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INTRODUCTION TO CLUSTERED DATA

OBJECTIVES

After reading this chapter, you should be able to:

 1. Determine if clustering is likely to be present in your data.

 2. Draw a diagram to represent a hierarchical data structure, and identify repeated measures
and spatial data structures as well as non-hierarchical structures.

 3. Understand  why  clustering  might  be  a  problem,  particularly  as  related  to  estimating
standard errors of coefficients and to confounding by cluster effects.

 4. Understand  what  impact  clustering might  have  on your  analysis  of  either  continuous or
discrete data.

 5. Understand the uses, advantages and limitations of simpler methods to deal with clustering,
such as fixed effects and stratified modelling, correction factors, robust variance estimation
and survey estimation procedures.
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20.1 INTRODUCTION

In common usage, a cluster denotes a set of objects (eg individuals) in a small group (see also
the definition in Section 2.7). In statistics, cluster analysis aims to identify clusters among the
observations, based on the similarity of their outcomes and possibly their physical distance. Our
usage of clustered data is similar but does not pertain to cluster analysis. We think of clusters
as observations that share some common features (that are not explicitly taken into account by
explanatory variables  in  a  model).  This  type  of  clustering  is  always  derived  from the  data
structure,  of which the most common example is  a  hierarchical  data structure.  It  is  usually
expected to lead to dependence between the responses of observations in a group (or cluster)
because  the  shared  feature  makes  the  outcomes  ‘more  similar’  than  otherwise.  Thus,  two
alternative  and  occasionally  encountered  terms  for  these  data  are  hierarchical  data and
correlated data (although the latter term is more general and may refer to other data structures
as well). 

Before proceeding, recall that statistical dependence between observations (for example, Y1 and
Y2)  is  measured  by  covariance  or  correlation  (which  equals  the  covariance  divided  by  the
respective standard deviations): 

=corr Y 1 ,Y 2=
cov Y 1 ,Y 2

SD Y 1SD Y 2
, where −1≤≤1

Eq 20.1

Similarity  between  observations  corresponds  to  positive  values  of  ρ and  the  dependence
increases the further the value is from zero.

20.2 CLUSTERING ARISING FROM THE DATA STRUCTURE

In  this  section,  we  discuss  the  clustering  which  arises  from  animals  sharing  a  common
environment,  clustering  in  space  (eg geographical  proximity)  and  repeated  measurements
within the same individual.

Common environment
Cows within a herd, puppies within a litter,  and quarters  within a cow are all  examples of
clustering in an environment. We usually assume that the degree of similarity among all pairs of
observations within such a cluster are equal. Clustering is not necessarily restricted to a single
level. For example, pigs might be clustered within a litter which might be clustered within a pen
of pigs, which might be clustered in a farm which might be clustered in a region, as shown in
the Fig. 20.1. Such data are called hierarchical or multilevel data. The hierarchy may also be
expressed by saying that pigs are ‘nested’ within farms, and farms are nested within regions.
The structure shown in Fig. 20.1 is a 5-level structure. In practice, we deal more often with data
that have a 2-level or a 3-level structure. 

The defining property of a hierarchical structure is that units together at some (low) level must
also be together at all higher levels. In Fig. 20.1, this, for example, requires piglets from the
same litter to be kept also in the same pen (and farm). Sometimes the data have two (or more)
distinct hierarchies that cannot be merged into a single hierarchy.  For example, in a salmon
aquaculture study, each sea-water pen (production cage) was hierarchically nested within both
the  sea-water  site  and  the  fresh-water  plant,  or  hatchery,  from  which  the  fish  originated
(Aunsmo et al, 2009). If, in this example, it was not true that all pens within a site originated
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from the same hatchery, and nor was it true (unrealistically) that every hatchery only delivered
to a single site, the full data structure is no longer hierarchical and is instead called a  cross-
classification. Minor  deviations  from  a  strict  hierarchical  structure  may  be  dealt  with  by
suitably restricting the data. In the salmon aquaculture example, if only A few sites obtained
fish  from  multiple  hatcheries,  one  could  restrict  the  data  to  one  hatchery  per  site.  Data
structures  with  one  hierarchy  relating  to  the  physical  location  of  the  animals  and  another
hierarchy relating to their origin or slaughter are not uncommon (see also Example 24.6 for data
on chicken which contains another more complicated and less common data structure called
multiple membership).  The term cross-classification is also used about  factorial  structures
among categorical predictors and is here the rule rather than the exception; eg sex and breed are
cross-classified in  a  dataset  when several  breeds are  represented  within each  sex,  and vice
versa.  Fig.  20.2 shows classification diagrams of  the form used in  the multilevel  literature
(Browne  et al, 2001) to represent hierarchical and cross-classified data structures for the two
versions of the salmon aquaculture example.

Spatial clustering 
The hierarchy in Fig.  20.1 suggests that farms in the same region are similar. It  sometimes
seems natural to replace or extend this relationship by one where the dependence between farms

Fig. 20.1 A typical hierarchical data structure in veterinary 
epidemiology
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Fig. 20.2 Classification diagrams for hierarchical (a) 
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is  directly  related  (inversely  proportional)  to  the  distance  between  them.  Spatial  models
incorporate the actual locations of study subjects (in this example the subjects are farms but
they could also be the actual locations of cows in a tie-stall barn). Spatial data and analysis are
reviewed in Chapters  25-26 of  the book.  If  accurate  spatial  information is  not available or
detailed spatial modelling is not desirable (eg due to sparse data), spatial clustering might be
accounted for by hierarchical level(s).

Repeated measurements
Repeated measures arise when several measurements of a variable are taken on the same animal
(or other unit of observation) over a period of time. Daily milk weights in a cow are highly
correlated because the level of milk production on one day is likely to be quite close to the
production on the day before and the day after. Multiple measurements of lactation total milk
production across lactations within a cow are also repeated measurements, but would not be so
highly  correlated.  We  might  think  of  repeated  measures  as  a  special  type  of  hierarchical
clustering (eg in Fig. 20.1, an additional level could be added at the bottom of the hierarchy for
repeated measurements on the animal).  Note that  for the data to be strictly hierarchical,  no
animals should move between herds (pens etc) during the study. However, just as with spatial
clustering,  several  special  considerations  apply  to  repeated  measures.  Observations  close
together in time are likely to be more highly correlated than measurements with a longer time
span between them. Also, repeated measurements might occur at any level in the hierarchy, not
just at the lowest level. For example, if a study on pig production involved several batches
within a farm, the batch level would then correspond to repeated measures over time on the
farm. Analysis of repeated measures data is reviewed in Chapter 23 of the book.

Diagrams  such  as  Figs.  20.1-2  (and  Fig.  20.4)  are  highly  recommended  to  determine  and
present data structures, as long as their defaults with regard to spatial and repeated structures
are kept in mind. In certain situations, we may decide to disregard some hierarchical levels in
the analysis,  as discussed in Section 20.2.4. It  is important to realise that  the data structure
pertains not only to the outcome but also to the predictor variables, and so it is useful to know
whether predictors vary or were applied at particular levels. We elaborate on this idea in the
context  of  the  simplest  two-level  experimental  design:  the  split-plot  design.  Section 20.2.3
briefly discusses how the effects of predictors vary in their interpretation at the different levels
of a hierarchy.

20.2.1 Split-plot design

The split-plot concept and terminology dates back to the early 20th century when statistical
methods were developed in the context of agricultural field trials. Consider the planning of an
experiment involving two factors A and B with a and b levels, respectively. The special feature
of the design is that factor B is practically applicable to smaller units of land (plots) than factor
A. In the field trial context, we might think of A as a large-scale management factor such as
pesticide  spraying  by  plane  and  B  as  a  small-scale  factor  such  as  plant  variety.  The
experimental units for factor A are called whole-plots. The design needs some replication, and
we assume we have  c blocks of size  a at our disposal, giving a total of  ac whole-plots. The
blocks would typically be separate pieces of land or experimental sites. Note Split-plot designs
can also be constructed without blocks, but for simplicity, we describe the design with blocks.
Within each block, the design would now be laid out in a two-step procedure, as illustrated in
Fig. 20.3. 
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1. randomly distribute the levels of factor A onto the a whole-plots within each of the c
blocks, 

2. divide each whole-plot into b subplots, and randomly distribute the levels of factor B
onto the subplots. 

As an animal-production example,  we might have a herd-management factor A (eg tie-stall
versus free-stall barns) and a treatment B applicable to individual animals (eg vaccination with
one of four vaccines). Thus, the whole-plots would be the herds, and the subplots the animals.
The blocks could be groups  (possibly pairs)  of  similar  herds,  eg in  the same region  or  of
approximately  the  same  size.  In  this  example,  the  subplot  treatment  (vaccine)  should  be
randomly assigned to animals, whereas the whole-plot treatments can hardly be randomised to
herds (farmers will not be sympathetic to the idea of changing barn type). A split-plot design
corresponds  to a  2-level  hierarchy with whole-plots  as the upper level  and subplots  as  the
bottom level. 

In the analysis of a split-plot experiment, the two factors A and B cannot be expected to be
treated equally because they are applied to different experimental units. In particular, effects of
the  whole-plot  factor  A  should  be  compared  with  the  variation  between  whole-plots
(corresponding to the first step of the design construction), and effects of the subplot factor B to
the variation between subplots.  It  follows that  it  is necessary to split  the total  variation (or
specifically the variance)  in the data into variations between and within whole-plots.  These
variations are estimated independently from each other and with different accuracy (degrees of
freedom).  Usually  the  whole-plot  variation  will  be  considerably  larger  than  the  subplot
variation, and factor A is estimated with less precision than factor B. The interaction between A
and B ‘belongs to’ the subplot variation because differences between B-levels within any A-
level can be determined within the whole-plots. This makes the split-plot design particularly
attractive in situations where the principal  interest  is in the main effect  of factor B and its
interaction with factor A. In the example above, this would correspond to estimating the effects
of the vaccines and determining if the vaccines worked differently in tie-stall compared with
free-stall  barns.  The  split-plot  design  is  discussed  in  most  statistical  texts  on  experimental
design (eg Mead , 1990)).

Fig. 20.3 Split-plot layout within one block, with a=2 whole-plots 
and b=4 subplots
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20.2.2 Variation at different levels

The split-plot design with its 2-level structure (eg cows within herds) illustrates how variation
in the outcome of interest  resides at  the different levels of the hierarchy and how predictor
variables  explain  variation  at  these  different  levels.  One  important  implication  is  that  the
amount of unexplained variation at the different levels indicates what can be achieved by a
detailed study of the units at the different levels. For example, a large unexplained variation
between herds might indicate a substantial room for improvement in the outcome of interest, if
we were able to understand why some herds  do better than others.  Generally,  interventions
targeted at the level where the greatest variation resides would seem to have the greatest chance
of success. Explorative studies prior to interventions are one example of when the clustering of
the data within the hierarchical structure is of primary interest (Dohoo et al, 2001).

20.2.3 Clustering of predictor variables

While the focus of our discussion to this point has been in the variation in the outcome of
interest, we have also noted that predictor variables occur at various levels and might also be
clustered.  There  is  a  wealth  of  potential  relationships  that  can  be  examined  when  the
hierarchical structure of the data is taken into consideration. For example, if data are recorded at
the cow level, but clustered at the herd level we can examine:

• cow-level factors (eg lactation number) that affect a cow-level outcome (lactation total
milk production),

• herd-level factors (eg barn type) that affect a cow-level outcome,
• herd-level factors (eg barn type) that affect a herd-level outcome (eg average lactation

total milk production for the herd),
• cow-level factors (eg lactation number) that affect a herd-level outcome (eg average

lactation total milk production for the herd), where the cow-level factors could either
be recorded individually or aggregated to the herd-level (eg average lactation number
for the herd),

• herd-level factors (eg barn type) that might alter a cow-level relationship (eg is effect
of lactation number on milk production different in tie-stall and free-stall barns?) or
vice versa.

Correctly evaluating the potential range of effects outlined above requires correct identification
of the hierarchical structure of both outcome and predictors in the data. Fig. 20.4 illustrates how
the predictor levels may be added to the hierarchical diagram.

20.2.4 Aggregation of levels

The hierarchical  structure  in  a  dataset  might  contain  many levels,  as  shown in  the  5-level
structure of Fig. 20.1. However, sometimes we decide to exclude some levels from our analysis,
and in this section, we give a few comments related to two common scenarios.  In  order to
estimate  the  variation  and  the  effects  at  the  different  levels,  a  certain  minimal  amount  of
replication is necessary at all levels. This is intuitively obvious because,  if, for example, all
batches contained only a single litter, then there would be no way of distinguishing between
batch  and  litter  effects.  Another  potential  problem  for  the  analysis  is  a  strongly  variable
replication at one of the hierarchical levels (eg  if some batches contain only one litter while
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others contain up to 10 litters). To detect such problems, it is worthwhile to compute the range
and average of the number of replications at each hierarchical level. There is no definitive rule
as to the minimal replication but, whenever the average number of replicates is less than 2
and/or more than half of the units are unreplicated, problems can be anticipated. To illustrate
the arbitrariness of such a rule, the Reunion Island dataset of Example 20.1 had, on average,
only 1.9 lactations per cow without substantially impeding the analysis (Examples 21.3, 22.7-9,
22.11). If some levels need to be omitted in the hierarchy, it is useful to keep those at which
principal predictors reside and those showing a lot of variation in a null model (ie without fixed
effects) or based on descriptive statistics.

Example 20.1 Hierarchical data structure of Reunion Island data
data = reu_cfs

In a study of reproductive measures on Reunion Island (Dohoo et al, 2001), the calving to first service
interval (-cfs-) and success or failure  of first-service conception (-fscr-) were two of the outcomes
evaluated. The study comprised 3,027 lactations distributed on 1,575 cows in 50 herds on Reunion
Island. The data are strictly hierarchical because all cows remained on the same herds throughout the
study period. The table below gives the number of units at each level and descriptive statistics for the
replication at the level above. 

Level Number Replication at level above

of units Mean Range

Region 5 - -

Herd 50 10 3–16

Cow 1575 31.5 8–105

Lactation 3027 1.9 1–5

Strictly speaking, the different lactations of each cow were repeated measures over time. However, the
very short series of repeated measures per cow (1.9 observations on the average) does not realistically
allow any complex repeated measures modelling. 

The data included two dichotomous, lactation-level predictors: -heifer- (primiparous vs multiparous)
and -ai- (artificial insemination vs natural breeding), as well as additional predictors not included in the
reu_cfs dataset,  eg breed and barn type. The levels of variation of each predictor are indicated in the
hierarchical diagram in Fig. 20.4.

Fig. 20.4 Hierarchical structure of -reu_cfs- data on 
reproductive performance in Reunion Island
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For discrete data,  in particular  binary data,  some methods for clustered data have difficulty
dealing with strong clustering even when there is ample replication; a possible solution for such
cases is to aggregate the data at the lowest level (eg from the pig level to the batch level, when
pigs are clustered in batches). We defer discussion of this issue to Section 22.5.7 and Example
22.12 in which 3-level data are aggregated to 2 levels.

20.3 EFFECTS OF CLUSTERING

Aside from any interest we might have in questions pertaining to the data structure, the reason
for our interest in clustering is that it must be taken into account to obtain valid estimates of the
effects  of  interest.  This is  because the assumption of independence  inherent  in most of the
statistical models reviewed up till now in the book will be invalidated by the clustering.

To start with, let’s address 2 common questions: 1. what happens if clustering is ignored?, and
2. if  the data show no dependence,  can clustering be ignored?  If  the presumption of  these
questions  is  whether  one  can  escape  the  nuisance  of  accounting  for  clustering  if  it  is  not
‘influential’, we must raise a warning sign. Today’s standard statistical software offers a variety
of easily accessible options to account for clustering, and we find it hard to justify scientifically
the use of a flawed method (even if only slightly) when better methods are readily available. If
‘no  dependence’  means  that  a  significance  test  of  correlation  turned  out  non-significant,  it
might  be  worthwhile  to  recall  that  the  data  showing  no  (significant)  evidence  against
independence is by no means a proof of independence (by the distinction between Type I and
Type II errors of statistical tests). Remember, “absence of evidence is not evidence of absence”
(Carl Sagan). 

Having said that,  it  might  be fruitful  for  the understanding of  the  concept  of  clustering to
examine  the  consequences  of  ignoring  it.  Perhaps  not  too  surprisingly,  the  answer  to  the
question to some extent depends on the statistical model used. Linear and logistic regression are
discussed  in  more  detail  in  the  sections  below.  However,  one  general  effect  of  ignoring
clustering is that the standard errors (SEs) of parameter estimates will be wrong and often too
small. This is particularly true if the factor of interest is a group-level factor (eg a herd-level
factor such as barn type), or if it is an individual-level factor that is also highly clustered within
groups (eg breed which may vary within a herd but most animals in a herd are of a single
breed). 

For  a  2-level  structure  and  a  group-level  predictor,  it  is  possible  to  compute  a  variance
adjustment factor (Section 20.3.3) for  a cluster-adjusted analysis  relative to an unadjusted
analysis.  Unfortunately,  the simple variance adjustment leads to a widespread, but incorrect,
belief that clustering always and only causes variance inflation. The discussion of the split-plot
design illustrated the separation of the total variation into variation between and within whole-
plots, with different values and degrees of freedom for each level. Therefore, if the data show
these variations to be respectively large and small, the cluster-adjusted (split-plot) analysis will
actually  give  smaller  standard  errors  for  subplot  predictors—and  larger  standard  errors  for
whole-plot predictors. It also follows that in a dataset with only a few herds (even if there is
little  clustering  within  herds),  ignoring  the  hierarchical  structure  will  lead  you  to  grossly
overestimate the power for evaluation of herd-level factors because it is the number of herds
that determines the appropriate degrees of freedom, not the number of animals within herds.
However,  accounting for the data structure in the analysis might lead to smaller SEs for an
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animal-level factor. A final, less clear-cut effect of ignoring clustering is in the weighting of
observations from different clusters. If the number of cows in different herds is highly variable,
an unadjusted analysis gives unreasonably large weight to large herds. In summary, ignoring
clustering can lead to other deficiencies than variance inflation, and in answer to question 2.
above,  even when ‘no dependence’ is  seen, one would usually want to use cluster-adjusted
methods to properly take into account the data structure.

20.3.1 Clustering for continuous data

Least  squares  estimation  for  linear  (regression)  models  yields  unbiased  estimates  of  the
regression coefficients, even if clustering is present and ignored (Liang & Zeger, 1993). This,
perhaps  intuitively  surprising,  fact  is  however  of  limited  practical  use  because  the
corresponding SEs might be strongly affected by ignoring clustering.  Thus, without reliable
standard errors and test statistics to assess the precision and significance of the estimates, the
statistical analysis does not go very far. Also, even if the estimates are unbiased, they might be
very inefficient. By means of two simulated datasets, Example 20.2 illustrates how clustering
might affect the standard errors. In this example, we use a linear mixed model (Chapter 21) to
account for clustering, but other approaches are presented in this chapter and Chapter 23.

20.3.2 Clustering for discrete data

Estimation procedures in regression models for discrete data (eg logistic and Poisson regression
models)  are  asymptotically  unbiased  which  means  that  with  infinitely  large  samples,  they
produce correct  parameter  estimates  (Liang & Zeger,  1993).  However,  with limited sample
sizes, some bias in the estimates may be present. If the data are clustered and the clustering is
ignored  in  the  analysis,  the variance  (or  the SEs)  of  the estimates  will  (in  most  cases)  be
underestimated as was seen in models for continuous data. The larger ‘true’ variance in the
parameter estimate means that the parameter estimate might be far from the true value, but this
will  not  be readily apparent,  resulting in (apparently)  more biased estimates.  Example 20.3
illustrates the practical  implication of ignoring clustering for two simulated datasets. In  this
example,  we  use  a  logistic  (generalised  linear)  mixed  model  to  account  for  the  clustering
(Chapter 22), but other approaches are described in this chapter and Chapter 23.

20.3.3 Variance inflation as a result of clustering

The effect of clustering on variance estimates can most easily be seen in the situation in which a
group  (eg herd)  level  factor  is  being  evaluated,  but  the  outcome  (eg milk  production)  is
measured at the individual (eg cow) level. In this case, it is the variance of the herd mean milk
production which is important for statistical testing. The magnitude of the effect of clustering
on this variance (estimate) depends on both the intra-class correlation (ICC), and the size of
the clusters. The  ICC  is the correlation between two observations within a cluster, assuming
that the correlation is the same in all pairs of observations. It has all the usual properties of a
correlation coefficient (eg takes values between -1 and 1, with a value of zero corresponding to
independence). Methods for estimating the ICC depend on the type of outcome and model, and
will be discussed in subsequent Chapters 21-23. If we assume that this correlation (ICC or ρ) is
the same in all herds, then the variance of a herd mean milk production var Y  for a herd of
size m is:
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var Y =
 2

m
[1m−1]

Eq 20.2

where  σ2 is the variance among individual cow milk production values.  Note If  there is no
clustering (ie ρ=0), then this formula is the usual one for the variance of a group mean (σ2/m). In
the literature, the quantity [1+(m-1)ρ] is referred to as the variance inflation factor or design
effect (Okoumunne  et al, 2002; Wears, 2002). In order to avoid confusion with the variance
inflation factor for multicollinearity (Chapter 14), we use the term  design effect (deff) from
Section 2.10.4. The deff is the ratio between the variance (of the mean) in a clustered data
structure relative to a data structure with independence. In Section 2.11.6 you saw how this

Example 20.2 Clustered continuous data
data = simcont_clustherd and simcont_clustcow

Two simulated datasets, each consisting of cows in 100 herds, were created. Herd sizes ranged from 20
to 311 cows (μ=116). Herd mean daily milk production varied randomly between herds (μ=30 kg/day,
σh=7  kg/day),  with  larger  herds  tending  to  have  higher  production.  Individual  cow  daily  milk
production values were normally distributed around the herd average (with  σ=8 kg/day)  unless the
factor -X- was present, in which case the milk production was 5 kg higher. The single predictor -X-
was added to each dataset with the herd prevalence of -X- varying between datasets. In the first dataset
(simcont_clustherd), -X- was a herd-level factor so all cows in 50 herds had X=1 and all cows in 50
herds had X=0. In the second dataset (simcont_clustcow), -X- was a cow-level factor, present in half of
the cows in each herd. 

For each dataset,  2 or 3 models were fit.  In  the first,  an ordinary linear model (a simple  2-sample
comparison) ignoring herd was fit. In the second, a linear mixed model was used to account for the
clustering  within  herds.  In  the  third,  herd  average  values  of  milk  production  were  computed  and
analysed with respect to -X- (also a two-sample comparison); this was only appropriate for dataset 1 in
which -X- was a herd-level variable.

Regression coefficients and SEs for analyses of two simulated datasets

Linear 
model

Linear mixed 
model

Herd average 
linear model

Dataset Parameter Estimate SE Estimate SE Estimate SE

1:-X- at 
herd level

-X-
constant

3.557
30.021

0.200
0.146

3.796
31.137

1.496
1.058

3.779
31.166

1.497
1.059

2:-X- at 
cow level

-X-
constant

4.982
29.257

0.199
0.141

4.968
30.646

0.149
0.728

In dataset 1, all of the estimates for -X- are a long way from the true value (5) but this is due to random
variation in the generation of the data. Most importantly,  ignoring clustering produces SEs that are
much lower than they should be. Controlling for clustering by computing herd average values for milk
production and analysing those with respect to presence/absence of -X- produces almost exactly the
same values as those observed from the linear mixed model. 

In dataset 2, both estimates for -X- are close to the true value because estimation of a cow-level effect
is much more precise than a herd-level effect. The linear mixed model gives a reduced SE for -X-,
because the SE is derived from the within-herd variation which is smaller than both the between-herd
variation and the total variation. For the constant (average milk production for cows with X=0 across
herds), the correct SE involves the between-herd variation, and when clustering is ignored, the SE is,
again, far too small.
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quantity can be used to adjust sample size estimates for clustering when computing sample
sizes. Table 20.1 shows how both the group size and the magnitude of the ICC affect how much
the  variance  needs  to  be  inflated  to  adequately  account  for  clustering.  ICCs  have  been
computed for herd-level clustering of a number of infectious diseases and were found to range
from 0.04 (Anaplasma marginale in cattle) to 0.42 (bovine viral diarrhea in cattle), but most
were less than 0.2 (Otte & Gumm, 1997).

Table 20.1 Effect of group size (m) and ICC (ρ) on variance of group means when dealing 
with clustered data (from Eq 20.2) 

ρ m deff Comment

0 any 1 No within-group clustering = no variance inflation

1 m m Complete within-group clustering effectively makes the sample size 
equal to the number of groups

0.1
0.5

6
2

1.5
1.5

A low ICC with a moderate group size can have as much impact as a 
high ICC with a very small group size

0.1 101 11 Large group sizes, even with a low ICC, result in a very high variance 
inflation (deff)

Example 20.3 Clustered binary data
data = simbin_clustherd and simbin_clustcow

To the same (fictitious) 100 herds as in Example 20.1, a binary outcome -dis- (disease) was added. In
both datasets, the effect of -X- corresponded to an OR of 2, or a regression coefficient of ln(2)=0.693
on the logistic scale. The disease level of non-exposed cows was set at p=0.2, corresponding to a value
of ln(0.2/0.8)=-1.4 on logistic scale. Herd effects varied on the logistic scale with a standard deviation
of 1. As before, the first dataset (simbin_clustherd) had -X- as a herd-level factor (with -X- present in
50 herds), and the second dataset (simbin_clustcow) had -X- as a cow-level factor (with -X- present in
50% of the cows in each herd). 

For  each  dataset,  two  models  were  fit:  an  ordinary  logistic  regression  ignoring  herd  clustering
(essentially a 2X2-table analysis), and a logistic mixed model to account for herd clustering. 

Regression coefficients and SEs for analyses of two simulated binary datasets

Logistic model Logistic mixed model

Dataset Parameter Estimate SE Estimate SE

1:-X- at 
herd level

-X- 
constant

0.529
-1.242

0.042
0.033

0.620
-1.305

0.204
0.146

2:-X- at 
cow level

-X-
constant

0.586
-1.250

0.042
0.032

0.697
-1.361

0.046
0.111

In both datasets, the most conspicuous difference between the two analyses is that the simple logistic
model  underestimates  the  standard  errors  for  all  parameters  except  the  cow-level  predictor.  The
parameter estimates of the mixed logistic model are somewhat closer to the true value in this case, but
the SEs show that it could easily have been the other way around. Note that the SEs for the logistic
mixed model in dataset 2 are less than in dataset 1 because a within-herd design is more powerful than
a between-herd design. 
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Finally, a few notes on the use of deffs. First, they apply to cluster means and, therefore, more
generally to between-cluster effects, but not to within-cluster effects. Second, Eq. 20.2 depends
only on the variance, ICC and cluster size, so it also applies to discrete outcomes. However, due
to the relation between the mean and variance in discrete data, the variance will not be constant
within a cluster if there are (additional) within-cluster predictors, and nor will it be constant
between clusters with different values of between-cluster predictors. Consequently, for discrete
data, a single deff value can only be seen as a rough approximation of the variance inflation.
Third, if group sizes are unequal, you can use the minimum, average and maximum group sizes
in Eq. 20.2 and the deff formula to assess the impact of clustering.

20.4 SIMULATION STUDIES ON THE IMPACT OF CLUSTERING

Examples 20.2-3 illustrate the effects of clustering in single (simulated) datasets. In order to
explore the effects of clustering systematically, a series of simulation studies were carried out.
We will present some results for a binary outcome (Sections 20.4.1-2), but another part of the
simulation studies  involved a continuous (normally distributed)  outcome  (Dohoo & Stryhn,
2006). One finding unique to a continuous outcome was the absence of any bias in estimation
of a regression coefficient by ignoring the clustering in the analysis. The impact of clustering on
the SEs of the estimated regression coefficient was qualitatively similar to those for a binary
outcome described below, but quantitatively more pronounced.

A recent simulation study explored the impact of ignoring clustering in a 2-level setting when
there is little replication within clusters (Clarke, 2008). It was concluded that, at an average of
(at least) 5 observations per cluster, valid and reliable estimates can be obtained with mixed
models with either continuous or binary outcomes. Some biases were observed with very sparse
replication (2 observations per cluster), but ignoring clustering was concluded to be associated
with increased risk of Type I errors, even when there were few observations per cluster.

20.4.1 Simulation study on the impact of clustering for binary outcome

The simulation study is presented in the framework of a 2-level hierarchy consisting of cows
within 100 herds  of  variable  sizes (mean herd size=150;  see  Dohoo & Stryhn,  2006).  One
binary outcome (Y) was generated for each cow within each herd. The log-odds of the baseline
herd  prevalence  was  generated  from  N(-1.4,1),  resulting  in  a  baseline  prevalence  of
approximately  25%.  The  cow-level  predictor  X was  generated  from  a  standard  normal
distribution, and set to have one of 17 levels of within-herd clustering (ICC(X)), ranging from 0
(complete independence) to 1 (a herd-level predictor). The effect of  X was linear on the logit
scale with a regression coefficient of 0.69, equivalent to an OR of 2. Each of the 17 scenarios
were simulated 1000 times. Within each iteration, the dataset was created as described above.
Subsequently,  a simple logistic regression with  X as the sole predictor and a logistic mixed
model were carried out for each of the simulated datasets. Bias in estimates of the coefficient β
of X and in SE(β) were computed by dividing the means of the respective estimates from the
simple logistic model with the means from the logistic mixed model (left panel of Fig. 20.5).
The  effect  of  clustering  on  the  variability  of  the  individual  estimates  was  evaluated  by
determining the standard deviation (SD) of  β among the simulations for both models (right
panel of Fig. 20.5). 



INTRODUCTION TO 541
CLUSTERED DATA

The left panel of Fig. 20.5 shows the ratio between estimates of the simple logistic and logistic
mixed models to be constant around a value of 0.85 for all values of the ICC of X. It is well-
known that estimates (β) of logistic mixed models are numerically larger than those of simple
logistic regression (cluster-specific (SS) and population-averaged (PA) estimates, respectively,
in the terminology of Chapter 22), and their ratio agrees well with the value (1/√(1+0.346*1)
=0.86) obtained from Eq. 22.2 in Section 22.2.2. When X is a herd-level predictor (ICC(X)=1),
the SE of its coefficient is grossly underestimated, as would be expected from Eq. 20.2 with a
large  m and  ρ≈0.23 (from Eq. 22.4 in Section 22.2.3). When  X is a cow-level predictor that
doesn’t cluster at all within herds (ICC(X)=0), the SE(β) is slightly overestimated by the logistic
mixed model  (when the  difference  in  scale  is  taken  into account).  At  intermediate  ICC(X)
values, the ratio between SE(β)s decreases as smooth function of ICC(X); note that the actual
point where the two curves cross depends on the specific settings of the design and parameters. 

The right panel shows that even without any systematic biases between the estimates (beyond
the distinction between SS and PA estimates), the individual estimates from the simple logistic
regression are much more variable than those from the logistic mixed model, especially for
intermediate  values  of  ICC(X).  As  a  consequence,  individual  estimates  derived  from  an
ordinary logistic model may be badly off the true value, but it would be impossible to predict
the direction or magnitude of the bias because the estimated SE(β)s are underestimated. At
extreme values of ICC(X) (0 or 1), the variability of the ordinary regression estimates are much
closer to what would be expected.

20.4.2 Clustering and confounding

It has often been assumed that controlling for clustering also serves to control for unmeasured
confounders which may be associated with the groups in which the animals are clustered. In
order  to  investigate  this  assumption,  the  simulated  data  described  above  were  extended  to
include  a  confounding  variable  (Z)  which  had  a  standard  normal  distribution,  which  also

Fig. 20.5 Results of simulation study to assess effect of clustering in binary data: bias in 
estimates of treatment effect (beta) and of SE(beta) in left panel; standard deviation 
among simulations of individual beta estimates in right
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doubled the odds of the outcome and that was correlated with the predictor (ρ=0.5). As with X,
Z was created  to have one of 17 levels of  within-herd clustering (ICC(Z)),  ranging from 0
(complete independence) to 1 (a herd-level predictor). The bias in estimates of β and SE(β) for
X and Z were computed by dividing their respective means of estimates from a logistic mixed
model which did not include  Z by those from a model which did include  Z. The results are
shown in Fig. 20.6.

If  the  confounder  is  a  true  group-
level  factor  (ie ICC=1)  adjustment
for  clustering  in  a  logistic  mixed
model  completely  eliminates  any
confounding effect of Z. On the other
hand, if there is some variation in  Z
among individuals within a group (ie
ICC<1),  then  there  is  residual
confounding  due  to  Z and  not
including Z in the model will produce
a  biased  estimate—in  this  case  an
estimate of  β that is up to 1.4 times
larger  than it  should be.  The actual
magnitude  and  direction  of  the
confounding bias will depend on the
strength  and  direction  of  the
relationships  between  Z and  Y and
between Z and X. While the estimate of the β is biased if ICC<1, the estimate of the SE(β) is
virtually unbiased regardless of the ICC of Z, because both models had a correct specification
of the variance structure. This demonstrates why estimates (and not just their SEs) often change
when clustering  is  accounted  for  in  an  analysis.  Depending  on the  ICC of  an  unmeasured
confounder,  some (0<ICC<1) or  all  (ICC=1) of  its  confounding effect  will  be removed by
accounting for clustering in the analysis.

20.5 INTRODUCTION TO METHODS FOR DEALING WITH CLUSTERING

The primary focus in the book among methods for the analysis of clustered data is on mixed, or
random effects, models,  which are reviewed for continuous and discrete data in Chapters 21
and  22,  respectively.  In  addition,  mixed  models  for  survival  data,  frailty  models,  were
introduced in Section 19.11. Mixed models are also used for repeated measures and spatial data
(Chapters  23  and  26).  Another  widely  used  approach  to  clustered  data,  estimation  by
generalised  estimation  equations (GEE),  will  be  introduced  in  the  context  of  repeated
measures  data  (Chapter  23)  for  which  it  was  originally  developed,  although  GEE is  more
widely  applicable,  eg to  hierarchical  data.  The  present  section  contains  some  introductory
remarks  on  detection  of  clustering,  and  a  discussion  of  simpler,  traditional  approaches  to
dealing  with  clustering  using  fixed  effects,  stratification,  scaling  of  variance  estimates  and
robust variance estimates, as well as a discussion of the connection with methods for analysis
of survey data (Section 2.10).

Fig. 20.6 Evaluation of ability of mixed model to 
control for unmeasured confounders
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20.5.1 Detection of clustering

The primary resource for detection of clustering is the researcher’s awareness. Whenever data
are collected from individuals that are managed in a group, we should suspect that the data
might be clustered. More generally, this is the case whenever animals share common features of
potential impact that are not accounted for by explanatory variables. Any hierarchical structure
in the origin or management of individuals might introduce clustering, as shown in Figs. 20.1
and 20.4. Also, repeated measures  and spatial data structures should always  be noticed and
examined. 

One might expect some general statistical test for clustering to be ‘standard’ (in common use),
but this is not so. We offer two explanations. One is that clustering is dealt with differently in
discrete and continuous data, and in different statistical models. A general approach is to extend
a  statistical  model  with  an  additional  parameter  (or  effect)  for  clustering,  estimate  that
parameter and test whether it differs significantly from zero (no clustering). This approach has
been introduced in Chapter 18 where addition of an extra variance parameter to the Poisson
model produced a negative binomial model. In discrete models such as logistic and Poisson
regression, one might also compare the actual variation in the data with the expected variation
(from the binomial or Poisson distributions) by a goodness-of-fit statistic, which, if significant,
indicates  overdispersion,  potentially a result of clustering (see Sections 16.12.4, 18.5.3 and
20.5.3). A second reason why testing for clustering is less common than one might expect, is
that even small amounts of clustering might have substantial impact on variance estimates, as
illustrated in Section 20.3.3. Therefore, one is often inclined to keep a clustering effect in the
statistical model even if it is not statistically significant, particularly if it shows ‘some effect’
and is strongly suggested by the data structure.

20.5.2 Fixed effects and stratified models

We will first discuss one simple and previously common approach to dealing with clustering
which has also occasionally been used in previous chapters of this book—that is to include the
group identifier as a fixed effect in the regression model. Let us for the sake of the discussion,
in this and the following sections, refer to the groups as herds and to the within-group subjects
as  cows.  In  fixed effects  models,  dummy (indicator)  variables  representing the ‘group’  (eg
herd) are included in the model. The fixed effects analysis then effectively estimates a separate
parameter for each herd. This has the effect of separating the variation between herds from the
residual variation and results in more appropriate tests of significance for within-herd factors.

There are several major drawbacks to this approach. The first is that one cannot include any
herd-level predictors (eg barn type) in the model because they will be absorbed into the herd
effects. The second drawback is that the model does not contain any dependence between cows
in the same herd (ie the model contains only the within-herd variance as the between-herd
variance is removed by the fixed effects), and therefore does not properly inflate the variance
on means across herds (eg the calving to conception interval for heifers treated with a certain
vaccine). Another way of saying this is that any inferences made are specific to the actual herds,
where very often one would want conclusions to refer to a more general population of herds. A
third drawback is that with many herds it requires the fitting of a large number of parameters
(one for each herd), and the parameter estimates in the model might become unstable if there
are relatively few observations per group. As we are not usually interested in the actual effects
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of each herd, these fixed effects are often considered ‘nuisance’ parameters. The consequences
of having a large number of ‘nuisance’ parameters in the model might be more serious for
discrete  than  normal  distribution  models  because  asymptotic  properties  of  estimation
procedures used to fit discrete distribution models break down if there is a large number of
parameters to estimate (relative to the number of observations).

On  the  other  hand,  the  obvious  benefit  of  a  fixed-effects  approach  is  a  simpler  statistical
analysis,  because the fixed effects can be added to the model (eg linear or logistic) without
changing  its  structure  and  without  extra  software  requirements.  In  particular,  with  limited
model-checking facilities for mixed models in some software, you might be tempted to base
part of the model-checking on the fixed effects version of a mixed model, although, strictly
speaking, this is incorrect. More substantively, a fixed-effects approach may be preferable when
the herds are specific to the study and do not represent a more general population. The fixed-
effects  approach is illustrated in Examples 20.4 and 20.5 for  the previously used simulated
datasets with a cow-level predictor and a binary and continuous outcome, respectively. 

Another simple approach to dealing with clustered binary data and a dichotomous within-herd
factor is to carry out a stratified analysis using the Mantel-Haenszel procedure described in
Chapter  13,  with  strata  defined  by  the  clustering  variable.  Mantel-Haenszel-type  stratified
analyses  are limited to binary outcomes and a single categorical  within-group predictor;  for
multifactorial problems, they are mainly used for descriptive purposes. A stratified analysis is
also included in Example 20.4.

20.5.3 Factors to correct for clustering

This section summarises two ways of correcting an analysis in which clustering has not been
taken  into  account  in  the  model.  These  involve an  estimate  of  the  intra-class  correlation
coefficient (ICC) (Section 20.3.3) or an estimate of the overdispersion, and using one of these
to adjust the standard error (SE) of regression coefficients. Note that these methods rely on the
simplistic premise that clustering affects only the SEs of estimates (and, generally,  when not
taken into account, leads to SEs that are too small by the same amount (factor) for all regression
coefficients). Our previous examples have shown that this is not always the case. Therefore, not
all uncorrected analyses might be ‘repaired’ by increasing the SEs, and the researcher must pay
particular attention to the requirements for these correction factors to be meaningful. 

Adjustment by the design effect 
Eq. 20.2 shows how the effect  of clustering on the variance of herd means, in terms of the
design effect (deff), depends on the ICC and the herd size. If the ICC is known and both the
ICC and  deff  are  the  same in  all  herds,  an  analysis  involving  only herd-level  factors,  but
ignoring clustering in herds, might be corrected by inflating the standard errors of regression
coefficients by the square root of the deff. In practice, herds are rarely of the same size, and the
ICC is not known nor constant between herds except for special cases (although constant ICCs
are  often  assumed  for  normally  distributed  data).  The  method  might  be  acceptable  as  an
approximation  even  without  these  conditions  (Donner,  1993) but  the  validity  of  the
approximation is difficult to assess. In summary, this approach is largely obsolete but may still
be of use for descriptive purposes.

Overdispersion as a result of clustering 
The concept of overdispersion was introduced in Chapter 16 for models based on the binomial
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Example 20.4 Summary of analyses for simulated binary data
data = simbin_clustherd and simbin_clustcow

The simulated binary datasets from Example 20.3 with -X- as either a herd-level or a cow-level factor
were analysed by the simpler methods of dealing with clustering of this section, as well as a logistic
mixed model (Chapter 22) and the generalised estimating equation (GEE) procedure (Chapter 23; an
exchangeable correlation structure was used). Some methods are only applicable to one of the datasets;
for example, stratification by clusters only works for a cow-level predictor. All results are summarised
in Table 20.2.

Table 20.2 Results for simulated binary datasets with predictor at herd or cow level

Dataset -X- herd level -X- cow level

Parameter Constant -X- Constant -X- SS

Statistic Est SE Est SE Est SE Est SE PAa

Uncond. logistic model -1.242 0.033 0.529 0.042 -1.250 0.032 0.586 0.042 PA

Fixed effects - - - - -2.130 0.632 0.704 0.046 SS

Mantel-Haenszel - - - - - - 0.698 0.046 SS

Variance adj. (overdisp) -1.242 0.140 0.529 0.181 - - - - PA

Variance adj. (Williams) -1.108 0.139 0.558 0.186 - - - - PA

Robust varianceb -1.242 0.146 0.529 0.211 -1.250 0.114 0.586 0.044 PA

Logistic mixed model -1.305 0.146 0.620 0.204 -1.361 0.111 0.697 0.046 SS

Generalised estim. eq. -1.110 0.125 0.559 0.177 -1.112 0.095 0.587 0.042 PA
aSubject specific or population average estimate
bSame results obtained for analysis by survey method clustered at herds

In both datasets, the PA estimates were markedly closer to zero than the SS ones (as expected because
estimates by these methods are on different scales and have different interpretations—see Chapters 22-
23 for further discussion). 

In the dataset with -X- as a cow-level factor, the fixed effects estimate for the PA estimates of X were
all quite close, as were the SS estimates. The SEs were also very similar. The estimated constant from
the fixed effects model corresponds to the proportion of positives (on logit scale) in herd 1, and its
estimate therefore differed from the overall proportion (across all herds) from the other models. The 99
coefficients for herds 2-100 are not shown. 

In the dataset with -X- as a herd-level factor, there was considerable variation in the estimates of the
constant and the SE from the unconditional model was grossly underestimated. The PA estimates of X
from the William’s method and GEE were somewhat higher than those from the unconditional model.
The estimated overdispersion parameter was 18.38, computed by dividing the Pearson χ2 (1801.50) by
its degrees of freedom (100-2=98). This corresponded to a standard deviation 4.29 times larger than
from the binomial distribution. The SEs were therefore multiplied by this factor (and were comparable
to those from GEE).

The fairly large differences between the parameter estimates indicate that the choice of procedure has
appreciable impact on the results, and illustrates that the simpler methods (fixed effects, stratification
and variance adjustments) often fail to give the same answers as the 2 main approaches—the logistic
mixed model and GEE. 
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distribution and in Chapter 18 for the Poisson distribution. Table 16.5 shows a hypothetical
example of  overdispersion caused  by clustering.  Overdispersion  may occur  in all  (discrete)
models with a relation between the distribution’s mean and variance, and intuitively means that
the dispersion in the data is larger than expected from the mean (and the relation between the
mean  and  variance).  (Note Overdispersion  does  therefore  not  occur  in  normal  distribution
models!) The converse situation, that the dispersion in the data is less than expected from the
mean, is possible as well, and is called  underdispersion. Underdispersion is less common in
practice and more difficult to interpret, the one standard example being a negative correlation
between observations in a cluster caused by competition for limited resources (eg feed).

Adjustment by overdispersion factor 
Generalised  linear  models  (Section  16.11)  allow  for  an  additional  dispersion  (or  scale)
parameter (φ) to take into account if the ‘natural dispersion’ in the data does not match the
distribution used (eg binomial or Poisson). As before, for a 2-level model with only herd-level
predictors,  this  might  be  used  to  adjust  for  the  inflation  in  variance  at  the  herd  level.  In
principle, this correction is valid for unequal herd sizes as well. Let’s look at a binomial model
with an overdispersion parameter in the context of the data in Table 16.5 to see how that would

Example 20.5 Summary of analyses for simulated continuous data
data = simcont_clustherd and simcont_clustcow

The simulated continuous datasets from Example 20.2 with -X- as either a herd-level or a cow-level
factor were analysed by the simpler methods of dealing with clustering of this section, as well as a
linear mixed model (Chapter 21) and the generalised estimating equation (GEE) procedure (Chapter
23; an exchangeable correlation structure was used). Fixed effects modelling only works for a cow-
level predictor. All results are summarised in Table 20.3.

Table 20.3 Results for simulated continuous datasets with predictor at herd or cow 
level

Dataset -X- herd level -X- cow level

Parameter Constant -X- Constant -X-

Statistic Est SE Est SE Est SE Est SE

Uncond. linear model 30.021 0.146 3.557 0.200 29.257 0.141 4.982 0.199

Fixed effects -- -- -- -- 24.324 1.800 4.968 0.149

Robust variancea 30.021 1.092 3.557 1.712 29.257 0.874 4.982 0.142

Linear mixed model 31.137 1.058 3.796 1.496 30.646 0.728 4.968 0.149

Generalised estim. eq. 31.135 1.040 3.797 1.488 30.648 0.722 4.968 0.141
asame results obtained for analysis by survey method clustered at herds

In the dataset with -X- as a cow-level factor, fixed effects modelling gave identical results to the linear
mixed model for the coefficient of -X-, whereas the constant corresponded to a different parameter (the
mean for herd 1 with -X- absent). The agreement in estimates and SEs between different methods was
generally  better  than  for  the  binary  datasets  in  Example  20.4.  The  linear  mixed  model  and  GEE
estimates were almost identical, so the main difference was between these estimates and those of the
simple linear model. The robust SEs were larger than the unadjusted SEs, except for the coefficients of
-X- as a cow-level predictor; this behaviour fits nicely with our discussion in Examples 20.2-3.  The
linear mixed model is the generally preferred choice, see Chapter 21 for  further  discussion of this
model and its assumptions.
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work. Denote by  Yi and  ni the number of positive outcomes and the total number of animals
sampled in herd i, respectively. Then the model’s assumptions are: 

E Y i=ni pi and var Y i= ni pi 1− pi Eq 20.3

Here φ is assumed to be independent of the group sizes ni , and clearly that is not necessarily
true! It makes us realise that using an overdispersion parameter assumes a particular form of the
variance inflation across groups. As for the Poisson distribution (Section 18), several methods
to estimate  φ exist, and the Pearson estimate is generally considered preferable  (Hilbe, 2009;
McCullagh  &  Nelder,  1989).  Note  that  for  binary  data,  replication  within  the  groups  is
necessary for the method to work, ie the data are essentially grouped binary (ie binomial) data
with no within-group predictors. In this situation, other scaling possibilities than the relation in
Eq  20.3  exist,  eg  the  Williams  method  (Collett,  2002) which  also  affects  the  parameter
estimates. For moderately varying herd sizes, the two methods do not differ much (they are
identical  for equal herd sizes). The Williams method (and also the beta-binomial  model for
grouped binary data discussed in Section 22.4.5) assumes 

var Y i=[1ni−1]ni pi1− pi , Eq 20.4

where ρ is the ICC, and the overdispersion factor, φ=1+(ni -1)ρ, therefore depends on the group
size  (ni).  The  logistic  mixed  model  of  Chapter  22  assumes  yet  another  relation  where  the
inflation also depends on the probability  pi.  We demonstrate  the methods by the simulated
binary data with a herd-level predictor (Example 20.4) where there is no within-herd predictor
so that the data can therefore be aggregated to the herd level (grouped binary data) without any
loss of information.

The  advantages  of  the  simple  overdispersion  approach  are  its  numerical  simplicity  and  its
relatively  weak  assumptions  (involving  only  the  variance).  You  can  also  use  ordinary
regression model diagnostics after fitting the model. The size of the overdispersion parameter
provides  an  estimate  of  the  severity  of  the  clustering  problem.  The  disadvantages  are:  a
potential problem in estimating  φ (when there is sparse replication), the assumption that the
overdispersion is constant (or takes the Williams form) when herd sizes (ni) differ strongly, the
lack of likelihood-based inference and, for binary data, its limitation to grouped (binomial) data
(ie no within-herd predictors are possible). As noted in the introduction of Section 20.3, using
overdispersion more generally to compensate for non-modelled hierarchical  clustering is not
recommended,  particularly  because  there  is  little  reason  to  believe  that  the  only  effect  of
clustering is to increase the standard errors.

20.5.4 Robust variance estimation

In a ‘usual’ regression model (linear, logistic etc), the SEs of the coefficients in the model are
based  upon  the  assumption  that  the  model  is  true  in  all  respects  and  that  the  errors  are
independent and follow the appropriate distribution (Gaussian for a linear model) or binomially
distributed (for a logistic model). If these assumptions are met and you had an infinite sample,
the estimated β would be correct and you would have an SE of zero.

There is an alternative approach to computing the variance (and hence the SE) of  β that is
referred to as robust variance estimation, or Huber-White variance estimation  (Huber,  1967;
White, 1980). It also goes under the name ‘sandwich’ variance estimation because, in matrix
notation,  the  formula  for  the  variance  matrix  of  the  βs  looks  like  a  sandwich  (for  the
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mathematically conversant reader: A-1BA-1, where A-1 denotes the inverse matrix, and the actual
form of the matrices depends on the model where the matrix  A-1 is usually the model-based
variance matrix and B is the correction term (Hardin & Hilbe, 2007). These estimates are less
sensitive to the assumptions on which model-based estimation is built (eg homoscedasticity in a
linear regression model) but they also have a slightly different interpretation. The SEs simply
estimate the expected variability in the  βs if repeated samples of the same size as the dataset
were drawn from the original population, and thus, are somewhat analogous to bootstrap SEs
(Guan, 2003). As such, they are more robust to violations of any of the assumptions on which
the model is based and usually (but not necessarily) produce larger SEs (and hence, wider CIs)
than the usual variance estimates. While robust SEs might also be computed for discrete data,
the ‘robustness’ is less obvious with discrete data because model misspecifications might affect
not only the variances but also the estimates themselves. 

The robust variance estimate can also be allowed to vary across clusters, which is important
when dealing with clustered data, because in this variant, it additionally relaxes the assumption
of  independence  to  require  only  independence  of  observations  across  clusters,  not  within
clusters  (Froot,  1989;  Williams,  2000).  A more complete discussion of  alternative  variance
estimation procedures (including sandwich estimators and others) can be found in  (Hardin &
Hilbe,  2007).  We  illustrate  the  cluster-adjusted  robust  variance  method  by  analysing  all
simulated datasets from Examples 20.2-3 with this method (Examples 20.4 and 20.5).

The advantages of cluster-adjusted robust variance estimation are that it is simple to use (if
implemented by your software) and it does not require specific assumptions about the nature of
the clustering. For linear models, it provides SEs that are robust to different violations of the
model assumptions (eg distribution of errors and heteroscedasticity). One disadvantage of this
approach is that it provides no information about the magnitude or origin of clustering. Further,
it  has  no  impact  on  the  point  estimates  of  the  parameters,  which  might  be  considered
particularly critical for non-normal data, and the SEs differ in their interpretation from usual
SEs. Finally, it should also be said that cluster-adjusted robust variance estimation is part of the
generalised estimating equations (GEE) approach to clustered data (Section 23.5) which offers
more control over the modelling without requiring additional assumptions. 

20.5.5 Survey methods

In Chapter 2, we saw how survey design can be incorporated into estimation of means and
proportions from a dataset obtained by a complex sampling design, and noted that the survey
analysis approach extends to some regression models, including those covered in Chapters 14-
19. Multistage survey designs involve one or several levels of clustering (Section 2.10.3), so it
is natural to ask how the methods to account for clustering in the survey and multilevel analysis
frameworks relate to each other. A theoretical comparison is beyond the scope of the book, but
we will give some pointers and illustrate by the -dairy_dis- example from Chapter 2. A recent
review of the multilevel (mixed model) approach for multistage survey data pointed out that
caution  needs  to  exercised  when  the  design  involves  sampling  weights  (Rabe-Hesketh  &
Skrondal, 2006). Conversely, the variance linearisation method for survey analysis corresponds
to  robust variance estimation for  a  two-level  structure  with clustering at  the highest  level
(Section 20.5.4). Some implementations of survey procedures allow for inclusion of additional
levels,  but  the  results  can  generally  be  expected  to  be  close  to  those  for  robust  variance
estimation clustered at the highest level. 
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Other  variance  estimation  procedures  exist  for  survey  analysis  which  have  no  immediate
analogue in multilevel modelling. In particular, for variance estimates based on replication, the
data are repeatedly split into subsamples and the variance among the subsamples is calculated.
(Sampling  weights  are  taken  into  account  in  the  subsamples.)  There  are  multiple  ways  of
forming the  subsamples  (random groups,  jackknife  replication,  balanced  repeat  replication,
bootstrap methods). This approach to variance estimation has the advantage that it can be used
for any statistics being estimated (no analytical solutions required), but it is computationally
intensive.

Survey  method  analysis  of  the  simulated  2-level  datasets  we  used  to  illustrate  the  other
approaches to dealing with clustered data, gives the same results as robust variance estimation
(Examples 20.4 and 20.5).  We illustrate in Example 20.6 the effects  of features  specific to
survey design (sampling weights, stratification and finite population corrections, see Chapter 2)
on the results of a logistic regression to evaluate the effect of two predictors (lactation number
and herd-prevalence of leukosis) on the risk of a cow testing positive for Neospora caninum. It
is intuitively obvious that incorporation of sampling weights will change both estimates and
standard  errors  whenever  observations represent  different  numbers  of  sampling units  in  the
population. Ignoring sampling weights  yields  estimates  for  the study sample instead of  the
source  population.  Some  (non-survey)  statistical  software  will  allow  for  weights  in  the
estimation procedure, but one needs to be careful that these weights have the same meaning
(effect) as the sampling weights. Stratification is essentially another weighting scheme whereby
strata are given weights relative to their proportion of the total population. This will generally
not give the same results as including the strata as fixed effects. Stratification is exclusive to
survey analysis, as is finite population corrections, which will only affect the standard errors.

In summary, survey analysis procedures offer unique possibilities to incorporate features of a
complex sampling design. For a design involving only clustering, the results are comparable to
those of robust variance estimation, and the survey methodology offers no substantial added
advantages. 

20.5.6 Summary of clustered data methods

A variety of approaches for dealing with clustered data has been presented (with mixed models
to follow in Chapters 21-22 and the GEE procedure in Chapter 23). We have illustrated some of
the differences between the methods by the comparative tables of estimates for the simulated
datasets  in  Examples  20.4  and  20.5,  and  conclude  with  a  summary  table  for  the  methods
covered.  Bayesian methods are reviewed in Chapter  24. Table 20.4 gives  only a very brief
summary; consult the respective sections for details.
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Table 20.4 Summary of approaches for clustered data

Properties/Features

Method to 
account for clustering 

[VER coverage]
Adjusted

SE
Adjusted

β
>1 level of
clustering

Estimate
of ρs

Comments on scope 
or use of method

Fixed effects [20.5.2] yesa yes no no no cluster-level predictors

Stratification [20.5.2] yes yes no no specific designs (binary data)

Overdispersion correction 
[20.5.3]

yes no no no no within-cluster predictors, not for 
continuous (normal distribution) data

Robust SE (clustered) [20.5.4] yes no (no) no also adjusts for other model 
violations (continuous data)

Survey methods [20.5.5] yes (no) yes no additional features (sampling 
weights, stratification)

Linear mixed model [21] yes yes yes yes continuous (normal distribution) data

Discrete mixed model (GLMM) 
[22]

yes yes yes yes cluster-specific (SS) parameters

Generalised estimating equations 
(GEE) [23]

yes yes (no) (yes) population-averaged (PA) 
parameters (discrete data)

Bayesian mixed model 
(continuous/discrete) [24]

yes yes yes yes different statistical approach, 
additional components of analysis

aTable contents reflect attributes of each method. For example, fixed effects models do adjust SEs and coefficients (β) but 
cannot handle more than one level of clustering or provide an estimate of ICC (ρ)
Note GEE method yields correlations as part of working correlation matrix, alternating logistic regression version of GEE for 
binary data allows for two levels of clustering, and both GEE and robust variance methods can adjust for multiple levels 
provided a sufficient number of units at highest level

Example 20.6 Survey and multilevel analysis for complex survey data
data = dairy_dis

The  probability  of  a  cow  testing  positive  for  Neospora  caninum was  evaluated  using  a  logistic
regression  model  with  both  a  cow-level  predictor  (lactation  number)  and  a  herd-level  predictor
(proportion of  the herd  positive  for  leukosis).  The  estimated  coefficient  and  SE are  presented  for
versions of survey analysis incrementally incorporating more features of the sampling design. 

Survey analysis
Lactation number Leukosis prevalence

Estimate SE Estimate SE

(1): herd clustering -0.077 0.032 0.889 0.442

(2): (1) + sampling weights -0.103 0.038 0.885 0.417

(3): (2) + fixed province effects -0.095 0.041 0.771 0.419

(4): (2) + province stratification -0.103 0.038 0.885 0.420

(5): (4) + finite population corr. -0.103 0.037 0.885 0.397

The first 3 analyses can also be obtained by robust variance estimation in logistic regression. However,
the P-values for tests will differ slightly, because the survey procedures in Stata use reference F- or t-
distributions whereas, the logistic regression procedure uses chi-square and Z-distributions. It is seen
that ignoring the sampling weights  has a major  impact  on the estimate for the cow-level  predictor
(lactation number). Modelling province by fixed effects strongly affects the estimate for the herd-level
predictor. The finite population corrections reduce the standard errors slightly. Analysis (5) is preferred
because it incorporates all features of the sampling design.
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