence  (ie time after initial diagnosis) of lymphosarcoma in dogs

Example 19.1 Hypothetical survival data
data = lympho_hyp

Fig.  19.2  shows  the  time  from  first
diagnosis  of  lymphosarcoma  to  the
recurrence  of  the  cancer  in  12  dogs.
The study was carried out over a 5.5
year  period  with  dogs  entering  the
study  as  they  were  diagnosed  and
treated for  the first  occurrence.  Once
enrolled,  not  all  dogs  were  followed
for the rest of the study period because
some died (from other diseases) or the
owner  moved  away  from  the  study
location.  For  convenience,  all  dogs
were  assumed to have had the initial
diagnosis and treatment at the start of
a year  and events (recurrence or loss
to study) occurred at the mid-point of
a  year.  In  reality,  this  would  not
normally be the case.

One  way  to  simplify  the  graphic
representation  of  these  12  dogs
would  be  to  express  all  times  as
being  relative  to  the  time  of  first
diagnosis (Fig. 19.3).

Fig. 19.2 Time from first diagnosis to recurrence of 
cancer

X = recurrence of lymphosarcoma
    = death (due to other disease) or loss to follow-up
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Fig. 19.3 Time to recurrence relative to time of first 
diagnosis

X = recurrence of lymphosarcoma
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that have been treated for lymphosarcoma be quantified and expressed  (Example 19.1)? For
many dogs, we do not know what the time to recurrence was. All we know is that the disease
did not occur in the time period for which the dogs were followed. These ‘non-failures’ are
called censored observations and are a unique feature of time-to-event data.

Some possible ways of quantifying and expressing the time to recurrence follow  (using data
from Example 19.1).

1. Mean time to recurrence The mean time to recurrence can only be computed using
data from the dogs in which recurrence has been observed. Consequently, we can only
use data from 5 dogs (mean survival=2.1 years). The estimate will have a downward
bias because recurrence in dogs which had a long time to recurrence are less likely to
be observed. On the other hand, if the follow-up observation period is long, the mean
suffers from the fact that it might be heavily influenced by a few animals with long
survival times. Time-to-event data often have an asymmetrical distribution with a long
right tail (ie right skew).

2. Median time to recurrence This can only be computed directly if at least 50% of the
animals  are  observed  to  have  the  event  of  interest  and  if  none  of  the  censored
observations were censored before the failure of the 50th percentile individual  (ie if
they were going to fail, they had a failure time at least as large as the median). It could
not be computed for the data in Example 19.1. However, if it can be computed, the
median is not influenced by a few animals having long times to recurrence in the same
way that the mean is.

3. Overall probability of recurrence The proportion of dogs having a recurrence of the
tumour could be computed, but it is not at all clear what constitutes a ‘negative’ dog
(ie one which does not have a recurrence). Should the dog be required to have some
minimum number of years of follow-up to be considered eligible to contribute to the
denominator of the proportion?

4. n-year  survival  risk This  expresses  the  number  of  dogs  which  have  not  had  a
recurrence by the nth year. For each year (eg first, second) it can be computed based on
the dogs that were observed for that number of years. This approach is often used in
human epidemiology to quantify survival of people diagnosed with various forms of
cancer (eg 5-year survival of breast cancer patients). The 2-year ‘survival’ for dogs in
Example 19.1 is 0.78 (2 recurrences among 9 dogs that had either 2 complete years of
follow-up or a failure at <2 years).

5. Incidence rate The number of recurrences relative to the accumulated dog-years at
risk would be one way to use all of the available data. In some cases, the average time
to recurrence could be estimated from the incidence rate  (see Section 4.5). However,
this  approach  assumes  that  the  incidence  rate  of  recurrence  remains  constant
throughout the follow-up period and this is often not the case with time-to-event data.
The incidence rate in Example 19.1 is 0.19 cases per dog-year (5 cases in 26 dog-years
of follow-up time—dogs no longer contribute to the pool of dog-years once they have
experienced a recurrence).

The approaches outlined above identify 2 key problems to be considered when analysing time-
to-event data. First, many observations are censored; that is, the individual is not followed for a
length  of  time  sufficient  to  observe  the  event  of  interest  if  it  were  to  occur.  Second,  the
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distribution of survival times is often not symmetrical, and might not even be unimodal. For
example, tumour recurrences might be common in the first year after first diagnosis and then
relatively rare for several years before becoming more common again as the dog ages. These
issues  are  also  important  when  evaluating  the  effect  of  predictors  on  the  time-to-event
occurrence.

19.1.3 Censoring

Censoring is defined as the occurrence (or possible occurrence) of a failure when the animal is
not under observation. Censoring can arise in a variety of ways and these are summarised in
Fig. 19.4.

Right censoring occurs when an animal is lost to a study, before the outcome of interest has
occurred. This might arise because the study ends before the event occurs or because it is lost to
follow-up during the study (eg the owner moves to another city). Right censoring is the most
common form of censoring that needs to be dealt with in survival analyses.

Interval  censoring might  arise when an animal is  only observed periodically throughout  a
study  period.  If  examinations  are  conducted  approximately  every  6  months  and  at  one
examination (t4 in Fig. 19.4) it is determined that the event had happened in the preceding 6
months, all that is known is that the event occurred sometime between  t3 and  t4. The precise
time the event occurred is not known.

Left censoring is similar to interval censoring except that the ‘interval’ occurs at the start of the
study (ie the event occurred in the animal before the animal was observed). Consequently, the
animal is not put in the study. Left censoring usually arises if the onset of risk occurs before the
start of the study. For example, if a study of calving to conception intervals started following
cows at 45 days post-partum, a cow which conceived to a breeding at 42 days would be left
censored.  (Note If multiple failures are possible, the animal might be put in the study and the
left censoring then becomes left truncation (see below)).

A related concept is that of truncation. While censoring relates to the possible occurrence of
events during periods when the animal was not observed, truncation refers to periods of time in
which nothing is known about the animal in terms of whether or not the event occurred or what
the predictors were. These periods of time might be referred to as gaps. In cases where multiple
events are possible (eg cases of mastitis), you have no knowledge of how many cases occurred
during the gap. For outbreaks which can only occur once (eg death), all that is known is that the
event did not occur during the gap  (or the animal would not have come back into the study).
Truncation can occur throughout a study (interval truncation) or at the start of a study (left
truncation—also known as delayed entry). Right truncation is the same as right censoring.

As noted above, the most common problem is with right censoring and it will be the only type
of censoring or truncation that  we deal  with in examples in this chapter.  A more complete
discussion of censoring and how the various forms are dealt with can be found in Chapter 4 of
Cleves et al, (2008).

19.1.4 Evaluating the effect of factors on survival times

Because  time-to-event  data  are  continuous,  it  would be  tempting to  evaluate  the effects  of
factors on the time to the occurrence of an event using linear regression models. In some cases,
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this would be appropriate. However, as noted above, time-to-event distributions are often not
symmetrical and might not even be unimodal. The assumption of normally distributed errors
required for a linear regression model would often be violated in these cases. (In extreme cases,
a linear model might predict negative survival times which are impossible). However, linear
models  have  been  successfully  used  to  analyse  time-to-event  data.  Calving-to-conception
intervals in dairy cattle have been analysed using this approach (Dohoo et al, 2001). The data
were either log or Box-Cox transformed to deal with the distribution of errors being skewed to
the right.

Even if the distribution of the errors is (or can be made) approximately normal, the problem of
censored observations remains. In the case of calving-to-conception interval data, because most
cows  are  not  culled  until  the  end  of  the  lactation,  the  follow-up period  for  most  cows  is
adequate. However,  many cows are bred unsuccessfully several  times and then the producer
stops trying. The data from these cows are lost to the analyses so the effects of factors which
reduce conception might be underestimated.

19.1.5 General approaches to analysing survival data

There are 3 general approaches to analysing survival data:
1. non-parametric analyses
2. semi-parametric models
3. parametric models. 

These are discussed in much more detail later, but the essential features of each approach are
summarised here. 

Fig. 19.4 Summary of censoring
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In  a  non-parametric analysis,  we  make  no  assumptions  about  the  distribution  of  survival
times, nor about the functional form of the relationship between a factor  (predictor) and the
survival time. Consequently, they are only appropriate for evaluating the effect of qualitative
(categorical) predictors.

In a semi-parametric analysis, we make no assumption about the distribution of the survival
time, but merely use the survival time to order the observations in terms of time of occurrence
of the event. We then evaluate the probability of the event occurring at each of those time
points as a function of the predictors of interest. Because the time variable is only used to order
the observations,  it  makes no difference  if  there was a large  time interval  or  a  small  time
interval between successive events.

In a parametric analysis, we replace the distributional assumption that the errors are normally
distributed  (as required in a linear model) by a more appropriate distribution that reflects the
pattern of survival times. Because we specify a distribution for the survival times, the length of
the  interval  between  events  is  relevant  for  the  analysis.  Consequently,  if  the  assumed
distribution is correct, a parametric model may be more efficient than a semi-parametric model
(ie it makes better use of the available data).

19.2 NON-PARAMETRIC ANALYSES

As noted above, in a non-parametric analysis of survival data, we make no assumption about
either the distribution of survival times or the functional form of the relationship between a
predictor and survival. Hence, they can be used to compare survival experiences of groups of
animals, but not to evaluate the effect of a continuous predictor on survival times. We will look
at 3 non-parametric methods for analysing survival data:

• actuarial life tables
• Kaplan-Meier estimator of the survivor function
• Nelson-Aalen estimator of the cumulative hazard function.

In the following section, we introduce the concepts of survivor and hazard functions. These will
be described more formally in Section 19.7.

19.3 ACTUARIAL LIFE TABLES

Life tables were originally developed to summarise long-term human-survival data by dividing
the lifespan into short intervals in which the probability of dying was reasonably constant over
the time interval. (It certainly is not constant over an entire lifespan.) 

The requirements to create an actuarial life table are as follows.
• A clearly demarcated starting point to the period of risk (eg birth, calving, first diagnosis,

first exposure etc)
• A well-defined study outcome (death, seroconversion, pregnancy diagnosis, calving)
• Only one episode or event per individual animal (not multiple remissions or relapses)
• Losses to follow-up should be independent of the study outcome (another way of saying

this is that the animals lost from the study should have the same future experience as
those that remain under observation)

• The risk of the outcome remains constant  over calendar  time  (no secular  (long-term)
changes in risk). This does not imply that risk stays the same in an individual over time.
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Secular  changes  in  survival  rates  for  cancers  (eg due  to  better  therapies),  might  for
example, affect validity of studies of survivorship

• The risk of outcome must remain constant within the intervals used for constructing a life
table. Intervals of any length could be calculated to meet this requirement. In fact, the
intervals need not be of the same length.

19.3.1 Steps in constructing the actuarial life table 

Table 19.1 shows the columns required to build an actuarial life table, based on the data from
Example 19.1.

Table 19.1 Actuarial life table

j tj-1 , tj lj wj rj dj qj pj Sj

1 0 < 1 12 1 11.5 1 0.087 0.913 0.913

2 1 < 2 10 2 9.0 1 0.110 0.890 0.812

3 2 < 3 7 3 5.5 2 0.364 0.636 0.516

4 3 < 4 2 0 2.0 1 0.500 0.500 0.258

5 4 < 5 1 1 0.5 0 0.000 1.000 0.258

where ...
j listing of time intervals (time intervals should be established a priori)
tj-1,tj time span covered in the interval
lj subjects at risk of failure at the start of the time interval 

lj = lj-1 – (wj-1 + dj-1)
wj subjects withdrawn during interval (censored observations)

These are animals who died of causes other than the condition under study or were
otherwise lost to follow up during that interval.  Animals who were still free of the
outcome when  the  study ended  are  counted  as  withdrawals  in  the  last  interval  rj

average number of subjects at risk during the current time interval
rj = lj – (wj  /2)
This  calculation  is  based  on  the  assumption  that  the  censored  observations  were
withdrawn, on average, at the midpoint of the interval.

dj outcomes (failures) during the interval 
This  is  the  number  experiencing  the  outcome  during  the  time  interval  (death,
seroconversion, relapse etc).

qj risk of event during interval
qj = dj /rj

This is the probability that the subject will develop the study outcome during the given
interval, conditional upon surviving without the outcome up to the beginning of the
time interval.

pj probability of surviving the interval
pj = 1 – qj

The  conditional  probability  of  surviving  the  time  interval,  given  survival  to  the
beginning of the interval.

Sj cumulative survival probability to the end of the interval
Sj = (p1)(p2)(p3)....(pj)
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The probability of surviving without experiencing the event of interest from the start
of follow-up through the end of the current interval in the life table.

The risk of an animal experiencing the event of interest during the interval (qj) divided by the
length of the interval is also known as the hazard. The cumulative survival probability (Sj) is
also  known as  the  survivor  function.  These  2  quantities  are  key elements  of  all  survival
analyses.

19.4 KAPLAN-MEIER ESTIMATE OF SURVIVOR FUNCTION

19.4.1 Overview and comparison to actuarial method 

The Kaplan-Meier (K-M)  (Kaplan & Meier,  1958) estimate of the survivor function is also
known as the product-limit estimate. It has 2 important differences from the actuarial estimate
described above.

1. The  K-M  method  does  not  depend  on  discrete  time  intervals  constructed  by  the
investigator. Each row in the table (hence, each time interval) is defined by the time at
which the next subject (or subjects, in the case of 2 events happening at the same time)
experiences the event of interest.

2. Censored  observations  (losses  to  follow up  etc)  between  2  events  are  counted  as
animals at risk only up to the time of the earlier of the 2 events.

The K-M method has the advantage that it avoids the assumption that withdrawals occurred
uniformly throughout the interval (ie the actuarial assumption) and that the risk is constant over
the arbitrarily selected interval. (The only remaining assumption about withdrawals is that they
have the same future experiences as those remaining under observation).

19.4.2 Construction of the K-M life table 

An ordered  list  of the event  times is  constructed from the sample,  with subjects  ranked in
ascending order of the time of the event of interest. Based on these, Table 19.2 can be filled out
(using the data from Example 19.1)

Table 19.2 Kaplan-Meier life table

j tj rj dj wj qj pj Sj

1 0.5 12 1 1 0.083 0.917 0.917

2 1.5 10 1 2 0.100 0.900 0.825

3 2.5 7 2 3 0.286 0.714 0.589

4 3.5 2 1 0 0.500 0.500 0.295

5 4.5 1 0 1 0.000 1.000 0.295

where:
j listing of time points
tj time of event
rj subjects at risk of event at time tj
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rj = rj-1 – (dj-1 + wj-1)
Includes all subjects known to be alive and in the study (not censored) at the time of
the event at time t, plus the number experiencing the event at time t. When censored
times are tied with event times, the event is usually assumed to have occurred first

dj number of events at time tj
wj number of censored observations at time tj

Censoring between time tj and  tj+1 is assumed to have happened at  tj so the animals
will not be considered at risk at time tj+1

qj risk of event at time tj
qj = dj /rj

Also known as the instantaneous hazard, this is the individual probability of the event
at time tj, conditional upon survival to time tj

pj probability of survival at time tj
pj = 1 – qj

Sj cumulative probability of surviving up to and including time tj
Sj = (p1)(p2)(p3)....(pj)

Survivor  functions  are  usually  presented  graphically  as  step  functions  of  the  cumulative
survival over time. They start at one and monotonically descend (ie they never go up) as time
proceeds. Fig. 19.5 shows a Kaplan-Meier survivor function (and its 95% confidence intervals)
based on some published data on calf pneumonia (see Example 19.2 for actuarial life table and
Kaplan-Meier estimates of the survivor function  (Thysen, 1988)). Some issues related to the
presentation of survival plots have been presented (Pocock et al, 2002), including a suggestion
that plots of failure functions (see Section 19.7) might be more useful.

19.4.3 The Kaplan-Meier function and estimator

The Kaplan-Meier estimator plays an important role in many procedures used for the analysis
of survival data. This section describes the estimator and resulting function in slightly more
technical detail.

Fig. 19.5 Kaplan-Meier survivor function (95% CI)
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Example 19.2 Actuarial and Kaplan-Meier estimates of survivor functions
data = calf_pneu

Data  on  the  occurrence  of  calf  pneumonia  in  calves  raised  in  2  different  housing  systems  were
published  (Thysen,  1988).  Calves  surviving  to  150  days  without  experiencing  pneumonia  were
considered  censored  at  that  time.  The  table  below presents  an  actuarial  life  table  estimate  of  the
cumulative survivor function.

Actuarial life table

Interval
Beg.
total Deaths Lost

Cum.
Survival SE 95% CI

15 30 24 1 0 0.958 0.041 0.739 0.994

45 60 23 1 0 0.917 0.056 0.706 0.979

60 75 22 1 0 0.875 0.068 0.661 0.958

75 90 21 3 0 0.750 0.088 0.526 0.879

90 105 18 2 1 0.664 0.097 0.439 0.816

105 120 15 3 6 0.498 0.110 0.273 0.688

120 135 6 1 0 0.415 0.119 0.189 0.629

150 165 5 0 5 0.415 0.119 0.189 0.629

Note that survival estimates are only presented for intervals in which at least one event or censoring
occurred. Thus the cumulative survival at the end of the 30-45 day interval would be exactly the same
as at the end of the 15-30 day interval (0.958)

Kaplan-Meier survivor function

Time Beg. total Fail Lost
Survivor
function SE 95% CI

27 24 1 0 0.958 0.041 0.739 0.994

49  23 1 0 0.917 0.056 0.706 0.979

72  22 1 0 0.875 0.068 0.661 0.958

79  21 2 0 0.792 0.083 0.570 0.908

89  19 1 0 0.750 0.088 0.526 0.879

90  18 1 0 0.708 0.093 0.484 0.849

101  17 1 1 0.667 0.096 0.443 0.817

113  15 2 4 0.578 0.102 0.357 0.747

117 9 1 2 0.514 0.109 0.288 0.700

123 6 1 0 0.428 0.120 0.198 0.641

150 5 0 5 0.428 0.120 0.198 0.641

The 2 estimates of the probability of survival up to day 150 are very close (41.5% and 42.8%).
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Assume the following notation and assumptions:
tj j=1,...,n are failure times
t* is the final failure time = max(tj)
dj the number of failures at time tj

rj the number of subjects at risk at time tj

Ik time (0, t*) is divided into many small intervals (Ik)
pk the probability of surviving through Ik if alive at the start of Ik 

As Ik gets very small, then pk=1 if there is no failure during the interval and pk=(rj-dj)/rj if tj falls
in the interval Ik. If there are ties between failures and censored observations, it is assumed that
the failures occurred first (ie the censored observations are included in the ‘at risk’ group).

The Kaplan-Meier estimator of survival S(t) at time t is defined as:

S t =∏
j : t j≤ t

r j−d j/r j for 0≤t≤t *
Eq 19.1

The Kaplan-Meier function is therefore a  piecewise constant (ie remains constant over time
intervals), non-increasing (ie it can be flat or go down, but never up) and right-continuous (ie
after an event, it remains constant up until, but not including, the next event) function on the
interval (0, t*). It only changes value at failure times (tj).

The most commonly used standard error (SE) of  S(t) is attributed to Greenwood (reported in
(Collett, 2003)). Because survival probabilities often have a very skewed distribution, it is not
usual to compute a confidence interval as an estimate  + 1.96(SE). Consequently,  confidence
intervals are computed by estimating S(t) and its SE on either a natural log (ln) scale or on a ln(-
ln) scale and then back-transforming the estimates to the original time scale. (Note the ln(-ln)
transformation maps probabilities (0,1) onto (-∞, ∞).

19.5 NELSON-AALEN ESTIMATE OF CUMULATIVE HAZARD

In the above 2 sections, we introduced the concept of ‘hazard’, being the probability of failure
at a point in time, given that the animal had survived up to that time point. This is discussed
more formally in Section 19.7, but for now, we note that a cumulative hazard (Nelson-Aalen
estimate) can also be computed. The cumulative hazard is the expected number of outcomes for
one subject occurring up to a point in time  (assuming that the outcome could occur multiple
times in an individual). For example, in the calf pneumonia data, the cumulative hazard at day
60 would be the sum of all the individual hazards (computed at failure times), up to day 60.

The cumulative hazard can range from 0 to infinity (as the time period gets longer, the expected
number of outcomes keeps going up with no upper bound). A graph of the cumulative hazard is,
like  a  graph  of  the  survivor  function,  a  way  of  expressing  the  overall  failure  (survival)
experience of the population. Fig. 19.6 shows the cumulative hazard (and 95% CI) for the calf-
pneumonia data.

Using the notation from Section 19.4.3, the Nelson-Aalen estimator of the cumulative hazard
H(t) at time t is computed as:

H t =∑
j :t j≤t

d j /r j

Eq 19.2

for 0<t<t*.
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As with the Kaplan-Meier estimator
of  S(t),  SE  can  be  determined  and
confidence  intervals  are  computed
on a ln scale and back transformed.

19.6 STATISTICAL INFERENCE

IN NON-PARAMETRIC ANALYSES

19.6.1 Confidence intervals and 
‘point-in-time’ comparisons

Although the formulae have not been
shown,  SEs  of  the  cumulative
survival  estimates can be computed
from  actuarial  or  Kaplan-Meier
survivor  functions  at  any  point  in
time. These SE can be used to test the difference between survivor functions (usually on a log
scale) for 2 (or more) populations at any point in time using a standard normal Z-test. However,
there are potentially, an infinite number of points at which the cumulative survival probabilities
could  be  computed.  This  could  lead  to  a  serious  problem of  ‘data  snooping’  or  multiple
comparisons and consequently,  ‘point-in-time’ comparisons are only valid if it is possible to
identify specific times at which the comparison of survival probabilities is warranted. These
should be specified  a priori (ie before the data are collected) and if multiple time points are
evaluated, some adjustment for multiple comparisons must be made. 

19.6.2 Tests of the overall survival curve 

There are several tests that can be used to test whether the overall survivor functions in 2 (or
more) groups are equal. They are all based on a series of contingency tables of observed and
expected events for each group at each time point at which an event occurred (assuming the test
is based on a Kaplan-Meier survivor function). The observed number of events at each time
point is compared to the expected number and a χ2 test computed. (Under the H0 that there is no
difference between the 2 groups, the expected number of events is a function of the amount of
follow-up time in each group.) Consequently, the tests can be viewed as the survival analysis
equivalent of the Mantel-Haenszel test for stratified data.

All of the tests assume that the ratio of risks of the event of interest for the 2 groups is constant
across all strata  (equivalent to the no-interaction assumption in a Mantel-Haenszel test). This
assumption is known as the ‘proportional hazards’ assumption (you will see more of this later).
If  the  survivor  functions  cross  over,  then  it  is  clear  that  this  assumption  is  violated.  The
differences among the tests depend on the weights used to combine the estimates derived at
each point in time. 

Log-rank test
The log-rank test is the simplest test as it assigns equal weight to each point estimate (weights
w(tj)=1).  Consequently,  it  is  equivalent  to  doing  a  standard  Mantel-Haenszel  procedure  to
combine the estimates. This equivalence is shown in Example 19.3.

Fig. 19.6 Nelson-Aalen cumulative hazard function 
(with 95% confidence interval)
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Wilcoxon test
This test weights the intervals according to the sample size (w(tj)=nj) . Consequently, it is more
sensitive to differences early in the time period when the sample size is larger. Some people
advocate using both Wilcoxon and the log-rank test to see if differences in the survival curves
occur early or late in the time period studied. The Wilcoxon test is less sensitive than the log-
rank test  to  the assumption of  proportional  hazards,  but  will  be unreliable if  the censoring
patterns vary across the groups being compared.

Other tests
Other  non-parametric  tests  include  the  Cox  test,  the  Tarone-Ware  test,  and  the  Peto-Peto-
Prentice test. The first is based on a Cox regression procedure (see Section 19.8) while the
Tarone-Ware weights the stratum-specific estimates by the square root of the population at risk
at each time point. The Peto-Peto-Prentice test weights the stratum-specific estimates by the
overall  survival  experience  (an  estimate  of  S(t) just  before  the  time point  of  interest),  and
consequently, reduces the influence of different censoring patterns between the groups.

Example 19.4 shows separate survivor functions for ‘batch’ and ‘continuous’ stocked calves
and the results from several of the tests for the overall equality of the survivor functions.

19.7 SURVIVOR, FAILURE AND HAZARD FUNCTIONS

The  concepts  of  survivor,  and  hazard  functions  were  introduced  when  we  looked  at  non-
parametric methods of analysis of survival data. Before proceeding with semi-parametric and
parametric analyses, we need to develop a more complete understanding of these and related
functions.

Example 19.3 Equivalence of log-rank test and Mantel-Haenszel procedure
data = calf_pneu

Log-rank test for equality of survivor functions. The resultant P-value was 0.084.

Events
Observed

Events 
Expected

batch 4.00 6.89

continuous 8.00 5.11

Total 12.00 12.00

The layout for Mantel-Haenszel stratified analysis is shown below. The Mantel-Haenszel  χ2 statistic
was computed using Eq 13.7

day=27 day=49 day=79

surv fail surv fail surv fail

batch 12 0 12 0

continuous 11 1 10 1
etc

Mantel-Haenszel OR = 3.09, χ2 = 2.99, P = 0.084
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19.7.1 Survivor function 

The survivor function  (S(t)) is the probability that an individual’s survival time  (T) (or more
generally, the time-to-event occurrence) will exceed some specified time t. It can be written as:

S t = pTt  Eq 19.3

As noted, survivor functions are non-increasing. They start at 1 and drop to 0 if all individuals
ultimately experience the event of interest.  Note By convention, cumulative functions will be
designated  by  upper-case  letters  and  density  functions  by  lower-case  letters.  The  survivor
function is a cumulative function in that it represents the cumulative probability of surviving up
to a point in time t.

19.7.2 Failure function 

The failure function (F(t)) is the probability of not surviving past time t. Consequently, it is:

F t =1−S t  Eq 19.4

Example 19.4 Comparing survivor functions
data = calf_pneu

Fig.  19.7  shows  the  Kaplan-Meier
survivor  functions  for  batch  and
continuous-stocked calves.

Continuous-stocked calves  appeared to
be at greater risk of having pneumonia
than  batched  stock  calves.  The
statistical significance of the test results
for  the  difference  between  these  2
survivor functions are shown below. All
statistical  tests  provide  comparable
results (borderline significance).

Test P-value

log-rank 0.084

Wilcoxon 0.083

Cox 0.088

Tarone-Ware 0.081

Peto-Peto-Prentice 0.078

Fig. 19.7 K-M survival curves, by stocking type
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19.7.3 Probability density function 

The probability density function  (f(t)) describes the distribution of survival  times and is the
slope (derivative) of the failure function. Consequently, it represents the instantaneous rate at
which failures are occurring in the study population at a point in time. It is estimated by taking
the derivative of a smoothed estimate of the failure function with respect  to time  (See Fig.
19.8).

19.7.4 Hazard function 

The hazard function (h(t)) is the probability of an event occurring at time t given that it had not
occurred up to time  t. With time divided into discrete intervals  (as in a life table), it can be
expressed as:

h t = p T=t∣T≥t  Eq 19.5

With time on a continuous scale, the hazard function describes the instantaneous probability of
an event occurring at a point in time given that it did not occur previously. The hazard function
is:

h t = lim
 t 0

p t≤Tt t∣T≥t 
 t Eq 19.6

The hazard function can also be computed as the ratio of the probability density function (which
represents the rate at which failures are occurring at a point in time) and the survivor function

Fig. 19.8 Survivor function (dashed stepped line). Failure function (solid 
stepped line). Smoothed failure function (dashed curved line) and tangent of  
smoothed failure function (short solid line) giving the slope at a single point
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(which  represents  the  probability  of  surviving  up  to  that  point  in  time).  It  can  further  be
expressed as:

h t =
f t 
S t 

= [−
d S t 

dt
S t  ]=−[ d

dt
ln S t ]

Eq 19.7

Hazard functions are always non-negative (ie greater than or equal to zero) and have no upper
bound (their value will change with the time scale used).

19.7.5 Cumulative hazard function 

The  cumulative  hazard  (H(t)), also  known  as  the  integrated  hazard,  represents  the
accumulation of hazard over time. It can be computed as the integral of the hazard function but
is more conveniently found using the following equation.

H t =−1n S t  Eq 19.8

As noted, the cumulative hazard represents the expected number of outcomes of interest that
would occur in an individual (assuming that repeat occurrences were possible). For example, if
you were studying the survival of cats following infection with the feline infectious peritonitis
virus and at 3 years you find that the cumulative hazard = 4 [H(t3) = 4], then that would suggest
that in 3 years after infection, we would expect to see 4 deaths. Obviously, only one death is
possible, but it provides an indication that the probability of the cat surviving to 3 years post-
infection is very low.

19.7.6 Relationships among survivor, failure and hazard functions

Some of the relationships between the survivor, failure and hazard functions have already been
shown in previous sections. As each of these functions determine the survival time distribution,
if one of them is known, the others can all be computed. 

f t =
dF t 

dt
h t =

dH t 
dt

ht =
f t 
S t  Eq 19.9

Note f(t) and h(t) are derivatives of F(t) and H(t) which are step functions. Consequently, the
step functions are smoothed before the derivative is taken.

F t =1−S t  H t =−ln S t  S t =e−H t 
Eq 19.10

Note The  last  expression  for  S(t) (above) gives  the  Flemming-Harrington  estimate  of  the
survivor function when the Nelson-Aalen estimate is used for H(t). This estimate will be larger
than the Kaplan-Meier estimate of  S(t) computed directly, but will be close if the number of
failures is small relative to the number of individuals at risk.

While survival experiences for groups of animals are usually shown by plotting the survivor
function, the hazard function plays a key role in semi-parametric and parametric analyses.
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19.7.7 Examples of hazard functions 

A wide variety of hazard functions have been studied, but constant and Weibull functions are
the 2 most  commonly encountered  in  survival  analyses.  Other  forms used include the log-
normal,  log-logistic,  gamma  and  Gompertz.  The  names  of  these  functions  refer  to  the
corresponding survival time distributions (see Section 19.9).

Constant hazard 
A constant hazard is one which does not change over time. With a constant hazard  (λ), the
survivor function drops exponentially and survival times will have an exponential distribution.
The hazard h(t), density f(t) and survivor S(t) functions are:

h t = f t = e−t S t =e−t
Eq 19.11

The  appropriateness  of  an
exponential model can be assessed
by  plotting  the  cumulative  hazard
H(t) (or  equivalently  -lnS(t))
against  t.  If  the exponential model
is  appropriate,  the  line  will  be
straight. Fig. 19.9 shows a survivor
function  derived  from  a  constant
hazard of λ=0.01 per day.

Weibull hazard
A Weibull hazard function depends
on  2  non-negative  parameters:  a
scale  parameter  (λ) and  a  shape
parameter  (p). If  p=1, the resulting
survival  time  distribution   is  the
exponential  distribution.  If  p<1
then the hazard function decreases
monotonically. If p>1, then the function is monotonically increasing with a value between 1 and
2 producing a curve that increases at a decreasing rate,  p=2 produces a hazard function that
increases linearly with time and  p>2 produces a function that increases at an ever-increasing
rate. The hazard and survivor functions are:

h t = pt  p−1 S t =exp − t p
 Eq 19.12

Fig.  19.10 shows Weibull  hazard  functions for  several  values  of  p.  An increasing  Weibull
hazard function (1<p<2) might be appropriate for dairy cow conception data if the fertility of
the cow increases with time after parturition, but does so at a decreasing rate. A decreasing
Weibull hazard function  (p<1) might be appropriate for the survival of animals after surgery
when the hazard is highest right after surgery and then decreases.

The suitability of the Weibull distribution or hazard can be assessed by evaluating the log-
cumulative hazard plot [ln(H(t)) versus ln(t)]. If the data fit a Weibull distribution, the line on
the graph should be approximately straight. The intercept and the slope of the line will be ln(λ)
and  p,  respectively.  Parametric  survival  models  based  on  exponential  and  Weibull  hazard
functions are described in Section 19.9.

Fig. 19.9 Survivor function from a constant hazard 
(h(t)=0.01)
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Other hazard functions
One of the limitations of the Weibull hazard function is that the hazard can only increase or
decrease over time. Gamma, log-normal and log-logistic hazards can be used to deal with the
situation in which the risk first increases and then decreases  (or vice versa). Such a function
would be appropriate in a situation where the risk of death was high early in an illness, drops to
a lower level and then increases again over time. For example, a new intramammary infection
with Staph. aureus in a dairy cow might produce a high risk of culling early (if acute clinical
mastitis developed), followed by a sharp reduction in the risk and then a gradually increasing
risk as the level of chronic udder damage increased over time. Detailed descriptions of these
functions can be found in survival analysis texts (Cleves et al, 2008; Collett, 2003; Hosmer &
Lemeshow, 2008; Therneau & Grambsch, 2000).

19.8 SEMI-PARAMETRIC ANALYSES

Non-parametric  analyses  are  limited to  evaluating the effect  of  one,  or  a  small  number of,
qualitative variable(s) on survival times. However, we often want to simultaneously evaluate
the effects of multiple continuous or categorical explanatory variables. This requires that we
model the survival  data using a multivariable technique. The most commonly used form of
multivariable analysis for survival data is the proportional hazards model (also known as the
Cox regression model) (Cox, 1972). It is a semi-parametric model in that we do not have to
assume any specific functional form for the hazard, but we do model the ratio of hazards as a
linear function of the predictors.

Fig. 19.10 Weibull hazard functions for various values of shape parameter (p)
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19.8.1 Cox proportional hazards model

The proportional hazards model is based on the assumption that the hazard for an individual is a
product  of  a  baseline  hazard  (h0) and  an  exponential  function  of  a  series  of  explanatory
variables. 

h t =h0 t e
 X

Eq 19.13

where βX= β1X1 + β2X2 + ...+ βk Xk. Equivalently, it can be expressed as:

HR=
ht 
h0 t 

=e X

Eq 19.14

where HR is the hazard ratio. The first formulation emphasises that the hazard for an individual
is always a multiple  (eβX) of a baseline hazard (see Fig. 19.11—left panel), while the second
formulation shows that it is the ratio of the hazards which is assumed to be constant over time. 

On the log scale, the log hazard is a constant  (βX) above or below the baseline log hazard as
shown below and in Fig. 19.11 (right panel).

ln h t =ln h0 t  X Eq 19.15

Two important features of this model are that no assumption is made about the shape of the
baseline hazard (h0) and that the model has no intercept. In fact, the intercept  (which in most
regression models reflects the value of the outcome when all covariates (predictors) are zero) is
subsumed into the baseline hazard which represents the hazard when all covariates are zero.

19.8.2 Hazard ratios

Based  on  Eq  19.15,  the  lnHR=βX.  Consequently,  exponentiating  the  coefficient  from  a
proportional hazards model produces a hazard ratio. Hazard ratios have interpretations similar
to odds ratios and risk ratios. They represent the effect of a unit change in the predictor on the
frequency  of  the  outcome  (which  in  this  case  is  measured  as  a  hazard).  Note You  will

Fig. 19.11 Effect of a hypothetical factor on a baseline hazard shown on 2 
scales. Effect on hazard scale in left panel and on log hazard scale in right
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sometimes encounter hazard ratios referred to as relative risks (or risk ratios), but this is not a
correct use of the term and should be avoided. For example, if factor  X1 has an HR=2, then a
unit change in X1 will double the hazard of the outcome. If  X1 is a dichotomous variable and,
because we are assuming that this  HR is constant  (over time), this means that, at any point
during the risk period, ‘failures’ will be occurring at twice the rate in animals with X1=1 than in
animals with X1=0. This is not equivalent to a doubling of the risk over the full study period.

Example 19.5 provides some examples of  HRs derived from a dataset from a clinical trial of
prostaglandin use in dairy cattle. A total of 319 cows in 3 herds were assigned randomly to
receive prostaglandin (or not) at the time that the producer had indicated was the beginning of
the breeding period (ie the number of days after calving that he would start breeding a cow that
came into heat). The time from the onset of the breeding period to conception was the outcome
of interest. The dataset (-pgtrial-) is described more fully in Chapter 31. The variables in Table
19.3 are those that we will use in examples in this chapter.

Table 19.3 Variables in -pgtrial- dataset

Variable Description

herd herd (1,2,3)

tx treatment (1=yes, 0=no)

lact age (lactation number – a continuous variable)

thin body condition score at time of treatment (1=thin, 0=normal or fat)

dar days at risk (number of days from the start of the breeding period to either 
conception or censoring); this is the outcome of interest

preg status of animal at end of -dar- (1=pregnant, 0=censored)

19.8.3 Fitting the Cox proportional hazards model

Obtaining  partial  maximum  likelihood  estimates  of  the  parameters  in  a  Cox  proportional
hazards model requires an iterative estimation procedure  (the Newton-Raphson procedure is
most commonly used). As with a non-parametric Kaplan-Meier estimation procedure, a Cox
model is only evaluated at the times at which failures occur. In fact, fitting a Cox model with no
predictors produces exactly the same survival curve as a Kaplan-Meier estimation does. In both
procedures, it is not the actual times at which failures occur which is important, it is only the
order in which they occur that matters.

The estimation is based on the partial (profile, conditional) likelihood function, which has a
different interpretation than the usual likelihood function (as described in Example 19.6), but is
used in the same way for statistical inference. 

19.8.4 Handling of ties

Because the order in which failures occur is critical for conducting the analysis, there must be a
way of handling the problem of 2 (or more) failures being recorded at the same time. Details of
various methods of dealing with ties can be found in texts on survival analysis but they fall into
2 general approaches. The first is called a marginal calculation or continuous-time calculation
and is based on the assumption that the timing of the events was not really tied, but simply due
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Example 19.5 Cox proportional hazards model
data = pgtrial

A Cox proportional hazards model was fit to the prostaglandin trial data with herd, treatment, lactation
number,  and  body  condition  (thin)  as  predictors.  The  first  table  presents  the  model  in  terms  of
coefficients.

No. of subjects = 319 
No. of failures = 264 Number of obs = 319
Time at risk = 25018 LR χ2

(5) = 9.50
Log likelihood = -1307.7329 Prob > χ2 = 0.0908

Predictor Coef SE Z P 95% CI

herd=2 -0.284 0.170 -1.68 0.094 -0.617 0.048

herd=3 0.037 0.174 0.21 0.833 -0.305 0.378

tx 0.184 0.125 1.46 0.143 -0.062 0.429

lact -0.043 0.041 -1.04 0.297 -0.123 0.038

thin -0.146 0.138 -1.06 0.291 -0.416 0.125

Although not statistically significant,  treatment  appears to increase the lnHR by 0.18 units.  As we
rarely think in terms of lnHRs, it is more common to present the results as HRs

Predictor HR SE Z P 95% CI

herd=2 0.752 0.128 -1.68 0.094 0.539 1.050

herd=3 1.037 0.181 0.21 0.833 0.737 1.460

tx 1.202 0.151 1.46 0.143 0.940 1.536

lact 0.958 0.039 -1.04 0.297 0.884 1.038

thin 0.865 0.119 -1.06 0.291 0.660 1.133

Here  it  appears  that  treatment
increases the hazard of conception
1.2  times.  If  this  effect  is  real
(which appears questionable at this
stage given the P-value of -tx-), it
means that at any point in time after
the  onset  of  the  breeding  period,
conceptions  were  happening  at  a
20%  higher  rate  in  treated  cows
than  in  the  non-treated  ones.
Similarly,  for  each  additional
lactation the cows had experienced,
the rate  of conception dropped by
approximately  4%  (but  this
predictor  has  an  even  larger  P-
value).

A  pair  of  Kaplan-Meier  survivor
functions  (one  for  each  treatment
group)  provides  some  additional  insight  into  the  possible  effect  of  the  treatment  (Fig.  19.12).  It
appeared  that  treated  cows  conceived  slightly  more  quickly,  although  the  difference  was  most
pronounced early in the breeding period.

Fig. 19.12 Kaplan-Meier survival estimates, by 
treatment (prostaglandin data)
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to  the  fact  that  the  timing  of  the  failure  was  not  recorded  with  sufficient  precision  to
differentiate  among ‘tied’ observations.  The second is called the  partial  calculation and is
based  on  the  assumption  that  the  events  were  actually  tied  and  treats  the  problem  as  a
multinomial problem. 

Exact  calculation  of  the  likelihood  function  under  either  assumption  is  computationally
demanding and may be slow in large datasets with many ties. Two approximate methods have
been developed for marginal calculations. The Breslow method is simplest and is adequate if
there are not a lot  of ties.  The  Efron method provides a closer approximation to the exact
calculation. An approximation attributed to Cox can be used for partial calculations. However,
for a small dataset such as -pgtrial-, exact calculation methods (marginal or partial) are feasible.
In this case, the exact methods and the Breslow and Efron approximations all produce very
similar results (data not shown).

19.8.5 Baseline hazard

Although, as noted above, no assumption is made about the baseline hazard  (h0) and the Cox
model does not estimate it directly, an estimate of it can be derived conditional on the set of
coefficients in the estimated model. This baseline hazard represents the hazard in an individual
for  whom  all  predictors  equal  zero.  For  it  to  be  meaningful,  it  is  important  that  X=0  is
reasonable for all predictors. If computed directly from the -pgtrial- data using the model shown

Example 19.6 Partial likelihoods for a Cox model
data = hypothetical time to death following diagnosis of lymphosarcoma for 20 dogs

Assume the following data, sorted by time to death

Dog Time to death (mo) Age at diagnosis (yrs)

1 3 9.6

2 8 8.1

... ... ...

20 63 5.7

For the first dog, a maximum likelihood procedure would ask the question ‘What was the probability of
this dog dying at 3 months, given that it was 9.6 years old at diagnosis?’ In contrast, a partial likelihood
procedure asks the question ‘Given that a death occurred at 3 months, what was the probability that it
was dog #1 (given the age of the dog)?’ This likelihood can be written as follows.

L1=
h13

h13h2 3...h203
=

h03e
∗9.6

h0 3e
∗9.6

...h03e
∗5.7=

e∗9.6

e∗9.6
...e∗5.7

The partial likelihood of the first failure being dog 1 is that dog’s likelihood relative to the sum of all of
the likelihoods.  For the second dog, the partial likelihood is

L2=
h2(8)

h2 (8)+h3(8)+...+h20(8)
=

eβ∗8.1

eβ∗8.1+...+eβ∗5.7

The product of the partial likelihoods is the likelihood of the model. Note The analysis only depends
on the sequence of events (not the actual time) and that the baseline hazard has no effect because it is
common to all dogs.
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in  Example  19.5,  this  would
represent the hazard of conception in
a non-treated, normal body condition
cow in herd 1 in her 0th lactation. To
avoid  this  nonsensical  value  for
lactation,  lactation  should  be
modified so that a cow with a value
of  0  is  possible  (eg rescale  it  by
subtracting 1 so a cow in lactation 1
now has a value of 0). 

The  baseline  hazard  can  only  be
estimated on days on which failures
occur,  and the estimate will  bounce
around quite  a  lot  from day  to day
(particularly  once  the  surviving
population  at  risk  becomes  small.
Consequently, it is necessary to smooth the estimate of the baseline hazard and this is shown in
Fig. 19.13. The daily hazard of conception in non-treated, normal-weight, first-lactation cows in
herd 1 rises from about .006 (0.6% per day) to a peak of about 0.011 (1.1% per day) and then
gradually declines over time (up to 300 days—the end of the follow-up period). It is important
to note that this reflects the probability of conception among the pool of cows remaining non-
pregnant at any specific time. It does not necessarily indicate that the hazard for an individual
cow declines after day 100. The decline may be a function of the fact that the population of
cows  remaining  non-pregnant  consists  increasingly  of  cows  that  are  very  difficult  to  get
pregnant. This issue of the nature of the population changing is discussed further in Section
19.11 (frailty models).

19.8.6 Model-building

In  general,  model-building  procedures  for  Cox  models  are  similar  to  those  used  for  other
regression-type  models.  Wald  tests  and  likelihood  ratio  tests  can  be  used  to  evaluate  the
significance of individual predictors or groups of predictors. Confounding and interaction can
be assessed using methods presented for other regression-type models. Because the explanatory
variables  are related to the logarithm of the hazard ratio,  it  follows that  interaction will  be
assessed on a multiplicative scale.  There are, however,  2 issues that are specific to survival
models:  stratified  analysis to  allow  for  different  baseline  hazards  in  different  groups  of
animals in the study, and the possibility of including time-varying covariates.

19.8.7 Stratified analysis

Although we made no assumption about the shape of the baseline hazard, we have assumed that
it is appropriate for an animal with all  Xj=0. Let’s consider the effect of being ‘thin’ on the
hazard of conception in the prostaglandin data. If we obtained a significant  HR for -thin-, we
would assume that it multiplies the h0 by the HR and that this effect was constant over time. If
we had reason to believe that the shape of the hazard was different in thin cows than in normal-
weight cows, we could stratify the analysis on -thin- and allow for separate estimates of the
baseline hazard in each group. 

Fig. 19.13 Smoothed estimate of baseline hazard
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In  a  stratified  Cox  model,  different  baseline  hazards  (h0j(t))  are  assumed across  groups  of
animals to yield the following hazard function for the jth group.

h jt =h0jt  e
 X

Eq. 19.16

The difference from the unstratified model (Eq. 19.14) is only in the baseline hazards whereas
the regression term  eβX is  unchanged.  Thus, the effects  of predictors on  HRs relative to the
baseline hazard are assumed equal across all strata. Stratum-level predictors can not be assessed
in a stratified model because their effects will be absorbed in the baseline hazards. However,
you can include interactions between a covariate (eg -tx-) and a stratifying variable (eg herd).
Example 19.7 shows a stratified (by herd) analysis of the -pgtrial- data with a treatment by herd
interaction included. (Note Stratified analyses provide one means of dealing with clustered data
—by stratifying on the clustering variable. Dealing with clustered data is discussed further in
Section 19.11). 

19.8.8 Time-varying covariates

Up to now, we have focused on exposure factors that do not change their value over time and
we  have  assumed that  the  effect  of  a  factor  was  constant  over  time  (proportional  hazards
assumption).  However,  survival  analysis  gives  us  the  opportunity  to  relax  both  of  these
conditions. The terminology used with time-varying covariates may be confusing so we will
distinguish between time-varying predictors and time-varying effects.

Given the long-term nature of many survival studies, it is conceivable that the values of some of
those predictors might change over time. These are time-varying predictors. For example, in the
prostaglandin trial, if the body condition of the cows had been assessed periodically, rather than
just once, some cows that were initially thin could have gained enough weight to be classified
as normal or vice versa.

Example 19.7 Stratified Cox proportional hazards model
data = pgtrial

A stratified (by herd) model was fit with a treatment by herd interaction term included.

No. of subjects = 319
No. of failures = 264 Number of obs = 319
Time at risk = 25018 LR χ2

(7) = 10.32
Log likelihood = -1025.1181 Prob > χ2 = 0.1710

Predictor Coef SE Z P 95% CI

tx -0.022 0.255 -0.08 0.933 -0.522 0.479

herd_2 * tx -0.057 0.336 -0.17 0.866 -0.715 0.601

herd_3 * tx 0.545 0.318 1.71 0.087 -0.079 1.169

lact -0.046 0.041 -1.13 0.258 -0.126 0.034

thin -0.136 0.138 -0.98 0.326 -0.407 0.135

The main effect of -tx-, which is now the effect of -tx- in herd=1 is completely non-significant.  An
overall test of the significance of the interaction terms produces a P-value of 0.072 (not shown), which
suggests that there is some evidence that the treatment may have different effects in different herds.
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On the other hand, a predictor may remain constant, but its effect may change over time. These
are time-varying effects. For example, prostaglandin treatment may have a more pronounced
effect in the days or weeks immediately after administration than many weeks later. If this is
true the assumption of proportional hazards is violated.

Time-varying predictors
Because there were no time-varying predictors in the prostaglandin trial data, we will shift our
attention  to  a  study that  evaluated  the  effects  of  a  number  of  risk  factors  on  the  time  to
occurrence of infectious salmon anemia (ISA) outbreaks in salmon being reared in net-pens in
ocean-based aquaculture operations. These data (isa_risk) are from 182 net-pens on 18 sites and
are described more fully in Chapter 31. For this example, we will focus on a single predictor:
whether or not there was (or had been) another outbreak at the site. At a site with no outbreaks,
all records were censored at the end of the study period and there was a single record for each
net-pen. For sites where an outbreak occurred, each net-pen would have 2 records. The first
would describe the period up to the date of the first outbreak and would end in a censoring for
all net-pens except for the one that had the first outbreak. The second record would span the
period from the date of the first outbreak until the cage either had an outbreak or was censored.
Example 19.8 shows how the data must be modified to account for a time-varying predictor.

Time-varying effects
A time-varying effect represents an interaction between a predictor and time (the effect of the
predictor depends on what time point you are looking at). Effects may change at discrete points
in time or may change continuously over time. A continually changing effect may change in a
linear manner with time (eg effect drops by a given amount every 10 days), with ln time (eg
effect drops by a given amount for every one ln unit increase in time (equivalent to every 2.72
fold increase in time)), or with any other function of time. Evaluating how effects may, or may
not, change over time is an important part of validating a Cox proportional hazards model and is
discussed further in Section 19.8.10.

One approach to evaluating how effects  of predictors change over time is to fit  an Aalen’s
linear hazards model  (Hosmer & Royston, 2002). This model plots a cumulative regression
coefficient  for  a  predictor  against  time.  If  the  effect  of  the predictor  remains  constant,  the
cumulative predictor will be expected to increase (or decrease) in a straight line over time. In
general this is true, although some curvature to this line has been observed even when hazards
are  proportional.  Example  19.9 shows  Aalen’s  linear  hazards  model  applied  to  the
prostaglandin data.

19.8.9 Validating the model

Validation of a Cox proportional hazards model will be covered in the following 6 sections. The
components in the validation process include:

• evaluating the proportional hazards assumption (Section 19.8.10)
• evaluating the assumption of independent censoring (Section 19.8.11)
• evaluating the overall fit of the model (Section 19.8.12)
• evaluating the functional form of predictors (Section 19.8.13)
• checking for outliers (Section 19.8.14)
• detecting influential points (Section 19.8.15).
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Example 19.8 Time-varying predictor
data = isa_risk

Data were collected on a number of risk factors for outbreaks of ISA in 182 net-pens of salmon at sea-
cage sites. The period of risk was considered to start on 1 April 1997 (day=0) and carried on until the
fish were harvested in the fall of 1997. Data from 3 net-pens at site 19 are:

time

site net-pen start end outcome

19 39 0 86 1 = outbreak

19 46 0 211 0 = censored

19 56 0 79 1 = outbreak

Net-pen 46 did not have an outbreak and was censored on day 211. Net-pens 39 and 56 had outbreaks
on days 86 and 79, respectively with the outbreak in net-pen 56 being the first outbreak at the site. In
order to allow for a time-varying predictor to indicate whether or not there had been another net-pen
with an outbreak on the site, multiple records for each net-pen need to be created (this data format is
referred to as counting process style data). The resulting data follow.

time site

site net-pen start end outcome positive

19 39 0 79 0 0

19 39 79 86 1 1

19 46 0 79 0 0

19 46 79 211 0 1

19 56 0 79 1 0

Net-pen 39 now has one record for the period of days 0 to 79 during which the covariate (predictor) for
the site being positive was 0 and which ended in censoring. It has a second record for the period from
day 79 to 86 when the site was positive and which ended in an outbreak. Similarly, net-pen 46 has 2
records (representing the period before and after the site became positive), but both end in censorings
because the net-pen did not have an outbreak. Net-pen 56 still only has one record because it was the
first outbreak.

A Cox model fit to these data with the single predictor -pos- (ie site was positive) produces:

No. of subjects = 182
No. of failures = 83 Number of obs = 312
Time at risk = 28353 LR χ2 (1) = 15.24
Log likelihood = -392.91 Prob > χ2 = 0.0001

Predictor HR SE Z P 95% CI

pos 2.610 0.676 3.70 0.000 1.571 4.335

Although it appears that there were 312 observations, the number of subjects is correctly identified as
182. Once a site has become positive, the rate of outbreaks in other cages at the site was 2.6 times
higher than prior to the site becoming positive.
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19.8.10 Evaluating the assumption of proportional hazards

 There are 3 general ways of evaluating the assumption of proportional hazards:
• graphical assessment
• the use of time-varying effects
• statistical assessment using Schoenfeld residuals.

Graphical assessment 
For a categorical predictor, the assumption of proportional hazards can be tested by examining
the log-cumulative hazard plot  (lnH(t) vs lnt) to check if the curves for the 2 (or more) study
groups  are  parallel.  If  they  are  not
parallel,  then  the  assumption  has
been violated. Fig. 19.15 shows a log
cumulative  hazard  plot  for  the
prostaglandin  data.  (Note it  is
actually  the  -log  of  the  cumulative
hazard  that  has  been  plotted  which
explains why the curves slope down
(instead  of  up)  as  the  cumulative
hazard rises. It is clear that the curves
are not parallel, at least up to ln(time)
≈3.5  (33  days),  suggesting  that  the
proportional hazards assumption has
been violated. This seems reasonable
because  we  would  expect
prostaglandin  treatment  to  have  a
more pronounced effect shortly after
administration  than  many  weeks
later.

Fig. 19.15 Log cumulative hazard plot. 

Note It is actually the -log of the cumulative hazard that has been plotted
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Example 19.9 Aalen’s linear hazards model
data = pgtrial

Aalen’s  linear  hazards  model  was  fit  to  the prostaglandin  data  and the  cumulative  coefficient  for
treatment was plotted against time and the cumulative coefficient plotted for the first 50 days.

There was initially a very strong positive effect of
treatment (primarily on day 3, some effect up to day
6) followed by a strong negative effect  that lasted
until  about  day  23.  This  was  followed  by
approximately a 9-day period of positive effect, after
which  there  was  no  consistent  evidence  of  any
effect.  This  fits  well  with  the  expected  effect  of
prostaglandin:  a  strong  positive  effect  as
synchronised  cows  come  into  heat,  followed  by  a
negative effect as those cows go through a heat cycle
before returning to oestrus about 21 days later. Fig. 19.14 Aalen's linear hazards model 
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Another  approach  to  graphical
assessment  is  to  compare  plots  of
predicted survival times from a Cox
model  (which  assumes  proportional
hazards) to  Kaplan-Meier  survivor
function plots  (which make no such
assumption).  If  the 2 sets of curves
are close together, it suggests that the
proportional hazards assumption has
not been violated. Fig.  19.16 shows
such  a  plot.  Clearly,  the  predicted
values  from  the  Cox  model  (the  2
curves in the centre of the plot are the
predicted  values  for  treated  (lower
curve) and not treated  (upper curve)
cows) are  not  at  all  close  to  the
observed  values  prior  to  day 24.  A
limitation to graphical assessment is that it is limited to evaluating unconditional associations or
situations  in  which  the  predictor  being  evaluated  is  clearly  the  strongest  predictor  in  a
multivariable setting.

Time-varying effects
A term for the interaction between the treatment and time (or the log of the survival time) can
be added to the model. The effect of treatment can be allowed to interact with time in a linear
fashion or with ln(time) (or any other function of time for that matter). The advantage of adding
a predictor*time interaction term is that if the assumption of proportional hazards is violated,
the addition of the interaction term can solve the problem (provided the change in effect over
time can be appropriately modelled). 

In Example 19.10, a Cox model has been fit in which the effect of treatment is allowed to vary
with  ln(time).   The  positive  effect  of  treatment  disappears  by  day  55  and  the  effect  then
becomes negative (HR<1).  No negative effect  of treatment was expected beyond day 55 so
allowing the effect to decay linearly with ln(time) may not be adequate. Although details are
not shown, if interaction terms between both ln(time) and ln(time)2 are added to the model, the
log likelihood rises from -1307 to -1300 suggesting that the latter model improves the model fit
substantially. Some special procedures for integrating the use of fractional polynomials into the
fitting of time-varying effects are discussed in (Royston & Sauerbrei, 2008).

Schoenfeld residuals
Schoenfeld and scaled Schoenfeld residuals are based on the contribution that an observation
makes to the partial  derivative of the log partial  likelihood. Hence they are also sometimes
called ‘partial residuals’. There is a separate set of residuals for each regression coefficient in
the model, each set corresponding to the partial derivative for that parameter. These residuals
are only computed at observed survival times. Scaled Schoenfeld residuals are adjusted using
an estimate of the variance of the residual and these are better for detecting departures from the
assumed model. 

A graph of the scaled Schoenfeld residuals for a given predictor, when plotted against time (or
ln(time)) can provide a graphical assessment of the proportional hazards assumption. This is
particularly  useful  for  continuous predictors  because  the  log  cumulative  hazard  plot  is  not

Fig. 19.16 Kaplan-Meier Cox plot
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useful for those variables. This graphical assessment can be enhanced by adding a smoothing
line to indicate the overall trend. The residuals should hover around the ‘zero’ line, indicating
no trend in the residuals over time. If the residuals trend up or down, it suggests that the effect
of the predictor is varying over time. Fig. 19.17 (in Example 19.11) shows a plot of the scaled
Schoenfeld  residuals  for  lactation  against  ln(time).  The assumption  of  proportional  hazards
appears to be reasonable for this predictor.

Schoenfeld residuals also form the basis of a statistical test of the assumption of proportional
hazards. The test checks for a non-zero slope of the scaled Schoenfeld residuals against time (or
a function of time) using a generalised linear regression. It provides an overall assessment and a
test for each predictor separately. Results of this test for the prostaglandin data are presented in
Example 19.11. These suggest that a treatment*time interaction term does need to be added to
the model.

Example 19.10 Assessing proportional hazards assumption—time-varying covariates
data = pgtrial

A Cox model with a single  predictor (treatment) was fit but the effect of treatment was allowed to
interact with time on a natural log scale. This was chosen because it was assumed that the effect of
treatment would drop off rapidly after administration and then more slowly as time went on (instead of
a linear, or straight-line, decay in effect).

No. of subjects = 319
No. of failures = 264 Number of obs = 319
Time at risk = 25018 LR χ2 (2) = 0.51
Log likelihood = -1307.22 Prob > χ2 = 0.005

Predictor HR SE Z P 95% CI

main effect

tx 3.085 1.102 3.15 0.002 1.532 6.211

ln(time) interaction effect

tx 0.759 0.072 -2.92 0.003 0.631 0.913

Treatment is now a significant predictor of time to conception. The treatment*ln(time) interaction term
is also significant,  confirming that the effect  of treatment  does vary with time ( ie  the proportional
hazards assumption does not hold). In the presence of interaction, the effect of treatment can be better
understood by computing the HR at a number of time points. The HR at time t is 3.08*0.759ln(t).

Time (days) ln(time) HR

1.0 0 3.08

2.7 1 2.34

7.4 2 1.77

20.1 3 1.35

54.6 4 1.02

148.4 5 0.78

The effect of treatment drops off until by day 55, it has completely disappeared.



MODELLING SURVIVAL DATA 497

19.8.11 Evaluating the assumption of independent censoring

One of the fundamental assumptions of survival models is that censoring is independent of the
outcome of interest. This means that censored animals should have the same future survival
expectation as non-censored animals (ie if the animals were not censored, they would have the
same survival distribution as the non-censored animals). There are no specific tests to evaluate
the independence of censoring and the event of interest. However, sensitivity analyses can be
used to look at the extreme situations of complete positive or negative correlations between
censoring and the event of interest.

Complete  positive correlation would mean that every animal that was censored would have
experienced  the  event  of  interest  immediately  if  it  had  not  been  censored.  This  could  be
evaluated by refitting the model after recoding all of the censored observations so that they had
the event of interest instead of being censored (at the time of censoring).

Example 19.11 Assessing the proportional hazards assumption—Schoenfeld residuals
data = pgtrial

A  Cox  model  with  herd,  treatment,
lactation  and  body  condition  (-thin-)
as  predictors  was  fit  to  the
prostaglandin data (without any time-
varying  covariates).  Schoenfeld  and
scaled  Schoenfeld  residuals  were
obtained.  Fig. 19.17  shows  a
smoothed  plot  of  scaled  Schoenfeld
residuals  for  lactation plotted against
time on a log scale.

The statistical test for non-zero slope
for  each  of  the  predictors  (against
ln(time)) resulted in the following.

χ2 df prob> χ2

herd=2 0.34 1 0.559

herd=3 0.09 1 0.760

tx 7.65 1 0.006

lact 0.28 1 0.594

thin 1.81 1 0.179

global test 10.43 5 0.064

While the global test was borderline significant, it is clear that the assumption of proportional hazards
was violated for treatment.

Fig. 19.17 Schoenfeld residuals for lactation
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Complete  negative correlation would mean that  every animal that  was censored would be
guaranteed a long ‘event-free’ existence if it had not been censored. This could be evaluated by
refitting the model after changing each censored animal’s time at risk to a large, but plausible,
value.

The above 2 analyses would provide the possible range of values that the coefficients of the
factors of interest could possibly take if the assumption of independent censoring was badly
violated. If  gross violation of this assumption does not drastically alter the estimates of the
parameters of interest, you can be confident that the actual bias in the parameter estimates will
be small.

Example 19.12 presents the results of a sensitivity analysis designed to evaluate this assumption
in the prostaglandin data.

19.8.12 Evaluating the overall fit of the model

Four approaches to evaluating the overall fit and predictive ability of the model are: 
• to evaluate graphically the distribution of the Cox-Snell residuals,
• to  use  a  goodness-of-fit  test  similar  to  the  Hosmer-Lemeshow  test  used  for  logistic

regression
• to evaluate concordance between the predicted and observed sequence of pairs of events, 

and
• to compute an overall r2 statistic

Example 19.12 Evaluating the assumption of independence of censoring
data = pgtrial

A Cox model with herd, treatment, lactation number, and body condition (-thin-) as predictors was fit
to the prostaglandin trial data (with treatment as a time-varying effect on the ln(time) scale). The model
was then refit assuming complete positive and complete negative correlations between censoring and
conception (see text for description of method). Negative correlation was based on assigning -dar- of
400 to all censored cows. The results are summarised in the following table.

Variable
Original 
estimate

Assuming complete
positive correlation

Assuming complete
negative correlation

herd=2 -0.260 -0.199 -0.228

herd=3 0.023 -0.007 0.008

tx 1.089 0.983 0.927

lact -0.043 -0.006 -0.061

thin -0.145 -0.141 -0.050

tx*ln(time) -0.259 -0.209 -0.215

Both sensitivity analyses resulted in a small reduction in the coefficient for treatment, but the changes
were not large and the treatment effect remained highly significant (P-values not shown).
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Cox-Snell residuals are the estimated cumulative hazards for individuals at their failure  (or
censoring) times. If the model is appropriate, these residuals are a censored sample from a unit
exponential distribution (ie an exponential distribution with a mean of one and variance of 1).
Consequently, the range of these residuals is zero to +∞. Cox-Snell (CS) residuals can be used
to assess the overall fit  of a proportional hazards model by graphically assessing how close
these residuals are to having a unit exponential distribution. To do this, you:

• compute the CS residual
• fit a new proportional hazards model with the CS residuals used as the ‘time’ variable

(along with the original censoring variable)
• derive an estimate of the cumulative hazard function (H(t)) from this new model
• plot H(t) against the CS residuals

If the residuals have a unit exponential distribution, the cumulative hazard should be a straight
line with an intercept of 0 and a slope of 1. In practise, these graphs have been of limited value.
Assessment of the linearity of the graph is a very subjective procedure and substantial apparent
departures from the 45o line can result from a few observations with long survival times (when
most of the observations are clustered at the lower left end of the line) (see Example 19.13). 

For censored observations,  the estimated cumulative hazard is an underestimate of  the true

Example 19.13 Evaluating overall fit of a model
data = pgtrial

A  Cox  proportional  hazards  model
was fit  to the data with fixed effects
for  herd,  treatment,  lactation number
and body condition (-thin-) (treatment
effect was not time-varying). 

Cox-Snell  residuals were  computed
and  plotted  as  described  in  the  text
(Fig.  19.18).  It  appears  that  there  is
relatively good agreement between the
plotted values and the expected (45o)
line.

Goodness-of-fit tests
The  Grønnesby and Borgan omnibus
goodness-of-fit  test  produces  a  P-
value of 0.34 (no evidence of lack of
fit), while the Moreau, O’Quigley and
Mesbah test, designed specifically for detecting non-proportional hazards, generates a P-value of 0.004
(significant lack of fit).

Concordance
Harrell’s  C statistic  was  0.56  indicating that  the model  only correctly  predicts  the  sequence of  2
observed failures 56% of the time (ie very limited predictive ability).

r2

The r2 for the Cox model with -herd-, -tx-, -lact-, and -thin- as predictors produced an estimated r2 of
0.022 (2.2%) with a bootstrapped 95% confidence interval of (0.009, 0.065). Clearly, collectively these
predictors have relatively little ability to predict exactly when a cow is going to conceive.

Fig. 19.18 Plot of Cox-Snell residuals
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cumulative hazard for an individual (by virtue of the fact that we don’t observe them for the full
period  until  they  have  the  outcome  of  interest).  Consequently,  Cox-Snell  residuals  are
sometimes  modified  by  the  addition  of  a  constant  (either  1  or  ln(2)=0.693) for  censored
observations. There is no evident rationale for choosing one adjustment over the other, but this
is only important if a substantial proportion of the observations are censored. 

Several goodness-of-fit tests similar to a Hosmer-Lemeshow test for logistic regression models
can be computed (May & Hosmer, 2004b). These tests all divide the data into groups and add
indicator variables for these groups to the models and assess the overall  significance of the
indicator  variables,  with  significance  indicating  evidence  of  lack-of-fit.  An  omnibus  test
designed to detect all causes of lack of fit was proposed by Grønnesby and Borgan (1996). The
observed number of failures in groups defined by quantiles of risk from the fitted model are
compared  to the expected  number of  failures  which are based on martingale  residuals  (see
Section 19.8.13). However, the validity of the test depends on choosing an appropriate number
of groups (May & Hosmer, 2004a). The number of groups should roughly equal the number of
failure events in the data divided by 40, with a minimum of 2 and a maximum of 10. Using this
strategy the test has reasonable power provided the sample size is greater than 200 with no
more than 50% censoring (in smaller samples, the power is low). However, this test fails to
identify  the  problem  of  non-proportional  hazards  in  the  prostaglandin  trial  data  (Example
19.13). An alternative test designed specifically to evaluate the proportional hazards assumption
was proposed by Moreau et al (1985). It requires the computation of time-dependent indicator
variables and it successfully detects the problem of non-proportional hazards (Example 19.13).
These  tests should not be used in situations in which there are time-varying covariates in the
model. 

Closely  related  to  the  issue  of  evaluating  overall  fit  is  the  question  of  evaluating  overall
predictive ability.  Harrell’s C concordance statistic computes the proportion of all pairs of
subjects in which the model correctly predicts the sequence of events (ie which one would have
come first). It ranges from 0 to 1 with a value of 0.5 indicating no predictive ability at all (you
would expect to get 50% correct by chance alone).

For a linear regression model, we would use  r2 as a measure of predictive ability. Recently,
Royston (2006) described several possible measures of explained variation for survival models
and proposed an r2 statistic for proportional hazard models. Comparable to the adjusted r2 from
linear regression, it is also possible to adjust the proposed r2 for the number of predictors in a
survival model. The r2 compares a fitted model with a null model and provides an estimate of
the amount of variation in survival times that is explained by the predictors. However, it can not
be used to compare models with different hazard structures (eg a semi-parametric Cox model
with a parametric Weibull model—see Section 19.9 for hazard structures in parametric models)
because the null  models are different.  An estimate of the  r2 for the prostaglandin data,  and
bootstrap 95% confidence intervals are shown in Example 19.13.

19.8.13 Evaluating the functional form of predictors

Martingale residuals can be used to evaluate the functional form of the relationship between a
continuous predictor and the survival expectation for individuals. These residuals represent the
difference between the observed final outcome for an individual and the cumulative hazard for
that individual at the final point in time.  (As such, they are more like typical residuals which
represent a difference between an observed and a predicted value). Because they are based on
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the estimated cumulative hazard, these residuals are similar to Cox-Snell residuals except their
range is from -∞ to 1. The values of these martingale residuals are:

• uncensored observation i: 1− H i t i

• censored observation i : 0− H i ti 

Consequently, residuals will be negative for all censored observations and for observations in
which H(ti)>1 (equivalent to S(ti)<0.37).

To check  for  the  functional  form of  continuous  predictors,  martingale  residuals  should  be
computed from a model which does not include the continuous predictor  of interest.  These
residuals are then plotted against the predictor. A smoothing function (eg kernel smoothing) can
be used to better visualise the relationship. If the relationship is linear, the smoothed martingale
residual  line  should be  approximately straight.  Fig.  19.19 (Example 19.14)  shows a kernel
smoothed graph of martingale residuals against lactation number.

19.8.14 Checking for outliers

Deviance residuals can be used to identify outliers (ie points that are not well fit by the model).
Deviance  residuals are  martingale  residuals  that  have  been  rescaled  so they are  symmetric
around 0 (if the fitted model is appropriate). The sum of the squared deviance residuals is the
deviance (D) of the model.

Example 19.14 Evaluating functional form of predictors
data = pgtrial

Fig. 19.19  shows  a  lowess
smoothed  graph  of  martingale
residuals against lactation number.
It appears that a linear relationship
may not be appropriate. To further
evaluate  this  possibility,  a  model
was fit  with lactation included as
both a linear and a quadratic term.
Both  the  linear  (β=-0.124) and
quadratic  (β=0.046) terms  were
significant  at  P=0.03.  This
confirms  that  the  effect  of
lactation  number  on  time  to
conception is not linear.

Fig. 19.19 Plot of martingale residuals vs lactation 
number
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If  plotted  with  an  observation
number as the plotting symbol, they
can  be  used  to  identify  outlying
observations. Fig. 19.20 is a plot of
deviance residuals from the model
without  -tx-  as  a  time-varying
effect. The cluster of large positive
residuals at the top left are residuals
from  6  cows  (1,2,3,78,79,80) that
conceived on day 1 or day 2 (before
the  large  block  of  cows  that
conceived  on  day  3).  The
cumulative hazard was low on days
1  and  2  because  relatively  few
cows  conceived  on  those  days
(relative to the large pool of cows
‘at risk’ of conception). Hence, for any cow that did conceive, the martingale and deviance
residuals were ‘large’.

19.8.15 Detecting influential points

Score  residuals  and  scaled  score
residuals  can  be  used  to  identify
influential  observations.  The
former  have  a  ‘leverage  like’
property  while  that  latter  measure
the  impact  of  an  observations  on
coefficients in the model.

Score residuals are a variation of
martingale  residuals  but  are
computed  for  each  predictor
(covariate) in the model. They have
a  ‘leverage-like’ property  in  that
observations  that  are  far  from the
mean of  the  predictor  have  larger
(positive  or  negative)  residuals.
When  plotted  against  time,  they
typically  form a  ‘fan-shaped’  pattern  (with  the  centre  of  the  fan  at  the  mean  of  the  time
variable)  and  observations  lying  outside  this  ‘fan’  should  be  considered  as  potentially
influential. Fig. 19.21 shows score residuals for treatment—cow 76 was a treated, 1st lactation
cow in herd 1 that was censored at 277 days. (She was the only cow left in herd 1 at this time
and hence had high leverage).

Score residuals can be modified to compute a delta-beta like parameter for coefficients in the
model. This modification involves multiplying the score residual by the estimated variance of
the coefficient (from the variance-covariance matrix of the coefficients) and produces what is
called  a  scaled  score  residual.  Fig.  19.22  shows  a  plot  of  the  scaled  score  residuals  for
treatment  against  time.  Once again,  cow 76 warrants  some further  investigation.  The main

Fig. 19.21 Score residuals
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effect of this cow is to reduce the
estimated  treatment  effect
(determined by refitting the model
without  cow  76—results  not
shown).

19.9 PARAMETRIC MODELS

As  noted  previously,  Cox
proportional hazards models make
no assumption about the shape of
the baseline hazard, which can be a
real advantage if you have no idea
what that  shape might  be,  or if  it
has  a  very  irregular  form.
However,  these  models  achieve
this flexibility at a price. Because
they only use information about the observations at times at which one or more of the subjects
fail,  they do not efficiently use all of the information you have about the observations.  For
example, because the Cox model is based solely on the rank ordering of the observations, it
makes no difference if 2 successive failures are one day apart or one year apart. The length of
the interval, which provides some valuable information in terms of survival times, is ignored.
Consequently, if you can correctly specify the form of the baseline hazard, a parametric model
will be more efficient (ie use more of the available information).

A parametric model satisfying the proportional hazards assumption could be written in the same
way as a semi-parametric model:

h t=h0te
 X

but h0(t) is assumed to have a specified functional form. The major difference is that  βX now
includes an intercept term (β0). (An alternative method of writing these models is described in
Section 19.10).

Not  all  parametric  models  are  proportional  hazards  models.  (Models  which  are  not  are
discussed in Section  19.10). Three parametric models which are proportional hazards models
are the exponential, Weibull and Gompertz. Each of these will be discussed briefly. When using
any of these models, it must be kept in mind that in addition to specifying a correct function for
the baseline hazard, the assumption of proportional hazards must also be evaluated and met.

19.9.1 Exponential model 

An exponential model is the simplest form of parametric model in that it assumes that h0(t) is
constant over time (ie in the baseline group, the rate at which failures are occurring remains
constant). Consequently

h t==c e X
 Eq 19.17

where c is the constant baseline hazard and λ is the time-constant value of h(t) for any given set
of predictor values. The density and survivor functions of the exponential distribution were

Fig. 19.22 Scaled score residuals (delta-beta)
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given in Eq 19.11. As noted previously, the survival times will have a decreasing exponential
distribution. 

Interpretation of coefficients
Coefficients  for  predictors  in  an  exponential  model  can  be  interpreted  the  same  way  as
coefficients  from a Cox model.  The exponentiated coefficient  is  the  hazard ratio (Section
19.8.2). The intercept in the model is the estimate of the log of the (constant) baseline hazard.
In  Example 19.15, an exponential  model is  fit  to the prostaglandin data.  If  this model was
appropriate (which it isn’t—but more on that later), the baseline hazard would be estimated to
be e-4.41=0.012. That is, on any given day, a cow in the baseline group which had not previously
conceived had a 1.2% chance of conceiving on that day. 

Evaluating the assumption of constant hazard
The assumption that the baseline hazard is constant over time can be evaluated in several ways.
The first is to generate an estimate of the baseline hazard from a Cox model and graph it to see
if it approximately follows a straight, horizontal line. Fig. 19.13 showed that the baseline hazard
rose up to day 100 and then fell gradually over time. A second approach is to fit a model with a
piecewise-constant  baseline hazard  (Dohoo et  al,  2003).  In  this case,  the baseline hazard is
allowed to vary across  time intervals  by including indicator  variables  for  each  of  the time
intervals in the model. The baseline hazard is assumed to be constant within each time period,
but can vary between time periods. This produces the results and step graph shown in Example
19.17. In general it appears that the hazard falls over time, but the pattern is not clear in early
lactation (prior to day 50).  However,  a model which assumed that the hazard declined in a
curved  manner,  might  be  a  reasonable  approximation.  A  third  approach  to  evaluating  the
assumption of constant hazard is to evaluate the shape parameter from a Weibull model (see
Section 19.9.2).

Example 19.15 Exponential regression
data = pgtrial

An exponential survival model was fit to the prostaglandin data after rescaling -lact- (by subtracting
one) so that first lactation animals had a value of 0.

No. of subjects = 319
No. of failures =264 Number of obs = 319
Time at risk = 25018 LR χ2

(5) = 11.42
Log likelihood = -528.4 Prob > χ2 = 0.0437

Predictor Coef SE Z P 95% CI

herd=2 -0.315 0.169 -1.86 0.063 -0.647 0.017

herd=3 0.038 0.175 0.21 0.830 -0.306 0.381

tx 0.218 0.125 1.74 0.083 -0.028 0.464

lact -0.042 0.041 -1.01 0.314 -0.123 0.039

thin -0.157 0.138 -1.14 0.255 -0.428 0.114

constant -4.405 0.161 -27.28 0.000 -4.721 -4.088

The HR for treatment would be e0.218 = 1.24, suggesting that, at any given point in time, a treated cow
was 1.24 times more likely to conceive than a non-treated cow (if this model were correct).
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19.9.2 Weibull model

In a Weibull model, it is assumed that the baseline hazard function has a shape which gives rise
to a Weibull distribution of survival times. The Weibull hazard was discussed in Section 19.7.7
and shown graphically in Fig. 19.10. In addition, Eq 19.13 gives the formulae for the hazard
and survivor functions.

If a vector of covariates  (predictors) is added to a Weibull model, the formula for the hazard
function becomes:

h t = pt p−1e X
Eq 19.18

where βX does not include an intercept term (β0). Example 19.16 shows a Weibull model fit to
the prostaglandin data. The estimate of the shape parameter (p) is 0.867 (95% CI: 0.784, 0.958)
suggesting that the hazard is decreasing over time, but at a relatively slow rate (p  close to 1).

Evaluating the Weibull distribution
As was noted previously,  the suitability of  the assumption that  the survival  times follow a
Weibull  distribution  can  be  assessed  by  generating  a  log-cumulative  hazard  plot.  If  the
distribution is  Weibull,  this  graph  will  show as  a  straight  line.  A rough evaluation  can be
obtained by generating a simple plot of lnH(t) vs ln(t) for all of the data. Fig. 19.15 shows a plot
of -lnH(t) vs ln(t) for each of the 2 treatment groups in the prostaglandin data. The baseline
hazard  will  be  included  in  the  non-treated  group  and  that  line  was  approximately  straight

Example 19.16 Weibull model
data = pgtrial

A Weibull model was fit to the prostaglandin data.

No. of subjects = 319
No. of failures = 264 Number of obs   319
Time at risk = 25018 LR chi2 (5) = 9.96
Log likelihood = -524.2 Prob > chi2 = 0.0764

Predictor Coef SE Z P 95% CI

herd=2 -0.289 0.169 -1.71 0.088 -0.621 0.043

herd=3 0.039 0.175 0.22 0.825 -0.304 0.381

tx 0.205 0.125 1.63 0.102 -0.041 0.450

lact=2+ -0.041 0.041 -1.01 0.315 -0.122 0.039

thin -0.136 0.138 -0.99 0.324 -0.406 0.134

constant -3.790 0.259 -14.64 0.000 -4.297 -3.282

/ln_p -0.143 0.051 -2.80 0.005 -0.243 -0.043

p 0.867 0.044 0.784 0.958

1/p 1.154 0.059 1.044 1.275

The treatment effect is similar to that seen in the exponential, piecewise exponential, and Cox models
and is similar in terms of statistical significance. The shape parameter (p) from the Weibull distribution
indicates that the hazard is falling with time (ie p<1).
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suggesting that the Weibull model might be appropriate. The step graph of the baseline hazard
(Fig. 19.23 in Example 19.17) however, suggests that the Weibull model, although preferable to
the exponential, might not be ideal because the hazard appears to initially fall, then rise until
about day 120 and then fall again. A Weibull model with a shape parameter of 0.87 assumes the
hazard monotonically decreases over time. 

Example 19.17 Piecewise constant exponential regression model
data = pgtrial

A model  which  allows  the  baseline hazard to  vary between  time  periods,  but  forces  it  to  remain
constant within time periods is called a piecewise constant exponential model. Results from such a
model, and a graph of the resulting baseline hazard are shown below.

No. of subjects = 319
No. of failures = 264 Number of obs = 1725
Time at risk = 25018 LR chi2(9) = 16.74
Log likelihood = -525.7 Prob > chi2 = 0.0529

Predictor Coef SE Z P 95% CI

day21_40 -0.377 0.195 -1.940 0.053 -0.759 0.005

day41_80 -0.310 0.171 -1.820 0.069 -0.645 0.025

day81_120 -0.238 0.195 -1.220 0.223 -0.619 0.144

day121+ -0.416 0.192 -2.170 0.030 -0.792 -0.041

herd=2 -0.295 0.170 -1.730 0.083 -0.628 0.038

herd=3 0.040 0.175 0.230 0.820 -0.303 0.383

tx 0.211 0.125 1.680 0.092 -0.035 0.457

lact -0.041 0.041 -1.000 0.318 -0.122 0.040

thin -0.145 0.138 -1.050 0.294 -0.416 0.126

constant -4.164 0.188 -22.180 0.000 -4.532 -3.796

The  coefficients  for  predictors
day21_40  through  day121+  show
how the log hazard changes relative to
the value for the baseline time period
(days 1 to 20).

Fig. 19.23 Piecewise constant estimate of baseline 
hazard
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19.9.3 Gompertz model

The Gompertz model is used less frequently than the exponential and Weibull models but has 
been used to model mortality data. In a Gompertz model, the log of the baseline hazard varies 
linearly with time so the baseline hazard is as follows.

h0t = ept

Eq 19.19

The baseline hazard increases exponentially if p>0 and decreases exponentially if p<0. If p=0, 
the hazard is constant at λ (exponential model). A Gompertz model fit to the prostaglandin data 
(results not shown) produces an estimate of p of -0.002 (95% CI: -0.004, 0) which also suggests
that the hazard is falling with time, but slowly.

19.10 ACCELERATED FAILURE TIME MODELS

As noted above, not all parametric models are proportional hazards models. However, those
that are can be written in one of 2 ways: as a proportional hazards model  (which is what has
been  presented  thus  far) or  as  an  accelerated  failure  time  model  (AFT).  Other  parametric
models (discussed below) can only be written in the AFT metric, because the predictors in these
models do not necessarily multiply the baseline hazard by a constant amount.

The general form of an AFT model is:

ln t= Xln or t=e X
 Eq 19.20

where  lnt is  the natural  log of the time to the failure event,  βX is  a linear  combination of
explanatory variables and lnτ is an error term with an appropriate distribution. Note The values
of  the  βs  in  this  representation  will  not  be  the  same  as  the  βs  in  a  proportional  hazards
representation.

From Eq 19.20 it can be seen that τ is the distribution of survival times when βX=0 (ie eβX=1). τ
is  assumed to  have  a  specific  distribution  (eg Weibull,  log-normal).  If  τ has  a  log-normal
distribution, then the log of survival times will have a normal distribution which is equivalent to
fitting a linear model to ln(survival times) (assuming you can ignore the problem of dealing
with censored observations).  Three specific distributions of survival times (log-logistic, log-
normal and generalised gamma) are discussed in Section 19.10.2.

Eq 19. 20 can be rearranged as follows:

=e− X t or ln  =− Xln t  Eq 19.21

The  linear  combination  of  predictors  in  the  model  (βX)  act  additively  on  log(time)  or
multiplicatively on time (ie they accelerate or decelerate the passage of time by a multiplicative
factor) where e-βX is called the acceleration parameter because if:

• e-βX>1, then t< τ so time passes more quickly (ie failures expected sooner)
• e-βX =1, then t= τ so time passes at a ‘normal’ rate (ie no effect of predictors)
• e-βX<1, then t> τ so time passes more slowly (ie failures expected later)

As indicated above, the exponential and Weibull models can be written either as proportional
hazards  models  or  as  AFT  models.  The  relationship  between  the  coefficients  from  a
proportional hazards expression (βph) of a Weibull model and an AFT expression (βaft) is:
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 aft=
−ph

p Eq 19.22

where p is the shape parameter from the Weibull model.

19.10.1 Coefficients in AFT models

A coefficient in an AFT model represents the expected change in the ln(survival time) for a 1-
unit change in the predictor. For example, assume you have a dichotomous predictor (X with a
coefficient  of  2).  If,  in  the  absence  of  X,  a  study  subject  is  expected  to  fail  at  t=5  days
(ln(t)=1.61), the presence of X would increase the expected ln(survival time) to 1.61+2=3.61 or
the survival time to 37 days. The presence of X in a subject which was expected to survive 30
days would result in an increase expected survival time from 30 to 222 days. As you can see, in
absolute time, factors have a greater impact at longer expected survival times.

An alternative interpretation is to exponentiate the coefficient to compute a time ratio (TR). A
coefficient  of 2 produces a  TR of e2=7.4 which means that  the presence of  X increases  the
expected survival time by a factor of approximately 7 times.

19.10.2 Specific survival time distributions

Log-logistic model
A  log-logistic  model  assumes  that  survival  times  follow  a  log-logistic  distribution,  or
alternatively, log survival times follow a logistic distribution (a symmetric distribution similar
to a normal distribution). The hazard function for a log-logistic distribution is as follows.

h t =
e

 t t−1/
e Eq 19.23

where  γ  > 0 is a  scale  parameter.  h(t)  decreases  as  a  function of  t  if  γ >1,  otherwise  it  is
increasing and then decreasing with a peak at:

t=1 / −1

e 


=e−  1 / −1


Eq 19.24

In the log-logistic model -θγ  is modelled as a function of the predictors (ie -θγ =βX). The  pth

percentile (and median) of a log-logistic distribution are the following.

t p= p
100− p 



e− t 50=e−

Eq 19.25

Fig. 19.24 shows hazard functions for various values of γ (left panel) and a histogram of log-
logistic distributed survival times (based on 2,000 simulated observations) when γ=0.25. (In all
cases the median survival time is set to 20 days.)

An example of a log-logistic survival  model expressed in AFT terms is shown in Example
19.18. Because log-normal or log-logistic models can rise and then fall, but not the opposite,
neither may be appropriate  for  the apparent  shape observed in Fig.  19.23 (falling and then
rising). However, the example is provided for pedagogic purposes. 
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Log-normal model
In  a  log-normal  model  the  survival  times  are  distributed  normally on  a log  time scale,  or
alternatively, log times are distributed normally. The survivor function is:

S t =1− ln t−
 

Eq 19.26

where  Φ is the cumulative distribution function of a standard normal (Gaussian) distribution
and μ and σ are the mean and standard deviation of log survival times. (The formulae for the
hazard functions for the log-normal and generalised gamma distributions can be derived from
f(t) and S(t), but are complex and beyond the scope of this text. See Cleves et al (2008); Collett,
2003) for details. 

Generalised gamma model
A generalised gamma distribution is a 3-parameter  (μ, κ, σ) distribution for which the hazard
function can take a wide variety of shapes which include the Weibull, log-normal and gamma
distributions.  Consequently,  it  is  particularly  useful  for  evaluating  the  shape  of  the  hazard
function (see Section 19.10.3).

19.10.3 Choosing a parametric model

Selecting an appropriate parametric model involves both biological and statistical procedures.
The selection should be guided by knowledge of how failures arise and insights into what we
would be expected in terms of a hazard function.

Example 19.18 Log-logistic model of prostaglandin data
data = pgtrial

A log-logistic model was fit to the prostaglandin data and produced the following.

Predictor Coef SE Z P 95% CI

herd=2 0.254 0.236 1.08 0.281 -0.208 0.715

herd=3 -0.102 0.244 -0.42 0.676 -0.579 0.376

tx -0.387 0.177 -2.19 0.029 -0.733 -0.040

lact 0.061 0.055 1.11 0.266 -0.047 0.169

thin 0.040 0.189 0.21 0.833 -0.331 0.411

constant 4.016 0.225 17.87 0.000 3.575 4.456

/ln_gam -0.126 0.052 -2.45 0.014 -0.227 -0.025

gamma 0.882 0.045 0.797 0.975

Gamma equals 0.882 which would correspond to a distribution with a peak at 9.4 days in the baseline
group (calculated as e4.016((1/0.882)-1)0.882) or 6.4 days in the treated group. 

The time ratio for -tx- was e-0.387=0.68 which suggests that, on average, time to conception in treated
cows was 68% of what it would be in non-treated cows. Using Eq 19.25, the median survival time of
the baseline group is:
  t50 = e constant = e4.016 = 55.5 days.
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As noted, the generalised gamma distribution provides some insight into what might be an 
appropriate distribution. 

• if κ=1, the distribution is Weibull and σ = 1/p is the inverse shape parameter
• if κ=1 and σ =1, the distribution is exponential
• if κ=0, the distribution is log-normal.

For the prostaglandin data, a generalised gamma model produces estimates of κ=1.12 (95% CI:
0.61, 1.64) and σ=1.10 (95% CI: 0.90, 1.36). Both are numerically different from one, but their
confidence intervals include one. This suggests that an exponential model may be adequate.
Example 19.19 shows the log-likelihood for each of the 5 parametric models, along with the
number of distribution parameters and the point estimate of the effect of -tx-.

19.11 FRAILTY MODELS AND CLUSTERING

As noted in previous sections, predictors in survival models (semi-parametric and parametric)
act multiplicatively on the baseline hazard (ie the hazard for an individual is a multiple of the
baseline function). In a frailty model, an additional latent (unobserved) effect (ie the frailty) acts
multiplicatively on the hazard. The frailty is not measured directly, but is assumed to have a
specified distribution and the variance of the distribution is estimated from the data. 

There  are  2  general  types  of  frailty  model:  individual  frailty  and  shared  frailty  (Gutierrez,
2002). In an individual frailty model, the additional variance is unique to individuals and serves
to account for additional variability in the hazard among individuals in much the same way that
the negative binomial model accounts for more variability than a Poisson model. Shared frailty

Fig. 19.24 Hazard functions (left) and survival times (right) for a log-logistic 
distribution
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models constitute one approach to dealing with clustered data and are discussed starting in
Section 19.11.3

19.11.1 Individual frailty models

Within a population described by an average hazard h(t), some individuals fail early and some
late. This variation in survival time may be attributed to 3 components. Part may be due to
differences  among individuals  in  terms  of  measured  covariates  and  this  variability  will  be
removed  by  including  those
covariates in the model. Part may be
due to unmeasured covariates which
make some individuals more prone
to fail  early  (ie ‘frail’ individuals).
The final part is that attributable to
random  variation  and  is  explained
by the survival time distribution that
is  selected.  The  effect  of  frailty
(unmeasured  covariates)  can  be
thought of as overdispersion—more
variability in the survival times than
would  be  expected  based  on  the
chosen distribution.

The effect  of individual frailty can
be seen in Fig.  19.25 which shows
the  empirical  hazard  for  a

Example 19.19 Comparison of parametric models
data = pgtrial

Five parametric models were fit to the prostaglandin data and compared.

# Parameters

Model Log L Distribution Predictors AIC Time ratio for -tx-

exponential -528.4 1 5 1068.7 0.80

Weibull -524.2 2 5 1062.3 0.79

log-logistic -535.7 2 5 1085.5 0.70

log-normal -533.5 2 5 1081.0 0.58

generalised
gamma

-524.1 3 5 1064.1 0.80

The while the generalised gamma model fits the best (largest log L) the AIC suggests that the Weibull
is a suitable alternative. The shape parameter from the Weibull model is 0.87 (roughly equivalent to the
corresponding  1/κ=  0.89 from the  generalised  gamma)  and  it  has  a  95% CI of  0.78,  0.96  which
suggests that it is different from 1. The Gompertz model is not shown because a time ratio cannot be
computed from this model, but it had a log L of -526.8 and an AIC of 1067.5, suggesting that it is
inferior to the Weibull model.

Fig. 19.25 Effects of individual frailties (see text for 
explanation)
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population of 2,000 individuals. All individuals in this population had a constant hazard set to
0.05  (exponential  model),  but  individuals  were  assigned  individual  frailties  (gamma
distribution, μ=1, σ=1) which made some individuals more prone to fail than others. The graph
shows  the  estimated  hazard  from  a  Weibull  regression  model  (shape  parameter  p=0.75).
Although every individual had a constant hazard, the average hazard for the population clearly
falls as the frail  individuals fail  and the remaining population increasingly consists of more
robust individuals.

An individual frailty model can be written as follows:

h t∣=h t Eq 19.27

Conditional on the frailty, the hazard at any point is multiplied by a factor (variable) α, which is
assumed to have a distribution with a mean of 1 and a variance of θ. Two commonly assumed
distributions of α are the gamma and the inverse Gaussian. 

A frailty effect can account for apparent changes in the hazard in a population over time. A
Weibull model fit to the data used to create Fig. 19.25 has a shape parameter of 0.76 suggesting
that the hazard is falling over time. If the model is refit with a gamma frailty added, the shape
parameter changes to 1.3, suggesting that, for individuals with the same frailty, the hazard is
actually  rising.  It  is  impossible to  separate  individual  frailty effects  from the distributional
assumptions of the model, so in practice, individual frailties have limited applicability unless
the expected distribution of survival times is known with certainty (O’Quigley & Stare, 2002).

Example 19.20 shows the addition of a gamma frailty to the Weibull model of the prostaglandin
data (with no time-varying predictors). 

The concept of individual frailty does not apply to Cox (semi-parametric) models because the
frailty effect represents variation in survival times in excess of what would be expected from
the  assumed distribution of survival  times.  However,  in a Cox model,  there is  no assumed
distribution of survival times. Any ‘overdispersion’ would be incorporated into the baseline
hazard (h0) which has no specified form.

19.11.2 Clustering in survival data

Animals  within  a  group  or  cluster  (eg  cows  within  a  herd)  have  features  in  common (eg
housing, feed) that lead to a lack of independence among animals within a cluster and could
result in more similar survival times (eg  cows on one herd may have a longer lifespan than
cows in another herd). The general problem of clustering is covered in Chapters 20 through 24.
However, in terms of survival models, there are several approaches that can be used to deal
with clustered data. If the number of clusters is limited, fixed effects representing the clusters
can be included in the model. Stratified models (Section 19.8.7), in which the strata are the
clusters, can also be used to address the issue of clustering, but like the use of fixed effects
models, preclude the evaluation of cluster level predictors. Robust standard errors (Chapter 20)
are a general approach that can be used to address the problem of lack of independence in many
types of model, but have some limitations (Lin & Wei, 1989). Shared frailty models are based
on the assumption that groups of animals within a cluster have a common frailty and model that
frailty so they are analogous to random effects models (see Chapters 21 and 22).
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19.11.3 Shared frailty models—introduction

Just as individual frailties can be considered to represent the effects of unmeasured covariates,
shared frailties represent the effects of unmeasured covariates that a group of individuals have
in common. These can represent the random effect of a grouping variable such as herd.  (See
Chapters  20-24  for  more  discussion  of  random  effects).  A  shared  frailty  would  be  an
appropriate  way of dealing with the lack of independence observed when we have multiple
failure times in an individual.  (The frailty would represent the common characteristics of the
individual that affect time to each event occurrence.)

A shared frailty model can be written as follows:

hi t∣ i=i ht  Eq 19.28

where αi represents the frailty for the ith group (and hi(t) and h(t) incorporate the effects of the
predictors). The survival probability, conditional upon the frailty is written:

S i t∣i=S ti

Eq 19.29

Frailties can take on a variety of distributions, but the most commonly used ones are gamma,
inverse Gaussian and positive stable distributions. The statistical significance of a frailty can be
assessed with a likelihood ratio test, but the usual  χ2 reference statistic is not correct because

Example 19.20 Individual frailty model—prostaglandin trial data
data = pgtrial

A Weibull model with a gamma individual frailty was fit to the prostaglandin trial data.

No. of subjects = 319
No. of failures = 264 Number of obs = 319
Time at risk = 25018 LR χ2 (5)  =  9.96
Log likelihood = -524.2 Prob > χ2  = 0.0764

Predictor Coef SE Z P 95% CI

herd=2 -0.289 0.169 -1.710 0.088 -0.621 0.043

herd=3 0.039 0.175 0.220 0.825 -0.304 0.381

tx 0.205 0.125 1.630 0.102 -0.041 0.450

lact2 -0.041 0.041 -1.010 0.315 -0.122 0.039

thin -0.136 0.138 -0.990 0.324 -0.406 0.134

_cons -3.790 0.259 -14.640 0.000 -4.297 -3.282

ln p -0.143 0.051 -2.800 0.005 -0.243 -0.043

ln theta -14.870 756.631 -0.020 0.984 -1497.840 1468.099

p 0.867 0.044 0.784 0.958

1/p 1.154 0.059 1.044 1.275

theta 0.000 0.000 0.000 .

The  variance  of  the  gamma  frailty  (theta)  was  estimated  to  be  zero  ( ie  no  frailty  effect  at  all),
suggesting that the Weibull hazard might be appropriate for these data.
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variances cannot be less than 0, so the P-value should be cut in half.

With only 3 herds represented in the prostaglandin data, it would not be logical to fit a shared
(herd) frailty model to those data. Consequently,  we will shift our attention to the -culling-
dataset.  This  dataset  consists  of  records  of  721  cows  that  were  tested  for  Johne’s  disease
(Mycobacterium avium subspecies paratuberculosis) using an ELISA and then followed for a
period of approximately 3.5 years  to determine if Johne’s status had an impact on survival.
Only 13 cows were Johne’s positive and during the follow-up period 466 of the cows were
culled. The effect of the parity of the cow (3 categories, 1st, 2nd 3rd+) was also evaluated. (See
Chapter 31 for details of dataset). Example 19.21 shows the results of fitting a Weibull model
with a gamma-distributed shared frailty for herd to the culling data.

19.11.4 Shared frailty models—Cox models

A Cox model with a frailty term added can be written either as:

hi t |i=h0t e
 X
 i Eq 19.30

with the αi being the frailty on the hazard scale (frailties on the hazard scale are often assumed
to have a gamma distribution), or as:.

Example 19.21 Shared frailty Weibull model—culling data
data = culling

A shared frailty model (Weibull distribution with a gamma distributed frailty common to all cows in a
herd) was fit to the culling data.

No. of subjects = 721 Obs per group min = 4
No. of groups = 30 avg =  24.03333
No. of failures = 466 max = 31
Time at risk = 606875 LR chi2 (3) = 52.17
Log likelihood = -963.8 Prob > chi2 = 0.0000

Predictor Coef SE Z P 95% CI

lact=2 0.252 0.145 1.74 0.081 -0.031 0.535

lact=3+ 0.764 0.122 6.28 0.000 0.525 1.002

johnes 0.591 0.305 1.94 0.052 -0.006 1.188

_cons -8.590 0.348 -24.65 0.000 -9.273 -7.907

/ln_p 0.144 0.041 3.51 0.000 0.064 0.224

/ln_the -1.857 0.410 -4.53 0.000 -2.660 -1.053

p 1.155 0.047 1.066 1.252

1/p 0.866 0.036 0.799 0.938

theta 0.156 0.064 0.070 0.349

The coefficient  for  -johnes-=0.59  (HR=1.8) which suggests  that a Johne’s positive cow has almost
twice the hazard of being culled as a Johne’s negative cow from the same herd. The estimated variance
of  the  gamma  frailty  distribution  is  0.16  and  is  highly  significant  (LRT χ2=27.7,  P<0.001)  which
suggests that some herds have higher culling hazards than other herds.
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hi t |i=h0t e
 Xi

Eq 19.31
with the δi (the shared frailty for the ith group) on the log-hazard scale.

Estimating shared frailties in a Cox model is not straightforward. Four possible approaches are
available: using a penalised likelihood function (see Example 19.22), using an EM (expectation
maximisation) algorithm, fitting a random effects Poisson model (see below) or using Bayesian
methods.  With  the  exception  of  the  Poisson  model  approach,  these  methods  will  not  be
discussed further except to state that the penalised likelihood approach is the computationally
simplest and most commonly used method.

Shared frailty Cox model—Poisson regression
Poisson regression methods can be used to fit a standard Cox proportional hazards model and it
produces exactly the same results. While this is not necessary (or practical) for fitting a standard
Cox model, it has an advantage for shared frailty models in that random effects (equivalent to
frailties) can be added to the Poisson model. This allows for the possibility of having more than
one  level  of  random  effect  and  those  effects  can  take  on  either  gamma  or  log-normal
distributions.

The procedure for fitting a Poisson model to survival data is as follows.
• Split each observation into multiple records according to the complete set of failure times

in the dataset  (ie each record will  represent  the time interval  between the times of 2
consecutive failures). (Note This may create a very long dataset  and cause numerical
problems).

• Compute the length of time represented by each record (ie the interval between the 2 
failure times) and log transform it.

• Fit a Poisson model which includes fixed effects for each time interval represented in the 
dataset and the log of the interval length as an offset

Example 19.22 Shared frailty Cox model—culling data
data = culling

A shared frailty Cox model (with a gamma distributed frailty common to all cows in a herd) was fit to
the culling data.

No. of subjects = 721 Obs per group min = 4
No. of groups = 30 avg =  24.03
No. of failures = 466 max = 31
Time at risk = 606875 Wald chi2 (3) = 52.53
Log likelihood = -2830.6 Prob > chi2 = 0.0000

Predictor Coef SE Z P 95% CI

lact=2 0.249 0.144 1.730 0.084 -0.034 0.532

lact=3+ 0.769 0.122 6.320 0.000 0.531 1.008

johnes 0.578 0.304 1.900 0.058 -0.019 1.174

theta 0.155 0.063

The results are very similar to those obtained from the Weibull model (Example 19.21).
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To avoid fitting the large number of fixed effects for the time periods, you can create a set of
orthogonal polynomials  (see Section 15.6.3) for time and use them instead of the set of fixed
effects.

To fit a shared frailty model, include time as the set of polynomials  (as described above) and
add a random effect for the group variable (eg herd). Example 19.23 compares the results from
fitting  a  proportional  hazards  model  using  standard  Cox regression  and  Poisson  regression
procedures.

19.11.5 Frailty models—interpretation of coefficients

In a frailty model, the effects of predictors on the hazard or survival are  ‘conditional’ on the
frailty, that is, they represent the effect of the predictor compared to an individual without the
factor, but from the same group.

As noted above, the effects of predictors (eg HR) are the effects ‘conditional’ on the frailty. For
proportional hazards models (eg Weibull), the HR at any time t represents the shift in the hazard
due to a unit  change in the predictor,  conditional  on the frailty ( ie assuming a comparable
frailty).  For  a  dichotomous  predictor,  it  represents  the  effect  of  the  factor  being  present
compared with an individual with exactly the same frailty but with the predictor absent. This is
analogous to a ‘subject-specific’ effect—see Section 22.4.1. 

Example 19.23 Cox model fit by Poisson regression
data = culling

Several Cox proportional hazards models were fit to the culling data with lactation number (-lact_c3-)
and Johne’s status (-johnes-) as predictors. The models were:

• standard Cox proportional hazards model
• Cox model fit by Poisson regression (time intervals as fixed effects)
• Cox model fit by Poisson regression with time as a 4th order polynomial
• Cox model with shared frailty (gamma distribution) and with time as a 4th order polynomial
• Cox model fit by Poisson regression with random effect (gamma distribution) and time as a 4th 

order polynomial

The coefficient  for  -johnes-,  its  Wald test  P-value and the estimate  of the variance  of the gamma
distributions are presented.

Model  Coef SE P Variance

standard Cox 0.648 0.293 0.027

Cox – Poisson (time as fixed effects) 0.648 0.293 0.027

Cox – Poisson (time as polynomial) 0.644 0.294 0.028

Cox – with shared frailty (gamma distn.) 0.578 0.304 0.058 0.155

Cox – Poisson (gamma dist. random
effect) and time as a polynomial

0.572 0.305 0.061 0.157

As can be seen, the standard Cox model and Poisson models produce identical results. Expressing time
as a 4th order polynomial instead of a set of fixed effects produces results which are quite close. The 2
approaches to fitting the shared frailty model produce slightly different, but very close results.
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In gamma frailty models, the population hazards  (analogous to marginal effects—see Section
22.4.1) are not proportional over time and the hazard ratio only represents the population effect
of the predictor at time 0. In general, the effect of the predictor on the population hazard will
diminish over time in favour of the frailty effect. In simple terms, the frailty of the individual
(or group) accounts for the fact that, over time, the population is increasingly ‘robust’ and the
predictor has less and less influence on the hazard. With gamma frailties, the population  HR
tends to 1 as time approaches infinity,  while,  for an inverse Gaussian frailty,  the  HR tends
toward the square root of the HR. This problem in interpreting the marginal effects of predictors
is not present if the model is expressed as an AFT model—time ratios remain the same.

19.12 MULTIPLE OUTCOME EVENT DATA

In all of the material presented in this chapter so far, we have assumed that there was only one
possible occurrence of the outcome of interest (eg onset of pneumonia in calves, conception in
dairy cows). However, in some instances, multiple outcome events are possible, and these fall
into 3 general classes.

• Multiple different failure events—These arise in situations where you want to evaluate
the effect of a predictor on multiple possible outcomes such as an evaluation of the use of
a nutritional supplement in dairy cows after calving on the time to first service, the time
to achieving positive energy balance and the time to peak milk production. These are
sometimes referred to as competing risks data.

• Multiple  ‘same’  endpoints  (not  ordered)—These  arise  in  situations  where  multiple
possible  outcomes  of  the  same  event  are  possible,  but  there  is  not  necessarily  any
ordering to them (eg time to onset of clinical mastitis in each of the quarters of a cow).
One way of dealing with these is to change the unit of observation to the quarter, but in
many cases, most of the risk factors will be at the cow level.

• Multiple ‘same’ endpoints (ordered)—These are also called recurrence data. They arise
when it is possible for the outcome event to occur multiple times in the same animal (eg
breedings, cases of clinical mastitis). The key feature to these is that there is a natural
ordering to them  (ie the second case cannot happen before the first case). The lack of
independence among episodes  must be accounted for  (see below). This type of data is
the focus of this section.

19.12.1 Models for recurrence data

Event times within an individual are often correlated for 2 reasons. First, there is likely to be
heterogeneity among individuals, with some individuals more likely to experience the outcome
than others,  leading to  clustering of  events  within the  individual.  As a  result,  observations
within an individual are not independent. The second is that the probability of occurrence of
one  event  may  increase  or  decrease  the  probability  of  subsequent  events  (called  event
dependence). 

There are 2 general approaches to dealing with the problem of heterogeneity. One is to adjust
the  variance  estimate  using  robust  standard  errors  (see  Sections  19.11.2  and   20..5.4).  An
alternative is to fit a shared frailty model with the frailty representing the intrinsic susceptibility
of the individuals  (Therneau & Grambsch, 2000). The former approach produces population
averaged estimates of effect while the latter generates subject-specific estimates (Cain & Cole,
2006; Kelly & Lim, 2000).
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The problem of event dependence can be dealt  with either by including a covariate  for the
number of previous events in the model (see Anderson-Gill model below) or by stratifying the
data  according  to  the  number  of  events  (see  Prentice-William-Peterson  model  below).  The
former approach assumes there is a common baseline hazard function for all events. The latter
allows for the baseline hazard to vary for each event (ie a different baseline hazard for first
events compared to second etc). Models for repeated events data have been reviewed recently
along  with  a  proposal  for  a  conditional  frailty  model  which  addresses  both  the  issues  of
heterogeneity and event dependence (Box-Steffensmeier & De Boef, 2006) (beyond the scope
of this text). 

Three approaches to modelling recurrence data have been reviewed  (Wei & Glidden, 1997).
Two of these will be summarised below, but the third (a marginal model (Wei et al, 1989)) is
no longer recommended  (Hosmer & Lemeshow, 2008) and will not be described. Details of
structuring  data  appropriately  for  these  analyses  is  presented  in  Cleves  (1999).  The  2
approaches  are  shown  in  Example  19.24 using  some  clinical  mastitis  data.  The  data
(-clin_mast-) are from 4595 cows in 105 herds. Each cow was followed for a minimum of 100
days in one lactation, starting at calving. The number of cows with 0, 1, 2, 3 and 4 cases of
clinical  mastitis  was  3987,  497,  90,  18  and  3  respectively.  Factors  of  interest  that  were
investigated were parity and number of previous cases of mastitis (in that lactation).

Anderson-Gill model
This model is a generalised proportional hazard model and is the simplest approach to analysing
recurrence  data.  The  risk  of  recurrence  is  assumed  to  be  independent  of  previous  events,
although the assumption of independence can be relaxed by including a time-varying predictor
for the number of previous occurrences. The model is fit by assuming each subject’s ‘at-risk’
time starts over again after each outcome is observed. If an animal is not considered to be at risk
for a defined period after the occurrence of a case, then the time not at risk can be excluded
(interval censored or gap). For example, it is common when defining cases of clinical mastitis
that 7-14 days elapse between cases for the second occurrence to be considered a new case. 

Prentice-William-Peterson model—conditional risk sets model
This model is a proportional hazards model that is conditional on previous occurrences. It  is
equivalent to carrying out a stratified analysis with the strata defined by the number of previous
outcome events. All first occurrences would be in the first stratum, the second stratum would
consist of second cases, but only animals that had experienced a first case would be at risk etc.
Time at risk for each outcome can be measured either from the start of the study period or from
the time of the previous event. The choice of approach depends on whether you feel that there is
reason to  ‘reset the clock’ each time an event occurs. An example of the former approach is
shown Example 19.24. As noted above, this approach allows for a different baseline hazard in
each risk set (stratum).

19.13 DISCRETE-TIME SURVIVAL ANALYSIS

Up to this point, we have assumed that failure times were recorded on a continuous basis, that
is, we knew exactly when each failure time occurred (at least to the unit of time measurement—
which was ‘days’ in both the prostaglandin and culling datasets). However, we are often faced
with the situation in which failures are known to occur in an interval, but the exact time is not
available. These are called interval-censored data. Such a situation would arise if we measured
time to seroconversion in animals and they were only tested every 6 months. At some point, we
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would observe a serologic response and would know that seroconversion had occurred some
time during the preceding 6 months. Discrete-time survival analysis can be used to analyse such
data. In some cases, failure times may have been recorded on a continuous basis, but actual
failure times are uncertain and grouping them into intervals may improve data quality.

Discrete-time models may also be used for continuous time data if:
• the dataset is very large and not amenable to standard survival analysis methods, or
• there are many time-varying predictors, or
• there are time-varying effects which are not easily modelled as some function of time.

Example 19.24 Multiple failure event models
data = clin_mast

The structure of the clinical mastitis data for the Anderson-Gill and Prentice-William-Peterson models
is shown in the table below. Cow 5 had 2 cases of mastitis and hence, has 3 records. Cows 7 and 15 had
no cases.

Anderson-Gill Prentice-Williams-Peterson

Herd Cow Parity
Prev.
cases Mast. Start End Start End

 Risk
set

125 5 4 0 1 0 14 0 14 1

125 5 4 1 1 14 108 0 94 2

125 5 4 2 0 108 359 0 265 3

125 7 4 0 0 0 336 0 336 1

125 15 3 0 0 0 357 0 357 1

The results from fitting a variety of models to the data are shown below.

Parity Previous cases

Coef SE Coef SE

Anderson-Gill model

Cox – robust SE 0.102 0.021 0.782 0.047

Weibull – robust SE 0.109 0.021 0.725 0.045

Weibull – gamma frailty 0.137 0.030 -0.452 0.170

Prentice-William-Peterson (PWP) model

Cox – robust SE 0.075 0.024 na na

Weibull – robust SE 0.089 0.024 na na

All of the models which used robust SE to deal with heterogeneity produce lower estimates for the
effect  of  parity  because  they  produce  population  averaged  estimates  instead  of  subject-specific
estimates. There is a marked difference in the apparent effect of the number of previous cases between
robust SE models and the frailty model. The population average models (robust SE) indicate that in
general,  previous  cases  increase  the  risk  of  additional  cases.  The  subject-specific  model  (frailty)
suggests that for a given individual, having a case reduces the hazard of another case. This may be, in
part, artificial in that there is a period of time after a case during which the hazard is zero —until enough
time has lapsed to classify a new case as such (instead of as a relapse).
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This last situation was evident in the prostaglandin data in which treatment had positive effects
in time periods 3-4 days and 24-27 days, a negative effect in between and very little effect after
34 days (see Example 19.9).

Discrete time—basis for analysis
Time is divided into intervals, denoted Ij. In each interval, the number of subjects at risk is nj

and the number of failures is dj. The probability of failure during the interval (or discrete time
hazard) is then

h j=d j /n j Eq 19.32

Intervals can either be chosen to reflect the underlying biology of the situation or at convenient
points which balance the width of the interval and the number of failures in each interval. (Note
A rule of thumb is to have a minimum of 5 failures in each interval and it is important to avoid
choosing intervals based on the observed data—ie  ‘data snooping’). Observations which are
censored during the interval may be considered to have been censored at the start of the interval
(ie not included in  nj), censored at the end  (ie included in  nj) or counted for 1/2 of the time
interval  (as was done in an actuarial life table analysis). Table 19.4 shows the prostaglandin
data  divided  into 15-day intervals  and  intervals  based  on  expected  biological  effect  of  the
treatment.

Table 19.4 Prostaglandin data divided into intervals

tj-1 tj nj
1 dj hj

regularly spaced intervals (15, 30 or 60 days)

0 15 319 63 0.198

15 30 251 34 0.136

30 45 213 24 0.113

etc...

intervals based on expected effect of prostaglandin

0 2 319 6 0.019

3 4 311 34 0.109

5 23 275 40 0.146

24 27 234 13 0.056

28 60 212 54 0.255

60 90 153 43 0.281

etc...
1 observations censored during the interval considered censored at the start of the interval

If the data are truly discrete-time data (ie collected only at specific times), the time periods are
defined by the data collection periods, so intervals do not need to be created. If there are many
time periods (intervals), you may want to replace the fixed effects for each time period with
some form of polynomial model of time (eg orthogonal polynomials as was done in the Poisson
model in Section 19.11.4). See (Singer & Willett, 1993; Singer & Willett, 2003) for a review of
discrete-time methods.
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Discrete-time—logistic regression
Once the data have been structured as described above, they can be analysed using logistic
regression according to the following model.

logit h j=0 j X Eq 19.33

where logit(hj) is the probability (hazard) of failing in interval Ij given being present at the start
of the interval and  β0 is the logit(hazard) in the baseline time period for a baseline individual, αj

is  the effect  of the  jth time period  (compared to the baseline period) and  βX represents  the
predictors  in  the  model.  This  model  assumes  additivity  on  the  logit(hazard) scale  or
proportional odds for the hazard probabilities.  (Note This corresponds to a continuation-ratio
model (see Section 17.2.4) for the multinomial probabilities across all intervals.)

Discrete-time logistic regression models can easily be extended to include one or more random
effects  (shared  frailties)  using  procedures  for  modelling  multilevel  data  (see  Chapter  22).
Specialised software is required to fit individual frailty models to discrete time data (Jenkins,
1995).  Example  19.25 shows the results of such a model with time intervals as shown in the
lower half of Table 19.4 and treatment by time interaction included.

Discrete-time—complementary-log-log regression
As noted above, the logistic model assumes that the log-odds of the outcome are additive, or
alternatively  that  the  odds  are  proportional.  This  is  the  same as  saying  that  the  OR for  a
predictor  is  constant  across  all  time intervals  (although this  assumption can  be  relaxed  by
including interaction terms with the predictor). An alternative to logistic regression is to use a
complementary log-log model which is based on the assumption of proportional hazards (not
proportional  odds)  and  consequently  is  a  more  natural  fit  with  models  such  as  the  Cox
proportional hazards model.

The complementary log-log function transforms a probability according to the following 
formula.

cloglog p =ln [−ln 1− p] Eq 19.34

Fig. 19.26 shows the relationship between probability and both the complementary log-log and
logit functions. At  p<0.2 the 2 functions are very close, but become substantially different at
large values of  p (and may produce
substantially  different  results  in
binary  regression  analyses).  As
noted,  the  main  advantage  of  a
complementary  log-log  model  is
that  it  is  based on the proportional
hazards  assumption  and
consequently,  exponentiated
coefficients  can  be  interpreted  as
hazard  ratios  (as  opposed  to  odds
ratios).

Example  19.26 shows  the  results
from  a  complementary  log-log
model of the prostaglandin data.

Fig. 19.26 Complementary log-log and logit 
functions
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19.14 SAMPLE SIZES FOR SURVIVAL ANALYSES

Computation of sample sizes for studies with survival time as the outcome can be a complex
process. For studies where the primary focus is the comparison of survival times across 2 (or
more) groups,  as it often is in controlled trials, one approach is to compute the sample size
required to have a desired power in an analysis based on an unweighted log-rank test. If an
assumption of proportional hazards is likely not valid, basing the sample size on that required
for a weighted version of the test  (eg Tarone-Ware or Harrington-Flemming tests) might be
more appropriate.

However, there are many factors which will influence the required sample size. Some of the
following have been discussed under sample size estimation in Chapter 2 and some are unique
to studies of survival time.

1. Sample  size  might  need  to  be  increased  to  account  for  multiple  predictors  in  the
analysis,  and/or  to  adjust  for  clustering  of  the  data  (ie non-independence  among
observations) (see Chapter 2).

Example 19.25 Discrete-time analysis—logistic regression
data = pgtrial

A discrete-time analysis using logistic regression was carried out on the prostaglandin data. Treatment
by time period interaction terms were included. Not all model coefficients are shown.

Logistic regression Number of obs = 1705
Log likelihood = -605.6 LR chi2 (23) = 255.13

Prob > chi2 = 0.0000

Predictor Coef SE Z P 95% CI

period 3-4 -0.687 1.230 -0.56 0.576 -3.098 1.723

period 5-23 3.093 0.737 4.19 0.000 1.648 4.538

period 24-27 ...

tx 0.814 0.874 0.93 0.352 -0.899 2.526

per 3-4 * tx 3.077 1.345 2.29 0.022 0.441 5.713

per 5-23 * tx -2.355 0.989 -2.38 0.017 -4.292 -0.417

per 24-27 * tx ...

herd=2 -0.323 0.199 -1.63 0.103 -0.713 0.066

herd=3 0.044 0.204 0.21 0.830 -0.356 0.444

lact -0.035 0.047 -0.75 0.451 -0.127 0.057

thin -0.201 0.161 -1.25 0.212 -0.517 0.115

constant -4.143 0.735 -5.64 0.000 -5.583 -2.704

The coefficient for treatment (β = 0.81), represents the effect of treatment in the first time period (0-2
days), but it was not significantly different from 0. Subsequently there was a very strong positive effect
of treatment in the period 3-4 days (0.814+3.077=3.89) and a strong negative effect (β =0.814-2.355=-
1.54) in the period 5-23 days.
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2. As  pointed  out  in  Chapter  11,  multiple  comparisons  (often  arising  from  interim
analyses), losses in the follow-up process and subgroup analyses are common features
of controlled trials which require adjustment to the sample size.

3. The shape of the baseline hazard function might not be known in advance of the study
so  a  sample  size  estimate  based  on  a  non-parametric  test  (eg log-rank) would  be
appropriate.

4. The possibility of non-proportional hazards needs to be considered.

5. In  controlled trials,  crossover might  occur in which animals could move from one
treatment group to another (eg treated to non-treated if the owner fails to comply with
treatment instructions).

6. Recruitment of animals into the study could take place over time which might affect
the length of follow-up period for animals recruited.

7. Survival analyses are often used in randomised controlled trials. In non-randomised
studies of therapeutic interventions, subjects with the new treatment are often matched

Example 19.26 Discrete-time analysis—complementary log-log regression
data = pgtrial

A complementary log-log model of the prostaglandin data that were used in Example 19.25 
produced the following results.

Complementary log-log regression
Zero outcomes  = 1442 Number of obs = 1705
Non-zero outcomes  = 263 LR chi2 (23) = 255.33
Log likelihood = -605.5 Prob >chi2 = 0.0000

Predictor Coef SE Z P 95% CI

period 3-4 -0.683 1.225 -0.56 0.577 -3.084 1.717

period 5-23 2.972 0.728 4.08 0.000 1.546 4.398

period 24-27 ...

tx 0.806 0.866 0.93 0.352 -0.891 2.504

per 3-4 * tx 2.950 1.334 2.21 0.027 0.334 5.565

per 5-23 * tx -2.248 0.973 -2.31 0.021 -4.155 -0.341

per 24-27 * tx ...

herd=2 -0.290 0.172 -1.68 0.093 -0.628 0.048

herd=3 0.040 0.176 0.22 0.822 -0.306 0.386

lact -0.027 0.041 -0.65 0.518 -0.108 0.054

thin -0.176 0.140 -1.26 0.207 -0.450 0.098

constant -4.191 0.725 -5.78 0.000 -5.612 -2.770

The results  are  very close to  those obtained from the logistic  regression  analysis.  This  was  to  be
expected as the hazards of failure in all intervals were generally <0.2.
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to those receiving a standard treatment within strata defined by covariates of interest.
Sample  size  issues  related  to  this  study  design  have  recently  been  discussed
(Mazumdar et al, 2006).

A general discussion of sample size issues can be found in  (Hosmer & Lemeshow, 2008). A
review of some of the issues identified above and a description of  a  software  program for
computing samples sizes for survival analysis studies has recently been published (Barthel et al,
2006; Royston & Babiker, 2002) (see Example 19.27). 
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Example 19.27 Sample size calculations for a randomised controlled trial
data = hypothetical

Assume  that  you  are  about  to  start  a  randomised  controlled  trial  of  2  drugs  designed  to  prevent
recurrence  of  a  certain  type  of  cancer  in  dogs,  following  initial  treatment  of  the  condition.  Past
experience has shown that as the risk of recurrence goes down, the longer the dog remains in remission.
In the absence of treatment, you expect the cumulative probabilities of recurrence in each of 4 time
periods to be as follows:

• end of year 1 30%
• end of year 2 50%
• end of year 4 60%
• later in life 65%

Relative to untreated controls, you expect treatment A to have a HR of 0.75 and treatment B to have a
HR of 0.5. You consider the following 5 scenarios

(a) no loss to follow, no cross-over of treatments, equal allocation of subjects to the 3 groups

(b) same as (a) except cumulative loss to follow up of 5%, 15%, 30% and 40% in the 4 time periods

(c) same as (a) except cumulative loss to follow up of 10%, 30%, 60% and 80% in the 4 time periods

(d) same as (c) except 20% of control dogs and 10% of treatment A dogs cross over into treatment B

(e) same as (d) except you initially allocate dogs in the following ratio: control=1, treatment A=1,
treatment B=2.

For each scenario, you want to determine the sample size required to have an overall power of 80% for
detecting a difference among treatment groups. The required sample sizes and expected number of
recurrences are:

Scenario

(a) (b) (c) (d) (e)

Total sample size 742 837 965 1379 1347

Expected number of cases 353 353 353 502 500

As expected,  the sample  size  goes  up  with  increasing  loss  to  follow up  (with  no  increase in  the
expected number of cases). Subjects switching treatments (d) increases the required sample size, while
changing the allocation of subjects was able to reduce  the total sample size required.
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