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REPEATED MEASURES DATA

OBJECTIVES

After reading this chapter, you should be able to:

 1. Recognise a repeated measures data structure, and understand the unique characteristics of a
repeated measures structure.

 2. Use descriptive and graphical tools to quantify and visualise the repeated measures structure
of a dataset.

 3. Use simple univariate approaches to analyse repeated measures data.

 4. Use mixed models to analyse  repeated measures  data,  and understand the limitations of
random-intercept mixed models for such data.

 5. Choose among a variety of correlation structures  that  might  be appropriate  for  repeated
measures or spatial data.

 6. Understand the fundamental differences between mixed model and generalised estimating
equation (GEE) approaches for analysis of clustered data.

 7. Use GEE procedures to analyse clustered data, in particular repeated measures data.
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23.1 INTRODUCTION

In  this  chapter,  we  will  describe  methods  for  analysis  of  repeated  measures  data that,  as
discussed in Chapter 20, could be considered as a special type of clustered data. It is also one of
the  most  commonly encountered  data  structures  in  veterinary  epidemiology and  the  health
sciences in general. A wide selection of methods and approaches exist for analysis of such data,
and the choice between them depend on the characteristics of the data at hand as well as the
objective of the analysis. We cannot, within a single chapter in the book, cover all methods, or
cover the methods selected in full detail. Among the many excellent textbooks on repeated
measures or longitudinal data, a standard (fairly theoretical) reference is  Diggle  et al (2002),
and also  Fitzmaurice  et al (2004); Molenberghs & Verbeke (2005); Verbeke & Molenberghs
(2001) provide extensive coverage in a blend of theory and practice. 

To illustrate the methods, we will later revisit the somatic cell count dataset (-scc_40-) studied
in Chapter 21 but first consider a dataset (-fish_trial-) on growth of salmon in a clinical field
vaccine trial. Within a sea cage in commercial aquaculture, the fish were tagged electronically
(with passive integrated transponder tags), randomly allocated to one of several vaccine groups
and followed throughout  the production cycle  until  harvest  by repeated  sampling events  in
which all fish in the cage were weighed and inspected. The dataset considered here, a small
subset  of  the  full  dataset,  includes  weight  measurements  at  3  samplings  after  the  initial
vaccination  as  well  at  harvest,  for  a  total  of  5  measures  over  time  on  each  fish.  At  each
sampling, the fish were screened for health issues; one of these (jaw deformity) is included in
the dataset (Table 23.1).

Table 23.1 Selected variables from the dataset fish_trial

Variable Description

fish fish identification

sample sampling number (1-5), where 1~vaccination and 5~harvest

day days since vaccination (0-900)

wt weight in grams

vaccine vaccine group (1-4)

jaw presence of jaw deformity (0/1)

23.1.1 What is repeated measures data?

A longitudinal study can be characterised by having several measurements over time on the
same  subjects (individuals, or sometimes other experimental units such as sample plots in a
field),  as  opposed to  studies  with only one measurement  per  subject.  A longitudinal  study
certainly involves  repeated measures (or measurements) on the same subjects, but the latter
term is sometimes used in a slightly more general sense to denote consecutive measurements, ie
measurements with a certain inherent ordering (eg along the line of cows in a tie-stall barn). If
there is no ordering to multiple measures on the same subjects, we might think of these as
clustered within the same subject instead, as discussed previously (Chapters 20-22). 

From  the  clustering  of  measurements  within  subjects,  we  already  know  that  it  is  usually
unreasonable to consider the measurements as independent; by doing so we would ignore any
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subject characteristics affecting our outcome. For example, a fish that is large relative to its
fellow inmates  at  young  age  would  tend  to  remain  relatively  large  throughout  the  growth
period. The (time) ordering of the measurements introduces another type of association between
measurements because usually 2 measures on the same subject that are taken close in time will
be stronger associated than measures taken further apart in time. In the fish trial, the initial
weight should be stronger correlated with the weight at the first sampling event than the harvest
weight. Such a pattern of correlations we broadly refer to as  autocorrelation without stating
specifically how the correlation is reduced by increasing time distance. It  is because of this
feature of repeated measures data that they cannot generally be treated as a hierarchical data
structure.  Specifically,  a  2-level  hierarchical  structure  (with  measurements  nested  within
subjects) does not take time ordering of the measurements into account in the random part of
the model. Where animals within a herd can be interchanged without altering the meaning of
the data,  observations over time on the same subject  cannot.  Despite  the intuitive logic of
autocorrelation, some outcomes may not show any autocorrelation, so we will need to assess for
each  dataset  individually  whether  autocorrelation  or  a  simple  clustering  within  subjects  is
present in the data, or perhaps no clustering at all.

As the range of methods that can be applied to a dataset depends on its structure, it is useful to
introduce some terminology to describe repeated measures data. The most regular data type has
the same number of measures taken for each subject (ie is balanced over time) with uniform
(ie the time points are the same across subjects) and equally spaced (equidistant) time points.
For example, the fish_trial data is balanced and has uniform but non-equidistant points because
the sampling was not carried out at  regular  intervals.  Protocols in clinical  trials commonly
require equidistant sampling or follow-up. Generally speaking, the most regular data types will
not only allow a wider range of analytical approaches, but will also be easier to analyse. The
presence of  missing data will make designs unbalanced, but are difficult to avoid. A unique
feature to repeated measures data is that observations may be missing because the subject exits
prematurely from the study (drop-outs). 

23.1.2 Descriptive statistics and graphical displays

As the choice of analytical methodology for repeated measures data will also depend, to some
extent, on the characteristics of the data at hand, it is crucially important to familiarise oneself
with the data before plunging into a complicated analysis. Two obvious approaches for that are
suitably chosen  descriptive  statistics  and  visualisations  of  the data,  and analysis  by simple
(possibly simplistic) procedures such as those described in Section 23.2. To begin with, one
should assess the distribution of time points within each subject to determine how regular these
are  (eg balanced,  equidistant).  Next,  one should compute suitable means across  subjects  at
different time points to get an impression of how time affects the outcome; these can be plotted
against time in a mean plot. If time points are uniform, it is often also useful to compute the
crude correlations between measurements at different time points. This will often require to
shift from long data format (each row corresponds to one measurement) to wide data format
(each  row  corresponds  to  one  subject,  with  the  measurements  distributed  across  several
columns). Finally,  it is recommended to construct one or multiple  profile plots showing the
series of observations over time on the subjects. If there are too many subjects to display them
all in a single plot, one may construct plots for suitably chosen groups (formed by predictor
values) and/or select some subjects for display. Examples 23.1-2 illustrate the approach for the
fish_trial and scc_40 datasets. 
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23.1.3 Longitudinal versus cross-sectional study designs

Diggle et al contrasted the longitudinal and cross-sectional designs (Diggle et al, 2002, Chapter
2),  and  we’ll  briefly  review the  main  points.  A cross-sectional  study  can  be  used  to  give

Example 23.1 Graphs and descriptive statistics for fish trial
data = fish_trial

As  the  fish  grow  from  approximately  50g  at  vaccination  to  several  kilograms  at  harvest,  it  is
impractical to analyse the weights on the original scale, because variances and possibly, correlations,
among other things, will depend heavily on time. We work instead on a log-transformed scale where
additive  effects  correspond  to  multiplicative  effects  and  linear  growth  corresponds  to  exponential
growth on the original scale. Our focus will be on effects of vaccine groups and jaw deformities on the
logarithmic growth, so it is natural to compute descriptive statistics for all combinations of these 2
categorical predictors.

Mean log weight (SD) Number
of fish

Sampling

vaccine jaw 1 2 3 4 5

1 0 91 4.10 (.17) 4.37 (.17) 6.52 (.15) 7.55 (.24) 8.68 (.21)

1 9 4.04 (.19) 4.32 (.24) 6.40 (.32) 7.59 (.44) 8.36 (.31)

2 0 86 4.10 (.20) 4.36 (.21) 6.53 (.19) 7.54 (.24) 8.65 (.26)

1 14 4.04 (.18) 4.30 (.11) 6.43 (.19) 7.36 (.44) 8.33 (.38)

3 0 88 4.10 (.19) 4.37 (.19) 6.52 (.17) 7.58 (.24) 8.69 (.22)

1 12 4.11 (.22) 4.34 (.24) 6.48 (.26) 7.47 (.44) 8.65 (.37)

4 0 88 4.07 (.18) 4.32 (.19) 6.47 (.18) 7.50 (.24) 8.61 (.25)

1 12 3.98 (.18) 4.22 (.17) 6.45 (.20) 7.39 (.44) 8.45 (.22)

The table shows that differences between vaccine groups are small but apparently consistent over time,
whereas patterns are more variable among fish with jaw deformities, possibly due to the lower sample
size.  Fig.  23.1 shows a profile  plot for  15 selected fish and a mean plot comparing fish with  and
without jaw deformities.

(continued on next page)

Fig. 23.1 Profile plot (left) and mean plot (right) for growth of 
salmon; fish with jaw deformities shown with dashed lines.
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information  about  differences  between  subjects  in  different  subpopulations;  in  addition,  a
longitudinal study can give information about changes in subjects over time. This is particularly
important  if  we want  to assess  the impact  of  predictors  that  change over time.  In  a  cross-
sectional study, these can only be estimated from between-subject regressions, and in order to
interpret them as changes within an individual, we would need to assume that the within-subject
regression has the same slope, ie that the predictor has no contextual effect (Section 21.4). 

In  addition, longitudinal designs can be substantially more powerful  statistically than cross-
sectional designs for inference about within-subject predictors. This is analogous to the gain of
a block design with treatments allocated within blocks,  eg a cross-over design. For between-
subject predictors, the cross-sectional design with its between-subject independence is the most
powerful  if  the cost  of sampling different  subjects is  not  larger  than the cost  of  repeatedly
sampling the same subject, by the same reasoning as in Section 20.3.3. 

23.2 UNIVARIATE AND MULTIVARIATE APPROACHES TO REPEATED MEASURES DATA

In this section, we will briefly review some relatively simple statistical procedures to deal with
repeated measures data in regular between-subject designs. That is, we assume balanced and
uniform series on all subjects, and consider inference about predictors at the subject level; the
-fish_trial- data is an example of such a data structure. These methods are less commonly used
than those in the following chapters, in part because of their demands on the data structure and
because they may not fully use the information in the data. Nevertheless, they may serve as
reference points for more complicated analyses, and could in some situations suffice to draw
conclusions about the study hypotheses.

Example 23.1 (continued)

The  profile  plot  shows  fairly  regular  growth  curves  and  some  evidence  of  high  within-subject
correlation because subjects  tend to remain high or low throughout  the growth  period (this visual
phenomenon is sometimes called ‘tracking’). The mean plot shows that on the average jaw-deformed
fish grow slightly less than health fish, in agreement with our biological expectation. We finally also
present in tabular form below the simple correlations (left), variances and covariances (right) of the 5
measures on the same fish (see Sections 20.1 and 23.2.3).

Correlations Variances/Covariances

Sample 1 2 3 4 5 1 2 3 4 5

1 1 0.034

2 0.878 1 0.031 0.036

3 0.553 0.660 1 0.019 0.023 0.033

4 0.439 0.507 0.681 1 0.021 0.025 0.032 0.068

5 0.226 0.266 0.396 0.490 1 0.011 0.013 0.019 0.033 0.068

For example, the correlation between measurements at vaccination (sample=1) and harvest (sample=5)
is  0.226,  and the variance of  measurements  at  vaccination  is  0.034.  We see that  on log-scale  the
variances vary moderately over time, being larger in the last part of the growth period. As expected, the
data  show  autocorrelation  because  correlations  drop  down  as  time  between  samplings  increase.
However, correlations between adjacent samplings also drop down over time, presumably in part due to
the non-equidistant time points.
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23.2.1 Univariate methods

We call  these  methods  ‘univariate’  because  they  essentially  avoid  modelling  the  repeated
measures structure by reducing the within-subject series of measurements to one (or several)
statistics computed for each subject. With one observation (the computed statistic) per subject, a
multivariable  analysis  involving  any  predictors  and  further  hierarchical  structure  for  the
subjects follows the lines of previous chapters of the book. 

The most basic procedure is analyses by separate time points. In the fish trial, one might argue
that the most important measure from an economic point of view is the harvest  weight and
therefore  analyse  only the weights  at  the last  time point.  With the 2 categorical  predictors
vaccine  and jaw,  the analysis  would be a linear  model corresponding to a  2-way ANOVA
(Chapter 14).  The analysis  would not be wrong,  but it  would be inefficient  because all the
preceding measurements are not used. If a similar analysis was carried out for each of the other
time-points, it might become difficult to combine the conclusions from the different analyses.

Example 23.2 Graphs and descriptive statistics for somatic cell count data
data = scc_40

The somatic cell count dataset is highly unbalanced with the number of observations per cow
ranging from 2 to 11 (cows with only a single observation were excluded). Also, the actual
time points (days in milk, -dim-) vary between cows and farms because -dim- is relative to
the calving date and because farm visits were only roughly monthly. The variable -test- was
constructed to give an approximate month of the lactation for each test, so as to make time
points easier to compare between cows. Fig. 23.2 shows a profile plot for all the cows in one
of the small herds (22 cows) in the dataset.

The plots shows considerable variation between cows, both in their actual values and in their
pattern of time points. The shortest curves start from time 0 and extend only till time 1 or 2.
Some of  the curves  are  relatively stable over time,  and general  time effects  are  hard to
discern. Missing values seem to occur either at the beginning or as drop-outs.

Fig. 23.2 Profile plot for log somatic cell counts of 
cows in a single herd
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As the data from different time points were treated separately, we would not know how strongly
correlated they were, and then we could not tell whether a few significances at different time
points strengthen the evidence of predictor effects, or whether we essentially just saw the same
evidence several times. On the other hand, running the analysis at multiple time points could
increase our Type II error, in particular if we fell victim to the temptation of selecting the time
points with the ‘best’ effects. This discussion shows the need for a formal rule for managing
any  selection  of  time  points  for  analysis;  one  general  applicable  rule  is  the  Bonferroni
correction for  performing multiple  analyses  (Section  14.10.1)  by  dividing  the  significance
level  by  the  number  of  analyses  performed  or  the  number  of  time  points  considered  for
selection for analysis. This approach produces a valid analysis for separate time points but it is
a weak analysis, in part due to the (conservative) Bonferroni correction. More importantly, the
analysis does not use the longitudinal information in the data (the subjects at different time
points  could be different),  and it  does  not  describe  or  analyse  the development  over time.
Example 23.3 demonstrates the approach applied to the fish trial data.

Analysis by a summary statistic (also, response feature or derived variable) is a refinement of
the time point method, performed in 2 steps. In the first step, you choose a single quantity to
calculate from each subject’s profile, for example the gain from the first to last measurement.
This again results in a single observation per subject on which we then carry out a between-
subject analysis as above. The effectiveness of the approach depends on whether one can devise
a good summary statistic that captures the relevant information inherent in the profiles;  the
choice is  usually guided by inspection of profile  plots.  Some standard choices  of summary
statistics are: the subject mean or median, the within-subject slope, the gain, and the area under
the curve  (AUC).  Summary statistics  should generally  be chosen to  have  interpretations of
practical and/or scientific interest. They are not (primarily) based on statistical considerations;
for example, the use of the within-subject slope from a regression does not require that the
curve is modelled well by a straight line (or a statistical assessment of linearity). The slope can
simply be used as a measure of average increase even if there is some curvature. In animal
production, average daily gain (defined as the weight gain defined by the length of the growth
period) is a standard growth measure, although the growth may show some non-linearity. We
illustrate the use of summary statistics by the fish trial data in Example 23.3. 

Advantages of the approach are its simplicity and flexibility,  including its potential  use for
discrete data, and the direct access to features of interest that may be difficult to extract from
complex models. Suitably chosen summary statistics can be both powerful and robust towards
model assumptions and data irregularities (Everitt, 1995; Senn et al, 2000). Disadvantages are
the subjective choice of the statistic, the loss of information by reducing each profile to a single
statistic,  and  the  limited  information  provided  by  the  analysis  (eg no  correlations  or
predictions). Also, it is difficult to incorporate strong or key within-subject predictors into the
approach.

23.2.2 Repeated measures ANOVA

Treating the repeated measures within subjects as a hierarchical structure leads to models with
subject  random  effects.  The  simplest  of  such  models,  the  random-intercept  model,  can  in
regular  between-subjects  designs  be  analysed  with  the  ANOVA-based  approach  for  mixed
models  (Section  21.5.1),  and  is  sometimes  termed  the  ‘split-plot’  approach  to  repeated
measures  data,  referring  to  the  link  between  hierarchically  structured  data  and  a  split-plot
design explained in Section 20.2.1. We saw in Chapter 21 that, in a random-intercept model, the
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correlations are  the same (and positive)  between all  units within a  cluster  (eg Eq 21.4);  in
Section 23.3.1, we will call this a  compound symmetry correlation structure. But we noted
already in  the  introduction  that  we would  expect  autocorrelation  to  be  present  in  repeated
measures data, so a random-intercept model induces the wrong correlation structure! In essence,
the hierarchical  model  fails  because  it  does  not  take  into account  the time ordering  of  the
repeated measures on each subject. For these reasons, the random-intercept model is by now
considered inadequate for most repeated measures data analyses. It is, however, perfectly valid
for data with only 2 repeated measures per subject, and may give a reasonable analysis for short
series (with 3 or 4 time points) because compound symmetry may not be that far off in such
cases. As the random-intercept model provides the simplest analysis of the full dataset, it is
often used as a starting point (or reference) for further more complex models. It could also be
used for first decisions about the modelling that are unlikely to require an accurate correlation
structure, eg a choice of transformation of the outcome (although one would be advised to the
reassess the transformation with the final model).

As the first of several approaches to assess (test) the assumed correlation structure, we describe
the repeated measures ANOVA method for regular between-subjects designs. The aim of this
method is to assess, and possibly adjust, the impact of the assumed correlation structure on the
test statistics of the ANOVA table; thus, it is essentially a method for correcting test statistics
but does little to adjust other features  of the statistical inference such as standard errors  on
estimates. For this reason, and because of the design requirements (which eg imply that missing
values cannot be managed in any easy way),  the repeated measures  ANOVA approach has
largely been superseded by extensions of the mixed modelling (Section 23.3). We mention it
here mainly because of the insights it offers into the impact of wrongly assuming a compound

Example 23.3 Univariate methods for fish trial data
data = fish_trial

The measurements  at  each time point were analysed by a 2-way ANOVA linear model to test the
effects of vaccines, jaw deformity as well as their interaction. The analysis at vaccination is mostly of
interest  to assess  whether  the randomisation  of  fish  to  vaccine groups created comparable  groups.
Therefore, the Bonferroni adjustment should involve the 4 subsequent time points; thus, P-values less
than 0.05/4=0.0125 could be considered as significant. In addition, 2 summary statistics were explored:
the gain (difference  between log-weights  at  harvest  and vaccination,  therefore  the log of  the ratio
between the corresponding weights) and the slope for periods 3-5 covering the long seawater growth
period, and also motivated by the roughly linear profiles in Fig. 23.1. The table gives P-values for the
effects of vaccines, jaw and the interaction.

P-values Separate analysis at time point Summary statistic

Effect 1 2 3 4 5 gain slope 3-5

Vaccine 0.261 0.147 0.667 0.107 0.004 0.081 0.025

Jaw 0.087 0.045 0.012 0.025 <0.001 <0.001 <0.001

Vaccine*Jaw 0.651 0.824 0.606 0.318 0.027 0.116 0.104

The analyses at separate time points showed significant effects only at harvest. The group means were
given in Example 23.1. It is seen that weights at harvest are much lower for fish with jaw deformities,
and that vaccine group 3 performs somewhat better than the other groups, in particular for fish with jaw
deformities  (but  the  interaction  was  not  significant).  Similar  results  were  found  in  the  summary
statistics; the significant difference between vaccines was again caused by a steeper slope for vaccine 3.
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symmetry structure.  It  can be shown (in regular  designs)  that  a  violation of the compound
symmetry assumption affects only within-subjects effects (ie effects involving time) and makes
the corresponding uncorrected test statistics of the ANOVA table too liberal  (ie gives a too
small P-value). Several correction factors exist to adjust (reduce) the degrees of freedom of the
F-statistics to achieve approximately correct inference. We illustrate the procedure in Example
23.4.  As already mentioned, the general  consensus among statisticians  is  that  the repeated-
measures ANOVA approach offers no real advantages in return for its strong restrictions, and
we therefore do not recommend it for general use.

23.2.3 Multivariate analysis

Multivariate  statistical  methods  apply  to  data  where  the  measurement  on  each  subject,  or
experimental unit, consist of multiple records instead of a single record, as has been the case in
previous chapters of the book. As an example, routine recordings in dairy production contain
several records on each test day, including milk yield, fat percentage and somatic cell count.
Such multiple records are usually compiled into a vector of observations on each subject (in the
example,  a  3-dimensional  vector),  so  we  can  think  of  multivariate  data as  consisting  of
vectors of observations instead of single observations per measurement. A large body of theory
and methods exist  for  multivariate  data,  but  we concentrate on how they can be applied to
repeated  measures  data  (eg Davis  (2002),  Chapters  3-4).  Repeated  measures  on  the  same
subject may be considered as a single observation (vector), consisting of the entire set of values
across time points. Let us introduce a bit of notation to support the idea:  Yij=measurement for
subject i at time j, where there are m time points j=1,...,m. Then, in a multivariate framework,
the basic observation for subject i is the vector Yi=(Yi1,...,Yim). Multivariate linear models extend
the usual linear models (Chapter 14) by modelling the observation vector in terms of its mean
(vector) and variance (matrix). The mean vector consists of the mean outcome at different time
points, and the (co)variance matrix consists of the variances at and the covariances between the
different time points. It is more common to refer to the latter matrix as the covariance matrix
(sometimes also variance-covariance matrix), so we’ll use that term. Also, the covariances are
more intuitive to interpret when rescaled as correlations (for the relation between covariance
and correlation, see Eq 20.1). For a set of measurements (Y1,...,Ym) on the same subject (where
we  for  simplicity  suppress  the  subject  indicator  i),  the  covariance  matrix  cov(Y)  and  the
correlation matrix corr(Y)  are the  (mxm)-matrices holding all the covariances, or correlations,
between pairs of measurements:

cov Y =
var Y 1    
covY 1 ,Y 2 var Y 2  
covY 1 ,Y 3 cov Y 2 ,Y 3  var Y 3

⋮ ⋮ ⋮ ⋮
covY 1 ,Y m cov Y 2 ,Y m cov Y 3 ,Y m ⋯ var Y m


Eq 23.1

corr Y =
1    

corr Y 1 ,Y 2 1  
corr Y 1 ,Y 3 corrY 2 ,Y 3 1

⋮ ⋮ ⋮ ⋮
corr Y 1 ,Y m corrY 2 ,Y m corr Y 3 ,Y m ⋯ 1


Eq 23.2

The matrices are symmetric, so for clarity, the values above the diagonal have been left blank.
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In  Example  23.1,  we displayed  the  covariance  and  correlation  matrices  for  the  5  repeated
measures of logarithmic weight in the fish-trial data. 

Multivariate  analysis  of  variance  (MANOVA)  assumes  normally  distributed  multivariate
outcomes with a mean modelled in terms of subject-level predictors and a covariance without
any specific structure (although covariances may be assumed either constant or heterogeneous
across  predictor  groups).  Thus,  the  model  defaults  to  heterogeneous  variances  across  time
points  and  makes  no  assumptions  about  the  correlation  structure.  The  analysis  provides
estimates  of  means  (with  SEs),  variances  and  correlations,  and  these  can  be  used  to  test
hypotheses  about the effects  of between-subject  predictors  and time. Different test statistics
exist for the same hypotheses (although for simple hypotheses they’ll coincide); Wilk’s lambda
is a sensible overall choice, with reference  F-distributions. The standard test statistics offered
by  MANOVA  software  do  not  include  hypotheses  related  to  time  (because  in  general
multivariate analysis, there is no structure among the multivariate responses), so these may need
to be set up manually by specifying suitable contrasts; for details consult (eg Davis C (2002),
Chapter  3-4).  The  multivariate  analysis  is  similar  to  analysis  by  a  mixed  model  with
unstructured correlations (Section 23.3.2), which (with suitable statistical software) gives easier
access to specific contrasts and tests. Example 23.4 gives results from both the multivariate and
mixed-model analysis for the fish-trial data.

One advantage  of  the multivariate  approach  is that  it  avoids  any problems with a wrongly
specified correlation structure (as in the random-intercept model). However, this advantage also
contains  the  potential  drawback  that  estimation  of  many  covariance  parameters  (all  the
variances  and  correlations)  may be  ineffective  or  outright  impossible,  especially  with  long
series of measurements. Davis (2002, Chapter 6) cites simulation studies with small/moderate
number  of  subjects  that  have  shown the  multivariate  approach  to  provide  exact  and  better
statistical inference than analysis by the mixed model. The main drawbacks of the multivariate
approach as presented here are its strong requirements: normally distributed, balanced data with
uniform  time  points,  no  missing  values  and  no  within-subject  predictors.  However,  one
software implementation (MLwiN) relaxes all these conditions and also allows for additional
hierarchical structure (Rasbash et al, 2008, Chapter 14).

23.3 LINEAR MIXED MODELS WITH CORRELATION STRUCTURE

Having noted in Section 23.2.2 the deficit  of the simplest linear mixed model, the random-
intercept  model,  for  repeated  measures  data,  we will  discuss here 2 ways  of extending the
model to incorporate more realistic correlations for continuous repeated measures data. With
both of these extensions (in Sections 23.3.2-3) the model would still be termed a linear mixed
model, so the important details lie in the actual specification of the model. Also, the advantages
of the linear mixed model, such as its flexibility to handle hierarchical structure and predictors
at multiple levels as well as its likelihood-based inference and resulting robustness to missing
values as long as these are missing at random (Section 15.5), will remain intact. These are some
of the distinct  advantages of the linear  mixed model approach  over the simpler approaches
reviewed so far. In this section, we will not revisit the entire analysis of the linear mixed model
from Chapter 21 but concentrate on describing the 2 extensions of the model and their impact
on the analysis.
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23.3.1 Correlation structure

Before we proceed to the model extensions, we will distinguish more precisely than we have
done so far between the different correlation structures of importance for the modelling. First,
despite  our  usage  of  the  term  ‘correlation  structure’, we  really  mean  the  structure  of  the
covariance  matrix,  because  the  variances  are  equally part  of  the  structure  we’re  modelling

Example 23.4 ANOVA and MANOVA analysis of fish-trial data
data = fish_trial

We continue the analysis of the growth of salmon from Examples 23.1 and 23.3 by showing results
from a random-intercept model, its repeated measures ANOVA adjustment, a multivariate (MANOVA)
analysis  and  a  mixed  model  with  unstructured  covariance  matrix  (Section  23.3.2).  Due  to  the
balancedness  of  the  data,  the  parameter  estimates  for  all  models  are  the  means  for  the
vaccine*jaw*sample combinations shown in Example 23.1. The table below gives P-values for fixed-
effects hypotheses. The estimated within- and between-subject variances in the random-intercept model
were  0.0246  and  0.0216,  respectively,  corresponding  to  an  ICC of  0.47.  The  repeated  measures
ANOVA  gave  an  estimated  Huyhn-Feldt  correction  factor  of  ε=0.66  (where ε=1  means  that  no
adjustment to test statistics is required because of violations of the assumed correlation structure of the
random-intercept model), and adjusted the F-distribution degrees of freedom by multiplication with this
factor;  for  example,  the adjusted degrees of  freedom for  sample*vaccine  were  (ε*12,  ε*1568)=(8,
1035). 

P-values Model / Method

Effect
Random
Intercept

rep. meas.
ANOVA MANOVA

mixed, 
unstruct. 

vaccine 0.075 0.075 0.003* 0.080

jaw <0.001 <0.001 0.000* <0.001

vaccine*jaw 0.575 0.575 0.011* 0.575

sample <0.001 <0.001 0.000 <0.001

sample*vaccine 0.004 0.013 0.006 0.006

sample*jaw <0.001 <0.001 0.006 0.006

sample*vaccine*jaw 0.006 0.017 0.014 0.014

*simultaneous test across all time points

The estimated error covariance matrix for the MANOVA and the mixed model were identical and very
close to the values shown in Example 23.1 (not shown). Contrasting the correlations with the single
estimated correlation (ICC) of the random-intercept model  elucidates how far the random-intercept
model is off the actual correlation structure. However, the impact on test statistics was marginal. Note
that the 3 first MANOVA tests are for different hypotheses (involving all time points simultaneously)
and cannot be compared to those of the other methods.

The conclusion about the effects of vaccine and jaw deformity is that significant differences do exist,
and that these change over time. The overall effect of jaw deformity was already discussed in Example
23.1, and the analysis here only established its strong significance. The means in Example 23.1 also
show how the impact of jaw deformity varies with vaccine groups over time: at samples 4 and 5, some
but not all, vaccine groups show an effect of jaw deformity.  We could use multiple comparisons to
make statements about which differences are statistically significant, but we won’t pursue that here.
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(however,  ‘covariance structure’ seems less intuitive than correlation structure).  Second, the
correlation structure targeted by the modelling, and whose violation may affect the inference, is
that of the errors, not the structure of the observed data. The difference between the 2 is that, in
the former, the fixed and random effects of the model have been estimated and adjusted for
(eliminated) from the correlations. We discuss the impact of fixed and random effects in turn.

If the fixed effects are strong, the crude and adjusted correlations can be appreciably different.
We noted in Example 23.4 that the crude correlations were very similar to those estimated for
the errors of the model; in these data, the fixed effects were indeed fairly small (within each
time  point).  In  order  for  fixed-effects  predictors  to  account  for  some  of  the  anticipated
autocorrelation in repeated  measures  data,  they must include a within-subject  predictor  that
itself shows autocorrelation. A possible example is inclusion of milk yield (kg) as a predictor in
a model for somatic cell counts throughout the lactation. Realistically, though, it is not common
that the fixed effects eliminate substantial parts of the autocorrelation. 

Random  effects  of  random-intercept  type  can,  as  we  have  seen,  only  induce  compound
symmetry  correlations.  Random slopes  however  can  induce  autocorrelation  if  the  predictor
involved is correlated with time. One obvious candidate for a random slope with potential to
induce autocorrelation is therefore ...  time! Adding a random slope with time to a random-
intercept  model induces autocorrelation, and may therefore remove autocorrelation from the
errors. Linear mixed models with random slopes for time are also called  trend models, and
constitute one of the 2 extensions of the random-intercept model to deal with autocorrelation
(Section 23.3). 

We  will  next  describe  a  range  of  correlation  structures  that  can  exist  either  for  repeated
measures data or for the errors in a model of such data.  Table 23.2 lists some of the more
common correlation structures for repeated measures in the case of m=4 repeated measures on
the same subject. For simplicity, we show only the correlation matrix in all cases except the last
one but, if variances are assumed to be equal (σ2), the covariances are simply the correlations
multiplied by σ2.

The first 2 correlation structures are well known and included mainly to familiarise the reader
with the display. Recall that the correlation ρ in the compound symmetry structure induced by
a random-intercept model can be expressed in terms of the variance components σ2

h  and σ2 as
ρ=σ2

h/(σ2
h+σ2) (Eq 21.4). The alternative name, an exchangeable structure, refers to the fact that

since correlations are the same all over, the units (here the time points, but in our hierarchical
models the animals within a cluster) can be interchanged (or exchanged) without affecting the
structure. 

The  simplest  structure  showing  the  desired  decay  in  correlation  with  increasing  distance
between observation is first order  autoregressive,  or  ar(1),  in terminology originating from
time series analysis (Section 14.11). It involves 2 assumptions: that all pairwise correlations a
certain number of time steps (or points) apart are correlated to the same degree, and that the
correlations decay as powers of the number of time steps that separate 2 observations. The first
assumption implies for example that the correlation in the observation pairs (1,2), (2,3) and
(3,4) are all the same (and equal to  ρ). The assumption is sometimes called  homogeneous or
stationary correlations (discussed further below). Note The decay of ar(1) correlations is quite
rapid; eg for ρ=0.5, observations 4 time steps are close to uncorrelated (0.54=0.063). 

More complex correlation structures than ar(1) are often useful as well, in order to incorporate
either  a  slower  or  less  consistent  decay  of  correlations  with time distance.  The  arma(1,1)
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structure, also originating from time series analysis, and the Toeplitz structures accomplish this
with  1  and  (m-2)  additional  parameters,  respectively.  The  choice  (and  nomenclature)  of
correlation  structures  available  for  modelling  depends  on  the  statistical  software;  many
additional and more complex structures exist, but the 3 homogeneous structures mentioned here
are usually always available.  Homogeneous structures are most meaningful if the time points
are equidistant. In some situations, when processes occur at different speeds in different stages
of  the  time  period  considered,  one  could  perhaps  argue  non-equidistant  time  points  to  be
‘biologically  equidistant’  (ie that  they  should  have  the  same impact).  For  example,  if  one
studies the impact of the injection of a pharmaceutical into animals, one may choose to measure
the response at  follow-up times 1, 2, 5, 10, and 30 minutes post-injection. If  the biological
processes  happen  much  more  quickly  in  the  initial  phase  after  injection,  it  may  still  be
meaningful to assume homogeneous correlations. Clearly such reasoning may be difficult to
justify rigorously. 

An unstructured correlation structure will let the data speak for themselves; we already saw
their use in the fish-trial data (Example 23.4). Their drawback is that, with a long series of
repeated measures, the number of parameters involved grows so large that they become difficult
to estimate and interpret. Another question is whether heterogeneous variances across the time
points  should  be  assumed.  All  correlation  structures  have  a  corresponding  version  with
heterogeneous variances (but it may not be implemented in the software). There are often good
biological reasons why variances should not be assumed constant over time; on the other hand,
heterogeneous variance structures will also increase the number of parameters appreciably for a
long series. 
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Table 23.2 Repeated measures correlation structures for four repeated measures/animal

Name Correlation structure Interpretation

uncorrelated or 
independent

uncorrelated (for normal data: 
independent) observations

compound symmetry, or 
exchangeable

hierarchical, mixed model (same 
correlation between all pairs of 
observations)

ar(1), or first order 
autoregressive

repeated measures or time-series 
model with power decay of 
correlations

arma(1,1), or first order 
autoregressive moving 
average

extended repeated measures or 
time series model with power 
decay

Toeplitz, or stationary repeated measures with 
unconstrained correlations at 
different spacings

unstructured repeated measures with entirely 
unconstrained correlations

unstructured with 
inhomogeneous variances, 
or non-stationary

repeated measures, 
unconstrained variances and 
correlations

One note of caution about correlation structures: you need to ensure that the time points are
properly understood by your software, in particular if the data contain incomplete series (due to
missing values). For example, it makes a difference with most correlation structures whether
recordings were taken at  times (1,2,3,4),  at  times (3,4,5,6) or at times (1,2,5,6).  If  the time
points are not uniform across subjects (with allowance for missing values), at least to a good
approximation,  the correlation  structures  will  not  be  meaningful  across  the  dataset,  and
modelling based on certain fixed correlation structures will be misleading. Such data structures
therefore raise the need to incorporate into the matrices the actual recording times.

For  non-equidistant  repeated  measures  or  spatial  data,  denote  by  djj' the  distance  between
observations  j and  j´. For longitudinal data where locations correspond to time points, the  djj'

would be the (absolute) difference between the recording times of observations j and j´, and for
spatial data the distances would be actual physical distances (eg between herds). Table 23.3 lists
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some  examples  of  correlation  structures  defined  from  such  distances.  The  structures  are
isotropic when only the distances, not the actual locations for observations j and j´, are used.
The power (or exponential) structure is the extension of the ar(1) structure to non-equidistant
time points; the parameter ρ equals the correlation between 2 observations one unit apart.

Table 23.3 Spatial (or non-equidistant repeated measures) correlation structures
Name Correlation structure Interpretation

power, or 
exponential

power decay with distance; note 
the relationship: ρ=exp(-1/θ)

power, or 
exponential, with 
nugget effect

power decay with distance, close 
observations not fully correlated

Gaussian
exponential-quadratic decay with 
distance

linear linear decay with distance

23.3.2 Linear mixed models with complex correlation structure

Recall that, in the linear mixed model from Chapter 21 (Eq 21.8):

Y = X Zu Eq 23.3

we assumed the components of  ε to be independent, and modelled the hierarchical structure
using the random effects in the  Zu part of the model. In order to enable complex correlation
structure,  in  particular  autocorrelation,  we  will  now allow  dependence  corresponding  to  a
particular correlation structure within some sets of ε-values. In the repeated measures context,
each set contains all the repeated measures for a subject, and in the spatial context, each set
contains a particular group of observations for which we want to model a spatial correlation (eg
herds within a certain region).

In  such  mixed  models  with  correlation  structure,  both  the  random  part  Zu and  the  error
correlation structure contributes to total (co)variance (not explained by the fixed effects).  If
random effects  are  specified at  the same level  as the error  correlation structure,  eg subject
random effects and within-subject correlation structure, the resulting model may be difficult to
estimate  and  in  worst  cases  even  be  overparameterised.  To illustrate  the  problem,  random
effects  (intercepts)  for  subjects  cannot  be  fitted  in  a  model  with  compound  symmetry
correlation structure for subjects. This is because both parts of the model will lead to the same
correlation structure, so only one of them is needed. Random effects for subjects can however
be combined with an ar(1) structure; this produces a structure with autocorrelations that does
not decay to zero but instead to the  ICC one could compute from the between- and within-
subject  variances.   Similarly,  a  Toeplitz  structure cannot be combined with subject  random
effects,  and, if  unstructured correlations are specified,  it  is pointless to include any random
effects at the subject level (either a random intercept and random slopes). If the model in Eq
23.3  has  no  random effects,  it  is  perhaps  misleading  to  call  it  a  mixed  model;  the  name
covariance pattern model is also used (Hedeker & Gibbons, 2006, Chapter 6).

The  statistical  analysis  of  the  ‘extended’  mixed  models  evolves  along  the  same  lines  as
previously  discussed,  only  with  additional  variance  parameters  to  be  estimated.  For  large

corr Y j ,Y j=
 2

 20
2


d jj

corr Y j ,Y j=exp−d jj
2 / 

corr Y j ,Y j={1−d jj  if d jj1
0 if d jj≥1

corr Y j ,Y j=
d jj =exp −d jj /
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structures (with many time points), parsimonious models for cov(Y) are recommended unless
the number of subjects is very large, to avoid overspecification of the model and unexpected
impacts of the covariance structure on the fixed-effects parameters. The choice of correlation
structure  can  be  formalised  by  using  likelihood-ratio  statistics  to  test  nested  correlation-
structure models against each other. For example, the compound symmetry and ar(1) models
can be tested against both arma(1,1) or Toeplitz models, but they cannot be tested against each
other.  The test  of  a  compound symmetry  model  against  any of  these  models  allowing for
autocorrelation is one of the best ways to assess whether the compound symmetry model is
inadequate due to  unmodelled autocorrelation.  The fit  of  models  with the same number of
parameters can be compared by their log-likelihood values (the higher log-likelihood model is
generally preferred). Model selection criteria such as the AIC (Chapter 15) are also applicable
here.  A  visual  assessment  of  the  residual  autocorrelation  function may  also  be  helpful
(employed eg in Vigre et al (2009)). Example 23.5 examines different correlation structures for
the full SCC data. 

Mixed models with complex correlation structure are currently only available in a few software
packages: SAS  (Littell  et al, 2006) and R/S-Plus  (Pinheiro & Bates, 2000), and the recently
released version 11 of Stata includes some of these models as well.

23.3.3 Trend models

Let us first recap from Section 23.3.1 that trend models are characterised by having random
slopes  of  time.  We already  argued  in  favour  of  these  random slopes  because  they  would
introduce autocorrelation into the model. It could also be said that models assuming all subjects
develop  in  the  same  way over  time  are  unrealistic  for  most  longitudinal  data  (Hedeker  &
Gibbons, 2006), Chapter 4). With the inclusion of subject-random slopes for time, the model
includes terms representing the development over time at the population level (the fixed effects
for time) as well as the random effects representing the development over time at the individual
level. 

We need to be a bit more specific when it comes to how time should be modelled. The simplest
option is a linear effect of time but it is often too simplistic to assume a linear change across
time; for example, linear trends may eventually level off towards a plateau or a minimum level.
The choice of an appropriate form of the time effects follows the same principles as for other
continuous predictors  (Section 15.4).  Ideally,  for consistency,  the same (non-linear)  relation
with time would be used for the fixed and random effects. As was noted in Section 21.3, with
the need for some parsimony in our use of random slopes, it becomes attractive to consider
models with time effects represented by only a few parameters. In some situations, a non-linear
monotone  transformation  (eg log  or  square-root)  of  the  time  scale  can  help  to  achieve  an
approximately linear relation. If the effects of time need multiple parameters, it is helpful for
estimation and interpretation of variance parameters if these are as unrelated (‘independent’) as
possible. For example, if a polynomial model is used, it is recommended to parameterise it by
orthogonal polynomials (Hedeker and Gibbons, Chapter 5). If it is not possible to model time
effects in a simple fashion, one may choose a simpler form (eg linear) for the random slopes
while  retaining  a  more  complex  form  for  the  fixed  effects.  An  alternative  random  part
modelling of time has independent fluctuations around the fixed effects for each time point and
subject (essentially, a random interaction between subject and time). It avoids the assumption
that subjects are on parallel trajectories over time, but it will not introduce autocorrelation into
the model and is, therefore, usually less attractive.
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For  further  details  about  trend  models,  we  refer  to  the  general  sections  on  random slopes
(Section 21.3) and inference for mixed models (Section 21.5). We already showed an example
of a model with a linear random slope for time in the 2-level somatic cell count data (Example
21.4),  but  as  the  data  contained  only  a  single  test  on  each  cow,  there  were  no  repeated

Example 23.5 Linear mixed models with correlation structure for log somatic cell 
counts
data = scc_40

Several correlation structures were examined for the full  40-herd somatic cell count data, using the
same fixed effects as in the examples of Chapter 21. The model is now a 3-level model with herd-
random effects and within-cow correlation structure.

Correlation Estimated ρ -2 ln 

Correlation structure parameters 1 month 2 months 3 months likelihood

compound symmetry 1 0.541 0.541 0.541 39004.73

ar(1) 1 0.661 0.437 0.289 38563.57

non-equidistant power 1 0.673 0.453 0.305 38574.30

arma(1,1) 2 0.657 0.578 0.509 37802.21

Toeplitz 10 0.657 0.578 0.512 37795.72

The  table  above  illustrates  how the  different  structures  adapt  to  the  data.  In  terms  of  statistical
significance, the Toeplitz model is no better than the arma(1,1) model (the likelihood-ratio test statistic
equals 6.49 with 8 df), which in turn is clearly preferable to the structures with only one correlation
parameter. The estimated correlations for tests one, 2 and 3 time steps (for the non-equidistant structure
each  considered  equivalent  to  30  days)  apart  demonstrates  the  deficiencies  of  the  one-parameter
models. The compound symmetry structure does not allow for autocorrelation, and the autoregressive-
type structures, on the other hand, produce too rapidly decaying correlations.

For comparison with the results of the 2-level data and a subsequent analysis by GEE procedures, we
also present a table of estimates for the fixed effects and random parameters from the arma(1,1) model.
The fixed-effects estimates and SEs were very close for all the models considered above. 

Coef SE t P 95% CI

shsize 0.627 0.306 2.05 0.047 0.009 1.245

heifer -0.777 0.040 -19.22 0.000 -0.857 -0.698

season = spring 0.034 0.022 1.54 0.125 -0.009 0.078

season = summer 0.039 0.027 1.57 0.117 -0.010 0.087

season = fall -0.007 0.023 -0.32 0.752 -0.052 0.037

sdim 0.328 0.014 24.08 0.000 0.301 0.354

constant 5.283 0.060 - - 5.163 5.402

In addition, the estimated correlation parameters and variance components (also with SEs) were:
=0.6570.008 ,=0.8800.006 , and  h

2=0.1040.028 , 2=1.3780.027 .

The  parameter  ρ has  the  same  interpretation  as  in  the  ar(1)  structure  as  the  factor  by  which  the
correlation drops for each additional month, and γ is the correlation for observations one month apart.



624 REPEATED MEASURES DATA

measures. In Example 23.6, we give the results of fitting random slopes for time at both the cow
and herd levels. Models with more complex fixed and random effects have been fitted to the
complete dataset from which the scc_40 data were extracted (Stryhn et al, 2001).

23.4 MIXED MODELS FOR DISCRETE REPEATED MEASURES DATA

From the relative ease with which the linear mixed model could be extended to incorporate
autocorrelation one might expect things to be similar for discrete data, but that is not so.  After
explaining the challenges of adding correlation structure to a GLMM, we give pointers to some
of the many different approaches that have been tried, describe in more detail the concept of a
transitional model, and illustrate by the scc_40 data the impact this approach and the trend
model (from the previous section) has on estimates from a random-intercept logistic regression
model.

23.4.1 Adding correlation structure to a GLMM

The linear mixed model approach of incorporating correlation structures into the model’s error
component (ε) runs into the serious problem in GLMMs that the linear predictor (eg Eqs 22.1
and 22.5) does not contain an error component! The reason is that a GLM(M) models the mean
and variance on different scales: the mean on the scale of the linear predictor given by the link

Example 23.6 Linear trend model for log somatic cell counts
data = scc_40

The random-intercept model (with compound symmetry correlation structure) of Example 23.5 was
extended  with  linear  random slopes  for  -sdim-  at  both  the cow and  herd levels.  The  table  shows
estimates  for  the random parameters  (for  comparison  including also those of  the random-intercept
model); the fixed-effect estimates and SEs were similar to those of Example 23.5.

Level Parameter
Random-intercept model

Estimate (SE)
Random slopes for -sdim-

Estimate(SE)

herd variance (interc.) 0.101 (.028) 0.104 (.028)

variance (slope) - 0.006 (.003)

covariance - -0.016 (.007)

cow variance (interc.) 0.750 (.026) 0.760 (.027)

variance (slope) - 0.173 (.011)

covariance - -0.030 (.012)

test variance 0.637 (.008) 0.532 (.007)

-2log likelihood 38986.31 38251.97

The random slopes are significant at both levels; this is obvious from the estimates at the cow level and
the huge improvement in the log-likelihood, and omitting the herd-level random slope resulted in an
about 7-unit increase in the log-likelihood. Still, the fit of the model is not as good as for several of the
models  with  complex  correlation structure  in  Example  23.5.  One might  consider  combining the 2
approaches, but such models become more computationally difficult to fit so we won’t go any further
here.
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function (in short, the link scale), but the variance on the observation scale. As the error term is
on observation scale,  it  is subject  to the restrictions related to the discrete outcome (see  eg
Section 16.1). A second problem following from this is the separation of correlation into parts
explained  on  different  scales;  recall  that  in  linear  mixed-models  correlation  could  be  split
between the random effects and the error correlation structure (Section 23.3.2), but the situation
is  more  complex  when  these  are  on  different  scales.  The  third  problem is  that  modelling
clustering  on  the  link  scale  yields  parameters  with  a  cluster-specific  (SS)  interpretation,
whereas modelling clustering on observation scale (eg in a beta-binomial model, Section 22.4.5,
or by the generalised estimating equations, Section 23.5) yields parameters with a population-
average  (PA) interpretation.  If  clustering  is  modelled  on both scales,  it  is  not  clear  which
interpretation the parameters will have. 

It is therefore more difficult to incorporate the correlation structures discussed for linear mixed
models into a GLMM, and this is one of the reasons why no general  GLMM-type class of
models  exists  for  repeated  measures  and  spatial  structures.  Instead,  models  are,  to  a  large
extent, developed specifically for the most interesting data types: binary and count data. The
literature  in  this  field  is  large,  technical  and  largely  beyond  the  scope  of  this  book.  We
introduce a few of the ideas that tie in with the GLMM framework.

The random-intercept model (Eq 22.1) includes a single random effect for each cluster. As this
will not suffice to create a within-cluster correlation structure (Diggle et al, 2002, Chapter 11)
expanded the model on link scale by including random effects for each time point (for each
subject). In a binary model, with probabilities pij for subject i at time point j, the extension of Eq
22.1 therefore takes the form:

logit  pij =0 1 X 1 ijk X kijuij , with uij~N 0,  2 Eq 23.4

The  idea  is  now  to  assume  the  set  of  random  effects  on  each  subject,  (ui1,...,uim),  to  be
autocorrelated,  eg according  to  the  ar(1)  structure  with  correlation  ρ (note  that  ρ is  the
correlation between the random effects, not between the binary outcomes). In the special case
ρ=1, the random effects will be perfectly correlated and thus identical, so that we’re back in the
random-intercept model with a single random effect (ui). Unfortunately, the model is difficult to
estimate (the MCMC methods of Chapter 24 were suggested as an option). The same random-
effects  structure has also been applied to autocorrelated count data,  eg in a times series  of
counts (Davis et al, 2000).

Quasi-likelihood  or  pseudo-likelihood  estimation  software  may  allow  specification  of  a
repeated  measures  or  spatial  model  for  the  adjusted  variate  computed  in  each  step  of  the
iteration (Section 22.5.2). This will lead to correlation structures of repeated measures or spatial
type (Gotway & Wolfinger, 2003), although covariance parameters specified in this way may
have no direct interpretation in the discrete model. Molenberghs and Verbeke (2005, Chapters 8
and 22)  discussed  the  approach  (as  implemented  in  SAS,  Proc  Glimmix),  and  it  was  also
included among the methods assessed in recent simulation studies (Masaoud & Stryhn, 2009).
Some of the conclusions were: (i) if only a correlation structure is used, the procedure yields
estimates with a PA interpretation and is comparable to GEE estimation; (ii) if both random
effects and a correlation structure is used, the estimates will be intermediate between PA and SS
parameters, and thus be biased for both interpretations.

A GLMM with a correlation modelled at the original scale (Barbosa & Goldstein, 2000) and a
multivariate multilevel logistic model (Yang et al, 2000) have been developed, but both require
specialised  software  (MLwiN  macros),  and  do  not  appear  to  have  been  used  much.  A
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multivariate  model  for  discrete  outcomes  is  also available  in  MLwiN and can  be used  for
repeated  measures  data  (Rasbash  et  al,  2008);  without  additional  hierarchical  structure,  the
parameters have a PA interpretation.

Repeated  measures  of  counts  have  been  modelled  with  random  effects  by  a  variety  of
approaches  (Nelson & Leroux, 2006), including also the extensions of the Poisson regression
reviewed in Chapter 18 (ie zero-inflation (Min & Agresti, 2005); overdispersion (Molenberghs
et al, 2007) and the transitional models to be described next (Li et al, 2007).

23.4.2 Transition models

A  generally  accepted  classification  of  modelling  approaches  for  clustered  data  (including
repeated measures) is into 3 types:  subject-specific, marginal,  and transitional  (Diggle  et al,
2002), Chapter 7; (Schukken et al, 2003). Our discussion has until now focused on the first 2,
but we will  here outline the third approach  and explain how it  can be used to incorporate
autocorrelation into a GLMM. To focus on the basic idea, we consider the simplest case of a
binary outcome. 

In  random-effects  models,  we accounted  for  the within-subject  clustering  by modelling the
probability of the event for subject i at time point j conditionally on the (latent) subject random
effect ui, but it might seem more intuitive to model the probability conditionally on the previous
event Yi,j-1, and perhaps further events before that. A one-lag transition model (conditioning only
on the previous event) could be expressed using the notation of Eq 22.7 as:

logit  pij = X ijZuij Y i , j−1 , Eq 23.5

where only the transitional  term  γYi,j-1,is  new;  note,  it  is  no misprint  that  the outcome  Y is
present on the right hand side of the equation! The fixed-effect parameter γ equals the log OR
for a comparison between subjects who at the previous time did and did not experience the
event. The model in Eq 23.5 still includes subject random effects because the transitional term
cannot be expected to account for all within-subject clustering. Conversely, even if we expect
the  transitional  term  to  pick  up  autocorrelation,  there  may  be  still  be  some  unmodelled
autocorrelation left in the data. A transitional term is sometimes used informally in this way to
capture autocorrelation in the data (Thurmond et al, 2005).

In Eq 23.5, the probability of an event at time j is different for a preceding non-event (Yi,j-1=0)
and a preceding event (Yi,j-1=1), so essentially the model fits an equation for both of these 2
situations. If a disease event occurring after a non-event is interpreted as a new case, the former
situation corresponds to  incidence, and the probability of a disease event following an event
would then is interpreted as 1 minus the  cure rate. In other words, the model in Eq 23.5 is
really for the 2 transitions: 0→1 (new case), and 1→0 (cure). With this interpretation, it may
seem awkward that the impact of our predictors is assumed to be equal for both transitions; it
means that the predictors have numerically exactly opposite effects for incidence and cure. In
order to avoid this assumption (which should certainly not be considered the default), we can
add interaction terms between  Yi,j-1 and the predictors.  Similarly,  we may want to include a
random slope for  Yi,j-1. The regression parameters in models such as Eq 23.5 (with or without
added interactions) are different than those in the marginal and cluster-specific equations (Eq
22.7), and no general conversion formula exists between them (Diggle et al, 2002, Chapter 7).
Another  issue that  distinguishes  a  transitional  from a usual  random-effects  model  is  that  a
special handling is needed for the first time point (j=1), where no previous outcome is available
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as a predictor. The values for j=1 may either be omitted, or if they are included, the predictors
should contain a dummy variable for this time point and Yi0 should be set to zero. In both cases,
the model/data will not be quite the same as in the usual random-effects model  which will lead
to further differences in the parameters. We demonstrate the transitional model in Example 23.7
in the next section.

23.4.3 GLMMs without explicit correlation structure

Although our focus has been on alternatives to the random-intercept model with subject random
effects,  this simpler  model may still  be valid,  provided one is willing to accept  its  lack of
autocorrelation. It  was indeed the type of model used for the conception data from Reunion
Island in Chapter 22. To detect violations of compound symmetry may require much more data
than  in  the  continuous  case  because  the  information  content  is  lower  in  discrete  data—
something that certainly is true for binary observations. (Note We may think of the correlation
structure as compound symmetry, although strictly speaking the within-subject correlations are
only constant when the fixed effects are constant (because the variance is a function of the
mean),  and  in  a  repeated  measures  model  one would usually  have  time as  a  fixed effect.)
However, a recent simulation study on binary data (Masaoud & Stryhn, 2009) concluded that
even  with  a  repeated  measures  series  as  short  as  m=4,  biases  may  result  from  ignoring
autocorrelation generated by eg the model in Eq 23.4. An earlier study cautioned against using
the random-intercept  model  in the presence  of  autocorrelation  (Heagerty & Kurland,  2001)
based on a theoretical assessment of the bias in the estimates and a simulation study with m=5
from the same model.

In Example 23.7, we illustrate how the 2 main approaches for modelling correlation structure,
random  slopes  for  time  (trend  models,  Section  23.3)  and  transitional  models,  affect  the
estimates of a large binary repeated measures dataset. We use again the scc_40 data, and define
a binary outcome (-highscc-) by a threshold of 200,000 cells/ml for the somatic cell counts.
Samples exceeding this cut-off may be considered as indicative of subclinical mastitis (Dohoo
& Meek, 1982), although such a rule inevitably leads to some misclassification.

23.5 GENERALISED ESTIMATING EQUATIONS

The  previous  chapters  have  presented  mixed  models  as  an  approach  for  dealing  with  the
problem of clustering (lack of independence among observations) in a dataset. As noted, these
mixed models are very flexible and can handle any number of levels of hierarchical clustering
as  well  as  more  complex  data  structures.  However,  some  unresolved  issues  remain.  As
discussed in Section 23.4, the mixed model approach is not as successful with repeated and
spatial structures for discrete data as it is for continuous data. Also, its assumption of normally
distributed random effects  is  perhaps a limitation; in  practice,  you  will  encounter  data that
clearly do not conform to that assumption. From a more philosophical point of view, one might
argue  that,  in  our  analyses,  we  should  only  make  the  absolutely  necessary  distributional
assumptions and for ‘nuisance effects’, rely on robust procedures that are less affected by the
peculiarities of the data. This would follow the trend in modern statistics toward non- and semi-
parametric procedures, as seen for example in survival analysis. Finally, complex mixed models
are sometimes difficult to fit due to the size of the data or to numerical difficulties.
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Generalised estimating equations (GEE) were introduced in 2 papers by Liang and Zeger 1986);
Zeger  & Liang,  (1986),  as  a  set  of  estimating equations  to  obtain  parameter  estimates  for
discrete and continuous repeated measures data. The idea has proven not only durable but also

Example 23.7 Generalised linear mixed models for high somatic cell counts
data = scc_40

Out of the 14,357 test results, 5,653 (39.4%) exceeded the cut-off of 200,000 cells/ml. Among the
2,078 cows,  1,032 (49.7%) had constant values of -highscc- throughout  the lactation,  suggesting a
strong within-cow clustering. In the next table, we compare estimates from a random-intercept model, a
simple transitional model (without any interactions), and a linear-trend model with a random slope for
-sdim-. The effective dataset for the transitional model excluded all (in total, 2,145) tests where the
previous test was missing or did not exist (ie at the first time point).

Model Random interc. Transitional Linear trend

Variable Estimate (SE) Estimate (SE) Estimate (SE)

shsize 1.367 (.855) 1.012 (.565) 1.559 (1.005)

heifer -2.227 (.137) -1.409 (.105) -2.458 (.160)

season=spring 0.016 (.076) 0.094 (.079) 0.078 (.091)

season=summer 0.071 (.079) 0.144 (.083) 0.099 (.010)

season=fall 0.042 (.079) 0.098 (.082) 0.036 (.093)

sdim 0.915 (.038) 0.652 (.047) 1.064 (.061)

constant -0.060 (.169) -0.945 (.125) -0.087 (.199)

prev outcome - 1.745 (.125) -

herd variance 0.741 (.211) 0.317 (.093) 1.043 (.296)

cow variance 6.297 (.367) 2.141 (0.248) 8.092 (.511)

cow random slope (sdim) - - 2.147 (.233)

covariance - - 0.740 (.270)

The 2 extensions of the random-intercept model were both highly significant: the coefficient for Yi,j-1 in
the transitional model is much larger than its SE, and log-likelihood values for the random-intercept
and trend models differed by some 144 units. In the transitional model, the odds ratio for having the
same outcome as at  the previous time point was  high (e1.745=5.7).  The estimates  are conspicuously
different between the 3 models. One reason for this is very strong within-cow clustering,  eg  in the
random-intercept  model,  the  (latent  variable)  ICC equals  (0.741+6.297)/(0.741+6.297+3.29)=0.68
(Section 22.2.3). The estimates from 2 random-effects models are not directly comparable when the
variances are high because of the scaling caused by the random effects (Section 22.6). One possibility
is  to  scale  both  estimates  to  PA  scale;  for  example,  scaling  the  estimates  for  -sdim-  yields:

0.915 /√1+0.346∗(0.741+6.297)=0.494 , and 0.652 /√1+0.346∗(0.317+2.141)=0.479 ,

so these estimates  are  in  good agreement.  The estimated  intercept  in  the transitional  model  has  a
different  interpretation and role in  the model:  it  corresponds to  tests whose  predecessor  was  zero,
whereas in the other models, it corresponds to any test. Due to non-constant variances created by the
random slopes, it is more difficult to scale the estimates of the trend model. The conclusion from the
example is that both extensions of the random-intercept model affect the model quite strongly, and it is
not clear which (if any)  of them is preferable. We continue the analysis  of this model in Example
23.10.
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extendable  to  other  data  structures  (eg hierarchically  clustered  and  spatial  data),  statistical
inference  accompanying  the  estimates,  as  well  as  many  variants  of  estimating  equations
(Hanley et al, 2003). A fairly recent (statistical) monograph (Hardin & Hilbe, 2003) is devoted
entirely to GEE methods, which today are one of the most popular approaches in the health and
biological sciences. We will confine ourselves here to describing the original (and probably still
most  popular)  GEE method to  obtain  population-averaged  estimates  for  clustered  data.  To
illustrate the methods, we will use the repeated measures somatic cell count data (scc_40) and
the clustered pig-pneumonia data (pig_adg) from Chapter 22. 

23.5.1 Estimating equations

Let’s  initially  explain  the  meaning  of  an  ‘estimating  equation’.  When  using  maximum
likelihood (ML) estimation, the parameters are chosen to maximise the log-likelihood function.
In practice, maximising a function involves computing the (partial) derivatives of the function
with  respect  to  its  parameters  and  equating  these  to  zero.  These  would  be  the  estimating
equations for ML estimation (and the derivatives of the log-likelihood function is called the
score function). Except for very simple cases, the equations do not have an explicit solution and
must  be solved iteratively.  The approach  we are  going to  take  here  involves  GLMs and a
partially specified  model,  so that  no likelihood function is available.  Specifically,  the GEE
method requires  only assumptions about  the  marginal  mean and  variance  (and  information
about the subjects, or more generally clusters, of the data). Nevertheless, estimation is based on
iterative solution of similar generalised estimating equations. These equations involve the mean
of  the  outcome across  clusters,  therefore  GEE yields  estimates  with  a  PA interpretation.
Recall  however  from  Section  22.4.1,  that  a  distinction  between  SS  and  PA  estimates  is
unnecessary for models with an identify link, such as a linear (mixed) regression models.

23.5.2 Statistical inference using GEE

The Liang and Zeger version of GEE is based on correlations in a working correlation matrix.
Despite the fact that no assumptions about the form of the correlation of the data within the
clusters are made, the estimating equations involve a working correlation matrix containing
the estimated correlations among observations within a cluster, in each cycle of the iterations.
This matrix can be given different forms (independent, compound symmetry,  autoregressive,
unstructured etc as in Section 23.3.1) to tailor the estimating algorithm toward one’s perception
of the data structure. Because the matrix is not part of the model, its form is not as crucial as in
a  fully  parametric  model.  Theoretically,  the  GEE  method  gives  asymptotically  unbiased
estimates even if the working correlation matrix is misspecified; that might, however, lead to
loss  in  efficiency  (Fitzmaurice,  1995).  Estimation  of  variance  (ie standard  errors  and
correlations among estimates) can be either model-based or robust (or empirical) as described
in  Section  20.5.4.  The  latter  method  is  also  asymptotically  unbiased,  and  is  generally
recommended because the GEE method loses its robustness to misspecification if model-based
variance  estimation  is  used.  It  is  worth  noting  the  general  relationship  that  GEE  with
independence working correlation structure and robust variance is exactly the same as ordinary
clustered robust variance estimation (Section 20.5.4).

As to the choice of working correlation structure, you should first and foremost be guided by
your understanding of the data. For hierarchically clustered data (eg pigs in farms), anything but
a  compound  symmetry  (or  exchangeable)  correlation  structure  would  seem  unreasonable.
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Particular caution should be exercised with negatively correlated binary data. In this case, an
ordinary  logistic  model  with  robust  standard  errors  has  been  recommended  (Hanley  et  al,
2000).  For  repeated  measures  data,  one  would  usually  choose  a  structure  that  allows  for
autocorrelation. It might also be tempting to try an unstructured correlation to see what patterns
the  data  show  when  not  constrained  by  a  particular  structure.  However,  large  correlation
structures imply estimation of a large number of ‘working parameters’ and numerical problems
might be encountered especially in unbalanced datasets. Recently a criterion (QIC), similar to
Akaike’s information criteria has been developed to guide the choice of correlation matrix (Pan,
2001) and implemented in standard software  (Cui & Qian, 2007). We first illustrate the GEE
method  in  Example  23.8  by  applying  it  to  the  2-level  pig  pneumonia  data  with  a  binary
outcome.

A word of caution: the use of the GEE approach is appropriate when it comes to missing data
(Section 15.5). It has long been recognised that GEE is not robust to missing data under the
missing at random (MAR) assumption, but that addition of a weighting scheme to the procedure
could resolve the problem  (Robins  et al, 1995);  (Molenberghs  et al, 2007, Chapter 27). The
actual scheme depends on the structure of the missing values (eg whether these are drop-outs or
intermediate missing values). An implementation of a weighting scheme for drop-outs has been
published  (Jansen  et  al,  2006),  but  such  adjustments  to  GEE do not  seem to  be  generally
available in standard statistical software.

23.5.3 GEE for multilevel data structures

One apparent  drawback of the GEE method is its  limitation to a single level  of clustering.
Except  for  the  alternating  logistic  regression  (ALR)  version  of  GEE discussed  below,  the
problem of extending GEE algorithms to account for more complex data structures has received
relatively little attention in the literature  (Chao, 2006). The question of how to best set up a
classical  GEE  analysis  for  binary  repeated  measures  with  an  added  hierarchical  level  (eg
repeated  measures  on  cows  clustered  in  herds)  was  discussed  on  the  basis  of  multiple
simulation  studies  (Masaoud  and  Stryhn,  2010).  The  recommendations  were  that,  with
moderate- to-large numbers of highest level clusters, it is sufficient to cluster at the highest
level to achieve approximately unbiased estimates and standard errors at all levels, and that
other schemes such as ignoring the highest level clusters or modelling them by fixed effects
were less successful. This finding agrees with the recommendation by Hardin and Hilbe (2003),
Chapter 3 that for complete datasets with a number of clusters above 30, there is little gain in
using more complicated correlation structures than independence (which de facto is ordinary
logistic regression with robust standard errors), and it also agrees with the common approach to
survey  data  to  adjust  for  clustering  by  primary  sampling  units  and  pay  less  attention  to

Example 23.8 Generalised estimating equations for pig-pneumonia data
data = pig_adg

For the model of Example 22.13, a GEE analysis with a compound symmetry structure for the working
correlation  matrix  and  robust  standard  errors  gave  a  regression  coefficient  of  0.354  (0.216).  For
comparison with the previous random- effects estimate (0.437), we might compute its PA counterpart
using Eq 22.2: βPA

≈0.437/10.346∗0.879=0.383 . Thus, the difference between the 2 estimates is
not entirely due to their different interpretations; however, relative to the SEs, the difference is small.
The working correlation matrix had a correlation of 0.18 (between pigs in the same farm), which is
quite similar to ρ=0.21 computed in Example 22.2.
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subsequent levels (Sections 2.10 and 20.5.5). As the herd-level working correlation structure
cannot easily be set up to account for autocorrelation within cows, an exchangeable structure
must  be  used  and  a  possible  loss  of  power  by  misspecification  of  the  structure  must  be
accepted.  In  Example 23.9,  we compare  different  3-level  GEE approaches  to analysis  of  a
continuous outcome by reanalysing the somatic cell count data from Examples 23.5-6.

For binary outcomes, an alternative to the standard GEE algorithms was developed by Carey et
al (1993) and termed alternating logistic regression (ALR) because the estimation algorithm
in each step of the iterations employs 2 (very different) logistic regression models to update the
parameters. As this approach was favoured for binary data in a comprehensive review of GEE
methods (Hardin & Hilbe, 2003), and it also has the ability to deal with 2 levels of clustering,
we briefly describe the idea and demonstrate in Example 23.10 its use (together with other GEE
implementations) to the binary somatic cell count data. The standard GEE procedure describes
within-subject clustering in terms of a working correlation matrix; however, correlation is not
the  most  obvious  measure  of  association  for  binary  outcomes.  The  ALR  method  instead
describes the clustering in terms of odds-ratios for 2 subjects within the same cluster, and offers
estimates with SEs of such quantities. As the estimating equation for the fixed effects is the
same as for standard GEE, the robustness properties of GEE are retained. One drawback of the
approach is that it is only implemented in a few statistical packages (SAS and R/S-plus) and
only with exchangeable correlation structures. That is, in the repeated measures context, the
odds-ratio parameter gives the ratio between odds of disease when it is known that another
observation  on  the  same  subject  is  disease-positive  versus  when  it  is  disease-negative.  A
numerical illustration is given also in Example 23.10.

23.5.4 Summary remarks on GEE and discrete mixed models

We expand here a bit on the summary Table 20.4 to specifically address the choice between
GEE  and  discrete  mixed  models.  The  advantage  of  the  GEE  method  (and  many  of  its
generalisations) is that it has robust theoretical properties with few model assumptions. It is also
computationally  feasible  for  large  datasets  and  can  be  fit  with  a  wide  range  of  working
correlation  structures.  It  is  one  of  the  few general  methods  for  use  with  discrete  repeated
measures and spatial data; however, it does not provide much information about the random
structure of the data,  and it cannot be used to model random structure in terms of random
slopes. Its lack of likelihood-based inference and standard errors for correlation parameters are
perhaps less of an issue, but GEE estimation may require additional analysis for data with a
large proportion of missing values that cannot be assumed missing completely at random.

A general GLM(M) class of random-effects models that allow inclusion of autocorrelation and
other complex correlation structures does not exist (disregarding the quasi-likelihood approach
discussed in Section 23.4.1), but a range of specific methods are available for binary and count
data.  The  choice  between  methods  may  require  a  considerable  effort  to  understand  their
theoretical  basis, and can also be difficult in practice,  eg in binary data with strong within-
subject  clustering,  as  demonstrated  by  our  examples.  It  is  recommended  to  try  multiple
approaches in order to assess the robustness of the results to the particular choice of method.
Modelling of time by random slopes (trend models) should probably be included among the
methods used, unless the time series is very short. The ability to include additional hierarchical
structure remains one of the main advantages of mixed models. 
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Example 23.9 Generalised estimating equations for log somatic cell counts
data = scc_40

We analysed these data using linear mixed models for repeated measures in Examples 23.5-6. Because
of the identity link function, the SS and PA parameters coincide. The difference of the GEE approach
lies  therefore,  entirely  in  the  estimation  method.  The  table  shows  parameter  estimates  from GEE
analyses clustered at the cow level with compound symmetry, autoregressive (ar(1)) and unstructured
working correlation matrices. The table also gives values of the working correlations 1, 2 and 3 time
steps apart; the values for the unstructured correlation were obtained by averaging the corresponding
values in the matrix. Some software implementations of GEE (eg in SAS) will fit stationary (Toeplitz)
structures without  excluding incomplete  sets  of  repeated measures;  the results  were  close to  those
shown for the unstructured correlations.

Cow-level working correlation matrix structure Herd work corr.

Comp. symm. Autoregressive Unstructured Comp. symm.

Variable β (SE) β (SE) β (SE) β (SE)

shsize 0.826 (.123) 0.799 (.124) 0.755 (.121) 0.732 (.322)

heifer -0.777 (.042) -0.755 (.042) -0.771 (.041) -0.750 (.054)

season=spring 0.015 (.023) 0.054 (.024) 0.031 (.022) 0.086 (.036)

season=summer 0.026 (.026) 0.060 (.026) 0.033 (.024) 0.115 (.045)

season=fall -0.022 (.025) 0.003 (.025) -0.010 (.023) 0.033 (.039)

sdim 0.336 (.014) 0.315 (.014) 0.327 (.013) 0.312 (.017)

constant 5.290 (.033) 5.256 (.033) 5.285 (.032) 5.211 (.068)

ρ (1 month) 0.555 0.671 0.647 0.072*

ρ (2 months) 0.555 0.451 0.592 0.072*

ρ (3 months) 0.555 0.303 0.538 0.072*

QIC 21102.24 21084.62# 21101.43# 21199.31
*correlation among all values within a herd; #QIC for model ignoring gaps

These values should be compared with those of Example 23.5. The parameter estimates for -heifer- and
-sdim- are in reasonable agreement between all models, including the uncorrected analysis. This may
be said also for -shsize- when considering its large SE (from the linear mixed model). For -season-, the
estimates from GEE clustered at the herd level are markedly off all the other estimates (including the
mixed model in Example 23.5); the values are actually closer those of a simple linear regression (not
shown). The best agreement with the mixed model is achieved by the unstructured correlations, and
also the estimates obtained by the autoregressive structure differ slightly. These data demonstrate that
choice of working correlation structure is not always of minor importance for the fixed effects, even in
a large dataset. The standard errors are all  fairly close except for -shsize- where only the analysis
clustered at the herd level produces a sensible value (close to the mixed model); the cow-level GEE
analyses do not account for herd and thus, cannot be expected to produce a valid SE for a herd-level
predictor. The cow-level correlations show good agreement with the mixed model estimates, and still
indicate both the compound symmetry and autoregressive structures to be inadequate. The QIC points,
perhaps surprisingly,  to  the autoregressive  structure as  the preferable  one,  and strongly rejects  the
analysis  clustered  at  the  herd  level.  Thus,  model  choice  by  the  QIC  statistic  leads  to  different
conclusions than in the mixed model and the recommendations from simulation studies.

In summary, there is a fair agreement between the GEE and linear mixed models analysis, but some
questions remain with respect to choice of working correlation structure.
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Example 23.10 GEE and ALR estimation for high somatic cell counts
data = scc_40

Using the same dataset as for Example 23.7, we compare different implementations of GEE to account
for  the repeated measures  and additional  clustering in  herds.  For  comparison,  an ordinary logistic
regression is included as well. The GEE analysis with an autoregressive working correlation structure
did not account for clustering for herds.

Model
Ord. logist. 

regr.
GEE: ar(1) at

cows
GEE: cs at 

herds
Altern. log. 

regr.

Variable Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

shsize 1.150 (.102) 1.034 (.194) 1.045 (.631) 0.748 (.484)

heifer -1.100 (.038) -1.125 (.072) -1.111 (.081) -1.165 (.074)

season=spring 0.162 (.051) 0.110 (.047) 0.126 (.062) 0.030 (.060)

season=summer 0.191 (.052) 0.119 (.051) 0.168 (.075) 0.047 (.056)

season=fall 0.081 (.054) 0.051 (.050) 0.093 (.066) 0.021 (.053)

sdim 0.440 (.023) 0.437 (.026) 0.439 (.028) 0.475 (.030)

constant -0.224 (.041) -0.143 (.056) -0.226 (.106) -0.062 (.092)

We see immediately that the estimates show less variation across different analyses than in Example
23.7. Two explanations can be offered: contrary to Example 23.7, the analyses correspond to the same
models  (fixed  effects),  and  all  the  estimates  are  on  the same (PA)  scale.  Some major  differences
remain, in particular between ALR and the GEE variants. These may be linked to the presence of a
substantial portion of missing data (approximately 40% when compared to the full  dataset with 11
observations per cow). The 2 ALR log-odds ratio parameters were estimated at:

within-subject:=2.229  .086 , and between-subject (within herd):=0.218 .058

The interpretation of these values is that the odds of a high somatic cell count at one test is e 2.229=9.29
times higher when it is known that another test of the same animal was positive than when that other
test was negative; similarly,  the odds is only e0.218=1.24 times higher when the same information is
given about another animal in the same herd. As we noted before, the within-subject clustering is very
strong, and the between-subject and within-herd clustering is fairly weak in comparison. The random-
intercept model estimates from Example 23.7 agree well with the ALR estimates after rescaling to PA
scale, eg for the herd size (-shsize-):

1.367 /10.346∗0.7416.297 =0.738

With discrepancies of this magnitude between the GEE-type procedures the choice of an appropriate
procedure for these data is not quite yet resolved, but the procedures do seem to be more robust to the
choice procedure than the random-effects models of Example 23.7.
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