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MIXED MODELS FOR CONTINUOUS DATA

OBJECTIVES

After reading this chapter, you should be able to:

 1. Write an equation for a model that contains both fixed and random components.

 2. Compute the variance for each level of a multilevel model.

 3. Determine how highly correlated observations are within a cluster.

 4. Determine if predictors have the same (fixed), or different (random slopes) effects across 
clusters.

 5. Compute the variance of the outcome (a complex function) in models containing random 
slopes.

 6. Determine whether the between-cluster and within-cluster regressions for predictors have 
different slopes (ie whether contextual effects are present in the data).

 7. Evaluate the statistical significance of fixed and random effects in a model.

 8. Evaluate residuals from a multilevel model.

 9. Determine the optimum Box-Cox transformation for the outcome in order to normalise the 
residuals from a model.



554 MIXED MODELS
FOR CONTINUOUS DATA

21.1 INTRODUCTION

Mixed models (for continuous data) contain parameters or effects of 2 types:
• fixed, or mean effects, such as ordinary regression coefficients in a linear regression

model (Chapter 14),
• random, or ‘variability around the mean’ effects, explaining some of the error term.

Mixed models can be used to take into account that the data have a hierarchical, multilevel or
nested structure, and are sometimes referred to by these terms. Although other methods exist for
analysing hierarchically structured data, the use of mixed models has become a popular choice
during the last decade due to advances in computing power. Multilevel models, a special type of
mixed model,  have been  advocated  as  an appropriate  framework  for  many epidemiological
analyses  (Diez-Roux, 2000; Greenland, 2000b) we elaborate on this in Section 21.3.4. Mixed
models also apply to many other data structures, but our focus in this chapter is on hierarchical
data (we discuss repeated measures and spatial data in Chapters 23 and 25-26). Mixed models
are  also  known  as  variance  component  models.  Variance  components  are  the  technical/
mathematical constructs used to decompose the variance (variation, variability) in a dataset into
(a sum of) several components that can each be given a useful interpretation. 

The dataset scc_40 (described in more detail in Chapter 31) is used to illustrate the methods
numerically. It is comprised of data from 40 herds selected from a much larger dataset that was
collected to study problems related to mastitis and milk yield. We will take the (log) somatic
cell count (SCC) as the outcome. The data structure is 3-level hierarchical: 14,357 tests within
2,178 cows within 40 herds. The tests were performed on each cow approximately monthly
throughout one lactation, and thus constitute  repeated measures per cow. In this section, we
include only a single test per cow—the first test recorded in the cow’s lactation. This gives a 2-
level structure of the 2,178 cows in 40 herds; herd sizes in the dataset range from 12 to 105.
The 2-level dataset is denoted scc40_2level. Obviously, any inferences to real associations of
predictors with the outcome should not be based on results from such subdatasets. The variables
used in the examples in this chapter are listed below. For clarity, we use the term season for the
quarters of the year without claiming to infer any seasonal effects from 2 years of data.

Table 21.1 Selected variables from the dataset scc_40

Variable
Level of

measurement Description

herdid 3:herd herd identification

cowid 2:cow cow identification

test 1:test approximate month of lactation for test: 0,1,2,...,10

hsize 3:herd herd size (averaged over study period)

heifer 2:cow cow parity with values 1 (heifer) and 0 (older cow)

season 1:test season of test with values 1 (winter: Jan, Feb, Mar), 
2 (spring: Apr-Jun), 3 (summer: Jul-Sep) and 4 (fall: Oct-Dec)

dim 1:test days ‘in milk’ (since calving) on test day

lnscc 1:test (natural) log of somatic cell count
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21.2 LINEAR MIXED MODEL

Linear mixed models extend the usual linear regression models (Chapter 14) of the form:

Y i=01 X 1 i k X ki i , i=1, ,n Eq 21.1

We will take as our outcome Y the log somatic cell counts and as our regressors  X1,...,Xk the
continuous and  dummy variables  necessary to  represent  the chosen  predictors.  Further,  the
errors  ε1,...,εn are  assumed independent  and  ~  N(0,σ2).  This  equation  (and  its  assumptions)
would be meaningful if we considered one test per cow and there was no clustering in herds (eg
we might have data from only one herd). It is worth noting that, in this model, the observations
Y1,..., Yn are independent and all have the same variance:

var Y i=var i=
2

So far,  the residual  variance  is  the only variance  component.  However,  in reality we have
recordings  in  several  (40)  herds,  and we would like the herds  to  enter  our model  as well,
because we know that there might be some variation of cell counts across herds. Previously, we
have discussed including herds in the model by adding a set of (40-1) indicator variables and
estimating a separate β for each of them. A mixed model with a random herd effect is written:

Y i=01 X 1 i... k X kiu herd i  i Eq 21.2

The model  is  often termed a  random intercept  model,  for  reasons  we’ll  explain  later  (in
Section 21.3.4).  Note  For the sake of simplicity,  a single index notation will be used for all
multilevel  data.  The  subscript  i denotes  the  individual  (lowest  level)  observation.  In  the
equation above, uherd(i) refers to the herd containing the ith individual (eg u7 for cows in herd 7).
If there are 40 herds, u could have one of 40 values: uj, j=1,...,40. An alternative notation uses
multiple indices such as uj + εij where j refers to the herd and i to the ith individual in the jth herd.

The explanatory variables and the β-parameters are unchanged from Eq 21.1 to Eq 21.2. These
are usually termed the fixed effects, in contrast to the last 2 terms which are random effects.
The only new term in Eq 21.2 is uherd(i), a random herd effect for the herd of the ith cow. Random
simply  means  that  it  is  modelled  as  a  random  variable,  in  contrast  to  a  fixed  parameter
(according to a ‘frequentist’ or non-Bayesian view; see Chapter 24 for the alternative Bayesian
approach). Let’s defer the question as to why we model herd as a random term for now, and
first look at the assumptions for u and ε:

u j ~ N 0, h
2 ,  i ~ N 0, 2

where all uj and εi are independent.

Thus, we assume the impact of each herd to be a random fluctuation with mean zero (and
consequently centred at the mean determined by the fixed effects) and standard deviation σ h.
Therefore,  the  parameter  h

2 can  be interpreted  as  the random variation in  log cell  counts
between herds. Furthermore, we could calculate:

var Y i=var u herd ivar i = h
2


2

Eq 21.3

In effect, we have decomposed the total variance to a sum of the variance between herds and
the error variance (or the variance within herds). The σ2s are the variance components; Example
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21.1 shows how they might  be interpreted.  Note The variation  accounted  for  by the fixed
effects is not  included here;  one way of saying this is  that  Eq 21.3 is for the  unexplained
variance.

Random effects modelling of herds  can be motivated in different  ways.  Strictly speaking it
corresponds  to  effects  (herds)  in  the  model  being  randomly  selected  from  a  population.
Sometimes, in a study, this could be the case, but it might be reasonable to assume that the
herds are generally representative of the population even if they were not randomly selected. In
our example,  the 40 herds  were  randomly selected from the full  set  of  study herds,  which
constituted all milk-producing herds in a certain geographical area of Denmark. Consequently,
these 40 herds were representative of this region. With random effects, the focus shifts from the
individual herd to the variability between herds in the population h

2 . In a study with only a few
herds of particular interest (possibly because they were individually selected for the study), one
might prefer to model herds by fixed effects (ie β-parameters) instead (as discussed in Section
20.5.2).

Mixed models can be used to take into account more general hierarchical data structures by
inserting random effects for all levels above the bottom level (which is already present in the
model as the error  term). For example,  a 3-level  structure with animals in herds in regions
would lead to random effects for both herds and regions and we then split the variation into 3
terms: var Y i= r

2
 h

2


2 .  In mixed models, the predictors might reside at any level of the
hierarchy. As a particular example, the split-plot design (Section 20.2.1) could be analysed by a
mixed model with random effects for the whole-plots. In epidemiology, we often work with
datasets  in  which  predictors  explain  variation  at  several  levels  (Section  20.2.2);  the  mixed
model analysis fully takes this into account. Example 21.2 shows some of the possible changes
to a linear  mixed model when fixed effects  are included.  Finally,  the one exception to the
‘random effects for every level’ rule is that the top level could be modelled by fixed effects, if
(and only if!) there are no predictors at that level. This situation often occurs when the top level
(eg herd or region) is not a random sample of a larger population and does not have a large
number of elements (eg Example 21.3). Some ‘final’ remarks on fixed vs random effects have
been collected in Section 21.5.7.

Example 21.1 Variance components and random effects 
data = scc40_2level

This dataset contains one observation from each of 2,178 cows from  40 herds. In a 2-level random
effects model for -lnscc- with no fixed effects (a ‘null’ or ‘empty’ model’), the variance components
were estimated at:

 h
2
=0.148 and 

2
=1.730

Thus,  the  total  (unexplained)  variance  was  0.148+1.730=1.878.  It  is  often  useful  to  compute  the
fractions at the different levels; here we have 0.148/1.878=7.9% of the variance between herds and
92.1% within herds. We can also give a direct interpretation of 95% of the herd effects should be
within an interval of ±1.96 σh= ±0.754. As the overall mean (β0) was 4.747, this means that most herd
mean -lnscc- values in the population lie between 3.993 and 5.501.
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21.2.1 Intraclass correlation coefficient

The  model  assumptions  allow  us  to  examine  the  dependence  or  correlation  between
observations from the same herd. In a linear model, all observations are independent, but in
mixed models this is no longer so. The correlation between observations within the same group
(in our example, herd) is described by the intraclass correlation coefficient (ICC or ρ). For a 2-
level  model  (Eq 21.2),  the  ICC equals  the proportion of  variance  at  the  upper level;  from
Example 21.1:

Example 21.2 Mixed model estimates for 2-level somatic cell count data
data = scc40_2level

A linear mixed model with herd size, heifer, season and days in milk was fit to the 40-herd, 2-level scc
data.  The variables  are  explained  in  the table  below;  in  addition,  the herd size  was  standardised  
(-shsize-) by subtracting the approximate mean herd size (45) and dividing by 100, thus effectively
measuring herd size in  hundreds beyond 45.  Similarly,  days  in  milk was  standardised (-sdim-) by
subtracting 150 and dividing by 100.

Coef SE Z P 95% CI

shsize 0.408 0.377 1.08 0.279 -0.331 1.148

heifer -0.737 0.055 -13.3 0.000 -0.845 -0.628

season = spring 0.161 0.091 1.78 0.076 -0.017 0.339

season = summer 0.002 0.086 0.02 0.986 -0.168 0.171

season = fall 0.001 0.092 0.02 0.987 -0.179 0.182

sdim 0.277 0.050 5.56 0.000 0.179 0.375

constant 5.241 0.114 - - 5.018 5.464

Note that, because of the random herd effects, the constant refers to the log somatic cell count in an
average herd, not to the value of an average cow across the population of cows. As herds differ in size,
these means are not necessarily the same. For example, if the highest cell counts were obtained in the
largest herds (even if the -shsize- estimate hardly indicates this to be the case), then the cow average
would typically be higher than the herd average. The cow and herd averages are analogous to weighted
and unweighted averages in multistage sampling (Section 2.8). The other regression coefficients are
interpreted in the usual way.

In addition, the estimated variance components (also with standard errors (SEs)) were:
 h

2=0.1490.044 and  2=1.5570.048

In a linear regression model, adding predictors always reduces the unexplained variation. Intuitively,
one would expect a similar effect in a mixed model at the levels affected by added predictors. But, by
comparison, in Example 21.1, we note a reduced value for σ2 and a slightly increased value for It
is not unusual that adding fixed effects  to hierarchical models redistributes the variation across the
levels and thus increases some of the variance components and, sometimes, even the total variation (the
sum of all variance components). No simple intuitive explanation can be offered; see Chapter 7 in
(Snijders & Bosker, 1999) for details and ways of defining measures of the variance explained by fixed
effects.
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=
h

2

 h
2 2

=
0.148

0.1481.730
=0.079

Eq 21.4

Thus, a low ICC means that most of the variation is within the groups (ie there is only little
clustering), while a high  ICC means that the variation within a group is small relative to that
between groups. 

Generally  in  mixed  models  with  homogeneous  variances  and  independent  random  effects,
correlations are assumed to be the same between any 2 observations in a group and can be
computed  by  a  simple  rule.  Recall  (Eq 20.1)  that  the  correlation  is  the  ratio  between  the
covariance of the 2 observations in question and the product of their standard deviations. As all
observations have the same variance, the denominator of this ratio is always the total variance,
ie the sum of all variance components. The numerator is obtained by noting which random
effects are at the same level for the 2 observations in question, and summing the respective
variance components. For the 2-level model, this rule gives Eq 21.4 for observations in the
same group and zero correlation for observations in different groups. If region was added as a
third level to the model, the correlation between cows in the same herd (and hence within a
region) would be:

cows in same herd =
 r

2
 h

2

 r
2
h

2


2

Eq 21.5

Similarly, the correlation between cows in different herds in the same region would be: 

cows in same region, but different herds=
 r

2

r
2
 h

2


2

Eq 21.6

Example  21.3 shows similar  computations for  a  4-level  model.  The correlation  in  Eq 21.6
referred  to  cows  in  different  herds  but  an  intuitively  more  appealing  value  might  be  the
correlation  between herds—more precisely,  between herd means.  The correlation between
means of 2 herds of size m is 

herds of size m in same region=
 r

2

r
2
h

2


2
/m Eq 21.7

When  m  is large, the contribution of  σ2/m to the formula is small and might be ignored (see
Example 4.7 of Snijders & Bosker (1999) for further discussion.

21.2.2 Vector-matrix notation

Notation involving vectors and matrices allows us to write the linear and linear mixed models in
a compact and clear form. The linear regression model (Eq 21.1) can be written

Y =X 

where  Y,  β and  ε are (column) vectors and  X is the so-called design matrix, comprised of a
column of 1s followed by the k columns containing the values of the k predictors of the model.
(Technical Note  Our usage of  Xji for the element in the  ith row and jth column of  X contrasts
usual  matrix  notation  but  is  of  no  serious  consequence  because  we  do  not  pursue  any
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computations  with  matrix  notation.)  Similarly,  linear  mixed  models  such  as  Eq  21.2  can
generally be written as:

Y =X Zu Eq 21.8

where  u is a vector  of all random effects  (except for  ε) and  Z is  the design matrix for the
random part of the model. Our assumptions for the model (in this chapter) are that all random
variables are normally distributed with mean zero, and that all the errors are independent, have
the same variance and are independent of the random effects.

Before we further develop the mixed models for hierarchically structured data,  let’s briefly
indicate how mixed models can be set up for cross-classified data structures (Section 20.2). In
the simplest cross-classified structure, every observation is classified according to 2 groupings,
eg sires and dams in breeding data. We denote the 2 groupings by A and B. If both sires and
dams are taken to represent a population, the natural model has 2 random effects in addition to
the error term, as follows: 

Y i= X iuA i vB i  i Eq 21.9

where (Xβ) represents  the fixed effects,  and the random effects  for groupings A and B are
drawn  from  normal  distributions  with  variances  A

2
and  B

2 , respectively.  In  the  context  of
analysis of experimental design data, this model is known as a 2-way random effects ANOVA
model (Dean & Voss, 2000) model (and more commonly written in a 2-index notation with i

Example 21.3 Intraclass correlations in a 4-level mixed model
data = reu_cfs

(Dohoo et al, 2001) used 4-level mixed models to analyse the (log) calving to first service intervals for
cattle in Reunion Island. Their model had several fixed effects which we denote X1,…,Xk, so that the
model could be written:

Y i=01 X 1i…k X kiucow i vherd i w region ii

The variance components for the unexplained variation were:
region : r

2
=0.001, herd : h

2
=0.015, cow :c

2
=0.020, lactation : 2

=0.132

Analysis of a 4-level model for the -reucfs- data with its 2 predictors (-ai- and -heifer-) gives similar
estimates. The fact that the first 3 variance components were small once again points out that there is
little similarity (in terms of calving to first service interval) between lactations within a cow, between
cows within a herd or between herds within a region. In the original study, the authors suggested that
management of reproductive performance should focus on individual lactations within individual cows,
because this is where most of the unexplained variation resided.

From the estimates we could compute a total variance of 0.168 and the following correlations between
observations (lactations):
lactations of the same cow: ρ=(0.001+0.015+0.020)/0.168=0.214
lactations of different cows in the same herd: ρ=(0.001+0.015)/0.168=0.095
lactations of cows in different herds in the same region: ρ=0.001/0.168=0.006

As  the  study  included  only  5  regions  that  could  hardly  be  considered  as  representative  for  any
population of regions (together they constituted the entire island), it would be more appropriate to
model regions by fixed effects. Having noted that there is virtually no variation between regions (it is
far from statistical significance), one might also simply remove region effects entirely from the model.
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and j representing the factors A and B). ICCs can be computed by the same principles as above;
eg the ICC for observations at the same level of grouping A is computed as:

= A
2
/ A

2
 B

2


2


21.3 RANDOM SLOPES

21.3.1 Additive and non-additive modelling

As a prelude to extending the mixed model (Eq 21.2) with a random slope, we consider in more
detail  one  implication of  the  model  assumptions.  Let’s  focus  on a  quantitative  explanatory
variable, for instance, days in milk. Assume these values to be in X1, and assume the model has
a linear term for X1 with a positive regression coefficient (β1), and no interaction terms with X2

(parity of the cow). Then the predicted log somatic cell counts from the model for different
cows in different parities, as a function of X1 will be parallel lines, as outlined on the left in Fig.
21.1. Each line represents the predicted value for cows of a specific parity.  If an interaction
term between parity and days in milk was added, this would produce non-parallel lines (for
different parities), as outlined on the right. 

Exactly the same interpretation is valid for cows in different herds: in an additive model (Eq
21.2) the regression lines corresponding to different herds are parallel, and the random herd
effects can be read as the vertical distances between the lines. This is because Eq 21.2 assumes
the impact on the logarithmic cell counts of a change in days in milk (eg 10-day increase) to be
the same for all cows in all herds (parallel lines). 

21.3.2 Random slopes as non-additive herd effects

An  assumption  of  additive  herd  effects  (parallel  lines)  might  not  be  biologically  obvious
because  other  factors  such as herd management  factors  (inherent  in the herd effects)  could
influence the relationship. Adding an interaction between herds and X1 means that slopes vary

Fig. 21.1 Schematic graphs of additive and non-additive modelling of a 
continuous predictor (days in milk) for a continuous outcome (lnscc)
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among herds. If herd was included in the model as a set of fixed effects, the interaction term
would result in a specific effect being estimated for each herd. With herd as a random effect,
the slopes are assumed to vary according to some distribution (in addition to the intercepts
varying between herds). A model with random slopes for a single fixed effect (X1) is written as:

Y i=01 X 1 iuherd  ibherd i  X 1 i i Eq 21.10

where in addition to the previous assumptions, we assume for the random slopes that the bherd ~
N(0,1

2
). The parameter 1

2
 is interpreted as the variation in slopes among herds. The regression

parameter  β1 is  now the  overall  or  average  slope for  X1,  which  is  then  subject  to  random
fluctuations between herds. As a rough rule, with probability 95%, the slope in a given herd
would lie  in  the  interval  β1±2σ1.  The  choice  of  whether  the slopes should be  modelled  as
random or fixed effects usually follows the choice for the random effects themselves. That is, if
herds are modelled as random, any slopes varying between herds should also be random. (Note
The random herd effect, uherd, and its variance,  h

2, now represent the variation between herds at
X1=0; for this to be meaningful it is necessary that zero is a meaningful value of X1; otherwise it
must be centred.)

We have not yet specified the assumptions about the relationship between bherds and the other
random variables, and it is usually undesirable to assume random effects at the same level to be
independent. In our example, the 2 random effects at the herd level (uherd and bherd) correspond to
intercept and slope for the regression on X1 at the herd level. Recall that slope and intercept are
often  strongly  negatively  correlated  (although  centring  the  variable  might  remove  this
correlation). Consequently,  we usually estimate a correlation or covariance between the herd
intercept and slope. It is useful to display the 3 parameters: h

2
, 1

2
 and the covariance σh1, in a

2X2 matrix as follows:

 h
2  h1

 h1  1
2 

and the correlation between the herd intercepts and slopes is computed as  σh1/(σhσ1).  Example
21.4 shows the effect of adding a random slope to the SCC data.

21.3.3 Caveats of random slopes modelling

As intuitively appealing as the random slopes might appear, we must raise a few warning signs
in their use. When the main interest is in the fixed effects, it is wise policy not to build models
with too many variance parameters. In our experience, it is rarely useful to have more than one
or 2 random slopes at each level in a model, and random slopes should usually only be included
for statistically significant and clearly interpretable predictors; see also Section 21.3.4 below for
a different perspective.

One reason why random slopes should be used cautiously is that the variance of the model is
no longer constant. To illustrate, we compute the variance components for the random slopes
model of Eq 21.10:

var Y i = var u herd i var bherd  i X 1 i2 cov uherd  i  ,bherd  i  X 1 ivar  i

=  h
2 X 1 i

2  1
22 X 1 i  h1 2

Eq 21.11
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This equation involves the values of the explanatory variable X1. In consequence, the variance is
no longer the same for all observations but a function of X1. Also, there is no longer a unique
decomposition of variance in the model. For moderate magnitudes of 1

2 and σh1 one might
arrive at approximately the same decomposition of variance within the most relevant range of
X1.  It  is  always  recommended to plot the resulting variance function from a random slopes
model, and if possible, convince yourself that it makes biological sense. Fig. 21.2 shows the
variance function of the random slopes model for the SCC data. The dependence of the total
variance on X1 is rather weak because the major portion of the variance is at the cow/test level;
nevertheless, the dependence on X1 is biologically reasonable. Mastitis in cows is more dynamic
early in lactation (so we might expect more variance in -lnscc- early in lactation) and rises again
late in lactation. 

Random slope models have been introduced for continuous predictors (where the relationship
between  Y and  X is  a  regression).  However,  interactions between  categorical  variables  and
random effects are possible as well, although not interpretable as random slopes. Hence, the
more general term random coefficients may be used instead of random slopes. As before, an
additive model assumes the impact of each categorical predictor to be the same in all herds, and
one might want to allow it to vary between herds. It’s simplest to specify such models for a
dichotomous predictor:  treat  its  0-1 representation as if  it  was a continuous variable.  If  the
variable  takes  several  (j)  categorical  values,  one  might  create  (j-1)  indicator  variables  and
proceed  in  the  same  way.  Be  aware  that  such  models  quickly  grow  to  contain  a  lot  of
covariance  terms,  and  that  they  could  produce  very  different  variances  for  the  different
categories. In such cases it might be useful to restrict the covariances to zero.

Example 21.5 shows the effect of adding a random slope for a dichotomous predictor in the
SCC data.

21.3.4 Random slope models as hierarchical models

So far we have used the term ‘hierarchical’ only to describe the data structure. A hierarchical

Example 21.4 Random slopes of -sdim- for somatic cell count data
data = scc40_2level

Adding a random slope of -sdim- to the model  of Example  21.2 gave almost  the same regression
coefficient (0.273) but with a somewhat increased SE (0.061), and the random effect parameters (with
SEs) were:

 h
2

 h1

 h1  1
2 = 0.130 0.048 0.00530.0246

0.00530.0246 0.04260.0259 and 
2
=1.5410.048

The value of  1
2 suggests that 95% of the slopes for -sdim- lie roughly within 0.27±0.40=-0.13, 0.67.

The correlation between intercepts and slopes is small and positive 0.0053/0.130∗0.0426=0.07
so the centring of -sdim- effectively removed the correlation. The value of 1

2 is only moderately
larger than its SE and σh1 seems totally non-significant, so it is not obvious whether the random slopes
add much to the model. We will later see how to compute a statistical test for the random slopes (it is
weakly  significant).  Note  finally  that  a  model  with  random  slopes  for  -shsize-  would  not  be
meaningful;  random slopes are possible only for variables at a lower level than the random effects
themselves in order to be interpreted in the way we have done.
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model has a more specific meaning than a model for hierarchically structured data, namely as a
model with multiple hierarchical  levels (see Chapter 24 for the Bayesian context). In social
science and psychology applications, random slope models are often referred to as hierarchical
models  (Raudenbush  &  Bryk,  2002).  We  will  outline  the  rationale  behind  the  modelling
approach by slightly rewriting the random slopes model of Eq 21.10 as:

Y i=1∗0uherd  i i X 1 i∗1bherd  i

This model representation elucidates that every predictor can be included in the model in 3
ways (in a 2-level hierarchy): as a fixed effect, or as random effects at each of the 2 levels in the
model. In the equation, the constant (1) corresponds to the intercept, and the term uherd is often
termed a  random intercept (at  the herd level),  thus the name  random intercept model for
models such as Eq 21.2. A random slopes model is characterised by the fact that at least one
predictor (in addition to the constant) has a higher level random effect. (Note Random effects of
predictors at their own or lower levels correspond to heterogeneous variance models, discussed
in Section 21.5.8).  It  is common in hierarchical  modelling to include (higher level) random
effects  of  all  predictors  by  default,  the  rationale  being  that  effects  at  different  levels  are
conceptually relevant. An argument has been made for the use of random coefficient (ie random

Fig. 21.2 Variance function of random slopes model
for somatic cell count data
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Example 21.5 Random slopes of -heifer- for somatic cell count data
data = scc40_2level

Adding a random slope (of -heifer-) to the model from Example 21.2 produces a regression coefficient
of -0.734(0.067) and the variance parameters (with SEs):

 h
2  h 1

 h1 1
2 = 0.2020.062 −0.0760.042

−0.0760.042 0.0510.039  and 
2
=1.5460.048

The  2  variance  contributions  at  the  herd  level  of  this  model  are  0.202  for  non-heifers  and
0.202+0.051+2*(-0.076)=0.101  for  heifers.  We  see  how  the  covariance  is  part  of  the  variance
calculation, so it should not be assumed to be zero when dealing with random slopes for categorical
predictors. The data thus seem to indicate both a smaller mean and less variation of somatic cell counts
for heifers than older cows. This makes biological sense based on our knowledge of mastitis.
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slope)  models  in  epidemiology  (Greenland,  2000b) as  a  way  to  adjust  for  unmeasured
confounders  and  achieve  more  realistic  assessments  of  the  population-level  associations
between predictors and outcome. One potential problem with (multiple) random slopes models
is a lack of identifiability of variance parameters at the higher levels (where the number of units
is  typically  not  very  large).  Bayesian  approaches  (Chapter  24)  to  this  problem  have  been
proposed (Gustafson & Greenland, 2006), but at the current state of the methodology the best
practical  approach  may still  be  a  parsimonious modelling of  variance  (as  advocated  in  the
previous section).

21.4 CONTEXTUAL EFFECTS

Our discussion of hierarchical models introduced the idea that a predictor may be modelled
with effects at multiple levels. Contextual effects add another facet to the picture, under certain
conditions, by allowing for fixed effects of a predictor at higher levels than where it is recorded.
The term ‘contextual effect of a predictor’ originates from social sciences and captures the idea
that  although the predictor  is  recorded at  an individual level,  its  effect  mostly (or  entirely)
relates to the group, or context, to which the individual belongs (Snijders & Bosker, 1999). We
describe first a contextual effect of a predictor in a random intercept model (Eq 21.2), following
(Stryhn et al, 2006) and then consider the extension to a random slopes model. The predictor X1

is said to have a contextual effect if the following 2 conditions are both satisfied:
i. X1 varies both between and within herds, 
ii. the between-herd and within-herd regressions of Y on X1 have different slopes. 

Two situations where condition i. is  not satisfied are: when X1 is a herd-level predictor, and
when the herd averages   X 1 herd are constant between herds (eg in a clinical field trial with
treatment  groups  equally  represented  within  each  herd).  For  condition  ii.,  the  within-herd
regression of Y on X1 refers to a regression equation corresponding to different animals within a
single herd. Furthermore, the between-herd regression is a regression of herd mean outcomes
Y herd on herd predictor means  X 1 herd. Fig. 21.3 illustrates situations where the between-herd
and within-herd regressions of Y on a continuous predictor X1 coincide (left-hand panel) and are
completely different (right-hand panel). The within-herd regressions are indicated by straight
lines (without showing individual data points), and the between herd regression is obtained by
fitting a straight line to the dotted points (herd means of Y and X1). In the right-hand panel, the
within-herd slope is positive whereas the between-herd regression would have a negative slope.

We can allow for a contextual effect of X1 in Eq 21.2 by including the herd means  X 1 herd as
an additional fixed effects predictor (while retaining the predictor X1), ie:

Y i= 01 X 1 i2 X 1 herd iu herd i i , Eq 21.12

where X 1herd i  is the X1 mean for the herd to which subject  i belongs. A contextual effect is
(significantly)  present  when  the  estimate  of  the  regression  coefficient  β2 is  statistically
significant. If a contextual effect is present, we recommend (in order to reduce collinearity and
to obtain more easily interpretable estimates) to reformulate model (21.12) by replacing the
original predictor X1 by its within-herd centred version, Z 1i= X 1 i−X 1 herd i, as follows:

Y i=01 Z 1 i2 X 1herd  i uherd  i i , Eq 21.13

The equations (21.12) and (21.13) represent the same model, and the coefficients for X1 and Z1
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are  identical  (β1),  whereas  2=12.  The  parameter  2 is  the  slope  of  the  between-herd
regression of Y on X1 (ie between the corresponding herd means, as explained above) and the
parameter β1 in models (21.12) or (21.13) is the slope of the within-herd regression of Y on X1.
Example 21.6 shows how these models can be fit in a dataset on somatic cell counts of heifers.

As demonstrated  in  the  example,  contextual  effects  may also be  incorporated  into random
slopes models, by adding the herd-averages of the predictor into the model equation in the same
way as we did in Eqs 21.12 and 21.13. One should be aware that the 2 parametrisations above
lead to different models if the fixed and random slopes use the same version of the predictor (X1

and  Z1,  respectively).  The  validity  of  using  the  group-mean  centred  predictor  Z1 has  been
discussed in the literature (eg Hox, 2002, Section 4.3); a practical approach is to explore both
models and compare their fit to the actual data.

In summary, it is important to realise the presence of contextual effects for a problem, because
the within- and between-group regressions may represent different effects, and therefore often
have  different  interpretations.  In  the  presence  of  a  contextual  effect,  the  single  regression
coefficient in model (21.2) is a complex function (under certain conditions: a weighted average)
of the 2 slopes β1 and 2 and difficult to interpret (see Section 3.6 of Snijders & Bosker, 1999,
for details). Failure to account for contextual effects may lead to conclusions based on either
ecological or atomistic fallacies (Chapter 29).

21.5 STATISTICAL ANALYSIS OF LINEAR MIXED MODELS

In mixed models there are several methods of analysis, and the principal estimation procedure,
which  is  based  on  the  likelihood  function  (Section  21.5.1),  does  not  have  closed-form
expressions for the estimates but involves running several steps of an estimation algorithm. This
requires  some  extra  attention  to  the  statistical  software  by  the  researcher  to  ensure  that  it
employs the desired estimation procedure and to ensure that it is capable of analysing the data
at hand. Statistical software differ in the range of models that can be analysed, in their ability to
handle large data structures (many units at any level beyond the lowest one) and in their user

Fig. 21.3 Schematic graphs showing no contextual effect (left) and a strong 
contextual effect (right) of the predictor X1
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interface. Specialised hierarchical or multilevel software has been developed to deal with huge
data  structures;  a  good  source  of  information  is  the  website  of  the  Centre  for  Multilevel
Modelling at the University of Bristol, UK (http://www.cmm.bristol.ac.uk). As of winter 2009,

Example 21.6 Contextual effects for somatic cell count data for heifers
data = scc_heifer

A study on the predictive value of early lactation records of somatic cell counts for outcomes later in
lactation  was  based  on  data  for  heifers  in  Belgian  herds  collected  during  the  years  2000-01  (De
Vliegher et al, 2004). Approximately monthly recordings throughout the first lactation (until dry-off)
were recorded for each heifer, but we consider only a single record for each heifer (the one obtained
during 76-105 days in milk).  This subset of the data comprises 10,996 heifers in 3,095 herds. The
predictor of primary interest was the (natural) log SCC in early lactation (days in milk 5-14; - lnsccel-),
and our focus here is on predicting log SCC (-lnscc-) later in lactation. We show 4 mixed models with
this  single  predictor  and  herd  random effects;  the  analysis  of  (De  Vliegher et  al,  2004) included
additional predictors such as the yield,  season,  the breed,  and the days  in milk at  which  the early
lactation SCC was obtained, and Stryhn et al (2006) presented results for contextual effects of both log
SCC and yield.

Model
Random
intercept Contextual

Random
slopes

Contextual
+ random slopes

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

β0(intercept) 4.095 0.012 4.094 0.012 4.095 0.012 4.095 0.012

β(lnsccel) 0.262 0.008 0.242 0.009 0.271 0.009 0.248 0.010

β(hlnsccel) - - 0.080 0.019 - - 0.089 0.019

σ2(herd) 0.121 0.011 0.118 0.011 0.118 0.011 0.115 0.011

σ2(lnsccel) - - - - 0.021 0.005 0.021 0.005

σ2(heifer) 1.037 0.016 1.038 0.016 1.007 0.017 1.007 0.017

The variable -hlnsccel- contains the herd means of -lnsccel-. The strong significance of the contextual
effects in both the random intercept and random slopes models is indicated by estimates of -hlnsccel-
being much larger than their SEs. In the random intercept model with contextual effects, the within-
and  between-herd  regression  slopes  are  estimated  at  0.242  and 0.322 (computed  as  0.242+0.080),
respectively. The single slope (0.262) in the random intercept model, therefore, mostly represents the
within-herd regression, and would most likely also be interpreted as such. The added strength of the
between-herd regression can probably be attributed to a herd management effect: in herds with heifers
that generally have low early lactation SCCs, the SCCs are also lower later in lactation, in both cases a
reflection of good herd management. In this case, the contextual effect adds to the interpretation of the
single  regression  coefficient  without  altering  its  (within-herd)  interpretation.  Stryhn et  al (2006)
presented an example where the contextual effect changed the interpretation. 

Adding the strong random slopes for -lnsccel- to the model does not substantially change the estimates
or SEs of the within- and between-herd regressions. In summary, the effect of -lnsccel- can therefore be
described as a composite  of 3 terms,  as follows.  On average,  an increase in -lnsccel- of 1 unit  is
associated with an increase of 0.248 units for the same animal 76-105 days into the lactation. The 95%
range across cows for this effect is, however, fairly wide: 0.248±2*√0.021=0.248±0.290. In addition,
herds with a 1 unit higher average -lnsccel- could expect an added 0.089 units increase in -lnscc-, for a
total of 0.337(0.248+0.089) units remaining of the initial elevation after 76-105 days.
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the main software options (with corresponding texts providing theory, examples and code) were
(in unstructured order):  Stata  (Rabe-Hesketh & Skrondal,  2008),  S-Plus/R  (Gelman & Hill,
2006; Pinheiro & Bates, 2000), SAS (Littell et al, 2006), as well as the 2 multilevel packages
MLwiN (with a wealth of material at the above-mentioned website) and HLM (Raudenbush &
Bryk, 2002).

In most ways the mechanics of the analysis of linear mixed models is similar to the analysis of
linear models, because the actual estimation procedure is taken care of by the software program,
which also outputs  many of  the  same quantities  (eg estimates  and  SEs,  tests  of  individual
parameters and confidence intervals, as already shown in Example 21.2).

21.5.1 Likelihood-based analysis

Parameter estimation in normal linear mixed models is based on the likelihood function derived
from the normal distribution assumptions. Roughly speaking, the likelihood function for any set
of parameters gives the ‘probability’  of the observed data under that set of parameters (see
Section 16.4). Then it is intuitively reasonable to seek the set of parameters that maximises this
probability—the  maximum  likelihood  estimates.  Because  of  the  complicated  form  of  the
likelihood function, closed-form formulae for the maximum likelihood estimates generally do
not exist. Therefore, parameter estimation employs an iterative procedure in which tentative
estimates are gradually improved from their starting values to final convergence. As with all
iterative procedures, caution must be exercised so that convergence is achieved. The estimation
software  should  take  care  of  this,  but  any  messages  that  the  iterative  procedure  has  not
converged are true causes for alarm. If the iterative procedure fails to converge, it sometimes
helps to provide sensible starting values of the variance parameters; however, most commonly
it signals a misspecified model. The advanced user may also attempt to tune the estimation
procedure by some of the settings that control the algorithm. For example, without going into
the technical details, several current estimation procedures perform initial iterations by an EM
algorithm before switching to Newton-Raphson optimisation, and it could be useful to change
the default number of iterations of the EM algorithm before the switch.

Two variants of maximum likelihood estimation are available for mixed linear models: genuine
maximum likelihood (ML) (also known as full information maximum likelihood or FIML)
and  restricted maximum likelihood (REML) estimation. From a theoretical  point of view,
REML estimates are unbiased, whereas ML estimates often have less variance; the weighting of
these properties is not straightforward, but in practice the difference is usually negligible. Both
variants give ‘asymptotically correct’ values (ie when the number of observations at all levels
of the hierarchy grows very large) and enable a full mixed model statistical inference. Therefore
the choice between the 2 is  essentially a  technicality and a matter  of  taste;  in the authors’
experience, REML is the more commonly used. All results shown in this chapter are based on
REML estimation unless explicitly stated otherwise.

Before proceeding with the statistical inference based on the likelihood function, it is worth
mentioning an estimation approach based on the ANOVA table (Dean & Voss, 2000, Chapter
17).  It  is  simpler to implement  and offered  by more software packages.  By and large,  this
approach  is  obsolete  by  today’s  standard,  but  in  balanced  datasets it  will  give  the  same
estimates  for  the  variance  components  and  similar  statistical  tests  for  fixed  and  random
parameters as the REML analysis. A dataset is balanced when every combination of predictor
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values (‘treatments’) occurs the same number of times in the data. While this is frequently the
case in experimental, factorial designs, it is rarely so in observational studies (in particular, if
the  data  contain  continuous  predictors).  The  idea  of  the  method  is  to  compute  variance
components as linear functions of the mean squares of the ANOVA table, suitably chosen to
make  the  variance  component  estimates  unbiased.  Therefore,  closed-form  expressions  are
available and they require little calculation beyond the ANOVA table. Thus, the method is an
add-on to a fixed effects analysis rather than a ‘real’ mixed models analysis, and herein lies its
drawback: not all aspects of the statistical inference are managed correctly,  eg standard errors
are not readily available. 

One particular example of an ANOVA-based method is still in quite common use—estimation
of the ICC for a 2-level structure from a one-way ANOVA using the formula:

≈
MSM−MSE

MSMm−1MSE Eq 21.14

where  m is the (average) number of observations per group. If the groups are all of the same
size (balanced data), this gives the same value as computing the  ICC from likelihood-based
(REML) variance components using Eq 21.4. When the data are unbalanced, the likelihood-
based estimate is preferred. For the 2-level SCC data, the above formula yields  ρ=0.076; Eq
21.4 gives a value of 0.079.

21.5.2 Inference for fixed part of model

The reader may have noted a z (standard normal) reference distribution for tests and confidence
intervals in Example 21.2, in place of the usual  t-distribution in linear models (Chapter 14).
This  reflects  that  the  statistical  inference  is  no  longer  exact  but  approximate,  and  the
approximations are only ‘asymptotically exact’. When the number of observations grows very
large  (at  all  hierarchical  levels),  the  reference  distribution  approaches  a  standard  normal
distribution—thus one option for the reference distribution. However, with small or moderate
numbers of observations at some of the hierarchical levels, a standard normal distribution might
be too liberal (or ‘anticonservative’) as the reference, because it overestimates the degrees of
freedom.  Some  software  programs  offer  a  finite  sample  approximation  (eg Satterthwaite
approximation) based on a t-distribution with degrees of freedom reflecting the design and the
parameter  under  consideration;  Schaalje et  al (2002) studied  the  performance  of  several
approximate reference distributions available in SAS Proc Mixed. With a reference distribution
in place, tests and confidence intervals are computed in the usual manner, eg a 95% confidence
interval of β1±t(0.975,df)SE(β1).

Approximate tests computed from the estimate and its SE are usually termed Wald tests  (see
Section  6.5.2),  and  a  multiple  version  exists  for  tests  involving  several  parameters,  eg for
several  indicator  variables  of  a  categorical  variable.  Tests  based on comparing the attained
value of the likelihood function (Note It is invalid to use the restricted likelihood from REML!)
in models with and without the parameter(s) of interest are possible as well but usually offer
little  advantage  over  Wald tests,  and we leave  them to the  next  section.  Pinheiro & Bates
(2000),  Section  2.4.2  recommend  against  the  use  of  likelihood-based  tests  with  chi-square
reference distributions because of their overestimated degrees of freedom (as discussed above).
Example 21.7 illustrates the inference for fixed effects in the SCC data.
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21.5.3 Inference for random part of model

Even though the software usually outputs both variance parameters and their SEs, the latter
should not be used to construct Wald-type confidence intervals or tests, because the distribution
of the estimate can be highly skewed.

Variance parameters can be tested using likelihood-based (likelihood ratio) tests, although we
usually retain random effects corresponding to hierarchical levels despite their non-significance
(unless the variance is estimated to be zero). To illustrate, a likelihood ratio test in Eq 21.2 for
the hypothesis H0: σh=0 is calculated as G2=-2(lnLfull-lnLred) where the full and reduced models
refer to the models with and without the herd random effects, and L refers to values of the
likelihood function. Either ML or REML likelihood functions might be used, provided both
models  contain  the  same  fixed  effects.  Generally,  the  value  of  G2

 is  compared  with  an
approximate  χ2-distribution with the degrees of freedom equal to the reduction in number of
parameters between the 2 models. Snijders & Bosker (1999), Section 6.2 note that reference χ2-
distributions  are  conservative  when  testing  a  variance  parameter  being  equal  to  zero,  and
recommend halving the P-value obtained from the χ2-distribution to take into account that the
alternative hypothesis is one-sided (Ha: σh>0). Most software packages apply this correction by
default  for  testing  a  random  intercept  variance.  The  same  procedure  (halving  the  P-value
obtained from a nominal χ2-distribution) applies to tests for random slopes (Berkhof & Snijders,
2001). If there is only a single random slope in the model, the test for the random slope involves
2 parameters (the variance and covariance), so the nominal degrees of freedom is 2. Example
21.8 demonstrates these calculations for the SCC data. If the comparison is to a random slopes
model instead of a random intercept model (eg for testing one out of 2 random slopes present in
the same model), the reference distribution becomes more complicated (see Fitzmaurice et al,
2004), Section 8.5, for recommendations and a table of critical values for some settings). The
choice of the random part of the model may also be based on model selection statistics such the
AIC (Section 15.8.1). The penalty for the model's  parameters now include the variance and
covariance of the random part. Use of the BIC is not recommended for covariance selection
unless one works in a Bayesian framework (Fitzmaurice et al, 2004, Section 7.5). 

For random effect parameters, symmetric confidence intervals are usually inappropriate. If your
software can display the variance estimates at the scale at which they are estimated (behind the

Example 21.7 Fixed effects for 2-level somatic cell count data
data = scc40_2level

A multiple Wald test for the combined effect of season gives χ2(3)=6.21 and a P-value of 0.10; thus,
there is no significant differences between seasons (in this subdataset). Analysis by SAS Proc Mixed or
R (lme library) with finite sample reference t-distributions with about 2,100 degrees of freedom for the
coefficients  for  -heifer-, -sdim- and -season- which corresponds roughly to the residual degrees of
freedom at the cow/test level. With such large degrees of freedom there is no difference between t and
z distribution inference. 

The finite sample reference distribution for -shsize- is t(38), reflecting that it is a herd-level predictor,
and that the 40 herds would leave only 38 degrees of freedom for the herd-level residual. Therefore, the
effect  of  -shsize-  is  estimated  with  considerably  less  precision  than  the  other  predictors,  and  not
surprisingly, it shows up clearly non-significant. With the t reference distribution, the P-value for Wald
test is only increased slightly to 0.286; considerably smaller degrees of freedom (say 10 or less) are
needed to substantially affect the inference.
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scenes, so to speak), it is better to compute a confidence interval at that scale and transform its
endpoints; this may also be the default method in your software. Two alternative methods are
suggested in the literature: bootstrapping (Goldstein, 2003, Section 3.6) and profile-likelihood
intervals  (Longford, 1999). Bootstrapping is a general statistical technique primarily aimed at
estimating standard errors and calculation of confidence intervals in situations too complex for
analytical  methods  to  be  manageable;  however,  bootstrap  confidence  intervals  require
specialised  software  (eg MLwiN).  In  brief,  a  profile-likelihood  confidence  interval  (with
approximate 95% coverage) includes the values (σ*) of the parameter, for which twice the log-
likelihood with the parameter under consideration fixed at the particular value (ie σ=σ*), drops
less than 3.84 (the 95% percentile in χ2(1)) from twice the log-likelihood value of the model. If
your software allows you to fix a variance in the model, a crude search for such parameter
values is simple to carry out. Example 21.8 illustrates the inference for random parameters in
the SCC data.

21.5.4 Prediction

Even though the random effects in a mixed model are not parameters in the usual sense, it is

Example 21.8 Random effects for 2-level somatic cell count data
data = scc40_2level

The table  below gives  values  for  twice  the log likelihood function  (based on REML) for  various
somatic  cell count models in this chapter and likelihood-ratio test  statistics for  model comparisons
(comparing all models with the one presented in Example 21.2 (random intercept model)). Note that P-
values  were  computed  manually  by  halving  the  tail  probabilities  of  the  respective  chi-square
distributions. 

Model 2lnL AIC G2 df P-value

no herd random effect -7328.51 7344.51 97.01 1 0.000

random intercept (Ex 21.2) -7231.50 7249.50 - - -

random slope of -sdim- -7225.48 7247.48 6.02 2 0.025

random slope of -heifer- -7225.71 7247.71 5.80 2 0.028

The table shows strong evidence against the hypothesis of no (random) variation between herds, and it
also shows that extensions of the model with random slopes for -sdim- and -heifer- are both weakly
significant. Based on these results, it would be logical to explore a model with random slopes for both
-sdim- and -heifer-, but we stop here.

The 95% confidence interval  for   h
2 provided by the software for  the model  of Example 21.2 was

(0.084,0.265).  It  is  asymmetric  around the estimate  (0.149)  and based on transformation  from log
square-root transformed scale. The estimation command does not offer profile-likelihood intervals or to
fix parameter values. To illustrate the profile-likelihood method, to assess whether a given value (say
0.20) belongs to the confidence interval, estimate the model with  h

2
 fixed at 0.20, obtain the model's

2lnL value (-7234.48), which is still within 3.84 of the model’s value (-7231.50); therefore, the value
0.20 belongs to the 95% confidence interval. The profile-likelihood CI obtained by a crude search was
(0.085,0.269), which is very close to the above interval computed by transformation from estimation
scale.
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possible to give estimates (more precisely, predictions) of their values. These carry the names
best linear unbiased predictors (BLUPs), referring to their inherent statistical properties, and
empirical Bayes estimates (Greenland, 2000a), referring to an interpretation of the way they
are  computed.  The prediction  may be  useful  eg for  the  purpose  of  ranking  the  units  with
random effects  (herds,  or  schools in education studies,  or  hospitals in human public health
studies), or for identification of extreme values (discussed in the next section). The statistical
inference  for  rankings  and  comparison  of  predictions  for  2  units  (eg for  the  purpose  of
significance  testing)  has  been  described  (Goldstein & Spiegelhalter,  1996).  Because  of  the
assumed common (normal) distribution of the random effects (in Bayesian terminology a prior
distribution,  see  Chapter  24)  the  predictions  are  more  regular  (ie less  variable)  than  the
estimates  one  would obtain from a  fixed effects  model;  this  phenomenon is  referred  to  as
shrinkage (towards the overall mean). The amount of shrinkage depends on the magnitude of
the variances  and the group sample size: small groups are shrunk more towards the overall
mean, and the shrinkage is weaker in datasets with a high ICC (because, if the between-group
variation is large, the other groups contribute relatively little information about the level of any
specific  group).  Under  simplified  assumptions  (Snijders  & Bosker,  1999,  Section  4.7),  the
empirical Bayes estimate is a weighted average of the group mean and the overall mean, and
the weight of the group mean (called the shrinkage factor) equals  h

2
/h

2


2
/m  , where m is

the group size. It  is seen that this formula has the qualitatively behaviour just described; for
example, if m is large, the weight is close to one, and the predicted value is close to the group
mean (ie no shrinkage).

21.5.5 Residuals and diagnostics

Residuals and diagnostics play a similar, crucial role for model-checking in mixed models as
they  do  in  ordinary  linear  models.  The  mechanics  and  interpretations  are  analogous  (see
Sections 14.8 and 14.9), but the additional model assumptions (for the random effects) should
be evaluated critically together with the other assumptions. Accordingly, mixed models contain
additional ‘residuals’—one set of residuals per random effect in the model. (Note Be aware that
residuals at the different hierarchical levels contain different numbers of observations;  eg the
SCC dataset has only 40 herd-level residuals.) The residuals include not only the effects for the
hierarchical levels but also the random slopes, ie in a model with random intercepts and slopes,
there are 2 sets of residuals at the corresponding level. These residuals are, in reality, predicted
values of the random variables in the model (as discussed in the previous section). In the usual
sense, residuals are differences between observed and expected values; however, there are no
observed herd values here, so the term predicted values seems preferable. Influence diagnostics
are also computed at each hierarchical level and for each random effect. Recent advances in
software for multilevel analysis have given access to residuals and diagnostics in many major
software  packages,  although  some  differences  in  implementation  exist,  in  particular  with
respect to the definition of standardised residuals (see Skrondal and Rabe-Hesketh,  2009 for a
detailed  discussion  of  this  topic).  A  case  study  of  model-checking  using  residuals  and
diagnostics (Langford & Lewis, 1998) recommended to first inspect the residuals at the highest
hierarchical level, and then gradually work downwards. Thus, before looking at individual cows
being influential or not fitted well by the model, we examine the same questions for the herds.
This  is  because  several  of  the  cows being flagged could stem from the  same herd,  so the
‘problem’ might be with the herd rather than with the individual cow. Example 21.9 presents
herd-level residuals and diagnostics for the SCC data.
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Example 21.9 Residuals and diagnostics for somatic cell count data
data = scc40_2level

We present here herd-level residual plots and a listing of the residuals and diagnostics for the 6  most
extreme herds; the analysis of cow-level residuals and diagnostics follows similar lines as in Chapter
14. The computations were done mostly using Stata software; the leverages and DFITS values were
computed  by  the  MLwiN  software  which  also  gave  slightly  different  standardised  residuals  (not
shown).

herd 
number

herd
size

raw 
residual

standardised
residual

Cook’s
distance leverage DFITS

40 37.7 -0.831 -2.453 1.287 0.113 0.405

7 37.4 -0.787 -2.335 1.361 0.117 0.389

8 35.1 -0.445 -1.309 0.441 0.114 0.204

… … … … … …

32 43.3 0.600 1.760 0.549 0.103 0.264

6 84.0 0.666 1.880 1.985 0.130 0.344

18 10.3 0.688 2.488 1.570 0.300 0.712

The quantile plot of the standardised residuals did not indicate any serious deviations from the normal
distribution, nor did the residual plot reveal any concerns. Based on the residuals and diagnostics, herd
18 stands out somewhat with the highest values of residuals, leverage and DFITS. The magnitude of
the residuals is hardly anything to worry about, but the influence seems appreciable. When analysing
the  data  without  this  herd,  the  effect  of  -h_size-  increases  by  more  than  50%  and  approaches
significance. Herd 18 turns out to have the smallest value of -hsize-, but the highest average -lnscc-.
The high value of Cook’s distance for herd 6 is related to this herd being among the largest and also
having the second highest average -lnscc-; without herd 6 the coefficient for -hsize- drops to about 1/3
of its value. The strong influences of single herds on the coefficient for -hsize- can be attributed to the
fairly small sample size at the herd level.

Fig. 21.4 Quantile plot (left) and residual plot (right) for herd-level residuals
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21.5.6 Box-Cox transformation for linear mixed models

In  Section  14.9.3,  we  discussed  the  Box-Cox  method  of  choosing  the  ‘best’  power  (λ)
transformation of our data to match the assumptions of a linear model. We assumed the method
to be implemented was available software and did not go into details with how the optimal  λ
was  calculated.  A  Box-Cox  analysis  is  however,  to  our  knowledge,  not  readily  available
elsewhere  for  mixed  models,  so  we  give  the  necessary  details  to  enable  the  analysis  for
transformation  of  the  outcome.  The  Box-Cox  transformation  in  principle  takes  all  model
assumptions into account, but in our experience it is most sensitive to the assumptions at the
lowest level.

Recall that we confine the analysis to a set of ‘nice’ λ-values, eg for a right-skewed distribution,
we might search for the best value among λ=1, 1/2, 1/3, 1/4, 0, -1/4, -1/3, -1/2, -1, -2. Among
these,  λ=1 corresponds to no transformation,  λ=0 to natural  log transformation, and  λ=-1 to
reciprocal  transformation.  Finding  the  approximate  optimal  λ-value  involves  the  following
steps: 
 1. compute the mean of the ln(Y)-values and denote this value by ln Y ; also denote the total 

number of observations as n,
 2. for each candidate λ-value, compute for each observation i the transformed value

Y i


={Y i

−1/ for ≠0

ln Y i for =0

and analyse these Y(λ)-values by the same mixed model as the untransformed values, and 
record the model’s attained log-likelihood (lnL(λ)) value using ML estimation (not 
REML!),

 3. compute the value of the profile log-likelihood function as:

pl=ln Ln −1 ln Y  Eq 21.15
and plot the function to identify approximately the λ where pl(λ) is maximal. This is the 
optimal power transformation of the outcome. An approximate 95% confidence interval for
λ consists of those λ-values with a value of pl(λ) within 1.92 of the optimal pl-value.

We demonstrate the procedure in Example 21.10 using the SCC data.

Recall (from Chapter 14) that the optimal Box-Cox value does not guarantee ‘well-behaved’
residuals  (at  all  hierarchical  levels),  and that  transformation could shift  problems from one
model assumption to another (eg from skewed residuals to heteroscedasticity). Therefore, even
after transformation, all the residuals should be examined. If well-behaved residuals at some
hierarchical level cannot be achieved by transformation, one might turn instead to models with
non-normal  random effects;  such  models  are  available  within  the  Bayesian  framework  for
hierarchical  models  (Chapter  24),  or  rely  on  the  robustness  of  the  linear  mixed  model
procedures to model misspecification (Section 21.5.8).

21.5.7 Model specification: fixed versus random effects

In this section, we will discuss a test to compare estimates based on fixed and random effects,
and summarise the choice  between these 2 models.  In  econometry,  it  is  a  commonly used
procedure to assess the adequacy of a random effects model by a ‘Hausman specification test’.
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The Hausman test is a general procedure for comparing 2 estimates where one is asymptotically
valid under more general conditions. The rationale for preferring a fixed effects model would be
that one of the (implicit) assumptions of the random effects model, that the random effects are
independent  of  the  predictors  (X),  is  invalidated  (the  predictor  in  question  is  then  termed
‘endogenous’). However,  Skrondal and Rabe-Hesketh state this to be misguided because the
test is really for a contextual effect of one of the predictors, and if the test is significant one
should instead insert the missing contextual effect into the random effects model (Rabe-Hesketh
& Skrondal, 2008, Section 3.2.1). Moreover, the Wald test for contextual effects discussed in

Example 21.10 Box-Cox analysis for somatic cell count data
data=scc40_2level

The data contain  n=2,178 observations and the mean (natural) logarithmic cell count is 4.757. The
following table and graph give a Box-Cox analysis:

λ 1 0.5 0.33 0.25 0

ln(L) for Y( λ ) -17247.28 -9807.27 -7585.75 -6532.35 -3604.68

pl(λ) from(21.15) -17247.28 -140987.63 -14493.24 -14302.89 -13965.84

λ -0.10 -0.25 -0.33 -0.5 -1

ln(L) for Y( λ ) -2530.05 -1014.68 -219.64 1282.26 5236.52

pl(λ) from(21.15) -13926.84 -13965.57 -14033.58 -14258.82 -15484.91

The table and figure indicate the optimal value of λ to be close to, and slightly less than, zero, but a
95% CI for λ does not include zero; the large number of lowest-level observations causes the CI to be
very narrow. With the optimal transformation so close to the log-transformation, the Box-Cox analysis
supports our choice of analysing the log somatic cell counts, in the sense that no power transformation
improves the compliance with model assumptions substantially.  Analysis  of the power transformed
(λ=-0.10) SCC values instead of -lnscc- reduced the skewness of the cow-level residuals, but did not
substantially change the inference (results not shown).

Fig. 21.5: Profile-likelihood function for Box-Cox 
analysis of SCC data
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Section  21.4  remains  valid.  To  illustrate,  a  Hausman  specification  test  for  the  model  of
Example 21.2 gave χ2(5)=4.33, which is absolutely non-significant in a χ2 distribution with 5 df
(P=0.50). We leave it as an exercise for the reader to verify that none of the predictors in the
model have a contextual effect.

In  our view,  random effects  for  hierarchical  levels  are  usually preferable,  but  fixed effects
modelling is occasionally a useful approach to account for clustering in herds (say), particularly
when:

i. there are no herd-level predictors, 
ii the number of herds is reasonably small, and 
iii there is more interest in the specific herds than assuming they represent a population.

A more technical comparison of fixed and random effects modelling can be found in  (Rabe-
Hesketh & Skrondal, 2008, Section 3.8).

21.5.8 Robustness against model misspecification

In addition to endogeneity (discussed above), the most obvious violations of the assumptions of
(standard)  linear  mixed models  are  heteroscedasticity  and  non-normality  of  random effects
(including  the  error  term).  Recent  research  has  examined  the  robustness  of  estimation
procedures  based  on  (standard)  linear  mixed models  to  such  model  misspecifications.  One
obvious idea is to adjust linear mixed model estimates by robust variance estimation (Section
20.5.4). Now the purpose is not to account for clustering (the mixed model already does that),
but to achieve robustness against  heteroscedasticity and non-normal error  distribution  (Hox,
2002, Section  11.2).  It  is  known  that  estimates  of  regression  coefficients  are  robust  to
misspecification of the random effects distribution  (McCullagh et al, 2008, Section 12.3), so
variance  adjustment  may be all  that  is  needed.  Although robust  variance  estimation cannot
guarantee  against  strong violations of model assumptions,  they may constitute a substantial
improvement, in particular for SEs of variance parameters (Verbeke & Lesaffre, 1997) and also
may be used as a diagnostic tool (ie large differences between robust and model-based SEs are
taken to indicate problems with model specification (Maas & Hox, 2004)). The robust standard
errors  are usually implemented to follow the hierarchical  structure (clustered at  the highest
level),  so  their  efficiency  depends  on  a  reasonable  number  of  clusters  (sample  sizes  are
discussed in the next section). Adding robust standard errors to the linear mixed model analysis
of Example 21.2 leads to moderate increases in SEs (1%-21% for fixed effects, 11%-33% for
variances; results not shown); the robust standard errors will give a more cautious analysis, at
the  cost  of  some  loss  of  power.  Non-parametric  and  semiparametric  specifications  of  the
random effects distribution have been studied but are not readily available in standard software
and also have their drawbacks (McCullagh et al, 2008, Section 12.4). Bayesian modelling can
incorporate other random effects distributions than the normal, eg a t-distribution (Chapter 24).

One of the strong points of linear mixed models is that they allow heteroscedasticity to be built
directly into the model. We have already seen that random slopes models are heteroscedastic
(ie the variance depends on the predictors). Such modelling may be preferable to adjustments
by robust standard errors because it provides extra information about the data that perhaps can
lead to better understanding of the causal mechanisms and can also be used to obtain better
predictions  (Fitzmaurice et al, 2004, Section 11.3). Direct modelling of heterogeneity of the
lowest level variance is also possible within the multilevel framework and supported by many
software  implementations.  It  is  recommended  to  compute  descriptive  statistics  for  the
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standardised residuals across the levels of all categorical  predictors and to plot standardised
residuals against quantitative predictors as part of routine model-checking. If some differences
in variation appear,  a heteroscedastic model may be explored. Example 21.11 illustrates the
procedure in our SCC example and the predictor -heifer-.

21.5.9 Sample size

A frequently  asked  question  is:  how many units  are  needed  at  each  hierarchical  level  for
multilevel analysis? A simulation study on the impact of the number of units at the highest
(second) level on the parameter estimates (Maas & Hox, 2004) provided the following rule of
thumb: “If one is only interested in the fixed effects, 10 groups can lead to good estimates. If
one is also interested in contextual effects,  30 groups are needed.  If  one also wants correct
estimates of the standard errors,  at least 50 groups are needed.” For the cluster size,  Rabe-
Hesketh & Skrondal (2008), Section 3.8 stated that a cluster size of 2 suffices if there are many
clusters.

Calculation of the required sample size to achieve a desired accuracy or a desired power for a
hypothesis test is a difficult problem for multilevel models because of the complexity involved

Example 21.11 Heterogeneous variances for somatic cell count data
data = scc40_2level

We noted in Example 21.5 that the random slopes model for -heifer- indicated larger variance for older
cows than heifers. The standard deviation among the standardised cow-level residuals from the random
intercept model (Example 21.9) was 0.93 for heifers and 1.035 for older cows. This motivates fitting a
model that allows for different error term variances for heifers and older cows. The table below gives
estimates  for  -heifer-  and the variance parameters  for  several  models,  fitted by ML estimation (so
estimates are not identical to those of previous examples). The standard errors of the heterogeneous
variance parameters were computed by the delta method (Weisberg, 2005, Section 6.1.2).

Model
Random 
intercept

Heterogenous
variance

Random 
slopes

Heterogeneous 
+ random slopes

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

β(heifer) -0.737 0.055 -0.739 0.054 -0.734 0.066 -0.736 0.065

σ2(herd) 0.139 0.040 0.133 0.039 0.191 0.058 0.185 0.057

σ2(heifer) - - - - 0.047 0.037 0.049 0.037

σ(covar) - - - - -0.073 0.040 -0.068 0.040

σ2(cow) 1.554 0.048 - - 1.543 0.048 - -

- heifer - - 1.359 0.065 - - 1.354 0.065

- older cow - - 1.695 0.069 - - 1.679 0.068

2lnL -7209.36 -7197.23 -7203.69 -7192.07

The  values  of  the  log-likelihood  show  that  the  heterogeneous  variances  model  are  a  substantial
improvement in both the random intercept and the random slopes models: the cow-level variance is
about 25% larger for older cows than heifers. The inference for the difference between heifers and
older cows is, however, virtually unaffected.
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in the effects at multiple levels. The variance inflation inherent in the design effect (Section
20.3.3)  only  applies  to  a  group-level  predictor.  For  a  2-level  setting,  the  PinT  shareware
program  (Snijders & Bosker,  1993) has been a standard reference in multilevel analysis for
years. Recently, the simulation-based approach to power calculation (Section 2.11.8) has been
extended to complex multilevel designs, including cross-classification, by William Browne and
co-workers (MLPowSim, available at the Multilevel Modelling website).
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