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MIXED MODELS FOR DISCRETE DATA

OBJECTIVES

After reading this chapter, you should be able to:

 1. Understand the differences between linear mixed models (continuous data) and generalised
linear  mixed  models  (GLMMs)  (discrete  and  continuous  data)  and  the  role  of  the  link
function in the latter.

 2. Fit random effects logistic and Poisson models.

 3. Understand the differences between population-averaged and subject-specific modelling.

 4. Use  a  latent  variable  approach  to  compute  the  intracluster  correlation  (ICC)  for  binary
outcomes.

 5. Use either quasi-likelihood or maximum likelihood methods for fitting GLMMs.

 6. Assess the statistical significance of both fixed and random effects in GLMMs.

 7. Evaluate residuals to assess the adequacy of a GLMM that you have fit.
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22.1 INTRODUCTION

In both theory and practice,  it  has proven more difficult than one might have anticipated to
generalise the mixed models approach from continuous to discrete data. One effect  of these
difficulties is the existence of a wide variety of generalisations of mixed models to discrete
data, some of them only for a particular type of discrete data (usually binary) and some of them
within wider frameworks. In this chapter, we review the model class most analogous to linear
mixed models: the generalised linear mixed models (GLMM). In order to fully appreciate this
analogy, the reader is encouraged to review linear mixed models first (Chapter 21). 

Our main focus here will be on  binary data (logistic regression with random effects, Section
22.2) and on count data (Poisson regression with random effects, Section 22.3), but the random
effects extension applies to a flexible class of discrete models which eg includes multinomial
regression. As in Chapter 21, our mixed models will reflect a hierarchical structure but it is also
possible to build models for other data structures. However, (and this goes generally for mixed
models for discrete data) the statistical analysis is more difficult than for continuous data, and
requires  more  care  and  choices  by  the  researcher  (of  which  the  choice  of  software  is  an
important one). The field is still  growing and advancing but we attempt to give the applied
researcher a snapshot of its present state.

We will use  2 binary data examples to illustrate the methods: one on pneumonia in pigs and
another on first service conception risks in cows. The first dataset, pig_adg, stems from a 2-
level hierarchy (pigs within farms) and we will consider only a single pig-level, dichotomous
predictor. The second dataset, reu_cfs from the Reunion Island reproduction study (introduced
in Example 20.1),  contains  a  3-level  hierarchy (lactations within cows within herds)  and  2
lactation-level predictors.  Poisson regression models will be illustrated by the TB data from
Chapter 18 (tb_real).

22.2 LOGISTIC REGRESSION WITH RANDOM EFFECTS

We  consider  again  the  example  of  animal  disease  observed  in  several  herds  (eg  the  pig-
pneumonia data). The logistic regression analogue of Eq 21.2 for the probability  pi of the  ith

animal being diseased is:

logit  pi=01 X 1 i k X kiu herd i  Eq 22.1

where  uherd(i) is  the  random  effect  of  the  herd  containing  animal  i,  assumed  to  be
uherd(i)~N(0, σ2

h), the Xis are the predictor values for the ith animal, and the relationship between
the probability pi and the binary outcome Yi is unchanged: p(Yi=1)=pi. The only change from the
ordinary logistic regression model is the herd random-effects term. Example 22.1 shows that
adding random effects can have an appreciable impact on the model.

22.2.1 Analogies and differences to a linear mixed model

We have seen that  a  mixed logistic  regression  model  adds the random effects  to the fixed
effects, both on a logistic scale. So, bearing the logistic scale in mind, we build the models in a
similar  way  to  linear  mixed  models  and  they  might  include  multiple  random  effects  and
possibly random slopes as well. The statistical analysis also has strong similarities in the way
confidence intervals and tests are computed.
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The 2-level model (Eq 22.1) induces  correlations between the observations in a similar way as
its linear mixed model analogue: equal correlations between animals within the same herd and
independence between herds. However, we have to be careful here: the correlations within a
herd are the same only for animals with the same fixed effects. In our example, all -ar_g1-
positive animals within a herd are equally correlated,  and the same for all -ar_g1- negative
animals. This difference between animals with different predictor values may seem strange and
is usually small in practice (unless the predictor has a very strong effect). It is one of the many
consequences of modelling the fixed and random effects on the logit scale. Nevertheless, the
model is perfectly valid as a method to account for correlation (or clustering) between animals
in the same herd.

Strictly  speaking,  the  model  in  Eq  22.1  has  a  2-step  interpretation  which  is  perhaps  best
understood by imagining how data would be generated by the model. For an animal i in the jth

herd, we would first select the herd random effect (uj) according to its N(0, σ2
h) distribution and

compute pi from the fixed effects and the selected uj-value. We would then select the outcome

Example 22.1 Random effects logistic model for pig-pneumonia data
data = pig_adg

Data  on  both  atrophic  rhinitis  and  enzootic  pneumonia  were  recorded  on  341  pigs  at  slaughter.
Causally,  it  was  assumed  that  atrophic  rhinitis  might  increase  the  risk  of  pneumonia,  through
destruction  of  the  pig’s  air-filtering  mechanism (nasal  turbinates).  The atrophic  rhinitis  score  was
converted to a dichotomous variable (-ar_g1-) indicating the presence/absence of an atrophic rhinitis
score  greater  than  1.  Similarly,  the  lung  score  was  converted  to  a  dichotomous  variable  (-pn-)
representing the presence/absence of pneumonia.

The unconditional association between -pn- and -ar_g1- was:

ar_g1

1 0 Total

pn 1 109 77 186 Odds ratio=1.909
95% CI=(1.212,3.010)

Chi-square=8.69
P-value=0.003

0 66 89 155

Total 175 166 341

These  statistics  indicate  a  moderate  but  clearly  significant  association  between  -pn-  and  -ar_g1-.
However,  we have ignored the fact  that the pigs  came from 15 farms,  and the prevalence of -pn-
actually varied from 17% to 95% across farms. Consequently, it appears that we should be concerned
about farm effects. The logistic regression with random effects (Eq 22.1) gave the estimates:

Coef SE Z P 95% CI

ar_g1 0.437 0.258 1.69 0.091 -0.069 0.943

constant 0.020 0.301 0.07 0.948 -0.57 0.61

In addition, the estimated variance of farm random effects (with SE) was:
 h

2=0.8770.433

We shall later see how to compute the significance of the random effect (it is highly significant). The
regression  coefficient  for  -ar_g1-  should  be  compared  with  the  log  of  the  simple  odds  ratio
(ln(1.909)=0.647). Accounting for the herd effects reduced the association considerably, and it was no
longer significant. In other words, the farms had both a clustering and confounding effect.
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Yi as positive with probability pi or negative with probability 1-pi. A common shorthand for this
2-step interpretation is that  Eq 22.1 is  ‘conditional  on’ the random effects.  In  linear  mixed
models we modelled the outcome directly, so there was no need for a conditional interpretation.

In  the  next  2 sections,  we  describe  how  the  interpretation  of  fixed  and  random  effects
parameters change from the logistic regression model and the linear mixed model.

22.2.2 Interpretation of fixed effects parameters

The interpretation of fixed effects in a linear mixed model was essentially unaffected by the
added random effects. Again, the modelling on the logit scale complicates the interpretation of
models  such  as  Eq  22.1.  The  conditional  interpretation  of  the  model  means  that  when
exponentiating a regression coefficient (for -ar_g1- in the example) to obtain the odds-ratio (ie
OR=exp(0.437)=1.55), the odds ratio refers to comparing pigs with and without atrophic rhinitis
in a particular herd (corresponding to a selected herd random effect, no matter the actual uj-
value). Frequently this is called a subject-specific or cluster-specific (in our example, a herd-
specific) estimate, as opposed to a population-averaged estimate, which would refer to the OR
for comparing pigs with and without atrophic rhinitis  from any herds in the population of
herds (ie the 2 pigs can be from different herds). Therefore, if we think of the OR as the answer
to questions such as ‘how much is the risk increased?’ (in our example, the risk of pneumonia
for an ‘ar’-pig versus a healthy pig), the cluster-specific estimate answers the farmer’s question
and the population-averaged estimate answers the slaughterhouse’s question (where pigs are
submitted from many different herds). That these 2 questions have different answers challenges
our intuition, but is an incontestable fact. 

Two alternatives  exist  to the cluster-specific  OR.  One is to convert  from cluster-specific to
population-averaged parameters (on the logit scale) using the following formula.

PA≈SS/10.346h
2

Eq 22.2

Example 22.2 illustrates the procedure (see also Section 22.4 for further discussion of cluster-
specific and population-averaged estimates). The second alternative to the cluster-specific OR is
a re-interpretation of this value as a median odds ratio (MOR) across the population of clusters
(farms in our case). The rationale behind this idea, introduced by Larsen K et al (2000), is that
when comparing  2 pigs,  with and without atrophic rhinitis,  from different farms, the  OR is
really a random quantity because its value depends on the farm effects for the 2 selected farms.
Just as any other random variable, it has a distribution, and hence it makes sense to look for a
central value in this distribution. The mean in this distribution is the population-averaged OR,
and the median in this distribution (MOR) is equal to the cluster-specific OR (computed at 1.55
above). We can now say that when comparing pigs with and without atrophic rhinitis from the
population, the odds ratio will, with probabilities 0.5, take values above and below 1.55. An
associated range within which the  OR will lie with a given probability,  eg 80%, can also be
computed; the details are shown in Example 22.2.

22.2.3 Interpretation of variance parameter(s)

In Eq 22.1, the herd random effect  variance  σ2
h  has no direct  interpretation in terms of the

probabilities of disease. The equation shows that it refers to the variation between herds of the
disease probabilities on a logit  scale.  We can still  interpret  it  qualitatively:  a value of zero
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means  no  variation  between herds  (and  therefore  no  clustering)  and  a  large  positive  value
means  a  high  degree  of  clustering.  However,  the  (correct)  statement  that  the  logits  of
probabilities vary within ±1.96σh across herds with a probability of 95%, is not very intuitive.
The variance  σ2

h  can, without too much extra work, be interpreted in terms of either variance
components or median odds ratios; we discuss these in turn.

In linear mixed models, the variance parameters could be interpreted as variance components,
but in models of discrete data, we have a problem with this interpretation. If we compare Eq
22.1  with  the  linear  mixed  model  (Eq  21.2),  the  error  term (εi)  is  missing  in  the  logistic
equation. This is because the distribution assumption is on the original scale—in our example
Yi ~ bin(1,  pi),  so that the errors  in the model stem from the binomial  (binary)  distribution
instead  of  a  normal  distribution.  Recall  that  in  this  binary distribution  the  variance  equals
pi(1-pi).  Now the total  variance  in  the  data,  var(Yi),  is  no longer  just  the sum of the  error
variance and the random effects variance, as they refer to different scales. Even worse, the total
variance is not constant because the binomial variance varies with p, so a single decomposition
of the variance does not exist. A few years ago, several papers reviewed the computation of
variance  components  and  intraclass  correlation  coefficients  (ICCs,  see  Section  20.3.3;
sometimes also denoted variance partition coefficients (VPCs) in acknowledgement of the non-
constant variances and correlations, as explained above) in random effects logistic regression,
and a number of different methods were suggested  (Browne W et al, 2005; Goldstein et al,
2002; Rodriguez & Elo, 2003; Vigre et al, 2004). We confine ourselves to explaining a simple
approximation method based on latent response variables to represent the logistic model as a
threshold model (latent variables were introduced in Chapter 17; see also  Snijders & Bosker
(1999), Section 14.3, and Rabe-Hesketh & Skrondal (2008), Section 6.2.2.

The simplest approach to getting both the individual and herd variances on the same (logistic)
scale is to associate with every animal  i a latent continuous measure,  Zi,  of the ‘degree’  of
sickness.  The observed binary outcome  Yi is then obtained simply as whether the degree of
sickness exceeds a certain threshold. In formulae, if we denote the threshold by t, then Yi=1 if
Zi>t,  and  Yi=0 when  Zi≤t.  Sometimes  this  may seem a  plausible  theoretical  construct,  and
sometimes  less  so.  For  the  pig_adg  data,  the  pig  pneumonia  scores  indeed  quantified  the
amount of damage observed in the lungs; for the reu_cfs data on the other hand, success in
fertilization seems a truly binary event.  Mathematically  speaking,  any model for  Zi is  then
translated into a model for the binary outcomes. In particular, Eq 22.1 is obtained exactly when
t=0 and 

Z i=01 X 1 i... k X kiu herd i  i Eq 22.3

where the fixed effects and the herd effects are exactly as before, and where the error terms ε i

are  assumed to follow a  logistic  distribution with mean zero and  variance  π2/3=3.29.  (The
logistic  distribution  is  similar  in  shape  to  the  normal  distribution,  and  for  most  practical
purposes, it  is equivalent to assume either of these distributions.) Eq 22.3 is a linear mixed
model for Zi! Therefore, computation of variance components and ICCs for Zi-variables follows
the rules of Chapter 21:

var Z i=var u herd i var  i= h
2 2/3

= h
2/ h

22/3  Eq 22.4

We demonstrate the procedure in Example 22.2. To summarise, the latent variable approach
allows interpretation in terms of variance components and ICCs by fixing the error variance at
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π2/3. We should keep in mind that the strict interpretation is for the latent variables, and the
values are only approximate for the binary outcomes. In particular, as noted, the variances and
correlations  are  not  constant  for  the  binary  outcomes  but  depend  on  the  predictors;  this
dependence  has  disappeared  for  the latent  variables.  Experience  with different  methods for
computing ICCs indicates that the latent variable ICC tends to be somewhat larger than the true
ICC for the binary outcome (see the above-cited papers). Intraherd correlations ranging from
0.04 to 0.42 (with most values <0.2) have been observed for a number of infectious diseases of
animals (Otte & Gumm, 1997). 

The variance σ2
h can also be interpreted in terms of an odds-ratio between the risk in 2 randomly

selected clusters, where the animals and herds compared should have the same fixed effects.
The OR between the larger and smaller of the 2 risks is ≥1, and the median in its distribution
(cluster-median odds-ratio, MORc) can be calculated as 

MOR c=exp0.954∗ h Eq 22.5

The interpretation of the  MOR is that when comparing (identical) subjects from  2 randomly
selected clusters (herds), the odds ratio will, with probabilities 0.5, take values above and below
the  MOR.  One  advantage  of  the  MOR is  that  the  heterogeneity  between  clusters  is  now
comparable to the impact of the fixed effects (Larsen et al, 2000). Example 22.2 illustrates the
procedure for the pig pneumonia data.

22.3 POISSON REGRESSION WITH RANDOM EFFECTS

A Poisson random intercept regression model with exposure n and herd random effect u can be
written:

ln i =01 X 1 i... k X kiu herd i 

Y i~Poisson ni i Eq 22.6

with the assumption: uherd(i)~N(0, σ2
h). Thus, the random effect is added to the fixed effects in a

similar way as for logistic regression. The differences described in the previous section between
models with and without random effects to a large extent carry over to Poisson regression. We
briefly discuss the interpretation of fixed and random effects parameters from Eq 22.6, and
illustrate by an example (see Example 22.3).

22.3.1 Interpretation of fixed effects parameters

The distinction between cluster-specific and population-averaged parameters largely vanishes
because it is only the intercept among the fixed effect parameters that takes different values in
its cluster-specific and population-averaged versions  (Diggle  et al,  2002, Section 7.4). This,
perhaps somewhat surprising fact, is related to the log link function and holds true regardless of
the form of the random effects,  ie also if they include multiple hierarchical levels or random
slopes.

22.3.2 Interpretation of variance parameters

In a linear mixed model (Chapter 21), the ICC (for observations within the same cluster) could
be computed by decomposing the total unexplained variance into terms for each level of the



MIXED MODELS FOR DISCRETE DATA 585

hierarchy (see Examples 21.1 and 21.3).  For a random effects  logistic regression, a similar
(approximate) calculation was enabled by the latent variable approach. For Poisson regression,
exact formulae exist  (Stryhn et al, 2006), but the resulting variance decomposition and  ICC
depend on the predictor values, so there is no longer a simple and unique ICC across the entire
dataset (except for the ‘null’ model with no predictors). To simplify the notation, denote by βX
a set of predictor values, including the logarithmic offset, of interest:

 X =01 X 1... k X kln n.

Then the variances at level 1 (lowest) and level 2 (highest) as well as the ICC (and proportion
of variance at the highest level) are given by:

level 1:  1=exp  X  h
2 /2

level 2:  2=exp 2  X 2 h
2−exp 2  X  h

2

ICC : ICC=2 / 2 1 Eq 22.7

It is recommended to calculate the ICC across a range of βX values of interest. Example 22.3
illustrates the procedure.

Example 22.2 Interpretation of fixed and random parameters for pig-pneumonia data
data = pig_adg

Based  on  the  model  presented  in  Example  22.1,  we  calculate  an  odds-ratio  for  -ar_g1-  as
exp(0.437)=1.55. It can be interpreted either as a cluster-specific value (valid when comparing pigs
with and without atrophic rhinitis from the same farm) or as the median odds ratio (MOR) across the
population of farms. For the population-averaged odds ratio, we first convert the parameter to marginal
scale (using Eq 22.2):

PA=0.437/10.346∗0.877=0.383,

and then compute the odds ratio the usual way as exp(0.383)=1.47. This is the mean odds ratio across
the population farms. The difference between the 2 ORs is modest here, due to the moderate (not very
large) between-farm variation. An 80% range for the OR of pigs selected from randomly selected farms
is computed as:

80% range: exp0.437±1.2822∗h
2 =exp0.437±1.698=0.28 ,8.46 ,

where 1.282 is the Zα for α=0.2 from Chapter 2 (the 90% percentile of Z). The range is wide and spans
well across 1, essentially stating that the impact of the between-farm variation is stronger than of the
predictor (atrophic rhinitis). 

Turning next to the variance parameter, we calculate by the latent variable approach a total variation of
0.877+3.290=4.167, and an ICC (and proportion of variance at the herd level) of 

=0.877/4.167=0.21.

Finally, the cluster-median odds-ratio for the random effect is calculated as:
MORc=exp0.9540.877=2.44 .

The median odds ratio for 2 comparable pigs (same fixed effects) from 2 randomly chosen herd is 2.44,
which is quite large compared to the odds ratio comparing pigs from the same farm with and without
atrophic rhinitis (1.55). This shows that even a moderate between-farm variation has an appreciable
impact on the risk of individual pigs.



586 MIXED MODELS FOR DISCRETE DATA

Example 22.3 Random effects Poisson model
data = tb_real

In Examples 18.1 and 18.3, Poisson and negative-binomial models were fit to data on the incidence of
new TB cases in cattle and cervid herds in Canada. The simple Poisson model (Example 18.1) was
clearly inappropriate due to overdispersion. Below are the results from a random effects Poisson model
with random herd effects which were assumed to have a normal distribution.

log likelihood = -143.56

Coef SE Z P 95% CI

type=beef -0.394 0.333 -1.18 0.236 -1.046 0.258

type=cervid -0.238 0.487 -0.49 0.625 -1.192 0.716

type=other -0.104 0.800 -0.13 0.896 -1.673 1.464

sex=male -0.339 0.208 -1.63 0.103 -0.747 0.069

age=12-24 mo 2.717 0.747 3.64 <0.001 1.252 4.181

age=24+ mo 2.467 0.726 3.40 0.001 1.044 3.889

constant -11.056 0.830 - - -12.682 -9.428

In addition, the estimated variance of herd random effects was
h

2
=1.6880.593.

Compared with the negative binomial model,  the
type  of  animal  remains  completely  insignificant
while the coefficients for sex and age groups have
generally moved slightly away from the null and
their P-values have gone down. The random effects
Poisson model fits the data substantially better than
the  negative  binomial  model  because  the  log-
likelihood  is  -143.6  compared  with  -157.7;  the
models  are  not  nested (so a  likelihood ratio  test
does not apply) but they have the same number of
parameters  (so  log-likelihood  values  can  be
compared directly). The Poisson model was also fit
with  gamma-distributed  random  effects,  but
showed  a  slightly  poorer  fit  (log-likelihood=-
146.53).  The  herd-level  variance  (on  log-scale)
was estimated at 1.613 (0.477), and also the fixed
effects  parameters  were  similar  to  those  shown
above.

Fig. 22.1 shows the estimated intra-class correlation (ICC) for 2 animal groups within the same herd, of
the same age group (young: <12 mo, or old: >24 mo) across a range of sizes of the population at risk
(on log scale) from approximately 50 to 22,000 animal-days at risk. The ICC depends very strongly on
the age group and the population at risk because they both have a strong impact on the mean number of
reactors, and the ICC is increasing as a function of the mean. In datasets with strong variations in the
mean (due to predictors or the population at risk), the ICC therefore, does not seem particularly useful
to illustrate the herd-level clustering.

Fig. 22.1 Intra-class correlations for 
animal groups within herds, across a 
range of populations of risk and two age 
groups
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22.4 GENERALISED LINEAR MIXED MODEL

The examples of mixed models in the first 2 sections extend to a larger class of models called
generalised linear mixed models. These models are constructed by adding the desired random
effects on the transformed scale specified by the link function in the same way as we did in the
logistic  and  Poisson  regressions. The  random  effects  are,  as  a  rule,  assumed  normally
distributed with mean zero but possibly involving some non-zero correlations (between random
effects at the same level). The model assumptions listed in Section 16.5 are still valid, although
the distributional  form and the equation for  the linear predictor  are now conditional  on the
values  of  the  random  effects  (Section  22.2.1).  Also,  the  general  discussion  of  correlation
structure and interpretation of fixed effects and variance parameters from Section 22.2 carries
over to GLMMs, but some of the specific procedures for binary/binomial data do not,  eg the
latent variable approach for computing variance components and ICCs. To keep things simple,
we will  confine ourselves  throughout  to random intercept  models (ie no random slopes are
included),  but  adding  random  slopes  and  contextual  effects  to  GLMMs  is  possible  (and
relevant) in the same way as in linear mixed models (Sections 21.3 and 21.4).

In this section we set out by discussing in general terms the population-averaged and cluster-
specific interpretations of parameters in GLMMs (Section 22.4.1), and then we move on to
specific models for binary, count or multinomial data (Sections 22.4.2-22.4.5).

22.4.1 Population-averaged versus cluster-specific parameters

The distinction between population-averaged (PA) and cluster-specific (subject-specific; SS)
modelling for clustered data was introduced in Sections 22.2.1 and 22.3.1 where GLMMs were
referred  to  as  cluster-specific.  Here  we give  more  details  and  examples  (largely  following
Diggle P et al, 2002). First a note on the term ‘subject-specific’. It  originates from repeated
measures data consisting of several observations (eg over time) on different subjects (Chapter
23);  in this  case,  measurements  are  ‘clustered’  within subjects.  In  the context of our usual
hierarchical clustering, we might instead have our subjects clustered in groups (eg animals in
herds). To avoid any confusion of this double use of ‘subjects’, we shall refer to the upper level
of the structure as clusters or groups (instead of subjects). Our next observation is that the PA
and SS interpretations of regression coefficients are equivalent for linear mixed models. This is
not due to their usual normal distribution assumption but to the fact that the linear predictor is
modelled on the original scale; in the terminology of GLMMs, the link function is the identity
function and there is no shift of scale. Therefore, the proper reference for our discussion is a
GLMM with non-identity link, and we also assume a 2-level structure.

The difference between the PA and SS approaches is in the way the clustering or grouping of
the data is dealt with. As previously seen, subject-specific (or cluster-specific) models include a
random effect for each cluster in the linear predictor of the model. The assumptions for the
random effects (ie their distribution and correlation) imply a particular form of the distribution
of the set  of  observations within a cluster,  including their  correlation structure.  Population-
averaged or marginal models involve only the  marginal means,  ie  the expected values for a
particular set  of predictors  averaged across  the  population of clusters,  and do not include
specific effects for each cluster. To show the difference between the parameters involved in the
2 types of model in simple formulae, denote by Y our observations and by u the random effects
for the clusters (in an SS model). Then, using the vector-matrix notation introduced in Section
21.2.2, GLM(M)s of SS and PA types are based on the equations:
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cluster-specific: link [E Y | u]=X 
SS
Zu

population-averaged: link [ E Y ]= X PA
Eq 22.8

where, as before (Eq 21.8), X and Z are our shorthand for the fixed and random part predictors
of the model, and E(Y|u) is the mean of Y conditional on the value of u (as discussed in Section
22.2.1). As indicated by the notation in Eq 22.8, the SS and PA regression parameters are not
identical  (unless  the  link  is  the  identity  link  or  there  is  no  clustering).  Generally  the  PA
parameters are closer to the null (‘attenuated’) than their SS counterparts; we already noted this
attenuation to be absent for identity and log links (except the intercept). The difference depends
on the amount of clustering and is often small relative to estimation error. Formulae for specific
models are given in Sections 22.4.1 and 22.4.2.

The selection of the most appropriate model type (SS or PA) depends on the predictor(s) being
examined. Consider, as an example, a clinical trial of the effect of a treatment (compared with a
placebo) on the risk of a cow developing milk fever. The study is carried out in multiple herds
and the breed of the cow (Holstein versus Jersey) is also recorded. The final model includes
terms for the 2 dichotomous variables: treatment and breed. The βSS for treatment in a cluster-
specific model estimates the effect of the treatment in a  particular herd on the risk of milk
fever (compared with the risk in the same cow if she was not treated). This makes biological
sense for cows staying in the same herd. On the other hand, the βPA gives the effect (assumed
decrease in risk of milk fever) of introducing a programme for treatment against milk fever
across  all  herds.  Thus,  interest  has been shifted from the individual herd to effects  across
herds. The parameters for breed are interpreted similarly,  but the SS interpretation for breed
would seem of less interest for herds with cows of a single breed (it refers to the altered risk of
milk fever if all cows were replaced by cows of another breed), and the PA estimate seems
more appropriate by comparing breeds across herds. Note also that an SS interpretation would
become almost meaningless for herd-level predictors that are inherent in the herd (eg related to
its location). This problem with an SS interpretation of a predictor that is unchangeable for the
cluster is more common in repeated measures data where clusters are subjects (individuals), for
example, with predictors such as sex or race/breed. 

A  final  note  on  recommendations  for  the  (not  uncommon)  situation  that  a  dataset/model
contains multiple predictors, some of which have a desired SS interpretation and others with a
desired PA interpretation. If a conversion formula such as Eq 22.2 exists for the model used,
one should convert  (or  “marginalise”, in the terminology of  Hedeker & Gibbons, 2006) the
parameters with the desired PA interpretation. It is generally more difficult to convert from PA
to SS estimates because  most PA estimation procedures  do not have information about the
variances (see Section 23.5).

22.4.2 GLMMs for binary data

Random  effects  logistic  regression  was  introduced  in  Section  22.2.  Here  we  add  some
comments  about  alternative  link  functions  and  give  additional  formulae  for  the  conversion
between SS and PA estimates, and for the latent variable ICC. Example 22.4 introduces the data
and model we use to illustrate statistical methods for binary GLMMs.

For a random intercept logistic regression model, the approximation was presented in Eq 22.2
and is repeated here for convenience:
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PA≈SS/10.346h
2

where  σ2
h  is the (herd) cluster variance. By this formula, for PA parameters to be more than

10% lower than SS parameters, we need σ2
h≥0.68. For a model with multiple random intercepts

(eg 3+ levels in the data hierarchy), Eq 22.2 still applies after replacing σ2
h by the sum of all

variance components. When the model includes random slopes, the variance associated with the
random effects is no longer constant across the data, so the conversion depends on the values of
random-effects  predictors  (Z).  The  general  formula  for  subject  i can  be  written  (see  also
Hedeker & Gibbons, 2006, Section 9.7):

 i
PA

≈
SS

/10.346∗var Zui Eq 22.9

where the variance computation follows similar lines as Eq 21.11 (depending on the details of
the model). 

For binary/binomial data, 2 occasionally encountered alternatives to the logit function are the
so-called  probit  function  (inverse  cumulative  probability  for  the  standard  normal)  and  the
complementary log-log function. The choice of link function is largely dictated by the same
considerations as for GLMs (Section 16.11); in practice, the difference in model fit and in the
resulting statistical inference between the links is often minimal (see Example 22.4). For probit
regression, the formulae (22.8) and (22.9) become exact when the constant 0.346 is replaced by
1. The latent variable calculation of ICCs is valid for probit regression as well, by replacing the
constant π2/3 by 1.

22.4.3 GLMMs for count data

Random-effects  Poisson  regression  was  introduced  in  Section  22.3.  Compared  with  mixed
models for binary data, the choice of mixed models for count data is considerably more diverse
and confused (from an applied point of view). One reason for this is the larger selection of
models for count data, including several versions of negative binomial models and zero-inflated
models (Chapter 18), all of which could be extended with random effects. Another reason is
that both the Poisson model and its extensions can incorporate random effects of different types
and with different distributions. In this section, we briefly indicate some of the models and
demonstrate  their  fit  to the TB data of Example 22.3.  A recent  book on negative binomial
models gives a full theoretical treatment (Hilbe, 2007). 

An alternative version of the random effects Poisson regression model in Eq 22.6 assumes a
log-gamma distribution instead of a normal distribution for the random effects uherd(i). What this
really  means  is  that  the  herd  random  effects  are  vherd(i)=exp(uherd(i)),  and  these  are  gamma-
distributed variables which act as multiplicative random effects:  Yi ~ Poisson(ni λi vherd(i)). One
technical  advantage of this model is  that  its likelihood function is easier  to compute which
facilitates likelihood-based inference (eg maximum likelihood estimation). 

The negative binomial distribution (in its standard form) is parametrised by the mean λ and an
added dispersion parameter  α (Chapter 18). Clustering of the data (eg in herds) may manifest
itself as similarity of the means within herds (while the dispersion is constant) or conversely as
similarity of  the dispersion within herds (while the means are  constant).  These  2 scenarios
would  be  modelled  by  incorporating  random  effects  in  the  means  or  in  the  dispersion
parameters, respectively. Perhaps the most intuitive extension of the Poisson regression model
has normally distributed random effects on the log-scale for the means (in a similar fashion as



590 MIXED MODELS FOR DISCRETE DATA

Example 22.4 Generalised linear mixed models (random effects logistic regression) for 
first service conception data
data = reu_cfs

In a study of reproductive measures, the success or failure of first-service conception (-fscr-) was one
of the outcomes evaluated. The study comprised 3,027 lactations distributed on 1,575 cows in 50 herds.
The data were analysed in a 3-level random effects logistic regression model ( ie with random effects of
cows and herds). (Lactations were not treated as repeated measures because there were few lactations
in each cow). The model contained 2 dichotomous, lactation-level predictors: -heifer- (primiparous vs
multiparous) and -ai- (artificial insemination vs natural breeding).

logL=-2010.85

Coef SE Z P 95% CI

ai -1.019 0.130 -7.81 <0.001 -1.274 -0.763

heifer -0.064 0.097 -0.66 0.509 -0.254 0.126

constant 0.578 0.129 - - 0.326 0.831

In addition, the estimated variances of the cow and herd random effects were, respectively:
c

2
=0.2660.120 and  h

2
=0.0870.039

Our first impression of these estimates is that there is no effect of parity and a clear, negative effect of
artificial  insemination  on  the  conception  rates.  Both  the  random  effects  seem  small  but  their
significance  is  difficult  to  assess.  The  ICCs  between  2 observations  from the  same  cow (ρc)  and
between  2 observations  on different  cows in the same herd (ρh)  can be estimated  using the latent
variable approach (Sections 21.2.1 and 22.2.2):

c lactations of same cow=
0.2660.087

0.2660.0872/3
=0.097

and

h lactations of different cows in same herd =
0.087

0.2660.087
2
/3

=0.024

The next  table  shows the estimates  for  the corresponding probit  random effects  regression,  which
achieved virtually the same model fit (as measured by the log-likelihood).

logL=-2010.87

Coef SE Z P 95% CI

ai -0.626 0.079 -7.92 <0.001 -0.780 -0.471

heifer -0.040 0.059 -0.68 0.499 -0.156 0.076

constant 0.355 0.078 - - 0.201 0.509

In addition, the estimated variances of the cow and herd random effects were, respectively:
 c

2=0.1000.044 and  h
2=0.0330.014

The  probit  regression  estimates  and  SEs  are  scaled  towards  zero  by  a  factor  of  roughly  1.6  (eg
1.019/0.626=1.63); in practice, the scaling is often in the range 1.6-1.8 and thus slightly less than the
‘theoretical’ scaling factor of  π/√3=1.81  (Hedeker & Gibbons, 2006, Section 9.4). The variances are
scaled by the square of this factor, and the latent variable ICCs are slightly larger (ρc=0.11).
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in Eq 22.6), but it may be numerically difficult to estimate. Access to specific negative binomial
random  effects  models  varies  between  statistical  software  and  may  involve  manual
programming  of  the  model.  Example  22.5  illustrates  3  alternative  Poisson  and  negative
binomial models fit to the TB data.

An additional question arises when it comes to extension of various forms of models for zero-
inflated counts (Chapter 16). As these models have different modelling equations for the zero
and non-zero portions of the data, there is choice between inserting random effects in any one
of these equations or in both of them. In the latter case, the model will contain 2 random effects
per cluster and these should probably be correlated. Zero-inflation models with random effects
are,  at  the current  stand  of  statistical  software,  beginning  to  become available,  and further
research and applications are likely to be appear in this field. 

Example 22.5 Random effects models for count data
data = tb_real

The  table  gives  maximum  likelihood  estimates  (SE)  and  the  log-likelihood  value  for  a  Poisson
regression model with log-gamma distributed random effects, a negative binomial regression model
with normally distributed random effects for the linear predictor of the mean (log scale), and a negative
binomial  regression  model  with  beta-distributed  random effects  for  the  dispersion  parameter  (see
Cameron & Trivedie (1998) for details). 

Outcome dist. Poisson Neg. binomial Neg. binomial

Random effects dist. log-gamma normal beta

type=beef -0.349 (0.335) -0.394 (0.333) -0.363 (0.338)

type=cervid -0.353 (0.469) -0.238 (0.487) -0.319 (0.479)

type=other -0.241 (0.788) -0.104 (0.800) -0.167 (0.799)

sex=male -0.352 (0.207) -0.339 (0.208) -0.333 (0.220)

age=12-24 mo 2.702 (0.746) 2.717 (0.747) 2.264 (0.758)

age=24+ mo 2.462 (0.726) 2.467 (0.726) 2.384 (0.742)

constant -10.132 (0.833) -11.056 (0.830) -7.431 (2.234)

herd variance 1.613 (0.477) 1.688 (0.593) n/a

log-likelihood -146.53 -143.56 -146.39

The dispersion parameter of the negative binomial model with normally distributed random effects was
estimated at zero, thereby effectively making this model identical to the Poisson model in Example
22.3 (so the original Poisson results are not repeated here). We can interpret this to say that when the
overdispersion  caused  by  the  clustering  is  accounted  for,  the  Poisson  dispersion  seems  to  be
appropriate  for  the  data.  The  negative  binomial  model  with  beta-distributed  random  effects  is
parametrised  differently  so  that  no  direct  comparison  of  the  herd  variance  or  the  usual  negative
binomial dispersion parameter can be made. It is seen that the difference between the models in terms
of their fit and also most of the parameter estimates is fairly small. When there is little difference in
model fit,  model choice is often guided by ease (or meaningfulness)  of the interpretation of model
parameters; in this case, the Poisson model with normally distributed random effects seems to be the
obvious choice.
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22.4.4 GLMMs for categorical data

The  multinomial  models  of  Chapter  17  can  also  be  extended  with  random  effects.  Most
attention in the literature has been paid to extensions of the proportional odds model (Section
17.5), and we illustrate the simplest of these in Example 22.6. The simple multinomial logistic
regression model for nominal (Section 17.3) data can be extended with separate random effects
in each model relative to the reference category (Hedeker & Gibbons, 2006, Chapter 11), and
similar extensions can be proposed for other multinomial models, although such models are not
generally available in statistical software.

The proportional  odds  model  is  simpler  to  extend  by random effects  than  the  multinomial
models because the fixed effects are expressed in a single equation. Adding random effects to
this equation corresponds to adding random effects to the latent (unobserved) variables Si in Eq
17.7.  The  subject-specific  interpretation  of  estimates  and  the  latent  variable  method  for
computing  ICCs are virtually unchanged from the logistic regression models because of the
similarity of  the modelling equation.  Several  extensions have been proposed to account  for
possible lack of fit, including the possibility of allowing the scale of the linear predictor to vary
between suitably chosen predictor groups. For example, it could be of interest to allow the scale

Example 22.6 Random effects proportional odds model
data = beef_ultra

In Example 17.4, a proportional odds model was fit to data on ultrasound evaluation of beef cattle. The
data were collected from 8 farms, which we here assume to represent a meaningful population of farms.
The estimates from a model with farm random effects were as follows.

log likelihood=-374.80

Coef SE Z P 95% CI

sex=steer 0.892 0.240 3.72 <0.001 0.422 1.363

backfat -0.286 0.108 -2.66 0.008 -0.497 -0.075

ribeye 0.234 0.076 3.06 0.002 0.084 0.383

imfat -0.568 0.113 5.01 <0.001 -0.791 -0.346

carc_wt -0.019 0.003 -5.51 <0.001 -0.025 -0.012

cutpoint 1 -7.665 1.276

cutpoint 2 -3.887 1.231

In addition, the estimated variance of herd random effects was
 h

2=0.420 0.264 .

The random effects lead to some improvement in model fit (an increase in the log-likelihood of about
10 units).  The estimated variance is fairly small,  corresponding to an  ICC computed by the latent
variable method of 0.11. The regression coefficients are either unchanged or closer to zero, which is the
opposite of what we would expect for parameters with a cluster-specific interpretation. However, a
model with fixed effects for farms gave estimates even closer to zero (results not shown),  so some
confounding effect by farms seems to exist. The large changes in the estimated cutpoints are due to the
change in the -carc_wt- coefficient and the fact that this predictor takes values in a range far beyond
zero. Despite the low number of farms,  the random-effects  model  seems to be an improvement  of
simple proportional odds model.
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to  vary  between  raters  in  datasets  with  items  graded  by  multiple  raters  (Rabe-Hesketh  &
Skrondal,  2008, Chapter  7)  or  groups  of  subjects  with  particular  characteristics  related  to
smoking experience (Hedeker & Gibbons, 2006, Chapter 10). In Example 22.6, we illustrate the
proportional  odds  model  with  random effects  by  the  data  on  evaluation  of  beef  cattle  by
ultrasound studied in Chapter 17.

22.4.5 Other random effects models

Mixed models with the random effects on an original scale (instead of the transformed scale as
in a GLMM) do exist, and we briefly mention 2 of them here.

The beta-binomial model has been used extensively in veterinary epidemiology (eg Donald et
al,  1994).  As  indicated  by  the  name,  it  is  a  model  for  binomial  data  incorporating  beta-
distributed random effects for probabilities. If the 2 parameters (α1, α2) of the beta-distribution
are expressed in terms of the mean (μ) and the ICC (ρ), the model can be used as a regression
model by incorporating predictors into a linear predictor on logit (or probit) scale just as in a
GLM. The expressions for this reparametrisation are:

1= 1−/ and 2=1−1−/ ,

In  this  model,  the  regression  parameters  will  have  a  PA  interpretation.  It  has  been
recommended as one of the best models for estimating the ICC (Ridout et al, 1999). One major
advantage of the beta-binomial model is that the likelihood function is given by a relatively
simple and explicit formula (which is not the case for GLMMs), and therefore the model is
numerically  simpler  to  compute  than  GLMMs  (Andreasen  & Stryhn,  2008).  As one  of  its
drawbacks, it does not, in a natural way, allow for predictors at the lowest level, nor does it
have any easy extension to several hierarchical levels; it is essentially a model for grouped or
replicated binary data. Recall the assumed relation for the variance of the grouped (binomial)
outcome (Eq 20.4); this assumption is different but not necessarily worse than other variance
assumptions (eg the one implicit in a logistic random effects model); the fit of the beta-binomial
model may be compared with that of other models by the log-likelihood or AIC statistics.

The negative binomial distribution was introduced in Chapter 18 as an extension of a Poisson
distribution with overdispersion. Overdispersion could be understood as random variation in the
mean (λ) of a Poisson-distributed variable (Y). Such variation may be attributed to ‘inter-subject
variability’—a heterogeneity between subjects not accounted for by the Poisson model. If λ has
a gamma distribution with shape parameter 1/α and scale parameter  αμ (equivalently: mean μ
and variance αμ2), then Y is a negative binomial distributed with mean μ and variance μ+αμ2, as
shown in Eq 18.9. This distribution may also be called a compound or mixture Poisson model.
Note that these random effects cannot be used for modelling of a hierarchical structure, because
they are already incorporated into the negative binomial distribution and because they are at the
lowest (subject) level. In Example 22.5, it was shown that once the farm effects of the TB data
were accounted for, there was no longer any overdispersion left at the lowest (animal group)
level.

22.5 STATISTICAL ANALYSIS OF GLMMS

Despite the apparent simplicity of models such as Eq 22.1 and Eq 22.6, analysis of GLMMs is
not straightforward, even in the logistic and Poisson regression settings. In contrast to most
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other models in the book, even the estimation of parameters is not clear-cut. Different methods
exist, and they may give appreciably different results. No definitive answer exists at this point
as to which method is generally preferable. The maximum likelihood method has been used
throughout most parts of the book and is considered the standard choice here as well if it does
not pose unmanageable computational challenges. Advances in computing power and software
implementations  over  the  last  years  has  made  maximum likelihood  estimation  feasible  for
moderate  to  large  datasets  and  models.  The  implementation  of  GLMMs  is  still  an  active
research area, and one is advised to investigate the options in different software before deciding
on an approach (see also Section 22.6 for notes on current software). We outline briefly the
methods available and indicate where they are discussed in this text.
 1. Maximum  likelihood  estimation  (Section  22.5.1):  the  likelihood  function  involves  an

integral  over  each  random  effect,  which  must  be  approximated  by  a  summation  and
therefore makes ML estimation computationally demanding for large models. 

 2. Quasi-likelihood or iterative weighted least squares estimation (Section 22.5.2): algorithms
for linear  mixed models and GLMs are  combined to produce multiple slightly different
variants of an algorithm, which is fast and computationally simpler than ML estimation. 

 3. Bayesian MCMC (Markov chain Monte Carlo) estimation (Chapter 24): based on a different
statistical  approach  (Bayesian  statistics)  and  a  simulation-based  estimation  that  is
computationally intensive.

All  results shown so far  in this chapter  have been from ML estimation. But how does one
determine which method is best, in general, for one’s own data? One standard answer is to use
simulation,  ie generate artificial data from a model with known values of all parameters and
then compare the results of different methods with those known values. Such simulation studies
are  regularly published in statistical  journals  (eg Browne & Draper  (2006),  or  Masaoud &
Stryhn (2009)), and you could also carry out your own simulation study for the data structure at
hand (Stryhn et al, 2000). 

Even if we as researchers are committed to always using the best possible method to analyse
our data,  it  is useful  to have a sense of when major differences between approaches might
appear  (see also the discussion of  biases  by quasi-likelihood procedures  in Section 22.5.2).
Estimation in GLMMs is most difficult if variances are large and/or the information contained
in the data is limited,  eg if replication is sparse. It is generally true that binary data are more
difficult  than  count  data,  and  that  we  should  avoid  fitting  too  ambitious  models  to  even
moderately sized binary datasets. Another possible cause of problems is if multiple clustering
units should have ‘extreme’ predicted values, eg if in a logistic model all animals in a herd are
negative (or all are positive). It almost goes without saying that whenever a dataset or model
shows signs of being ‘difficult’ to estimate, one should be particularly careful with the analysis,
and in such cases analysis by different procedures is often a fruitful approach.

22.5.1 Maximum likelihood estimation

Maximum likelihood (ML) estimation in GLMMs would, at first sight, seem to be our first
choice, because of the overall strengths of the method (good statistical properties of the ML
estimates) and the access to likelihood-based inference (eg likelihood ratio tests). However, ML
estimation has, until recent years, had the reputation of being unfeasible for any GLMM beyond
the simplest 2-level models, due to the massive and difficult  computations required.  Recent
advances in computer power and software have changed this judgement, although the options



MIXED MODELS FOR DISCRETE DATA 595

currently available vary considerably between statistical software. It is likely that, within a few
years, ML estimation will become the standard estimation approach for all but huge GLMMs.
Even if the method’s numerical side now looks promising, we outline why computation of the
likelihood function is so difficult and give some cautions (complex procedures always have
pitfalls, even if the complexities are hidden in the software).

For simplicity,  consider the 2-level logistic regression model (Eq 22.1) and let us begin by
focusing on a single herd  — herd 1. Given the value of  u1 (the random effect of herd 1), the
conditional likelihood of the observations from that herd is binomial,

L1∣u1= ∏
i : herd  i=1

pi
Y i1− pi

1−Y i

and  the  full  (sometimes  denoted  marginal)  likelihood  for  those  animals  is  obtained  by
integration over the distribution of the random effect u1:

L1=∫L1∣u12 h
−1 /2exp −

1
2

u1
2
/h

2
 du1 Eq 22.10

The integration weights  the possible values  of  u1 according to their  likelihood in a normal
distribution with mean zero and standard deviation σh. Integrals such as Eq 22.10 cannot be
solved analytically,  and therefore a numerical integration or  quadrature becomes necessary.
By this procedure, the integral is approximated by a weighted sum of values of the integrand ( ie
the function being integrated) at a number of selected quadrature points. Specific weighting
schemes for integrals that involve exponential terms of a squared argument, as in Eq 22.10, are
called  Gauss-Hermite  quadrature.  In  such  schemes,  you  need  to  decide  on  the  number  of
quadrature points and the way they are selected. Generally, increasing their number improves
both  accuracy  and  calculation  time.  Also,  it  is  generally  recommended  that  an  adaptive
approximation  method  be  used,  where  the  quadrature  points  (and  their  weights)  are
successively adapted to the integrand.

So far, we have dealt only with observations from one herd. Observations from different herds
are independent, so the full likelihood function for the entire dataset is obtained as a product of
terms such as Eq 22.10 over the total set of herds. We trust it is not necessary to write out the
equation  to  make  the  point  that,  not  only  computing,  but  also  maximising,  a  quadrature
approximation  to  such  a  multiple  integral  with  respect  to  the  fixed  and  random  effects
parameters of the model can be a formidable task. Extension to multiple levels and/or multiple
random effects at the same level rapidly increases the complexity of the problem. 

To summarise, a few recommendations and cautions for the use of ML estimation for GLMMs:
• ML  estimation  might  be  computationally  unstable  or  the  approximation  of  the

likelihood function may be insufficient; it is highly recommended, therefore, that the
stability  of  results  be  checked  by trying  different  starting  values  of  the  algorithm
and/or different  variants of the numerical  integration procedure,  such as a different
number of quadrature points as well as adaptive procedures,

• ML  estimation  could  be  compared  with  other  approaches  (either  quasi-likelihood
estimation or other approaches for clustered data), and caution should be exercised if
major differences appear; this is in particular recommended if the estimation problem
is ‘difficult’ (as discussed above),

• ML  estimation  in  GLMMs  may  be  impractical  for  model  selection  (because  of
computational  demands);  it  is  then  considered  legitimate  to  use  computationally
simpler methods for (part of) the model selection and confirm the results by running
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selected models also by ML estimation.

In Example 22.7, we examine the stability of the quadrature behind the ML estimates.

22.5.2 Quasi-likelihood estimation

A quasi-likelihood function could be thought of as a substitute for a (real) likelihood function
whenever the latter  does not exist  or is  too difficult  to compute.  In  the early 1990s, when
computers were much less powerful, several algorithms employing an iterative weighted least
squares  scheme were developed to maximise quasi-likelihood functions for GLMMs. These
algorithms are referred to by many different acronyms, typically containing the letters QL (for
quasi-likelihood), PL (for pseudo-likelihood) or ILS (for iterative and least squares), and often
in  combination  with  a  G for  generalised  or  a  W for  weighted  or  an  R for  reweighted  or
restricted.  The main idea of  the iterative  weighted  least  squares  methods is  to compute an
‘adjusted’ variate on the scale given by the link function (eg logistic scale) in each step of the
iteration. Technically, the adjusted variate is obtained by a Taylor expansion of  Y around the
current estimated mean, but one may think of it as a continuous version of the discrete outcome.
Estimation for this adjusted variate is carried out using estimation procedures for linear mixed
models (weighted REML or ML estimation). The procedure continues until convergence of the
parameter estimates. Again, for the technically interested reader, some common options in the
procedure are mentioned below:

• first-  or  second-order  Taylor  expansion,  the  latter  being  considered  more  accurate
whenever the procedure converges,

• ML or REML estimation for the adjusted variate, the latter being the more commonly
used, 

Example 22.7 Checking maximum likelihood estimation of a GLMM
data = reu_cfs

In Example 22.4,  ML estimation was used to fit  a random effects logistic  regression model  to the
Reunion Island first-service conception risk data. This model was refit  using a range of number of
quadrature points (at both the herd and cow level) in the estimation procedure. The fixed and random
effects estimates from each estimation were:

Number of quadrature points at (herd,cow) level 

(1,1) (3,3) (7,7) (12,12)

ai -0.993 -1.019 -1.019 -1.019

heifer -0.065 -0.064 -0.064 -0.064

constant 0.568 0.578 0.578 0.578

herd variance 0.083 0.087 0.087 0.087

cow variance 0.145 0.267 0.266 0.266

log likelihood -2012.446 -2010.839 -2010.847 -2010.847

The default in the software used for the estimation is 7 quadrature points. Using a single (1) quadrature
point  is  sometimes  referred  to  as  a  (low order)  Laplace  approximation  (Section  22.5.2).  With  20
quadrature points, exactly the same estimates were obtained as with 12 points. This model seems very
stable because the estimates changed very little as the number of quadrature points was increased, and
the default number of quadrature points seems adequate.
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• MQL or PQL form of the adjusted variate (M=marginal, P=predictive or penalised),
the former being computationally more robust by omitting estimates of random effects
in  the  linear  predictor,  and  yields  estimates  with  a  PA interpretation  (Breslow  &
Clayton, 1993), contrary to the other procedures for estimation in a GLMM.

These  3 options  can  be  combined  arbitrarily  (depending  on  the  facilities  of  the  software
package used). Example 22.8 shows results from some of these algorithms.

A long list of (statistical) papers from the 1990s discussed the different versions of algorithms
and  their  implementation  in  software  packages  (eg Browne  &  Draper  (2006);  Zhou et  al
(1999)). For well-behaved data, the different variants of the algorithms give very similar results
(taking into account the standard errors of the estimates). One should whenever possible use the
‘best’  possible  of  the  above  options  (second  order,  REML,  PQL).  More  importantly,  any
‘strange-looking’ estimates or standard errors should cause the model to be examined carefully
and the results to be confirmed with other models or estimation methods.

Early  simulation  studies  showed  that  estimates  from  some  of  the  iterative  least  squares
algorithms for GLMMs could be markedly biased towards the null. The bias might affect both
fixed  and  random-effect  parameters,  but  the  latter  are  particularly  sensitive.  The  general
consensus seems to be that particular caution should be exercised if:

• the number of replications at a hierarchical level is ‘small’ (eg less than 5), 
• the corresponding random effect is ‘large’ (eg the variance exceeds 0.5).

Example 22.8 Quasi-likelihood estimation of a GLMM
data = reu_cfs

Three  quasi-likelihood  estimation  procedures  were  applied  to  the  first-service  conception  data  of
Example 22.4. The estimates were obtained using MLwiN software; for the 1 st order procedures, the
same  estimates  were  obtained  in  SAS  (Proc  Glimmix)  with  slightly  larger  SE  for  the  variance
parameters. 

ML (Ex 22.4) 1st order MQL 1st order PQL 2nd order PQL

Coef (SE) Coef (SE) Coef (SE) Coef (SE)

ai -1.019 (0.130) -0.941 (.120) -0.953 (.121) -0.995 (.123)

heifer -0.064 (0.097) -0.062 (.092) -0.062 (.093) -0.064 (.093)

constant 0.578 (0.129) 0.540 (.120) 0.545 (.122) 0.567 (.123)

herd var. 0.087 (0.039) 0.079 (.032) 0.080 (.032) 0.088 (.034)

cow var. 0.266 (0.120) 0.100 (.076) 0.130 (.078) 0.153 (.080)

The estimates of all quasi-likelihood procedures are generally closer to zero than the ML estimates in
Example 22.4. The largest disagreement is seen for the cow-level variance which is about 40-60% of
the ML estimate. We interpreted the disagreement about this value as a bias of the quasi-likelihood
estimation procedure; a simulation study confirmed that with these data the quasi-likelihood procedure
would consistently give too low cow-level variance estimates  (Stryhn et al, 2000). The bias is less
pronounced with the 2nd order than the 1st order PQL procedure. The MQL estimates for the regression
coefficients have a PA interpretation (and should therefore be closer to zero than the SS counterparts),
but the variances are the most severely affected by the bias towards zero. Note that the quasi-likelihood
procedures  do  not  allow  easy  computation  of  test  statistics  or  confidence  intervals  for  variance
parameters.
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In our Example 22.8, the number of cow-level  replications was indeed small,  with only an
average of 1.9 observations per cow. The fact that the biases in the regression coefficients were
still fairly small is due to the small variances at the 2 hierarchical levels, and the biases can be
more substantial in datasets with larger variance components.

We finally also mention a related type  of approximation method that  goes  under the name
Laplace approximation. These methods have been continually developed in the last decade,
involving  high  order  (ie more  accurate)  approximations  and  now  also  providing  useful
approximations to the log-likelihood function (so as to enable likelihood-based inference). A
recent paper concluded that Laplace approximation methods were fully acceptable for Poisson
regression (Pinheiro & Chao, 2006), and a further simulation study explored the accuracy of the
method for both count and binary data (Joe, 2008).

22.5.3 Confidence intervals and tests

Statistical inference in GLMMs is generally only approximative (asymptotically correct when
the number of  observations at  all  hierarchical  levels  is  large).  Fixed effects  parameters  are
usually  assessed  by  Wald-type  confidence  intervals  and  tests,  however  likelihood-based
inference (profile likelihood CIs and likelihood ratio tests, see Section 21.5) may be preferable,
in  particular  when  the  parameters  are  highly  correlated  or  not  well  determined.  However,
likelihood-based inference is only feasible when ML estimation is used. As with GLMs, Wald-
type statistics are useless for parameters that are ‘out of bounds’, eg in logistic regression when
one category of a predictor has no cases. Such situations often signal separation issues (Heinze
&  Schemper,  2002),  which  would  typically  also  affect  estimation  of  the  random  effects
(therefore, also ML estimates may be affected). 

Reference  distributions  are  most  commonly  ‘asymptotic’,  ie the  standard  normal  or  χ2-
distributions. The resulting inference may be too liberal if replication is sparse at the level of the
parameter of interest (Stryhn et al, 2000), and some software packages give the option of using
similar approximations as for linear mixed models using t- and F-distributions. In general, no
clear guidelines can be given about the accuracy of approximative inference in GLMMs. As in
linear  mixed  models,  Wald-type  statistics  are  inappropriate  for  variance  parameters,  which
should  therefore  be  assessed  by  likelihood-based  inference  (Example  22.9)  or  alternative
procedures such as bootstrapping. 

Example 22.9 Statistical inference in a GLMM
data = reu_cfs

The tests and confidence intervals given for the fixed effects in Example 22.4 are ‘asymptotic’; for
example, the 95% CIs are computed as β±1.96*SE(β). Both predictors vary (potentially) at the lowest
level and even if some variation may reside at higher levels (in particular, the cow level) there would
seem ample replication to justify inference based on the standard normal distribution.

To compute tests for the random effects of the model, we note the log-likelihood value of the fitted
model (-2010.85) and refit the model without the random effect of interest. The models without cow-
random  effects  and  herd-random  effects  had  log-likelihood  values  of  (-2014.11)  and  (-2017.93),
respectively,  so  that  the  corresponding  χ2-statistics  with  1  df  were  6.52  and  14.2,  and  thus  both
significant. Recall from Section 21.5.3 that P-values should be computed as half the tail probability
from the χ2(1)-distribution to account for the one-sided alternative hypothesis. It is perhaps interesting
to note that the herd-random effect was clearly the most significant of the 2; this is not at all obvious
from the estimates and standard errors.
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22.5.4 Prediction

The random effects in GLMMs can be predicted along similar lines as in linear mixed models
(Section 21.5.4) and also exhibit a shrinkage towards the mean. However,  some new issues
arise for predictions of observations or their means, because the fixed and random effects reside
on a  different  scale  (eg logit  scale).  This  is  related  to  the  distinction  between  SS and PA
parameters.  Following  Skrondal  & Rabe-Hesketh  (2009),  we describe  in  Example  22.10  3
different  ways  of  computing  predicted  probabilities  in  a  random effects  logistic  regression

Example 22.10 Prediction in a random-effects logistic regression
data = pig_adg

We consider again the logistic regression model for pneumonia in 341 pigs from 15 farms with the
presence of atrophic rhinitis (-ar_g1-) as the sole predictor and farm random effects. The ML estimates
for the intercept, coefficient for -ar_g1- and the between-farm variance were, respectively:

0=0.020 , 1=0.437 , 
2
=0.877

We wish to predict the probability of pneumonia for pigs with and without atrophic rhinitis. Three
possible interpretations exist for such probabilities:

1. Probability for pigs in a hypothetical  farm For  any given  (hypothetical)  farm random
effect  u,  we  can  compute  a  farm-specific  (conditional)  probability  as:  p(1)=logit-1(β0+β1

ar_g1+u). Using  u=0 gives the median probability across the population of farms. We can
also insert u=±1.96σ to get a 95% range across the population of farms. 

2. Mean probability for pigs from any farm The approximation formula Eq 22.2 gives this
population-averaged  probability  as:  p(2)≈logit-1((β0+β1  ar_g1)/√(1+0.346  σ2)).  In  the  table
below, we used a more exact approximation for  p(2) based on quadrature (see Skrondal &
Rabe-Hesketh (2009) for details).

3. Probability for pigs in a study farm When predicting for a study farm (say farm 1), we
need to incorporate the information we have about its random effect. Due to the non-linearity
of  the  logit  function,  simply  inserting  the  predicted  farm random effect  does  not  work
exactly;  instead,  we  need to  compute the mean probability averaged  across  the posterior
distribution (in Bayesian terminology, see Chapter 24) of the random effect. Some statistical
software will provide this calculation (p(3)).

The table below gives the 3 probabilities for the 2 categories of the predictor and some farms. 

ar_g1 farm # u(farm) p(1) with u=0 p(2) p(1) with
u(farm)

p(3)

0 1 1.115 0.505 0.504 0.757 0.748

3 -1.457 0.192 0.200

1 1 1.115 0.612 0.595 0.828 0.819

3 -1.457 0.269 0.276

As the 2 fixed effects parameters are of moderate size, the first 2 probabilities are fairly close both to
each other and to 0.5. The predicted probabilities in study farms with moderately sized random effects
are very different, making again the point (from Example 22.2) that the random effects are stronger
than the fixed effect.  The calculation with the estimated random effect  inserted gives only slightly
different values than the correctly calculated probability p(3).
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model. The first 2 are commonly used; see eg McClure et al (2005). In order to demonstrate at
least  moderate  differences  between  the  approaches,  we  use  the  2-level  pig  dataset  from
Example 22.1 where the between-herd variance is larger than in the Reunion Island dataset.

22.5.5 Residuals and diagnostics

The standard tools for model-checking—residuals and diagnostics—are even less developed
and accessible  for  GLMMs than  for  linear  mixed models  (Section 21.5.5).  The distinction
between different types of standard errors still holds, but calculations are more difficult, and in
practice one may need to accept whatever is offered by the statistical software  (Skrondal &
Rabe-Hesketh, 2009). The main new point for GLMMs (compared with linear mixed models) is
that,  because  the  model  has  no  normally  distributed  error  terms  at  the  lowest  level,  the
corresponding residuals  and diagnostics  at  that  level  are  difficult  to  assess.  As an  extreme
example,  in  a  binary  model  all  the  lowest-level  residuals  are  dichotomous  and  cannot  be
expected to conform to a normal distribution. In this case, the residuals at the lowest level are
not  very  informative.  Unfortunately,  the  problems  with  the  lowest-level  residuals  could
penetrate to the higher levels if there is little replication. Reference distributions and points for
residuals and diagnostics are therefore difficult to use rigorously, and one is advised instead to
look for data points that are extreme in some way relative to the rest of the data. Example 22.11
presents residuals from our 3-level Reunion Island analysis.

GLMM analogues  of  some  of  the  special  statistics  for  discrete  data,  such  as  the  Hosmer-
Lemeshow test for goodness of fit in a logistic-regression model, are not available. A recent
paper described a simulation-based goodness-of-fit test for GLMMs, but this procedure does
not seem to be available in standard software (Waagepetersen, 2006).

22.5.6 Robustness against model misspecification

Much of the discussion of robustness of linear mixed model analysis to model specification in
Section 21.5.7 carries over to GLMMs. One notable difference is that the use of robust standard
errors is less obvious with non-normal data. A substantial body of research has been undertaken
in the last decade on misspecification of GLMMs, in particular by McCulloch and Neuhaus
whose work is summarised in  McCulloch et al (2008), Chapter 12. Additional work includes
Heagerty & Kurland (2001), and Litière et al (2008). One conclusion that seems to be common
for this work is that  misspecification of the random effects distribution may not be terribly
serious (McCulloch & Neuhaus, 2009).

22.5.7 Over- and underdispersion in GLMMs

Non-distributional dispersion in GLMs was discussed in Section 20.5.3, and it was explained
how an extra-binomial dispersion parameter could be added to a binomial model within the
GLM framework. A similar multiplicative dispersion parameter  φ can be added to a Poisson
model  by  the  specification  that  var(Yi)=φλi ,  where  φ=1  corresponds  to  the  usual  Poisson
distribution, and also to other models for count and categorical data. We discussed in Section
20.5.3 how the extra-binomial parameter could account for clustering, although this method was
not as attractive as other modelling approaches such as mixed models. In Chapter 16, we also
discussed other ways that an apparent over- or underdispersion could arise. The question we
address here is the utility of allowing for extra-distributional dispersion in mixed models, where
the random effects should account for the hierarchical structure. 
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Example 22.11 Residuals from a 3-level GLMM
data = reu_cfs

The  3-level  logistic  regression  of  Example
22.4 (Reunion Island first-service conception
data) has residuals at all 3 hierarchical levels
but the lowest-level residuals are of little use
in this case so we disregard them completely.
A normal (Q-Q) plot for the 1,575 cow-level
standardised residuals is given  in Fig.  22.2.
The plot shows a curious pattern, far from a
straight  line  but  instead  with  3  separate,
almost  straight,  lines.  One must  realise  that
with typically only 1-3 observations per cow
and only 4 different sets of predictor values,
the cow-level residuals cannot realistically be
expected  to  look  like  a  normal  distribution
sample.  With  closer  scrutiny,  each
approximately  linear  part  of  the  graph
correspond to cows with  the same response
pattern.  For  example,  the  lower  part  of  the  plot  corresponds  to  cows  without  any  first-service
conceptions in the dataset and the upper part of the plot to cows that conceived at first service in all

lactations. It  seems almost impossible  to assess from the plot whether  there are problems with the
model assumptions at the cow level.

Fig. 22.3 shows the herd-level residuals depicted in a normal plot and plotted against the herd-level
predicted values (including cow-level predictors). The normal plot is somewhat skewed due to lack of
herds with strongly positive residuals; however, when comparing with the lower tail of the distribution,
you can see that only 2 negative residuals are more extreme than in the upper tail. The plot against the
fitted values shows a grouping of predicted values at  the lower end of the scale but no particular
patterns in the residuals.

Fig. 22.2 Normal plot for cow-level residuals of
3-level model for Reunion Island data
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Fig. 22.3 Normal plot (left) and plot against predicted values (right) for herd level 
residuals of 3-level model for Reunion Island data

-3

-2

-1

0

1

2

he
rd

 le
ve

l s
td

. r
es

id
ua

ls

-2 -1 0 1 2

Inverse Normal

-3

-2

-1

0

1

2

he
rd

 le
ve

l s
td

. r
es

id
ua

ls

-.4 -.2 0 .2 .4

herd level linear prediction



602 MIXED MODELS FOR DISCRETE DATA

Our  first  observation  is  that  extra-distributional  parameters  only  exist  within  the  GLM
framework  where  models  are  incompletely  specified  and  estimation  is  based  on  quasi-
likelihood-type functions (Section 22.5.2). The fact that no data-generating mechanism exists
for these models has been put forward as a major disadvantage of the approach  (Skrondal &
Rabe-Hesketh, 2007). It does indeed seem awkward to recommend the use of an approach that
is only available in a subset of less attractive estimation procedures for GLMMs. Nevertheless,
it  is  conceivable that a dataset  could contain a dispersion that does not match the  ‘natural’
distribution, even after the fixed and random effects have been incorporated into the model. In
this sense, inclusion of an extra-distributional parameter may serve as a diagnostic tool. Values
of  φ substantially different from 1 would then lead us to either explore different distributions
(where feasible), adopt the scaling of standard errors implicit in the quasi-likelihood estimation
procedures, or perhaps ignore the finding.

If  underdispersion  is  indicated,  one  should  look  for  any  reasons  for  negative  correlations
between observations,  the standard  example being competition in a  group of  animals for  a
limited resource (eg  feed). If  no such explanation can be found, as underdispersion means a
better fit than expected to the data of our model, we often tend not to worry much about it
(maybe it was just ‘good luck’). By ignoring an appreciable underdispersion and pretending the
dispersion  to  be  as  predicted  by  our  model  (when  it  is  in  reality  smaller),  our  statistical
inference  becomes  conservative—which may be considered  the appropriate  approach  for  ‘a
case of good luck’. Underdispersion (as well as very small values of one-sided test statistics)
may, however, also indicate something strange to be going on in the data, so one should inspect
the data critically (once more). To scale down the standard errors by an underdispersion factor
is a serious decision because it may lead to spurious significance, and should probably only be
done when there is a biological explanation of the phenomenon. It might be useful to also try
robust standard errors (Section 20.5.4) to see if they point in the same direction. Example 22.12
presents a dataset where an extra-binomial parameter substantially less than 1 was encountered.

Overdispersion may be easier to understand intuitively and it may be considered less serious to
inflate the standard errors; again, a comparison with robust standard errors might be useful. In
some special cases, specific advice can be given on the modelling. First, if overdispersion is
encountered in a Poisson model, it seems natural to try instead a negative binomial distribution

Example 22.12 Aggregation of the lowest level for pig-seroconversion data
data = ap2

Vigre et  al (2004) observed  that  seroconversion  to  Actinobacillus  pleuropneumoniae  was  strongly
clustered in batches of pigs in multisite production systems. On average, each of the 36 batches of pigs
consisted of about 30 pigs, and in 17 batches more than 90% of the pigs seroconverted, in 4 batches
between  50%  and  85%  of  the  pigs  seroconverted,  and,  in  the  remaining  15  batches,  no  pigs
seroconverted. A 3-level logistic regression model (with predictors at all levels) showed a ‘dispersion
parameter’ of φ=0.2, despite the fact that underdispersion cannot exist with binary data. It was unclear
what model deviation (if any) the ‘dispersion parameter’ picked up in the data. However, the 3-level
analysis also exhibited some numerical instability when fitted using quasi-likelihood estimation, and
had a large variance component at the batch level. It was therefore decided to aggregate the data to the
batch  level  by  defining  a  batch  as  positive  if  at  least  one  pig  seroconverted,  and  as  negative  if
otherwise. The pig’s mean age at slaughter was computed for each batch as well, and the data were
analysed by a 2-level model using this batch-level  predictor. From a biological perspective,  it was
considered  perfectly  acceptable  to  designate  batches  as  seroconverted  or  not,  given  the  strong
clustering in batches, so the 2-level model was preferred to the 3-level model.
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(Chapter 18). Second, if overdispersion is encountered in a (mixed) model for grouped binary
data (ie a binomial model with denominator >1), one may introduce a random effect at the
group  level  which  will  then  effectively  remove  the  overdispersion  (Browne  et  al,  2005;
Skrondal & Rabe-Hesketh, 2007). Third, if the outcome is binary, extra-binomial dispersion
cannot exist  (Skrondal & Rabe-Hesketh,  2007);  this is  the same situation as in an ordinary
GLM (Section 16.12). The same consideration exists for single categorical observations in a
multinomial  model.  Notwithstanding this  fact,  many quasi-likelihood estimation  procedures
allow estimation of an ‘extra-binomial’ parameter for binary data, and many examples exist of
such models fitted and published (Skrondal & Rabe-Hesketh, 2007). It is not clear what these
estimation procedure actually estimate in the data, and interpretation of the estimated value of φ
beyond a nondescript  ‘diagnostic’ is hard to give. Skrondal and Rabe-Hesketh argue that the
extra-dispersion parameter should be avoided in these instances.

22.6 SUMMARY REMARKS ON ANALYSIS OF DISCRETE CLUSTERED DATA

Throughout this chapter we have emphasized the distinction between cluster-specific (SS) and
marginal (PA) modelling and interpretation of effects. We have also noted that SS parameters
reside on a different scale than PA parameters,  and that the difference between the  2 scales
depends  on  the  magnitude  of  the  variance  components  (eg Eq  22.2).  This  scaling  of  SS
parameters (relative to PA parameters) by a factor depending on the variances has the, perhaps
undesired,  consequence  that  SS  parameters  become  difficult  to  compare  between  different
datasets and analyses. As the estimates of variance parameters are particularly sensitive to the
choice of estimation procedure,  the fixed effects  will,  whenever the variances  are large,  be
equally sensitive.  This was the main reason behind our recommendation in Section 22.5 to
exercise particular caution with the analysis when variances are large. In situations where the
interest is in PA parameters, it seems awkward to start the process by obtaining estimates on
another  scale  that  may  be  difficult  to  establish  firmly  (when  variances  are  large)  before
converting  back  to  the  scale  of  interest.  Such  reasoning  has  spurred  the  development  of
marginalised  models,  in  which  fixed  effects  are  modelled  on  PA  scale  while  a  random
structure is retained on SS scale  (Diggle  et al, 2002, Chapter 11). Although first results with
this new class of models were promising  (Heagerty & Zeger,  2000), these models have not
gained much popularity because they are not available in standard statistical software. 

Several topics for mixed models covered in Chapter 21 (eg sample size) has not received a
special treatment in this chapter  because the coverage in Chapter 21 largely carries  over or
gives the relevant pointers also for GLMMs. The literature on GLMMs is huge and still rapidly
expanding,  including  in  recent  years  many  excellent  textbooks  (often  also  covering  linear
mixed models,  see  the  brief  overview in  Section  21.5,  and/or  repeated  measures  data,  see
Chapter 23). Let  us at this point attempt a brief summary of the current stand of statistical
software for GLMMs. The field is more diverse and confusing than for linear mixed models,
due  to  the  existence  of  different  estimation  procedures  and  the  continuing  emergence  of
algorithms  improved  in  speed  and  flexibility.  For  maximum  likelihood  estimation by
numerical integration, Stata is arguably the most versatile statistical software package, because
it offers both standard multilevel routines for binomial and count data with no restrictions on
the number of hierarchical levels and cross-classification, and the powerful Generalised Linear
Latent And Mixed Models (-gllamm-) macro for multilevel modelling implemented in Stata
(Rabe-Hesketh & Skrondal, 2008). The -gllamm- software also implements a wide range of
models involving latent variables  (Skrondal & Rabe-Hesketh, 2004). Implementations of ML
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estimation in other packages is more limited, but updates are likely to occur rapidly. For quasi-
likelihood estimation, many different implementations exist, both in general-purpose statistical
software  (eg SAS,  R/S-Plus)  and  in  specialised  multilevel  packages  (MLwiN,  HLM),  with
variable  accuracy  and  flexibility  of  the  algorithms.  Another  specialised  package  for  mixed
models (AD Model Builder) offers high order Laplace approximations.

A variety of approaches for dealing with clustered data has been presented in this and previous
chapters, and 2 more are to come in Chapters 23 and 24. We conclude with a comparative table
of estimates for the pig-pneumonia data (Example 22.13).

Example 22.13 Summary of analyses for pig-pneumonia data
data = pig_adg

Variable Model β SE

ar_g1 logistic 0.647 0.220

robust variance 0.647 0.276

fixed effects 0.365 0.268

stratification 0.349 0.261

GLMM 0.437 0.258

GEE 0.354 0.215

Bayesian 0.438 0.260

The GEE estimation used an exchangeable 
working correlation structure (Section 23.4). 
The Bayesian analysis reported the posterior 
median and SD from a mixed model with 
standard flat priors (Chapter 24). 

Accepting that the GLMM and GEE 
estimates are the best SS and PA estimates 
respectively, it is surprising to see the fixed 
effects and stratified estimates (also SS) 
closer to the GEE results. The logistic and 
robust variance estimates fail to account for 
the strong confounding effect of herd.
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