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INTRODUCTION TO BAYESIAN ANALYSIS
Chapter contributed by Bill Browne and Henrik Stryhn

OBJECTIVES

After reading this chapter, you should be able to:

 1. Understand  the  basic  differences  between  Bayesian  and  classical  (likelihood-based  or
frequentist) statistical approaches.

 2. Understand how to fit standard regression models with non-informative priors and Markov
chain Monte Carlo (MCMC) estimation. 

 3. Assess whether a chain produced by an MCMC procedure appears to be well-suited for
sampling from the posterior distribution (and hence MCMC inference).

 4. Use a Bayesian hierarchical model for analysing clustered data and extend this modelling to
incorporate more complex data structures. 

 5. Understand how other modelling extensions such as missing data, measurement errors and
imperfect tests can be fitted using MCMC.

 6. Understand how others have used the Bayesian framework and MCMC to combine existing
data and expert opinions with new data using informative prior distributions. 



638 INTRODUCTION TO BAYESIAN ANALYSIS

24.1 INTRODUCTION

The previous 4 chapters have all looked at the problem of clustering (lack of independence
among observations) in a dataset. We have seen how clustering is common to many datasets
that we deal with in veterinary epidemiology. There are many methodological approaches to
dealing with clustering and in this chapter,  we introduce a completely different approach to
statistics and associated methods that are useful in the mixed model setting and also for both the
simpler non-clustered datasets and other more complex structures.

This chapter will first describe the alternative Bayesian statistics paradigm and contrast it with
the classical or ‘frequentist’ statistics that all other work in this book has so far relied upon. We
will next describe the associated Markov chain Monte Carlo methods that are generally used to
fit complex Bayesian models. We will then revisit examples from the earlier chapters and show
what  differences  the  Bayesian  approach  leads  to  before  moving  on  to  the  mixed  models
described in the previous 4 chapters. We will finish the chapter by discussing other possible
model elaborations such as more complex clustering structures, missing data and measurement
error  that  can be easily  incorporated  in  the Bayesian  framework  and some mention of  the
incorporation of expert opinion into statistical analysis. 

24.2 BAYESIAN ANALYSIS

Little  known  outside  statistical  science,  there  exist  2  different  approaches  to  statistical
inference, which have different concepts and philosophical bases and will, in general, lead to
different results. The rivalry between the 2 schools has persisted over decades,  with neither
emerging as the clear winner. Many statisticians cling to the middle ground believing that each
of the 2 approaches has its weaknesses and strengths which make each of them attractive in
particular situations. However, many (introductory) statistics courses are taught within the non-
Bayesian (classical, likelihood-based, frequentist) framework with no reference to the Bayesian
view. 

Bayesian analysis has gained in popularity in recent years, and has for example been applied to
complex problems in veterinary epidemiology such as risk assessment (eg Ranta et al (2005))
or comparison of diagnostic tests without a gold standard (eg Branscum et al (2005)), and to the
analysis of multilevel data (eg Dohoo et al (2001)). The scope of practical Bayesian inference
has been increased widely by the invention and recent advances of a simulation-based tool for
statistical  inference:  Markov  chain  Monte  Carlo (MCMC) estimation.  The  analysis  of
virtually all complex models by the Bayesian approach is based on MCMC methods.

We hope the reader will bear with us for the inevitable inadequacy of a one chapter introduction
to a full, new statistical approach. Our aim can only be to give little more than a superficial
impression of the ideas and steps involved in a Bayesian analysis. Recent textbooks on applied
Bayesian analysis in the health and biological sciences (eg Gelman et al (2004) would be the
proper starting point. Most Bayesian analyses require specialised software,  and the standard
choice  is  the  (free)  WinBUGS  programme  developed  by  the  Medical  Research  Council
Biostatistics  Unit  in  Cambridge  (http://www.mrc-bsu.cam.ac.uk/bugs/).  BUGS  is  short  for
Bayesian analysis using Gibbs sampling, which is a particular type of MCMC analysis. The
analyses of this section were, however, carried out using the MLwiN software (version 2.11).
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24.2.1 Bayesian paradigm

Bayesian methodology owes its name to the fundamental role that  Bayes’ theorem (see Eq
24.1) plays in it. In Bayesian reasoning, uncertainty is attributed to the parameters while the
sampled data is regarded as a fixed quantity once collected. This means that all parameters are
modelled by distributions. Before any data are obtained, the knowledge about the parameters of
a problem is expressed in the prior distribution of the parameters. Given actual data, the prior
distribution and the data are combined to generate the posterior distribution of the parameters.
The posterior distribution summarises our knowledge about the parameters after observing the
data.  The major differences between classical  and Bayesian inference are outlined in Table
24.1, and will be detailed in the sections that follow.

Table 24.1 Bayesian versus classical approaches to statistics

Concept Classical approach Bayesian approach

Parameter Fixed (unknown) constant Distribution of possible values

Prior information on 
parameters

None Prior distribution

Base of inference Likelihood function Posterior distribution

Parameter point estimate Estimate (eg maximum 
likelihood estimate (MLE))

Statistic from posterior distribution 
eg mean, median or mode

Parameter interval estimate Confidence interval Bayesian credible interval

Hypothesis testing /
Model comparison

Test (eg LRT)/criterion (eg 
AIC)

Bayes factors/criterion (eg DIC)

Let us briefly indicate the way the prior and the data are merged, and denote by Y the data, by θ
the parameter (vector), and

  L(Y|θ) – the likelihood function,
  ƒ(θ) – the prior distribution for θ, 
 ƒ(θ|Y) – the posterior distribution for θ after observing data Y

where  the  ƒ(·)s  are  either  probability  functions  (discrete  data)  or  probability  densities
(continuous data). With these definitions, Bayes’ theorem states that:

ƒ ∣Y  = const Y ∗L Y∣∗ƒ  Eq 24.1

where const(Y) is a constant depending on Y but not on θ. Thus, the posterior distribution for θ
is essentially constructed by multiplying together the likelihood and the prior, and is a sort of
compromise between the 2. In  complex models, the constant depending on  Y in Eq 24.1 is
virtually impossible to calculate. This means that the posterior distribution cannot be calculated
analytically  and  therefore,  alternative  methods  need  to  be  used.  This  intractability  of  the
posterior  distribution for all  but the simplest  problems meant that up until  the early 1990s,
Bayesian  statistics  was  more  of  a  theoretical  subject  than an  applied  one.  The increase  of
computer speed and memory capacity and the introduction of simulation-based methods such as
MCMC have had a great impact on Bayesian analysis and its use in real-world problems. 
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24.2.2 Statistical analysis using the posterior distribution

Even if it might seem awkward to discuss the posterior distribution before the prior distribution,
let  us  see  a  simple  example  of  Bayesian  analysis  (Example  24.1)  before  turning  to  the
discussion of how to choose the prior distribution. The net result of a Bayesian analysis is a
distribution, and the analysis might, therefore, be conveniently summarised by a graph (Fig.
24.1). Point estimates and confidence intervals are not truly Bayesian in spirit, but values such
as  the  mean,  median  or  mode,  and  intervals  comprising  a  certain  probability  mass  of  the
posterior (sometimes called  credibility or  credible intervals) might be calculated from the
posterior distribution. Both the posterior mean and median are commonly used as point values
as they can be easily calculated directly from MCMC methods. The (joint) posterior mode is
also used and is evaluated by finding the parameter point estimates simulated via MCMC that
have  generated  the  largest  value  of  the  posterior  distribution and  hence  it  is  also  called  a
maximum a posteriori (MAP) estimate. In the classical framework, the maximum likelihood
estimate (MLE) is the maximum of the likelihood function and so for non-informative priors (as
discussed next) the mode should agree with the MLE.

24.2.3 Choice of prior distributions

Generally, it can be said that the strength and weakness of Bayesian methods lie in the prior
distributions. In highly multidimensional and complex problems, it is possible to incorporate
model  structure  by  means  of  prior  distributions;  such  an  approach  has  been  fruitful,  for
example, in image analysis. The posterior of one analysis can also be taken as the prior for a
subsequent  study,  thereby  enabling  successive  updates  of  the  collected  and  available
information, as we will discuss later. On the other hand, the choice of prior distributions might
seem open to a certain arbitrariness, even if subjectivity in the prior does not contradict the
Bayesian paradigm. In the past, priors have often been chosen in a particular form allowing for
explicit calculation of the posterior (conjugate priors) but, with access to MCMC methods,
these have somewhat decreased in importance though are often still used.

Let us revisit Example 24.1 to explain how conjugate priors were part of the modelling. First, a
binomial likelihood for the unknown proportion was combined with a uniform prior to create a
beta posterior distribution. Then we showed that this beta posterior distribution can itself be
combined as a prior distribution with further (binomial) data to again produce a beta posterior
distribution. A conjugate prior distribution by definition is a prior which when combined with
a specific likelihood produces a posterior of the same form as the prior. In this case, the beta
distribution  is  the  conjugate  prior  for  the  proportion/probability  parameter  in  a  binomial
distribution.  Also,  the  uniform prior  initially  used  is  equivalent  to  a  beta-distribution  with
parameters (1,1) which explains why a beta posterior resulted when it was used as a prior.

Other conjugate prior distributions include the normal distribution for the mean of a normal
likelihood, the gamma distribution for the precision (1/variance)  of a normal likelihood and
again the gamma distribution for the mean of a Poisson likelihood.  Note A conjugate prior
distribution  determines  only  the  type  of  distribution,  not  its  specific  parameters  or
characteristics such as the mean and variance.

A common choice of prior (in particular among less-devoted Bayesian researchers) is a  non-
informative (flat, vague or diffuse) prior, which gives minimal preference to any particular
values for θ. As an extreme case, if we take p(θ) ≡ 1 in Eq 24.1, the posterior distribution is just
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Example 24.1 Bayesian analysis of proportions

Assume that we test 10 animals for a disease with highly variable prevalence. In one scenario, 5 of the
animals tested positive; in another, 8 animals tested positive. What information have we obtained about
the disease prevalence in these 2 scenarios? 

Recall that all Bayesian analyses involve a prior distribution, in this case for the disease prevalence P.
Assume  (somewhat  unrealistically)  that  we  had  no  particular  prior  information  (due  to  the  high
variability of the disease) so that  a priori all values of  P would seem equally likely. Then we could
choose a uniform distribution on (0,1) as our prior; this is an example of an non-informative prior
(Section 24.2.3). The probability density of the uniform distribution is constant (1). The likelihood
function for observing the number of positive animals out of 10 are the probabilities of the binomial
(10, P) distribution. Therefore, if we observe Y positive animals, the posterior distribution has density:

f P∣Y =const Y ∗PY 1−P 10−Y∗1=const Y PY 1−P 10−Y

This probability density corresponds to a beta-distribution with parameters (Y+1,10-Y+1). The constant,
const(Y), can be determined from Bayes’ formula, but after having identified the posterior as a beta

distribution, we get the constant from its density (it equals  101∗10
Y

 .) Corresponding to observed

values of Y=5 and Y=8, respectively, Fig. 24.1 shows beta distributions with parameters (6,6) and (9,3).

If we wanted to summarise our knowledge about  P, we could use the mean, median or mode of the
distribution;  for  the 2 beta-distributions,  they equal  (0.5,0.5,0.5)  and (0.75,0.764,0.8),  respectively.
These values can be compared with the usual estimates P=0.5 and P=0.8; the agreement of the mode
and maximum likelihood estimate is no coincidence! If we wanted to summarise our knowledge about
P into a 95% interval, we could choose the interval with endpoints equal to the 2.5 and 97.5 percentiles
of the distribution; for the 2 beta-distributions they are (0.234,0.766) and (0.482,0.940). These intervals
might be compared with the (exact) binomial confidence intervals of (0.187,0.813) and (0.444,0.975).
The confidence intervals are wider than the credibility intervals. 

If  instead  we  consider  the 2 observations  to  be successive  trials  then  we  could use the beta(6,6)
distribution obtained from the first scenario as a prior for the second scenario. We then have:

f P∣Y 2=const Y 2 ∗PY 21−P 
10−Y 2∗P6

1−P 
6
=const Y 2 PY 26

1−P
16−Y 2

With an outcome of the second trial of Y2=8, this corresponds to a beta(14,8) distribution. We would
get the same posterior if we had swapped the order of the 2 scenarios or indeed if we had considered all
the data to be one dataset with 13 positive tests out of 20. This shows how Bayesian methods can be
used in real time examples where data appear sequentially.

Fig. 24.1 Posterior distributions after 5 and 8 
out of 10 animals tested positive
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the  likelihood  function.  So,  for  example,  maximising  the  posterior  (MAP estimate)  yields
exactly the maximum likelihood estimate. Therefore, we would by and large expect Bayesian
inference with non-informative priors to be similar to likelihood-based inference. To take p(θ)
constant is not always possible, but an alternative for a parameter (which can take any value) is
a normal distribution with zero mean and a very large variance, effectively making values in a
large interval around zero equally probable. As a technical note, it is sometimes possible to use
an improper prior distribution, which is not a real probability distribution because it does not
satisfy the condition of a finite probability of the entire sample space. The main example of an
improper distribution is a constant value on an unbounded space (eg the constant 1 on the entire
real axis). Such a uniform prior can be thought of as a limiting case of normal distributions with
very large variances. Despite the improper prior distribution, the posterior distribution may be
perfectly well-defined, and therefore this type of uniform distribution is a popular choice for a
non-informative prior.  For a variance parameter,  where values below zero are impossible, a
standard non-informative distribution is a gamma distribution for the inverse of the variance
with parameters that ensure the distribution to be concentrated close to zero (equivalent to very
large variances). 

24.3 MARKOV CHAIN MONTE CARLO (MCMC) ESTIMATION

Note This section uses a notation somewhat inconsistent with the rest of the book in order to
stay  reasonably  in  line  with  the  usual  notation  in  the  field.  In  particular,  X1,X2,...  are  not
predictor variables.

Markov chains

A  Markov  chain  (named  after  the  Russian  mathematician  AA  Markov)  is  a  process  (or
sequence) (X0, X1, X2,…) of random variables which satisfies the Markov property (below). The
variables  take  values  in  a  state  space  which  can  be  either  finite  (eg  {0,1}),  discrete  (eg
{0,1,2,3…}) or continuous (eg an interval, possibly infinite). The value of X0 is the initial state
of the chain, and the steps of the chain often correspond to evolution over time. The Markov
property is a strong assumption about the probability distribution of the process (Xt):

distribution of X t1 , X t2 , given X 0 , X 1 , , X t 

= distribution of  X t1 , X t2 , given only X t  Eq 24.2

In words, the future (of the process) depends on the past only through its present state. Thus,
the chain has a ‘short memory’.  Some examples of Markov chains are processes describing
games, population sizes and queues. For example, Markov models for population size assume
that  the  development  of  a  population  after  any  given  time  point  depends  only  on  the
population’s size at that time, and hence, can be described solely in terms of birth, death and
migration rates. Examples of non-Markov processes are periodic phenomena and growth curves
which do not have such ‘short memory’. Our interest here is in homogeneous chains in which
development  does  not  change  over  time.  For  such  chains  the  Markov  condition  (Eq 24.2)
implies that whenever the chain has reached state x, it evolves from there as if it was restarted
with  X0=x.  The  importance  of  homogeneous  chains  is  that  under  some  further,  technical
conditions they converge to limiting distributions as time runs. That is, distr(Xt)→π as time
runs,  where  π is  the limiting (or  stationary)  distribution (and  in  this  case  not  the number
3.1415926…).  This  implies  for  example  that  p(Xt=x)→π(x).  Example  24.2  illustrates  the
convergence of a simple Markov chain.
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24.3.1 Introduction to Markov chain Monte Carlo

The idea  of  MCMC estimation is  simple,  yet  surprising.  Suppose  we were  interested  in  a
particular distribution  π,  but that quantities from this distribution were difficult  to calculate
because  its  analytical  form  is  unknown  (the  distribution  we  have  in  mind  is  a  posterior
distribution from a complicated model). Suppose furthermore, that we were able to devise a
Markov chain (Xt) such that distr(Xt)→π. Then, in order to calculate statistics from π, we could
run our Markov chain for a long time, for example, up to time step T (where T is large), to make
the distribution of all  Xt for  t  ≥ T a good approximation to  π. Then in order to calculate, for
example, the mean of the distribution, we could simply average over a sample of observations
from the chain after time T. In a formula this would appear as:

E ≈
1
n

∑
t=T 1

s=T n

X t
Eq 24.3

Note that our sample from (Xt) is nothing like an independent sample (it is n successive values
from a Markov chain which will be correlated). Despite the correlation, we can still use the
formula to estimate E(π); however, our precision will be less than if we had an independent
sample, and very much so if there is strong correlation in the chain. This precision will increase

Example 24.2 Convergence of a homogeneous Markov chain

The simplest example of a homogeneous Markov chain has state space {0,1}. The states 0 and 1 could,
for example, correspond to disease states (healthy/sick) or system states (busy/idle). The transitions
from one state to the next are governed by a transition matrix

P= p00 p01

p10 p11


where p00+p01=1 and p10+p11=1. For example, from state 0 the process continues to state 1
with probability  p01 (and stays in state 0 with probability  p00). This chain has a stationary
distribution whenever all probabilities are non-zero, and π(1)=p01/(p01+p10). Fig. 24.2 shows
the convergence of p(Xt=1) from the initial state X0=0 in a model with p01=0.8 and p10=0.7;
the limiting probability of 0.5333 is reached very quickly.

Fig. 24.2 Convergence of a Markov chain 
to its limiting probability distribution
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as we run the chain for longer, and we can calculate a quantity called the Monte Carlo standard
error (MCSE) which describes the uncertainty due to the simulation nature of the method. The
MCSE is a function of the parameter’s actual uncertainty, the correlation in the chain and the
length  of  the  estimation sample from the chain (n). For  uncorrelated  chains,  the  MCSE is
proportional to 1/√n.

Other statistics as  well  as the mean might  be computed from the limiting distribution. The
initial  part  of  the  chain,  X0,…,XT,  is  called  the  burn-in period and  the  parameter  values
associated with the burn-in are discarded before summary measures are calculated (as shown in
Eq 24.3).

Apparently the flaw of this idea is the necessity to construct a Markov chain with  π as the
limiting distribution, when we haven’t even got an analytical form for π! But this turns out to be
possible  for  many  multidimensional  statistical  models  where  π is  known  only  up  to  a
proportionality constant (such as const(Y) in Eq 24.1). To construct a Markov chain one needs
to specify its transition mechanism (in the example above, the transition matrix P), whereas the
starting value is of minor importance. There are 2 major, general  techniques for doing this:
Gibbs sampling and Metropolis-Hastings sampling (technically, Gibbs sampling is a special
case of Metropolis-Hastings sampling but usually is considered to be a separate method). One
major practical complication involved in MCMC estimation is the length of the burn-in period,
in order to make estimation from Eq 24.3 valid. Constructed Markov chains might converge
rapidly or  very slowly to  their  limiting distribution,  sometimes so slowly that  the chain is
useless  for  estimation  purposes.  Therefore,  it  is  crucial  to  have  tools  for  monitoring  the
convergence  and the required length of burn-in periods.  The MCMC software  will  provide
some diagnostics tools for monitoring. In the next 2 sections we will provide a brief explanation
of how Gibbs and Metropolis-Hastings sampling works. Gibbs sampling can be easily applied
to  normal  response  models,  whereas  Metropolis-Hastings  sampling  can  be  applied  more
generally but might result in highly correlated and very slowly converging chains.

24.3.2 Gibbs sampling for linear and linear mixed models

The Gibbs sampling algorithm for a regression model is based on the conjugate distributions for
the mean and variance parameters in a normal likelihood/model (Section 24.2.3). Let us first
consider a simple linear regression model:

Y i= 01 X ii , i ~ N 0, 2


Here we have 3 unknown parameters: the intercept (β0), the slope (β1), and the residual variance
(σ2),  which in a  Bayesian  regression  all  need  prior  distributions.  We will  generally  choose
conjugate priors, namely normal priors for the intercept and slope and an inverse gamma prior
for the variance (equivalently a gamma prior for the precision). It is actually possible in this
setting to derive the posterior distribution (a normal-inverse gamma distribution), however we
will illustrate how we would implement the Gibbs sampling algorithm for this problem.

The full  posterior  distribution is  f  (β0,  β1,  σ2|Y) but  in  Gibbs sampling instead of  sampling
directly  from  this  multivariate  distribution  we  instead  sample  in  turn  from  the  series  of
conditional posterior distributions,

f 0∣Y , 1 , 2 , f 1∣Y ,0 ,2 , and f 2∣Y ,0 ,1

In each sampling step, we use the current  values for the parameters  not to be updated; for
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example,  if we update  β0 in the first step then the new value generated will be used in the
subsequent steps to update β1 and σ2. It can be shown that sampling from these 3 distributions in
turn produces (dependent) chains from the posterior distribution, and when conjugate priors are
used then the forms of the 3 conditional posterior distributions are known distributions that can
easily  be  simulated  from (2  normals  and  an  inverse  gamma).  To  run  the  Gibbs  sampling
algorithm requires choosing starting values for the 3 unknown parameters and then performing
a burn-in as described earlier, until the chains have moved away from the starting values and
are sampling from the posterior distribution.

The beauty of MCMC algorithms is that because they consist of a series of steps to update
individual  parameters,  it  is  easy  to  fit  expanded  models  by including  additional  steps  and
modifying existing steps.  Let  us expand the above model by including random effects,  say
corresponding to measures on cows clustered in herds,

Y ij=0 1 X iju jij , u j ~ N 0, u
2
 ,  ij ~ N 0, 2



We have added 2 extra sets of parameters, the cluster effects uj and their variance σ2
u, and so we

now have 2 additional steps to the algorithm. By expressing the cluster effects as random we
have given them a prior distribution; thus, we only need to include an additional prior for  σ2

u

which we would normally give a conjugate inverse gamma prior. The existing steps will also be
modified  as  the  cluster  effects  need  to  be  conditioned  on.  Our  Gibbs  sampling  algorithm
therefore simulates from the following distributions in turn:

f 0∣Y , u ,1 ,2 , f  1∣Y ,u ,0 , 2 , f u j∣Y , 0 ,1 , u
2 ,2 , j=1, , J ,

f u
2∣u j and f 2∣Y , u , 0 ,1

Here we see that there is actually one step for each cluster effect (as we loop over j) but these
are all of the same form, and there is one step for the variance. You will also note that some
steps are not conditioning on all  the other  variables,  for  example the cluster  variance  only
conditions  on  the  cluster  effects.  This  is  because  some  of  the  variables  are  conditionally
independent—effectively here the variance only appears in the prior distribution of the random
effects  and  so  is  conditionally  independent  of  all  other  parameters.  All  of  the  above
distributions either normal or inverse gamma distributions and so are easily simulated from. As
an additional simplification, we would often combine the intercept and slope into a vector (β)
and update them together as this vector will have a multivariate normal conditional posterior
distribution.

24.3.3 Gibbs and Metropolis-Hastings sampling for non-normal models

In the last section, we showed how the Gibbs sampling algorithm works by constructing the
conditional  posterior distributions for each group of parameters  and taking simulated draws
from each  distribution in  turn.  Let  us  consider  here  a  different  model,  namely the logistic
regression model for binary responses (Chapter 16): 

p Y i=1= pi , logit  pi =01 X i

To convert this model to a Bayesian framework, we should choose priors for the unknown β-
parameters. As these parameters can take values on the whole real line, a common choice is a
normal prior distributions with mean 0 and a small precision (ie a large variance). 

The conditional posterior distributions for a similar development of the Gibbs sampler as above
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(eg f  (β0|Y, β1)) in this case don’t  equate to standard statistical  distributions and so are too
difficult to simulate from directly. There is a technique built on rejection sampling known as
adaptive rejection (AR) sampling  (Gilks & Wild, 1992), which can be used for certain non-
standard distributions to circumvent the problem; the WinBUGS software has the option to use
this technique in logistic regression models. 

The  other  technique  commonly  used  and  implemented  in  both  MLwiN  and  WinBUGS  is
Metropolis-Hastings sampling. In Metropolis-Hastings sampling we do not simulate from the
conditional  posterior  distribution  but  instead  simulate  from  a  proposal distribution.  The
simulated parameter is then either accepted or rejected and the accept/reject rule ensures that
the  technique  is  equivalent  to  sampling  from the  correct  conditional  posterior  distribution.
Metropolis-Hastings is different from AR sampling in the way it deals with a rejected proposed
value: in Metropolis-Hastings sampling, the parameter value from the last iteration is carried
over, whereas for AR sampling the procedure is rerun until a value is accepted. The proposal
distribution can  be  of  almost  any form, provided that  all  feasible  parameter  values  can  be
reached  in  a  finite  number  of  iterations  and  that  the  proposal  distribution  doesn’t  force
oscillating behaviour in the chain (known as aperiodicity).

Let’s  indicate  how Metropolis-Hastings  sampling  works  for  a  general  parameter  θ and  its
posterior distribution p(θ|Y). The proposal distribution may depend on the current value of the
chain; let q(θ|θt) be the proposal distribution given the current value θt at iteration t. If we draw
(simulate) the value θ* from q(θ|θt) at iteration (t+1), we accept this new value with probability

α(θ * ,θt)=min(1,
p (θ*|Y )q (θt |θ*)

p(θt |Y )q (θ*|θt ) ) Eq 24.4

In practice, this means that we draw another random number from a uniform distribution on
(0,1) to decide whether to accept the proposal or not: if this random number exceeds α(θ*,θt),
the proposal is not accepted and the chain stays  put (ie θt+1=θt).  The acceptance probability
involves 2 ratios,  the ratio  of the posteriors  for the proposed and current  variables  and the
Hastings ratio, which is the ratio of probabilities of the proposed move against its reverse and
accounts for non-symmetric proposals. One of the most common Metropolis-Hastings samplers
is the random walk Metropolis algorithm where we use a normal proposal distribution centred
around the current  value and with a  fixed variance.  This proposal  is  symmetric  and so the
Hastings ratio in the above is not required (as it always takes value 1).

We end this brief introduction into construction of Markov chains for MCMC estimation by
noting that despite all the methods described being (theoretically) ‘correct’, their utility for a
specific model may be very different.  In  addition to the ease with which the chains can be
simulated, the chains may also not take the same time to reach the target distribution, and may
have different degrees of correlation (it is desirable to have as little correlation in the chains as
possible). This raises the need for diagnostics to assess the utility of the MCMC estimates, one
of the topics of the next section. Generally speaking, Metropolis-Hastings samples are easy to
generate but may lead to more correlated chains, partly due to the fact that rejected proposals
result  in  the  chain  not  moving.  Also,  different  algorithms  may  be  combined  for  different
parameters—another  feature  of  MCMC which  makes  the  set  of  MCMC techniques  a  very
flexible framework for fitting statistical models.
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24.4 STATISTICAL ANALYSIS BASED ON MCMC ESTIMATION

In the previous section we described in detail the algorithms that can be used within MCMC
estimation. In  this section we will begin by looking at how we perform an actual Bayesian
analysis. Here we will answer questions such as, how long do we run our MCMC sampler for,
and how do we summarise our estimates?

24.4.1 MCMC in practice: logistic regression

In  Example 24.3,  we consider  a logistic  regression model fitted to the  Nocardia dataset  in
Example 16.2. To translate the logistic regression model to a Bayesian framework, we have
included uniform (improper) priors for all the fixed coefficients. To fit a statistical model using
MCMC, we then firstly need to specify starting values for all unknown parameters. It seems

Example 24.3 Fitting a logistic regression model using MCMC in MLwiN
data = Nocardia

The table below presents results of the standard MCMC (in MLwiN) fitting of a logistic regression
model to the Nocardia dataset. To the left, we show results after 5,000 iterations following a burn-in of
500 iterations; to the right, results after a longer run of 100,000 iterations. 

Estimation After 5,000 iterations After 100,000 iterations

Variable mean SD 2.5% 50% 97.5% mean SD 2.5% 50% 97.5%

dcpct 0.023 0.008 0.008 0.023 0.039 0.023 0.008 0.008 0.023 0.039

dneo 3.015 0.744 1.608 3.005 4.538 2.977 0.738 1.633 2.943 4.537

dclox -1.279 0.613 -2.562 -1.264 -0.117 -1.315 0.608 -2.536 -1.304 -0.151

dbarn_2 -1.574 0.691 -3.012 -1.540 -0.313 -1.492 0.681 -2.924 -1.460 -0.247

dbarn_3 -0.273 1.260 -2.788 -0.287 2.187 -0.214 1.234 -2.634 -0.222 2.231

constant -2.663 0.849 -4.382 -2.626 -1.235 -2.689 0.901 -4.562 -2.657 -1.020

The effects of the various risk factors here are similar but slightly larger in magnitude than in Example
16.2; the 95% credible intervals from the posterior distribution are also wider than the 95% confidence
intervals. We see some change in the estimates between 5,000 and 100,000 iterations, in particular for
the first -dbarn- coefficient (whose distribution moved upwards) and the constant (whose distribution
widened),  suggesting that we needed the longer  run length to get  accurate estimates.  Note As the
estimation procedure involves simulation, the actual values are always subject to random noise. The
posterior means and medians are close because all distributions are fairly symmetrical (a slight left
skewness  could  be  suspected  in  the  distributions  for  the  constant  and  -dbarn_2-  parameters).  For
roughly symmetrical distributions, it makes no big difference whether one reports the posterior mean or
median. The Bayesian approach does not provide P-values for tests of the individual coefficients, but
one may assess their ‘significance’ (this term has no well-defined meaning in Bayesian statistics) by
the location of the value 0 in the posterior distribution. If the distribution includes a substantial range of
values both below and above zero, one could say that there is ‘no evidence’ against the value being
zero (but it could also be negative or positive), see the parameter for -dbarn_3- for an example. If on
the other hand, the distribution is well above zero, and the 95% credible interval does not include zero,
one  could  say there  is  evidence  that  the  parameter  is  greater  than zero;  the  parameter  for  -dneo-
illustrates this situation.
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natural to use the estimates from ‘classical’ estimation (as is done in the MLwiN software). In
this case, the estimates from Example 16.2. MLwiN uses a Metropolis-Hastings algorithm for a
logistic  regression model  and so we also need to decide on proposal  distributions for  each
parameter.  Here  MLwiN uses  scaled-up standard  errors  from the classical  methods and  an
adapting method that tunes the proposal variances to get a desired acceptance rate (ie the rate of
Metropolis-Hastings  proposals  accepted)  for  each  parameter  (see  Browne  (2009) for  more
details).

As in Example 24.3, we could assess the robustness of our MCMC results to the settings of the
estimation (such as the starting values, length of burn-in period and run length) by comparing
results  from  different  scenarios.  In  practice,  this  is  cumbersome  and  difficult  to  do  in  a
systematic  way,  and  it  also  provides  little  insight  into  potential  problems with  the  chains.
Instead we largely rely on MCMC diagnostics, a set of descriptive tools and statistics based on
the actual chain for each parameter obtained in a single run. These diagnostics should allow us
to detect major flaws with the chains (and therefore, with the estimates derived from them) and
guide us to a suitable run length. The diagnostics offered by different software packages vary to
some extent; we’ll focus on the most common features as well as a few useful special features
of MLwiN. Note There is one set of diagnostics for each parameter, and the behaviour of the
chains will usually differ substantially between parameters.

Before  presenting  the  diagnostics,  let’s  recap  the  key  issues  to  consider  when  running  an
MCMC estimation algorithm. First, we need to be sure that the start of the chain we are using
for our inference has converged to the desired posterior distribution. To this end, we may need
to adjust the burn-in length to throw away more iterations that may occur prior to convergence.
In this example, we started from the classical (maximum likelihood) estimates which should be
very close to the mode of the posterior, and hence convergence should be almost instantaneous
and not an issue. In more complex models which are difficult to fit using classical methods, we
cannot use ‘good’ starting values, and so ensuring the algorithm has burned in is important. The
standard diagnostic procedure is to use multiple chains from spread out starting values to ensure
that not only has the algorithm converged, but that the chains converge to the same place and
hence that the posterior is unimodal (ie, has only one peak). The WinBUGS software offers the
user  the  opportunity  to  run  multiple  chains  and  compute  the  modified  Gelman-Rubin
convergence diagnostic (Brooks & Gelman, 1998). If the diagnostic doesn’t appear to converge,
then by inspection of the chains we may diagnose multimodality. In this situation, increasing
the run length will not help matters although, in most other cases, increasing run length should
result  in eventual  convergence and more accurate estimates.  Fortunately,  in most modelling
situations covered in this book, posterior multimodality would be very unusual.

The second consideration with regard to run length is that, after convergence, we should run
long enough to give accurate estimates. Given the autocorrelated nature of the chains produced,
the desirable run length will depend on required parameter accuracy and the magnitude of the
autocorrelation: the larger the autocorrelation, the less information in the contained sample of
the chain,  and the larger sample size required. Example 24.4 displays the autocorrelation as
well as other MCMC diagnostics for some of the chains behind the results in Example 24.3.

The diagnostic displays in Example 24.4 contain 7 panels that we will consider in turn. The
trace plot in the upper left panel shows the whole MCMC chain that has been run. In Fig. 24.3
we can see that the chain wanders  fairly slowly around the posterior and for example only
explores very low values at around 3,700 iterations. Fig. 24.4 is a much better looking chain
where the bulk of the posterior is explored in every small subsection of the chain. 
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Example 24.4 MCMC diagnostics in MLwiN
data = Nocardia

Figs.  24.3 and 24.4 show MCMC diagnostics  for  the constant (intercept) parameter  of the logistic
regression model of Example 24.3 after 5,000 iterations and 100,000 iterations, respectively.24.1

(continued on next page)

Fig. 24.3 MCMC diagnostics for logistic regression intercept after 5,000 
iterations

Fig. 24.4 CMC Diagnostics for logistic regression intercept after 100,000 iterations
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The upper right hand panel contains a kernel density plot of the posterior distribution, which is
a kind of smoothed histogram and is in fact the desired summary of the posterior distribution. In
both Figs 24.3 and 24.4 the plot looks roughly symmetric and bell-shaped, although Fig. 24.3
appears slightly less symmetric with a flatter peak, presumably due to not enough iterations
being performed. 

The next  2  panels  contain  the  autocorrelation (ACF)  and partial  autocorrelation  functions
(PACF) (these functions were introduced in Section 14.11). The ACF shows the correlation
between each iteration and one that is lagged by a specified number; in particular,  the ACF
value at lag 1 is the estimated correlation between Xt and Xt+1 across the chain. Ideally, the ACF
values  should  be  zero  for  independence  but  the  ski-ramp  type  appearance  we  see  is
symptomatic of a poorly (or slowly) mixing chain, where ‘mixing’ refers to the ability of the
chain to traverse all parts of the distribution. The first order autocorrelation ( ie at lag 1) is
around 0.95, and even chain values around 30 iterations apart have a correlation of 0.5. The
PACF is useful mostly to confirm that the chains are truly Markovian and the behaviour we see:
a large peak at lag 1 followed by virtually zero values for other lags, confirms this.

The third row panels contain accuracy diagnostics. The left panel shows a graph estimating the
Monte  Carlo  Standard  Error (Section  24.3.1)  of  the  posterior  mean  estimate  for  various
potential iterations. The MCSE is an indication of the precision of the estimated posterior mean
and  this  panel  allows  users  to  calculate  how long  to  run  for  a  desired  MCSE.  The  other
diagnostics  are  the  Raftery-Lewis (Raftery  &  Lewis,  (1992)  763-773) and  Brooks-Draper
diagnostics  which  both aim to give  a  suggested  run length  to  the user.  The Raftery-Lewis
diagnostic is based on estimating a particular quantile (or percentile) of the distribution with
specified  accuracy;  Fig.  24.3  gives  estimated  required  run  lengths  (‘Nhat’)  of  80,000  and
50,000 iterations  for  estimation  of  the  2.5% and  97.5% quantiles  within  0.005 (with  95%
probability). In poorly behaved chains, one sometimes encounters the paradoxical situation that
increasing the run length leads to further increased required run lengths, but in Fig. 24.4, the
required run lengths are well below the actual run length, so we have satisfied the diagnostic.
The  Brooks-Draper  diagnostic  instead  looks  at  estimating  the  posterior  mean  to  a  given
accuracy; we see that 100,000 iterations appears sufficient to estimate with 2 correct significant
digits with probability at least 95% (=1-0.05). 

Most of the  summary statistics in the final  panel  we already used for  Example 24.3.  The
effective sample size (ESS) diagnostic provides an indirect measure of the correlation in the
chains. It is defined as:

Example 24.4 (continued)

As the 2 figures depict different segments of the same chain, the similarity between them is no surprise.
The trace plot in the upper left corner looks much more dense for the longer chain, simply because of
the larger number of observations; also, the autocorrelation function (ACF) in the left middle panel is
more smooth for the longer chain. The accuracy diagnostics in the lower right panel are different but of
similar magnitude in the 2 figures. The suggested run lengths based on these diagnostics (‘Nhat’ in the
listing) are greater than 5,000 and less than 100,000; that is, in the first instance the diagnostics suggest
running for longer than 5,000 iterations, and in the second instance they indicate that extension beyond
the actual 100,000 iterations is not necessary. See the text for explanation of the individual plots and
statistics.
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ESS=n/ , with =12∑
i=1

∞

 i ,
Eq 24.5

where n is the number of iterations run, and ρ(i) is the estimated autocorrelation for lag i. For
practical calculation, the sum is approximated by stopping when a value of i is reached where
ρ(i)<0.1.  A  basic  interpretation  of  the  ESS  is  as  the  number  of  independent  samples  that
contains equivalent information to the dependent sample from the Markov chain. In Fig. 24.4,
the 100,000 actual iterations corresponded to an ESS of only 1435 samples, thus reflecting the
rather large autocorrelation in the chain.

24.4.2 MCMC in practice: linear mixed model

Our first example was for a non-normal response model, which required us to use Metropolis
sampling  and  hence  run  the  chains  for  longer.  We  further  illustrate  the  use  of  MCMC
techniques for random effects models by the 2-level somatic cell count model of Chapter 21
(starting from Example 21.2). All prior distributions were taken as non-informative using the
default values of the MLwiN software: the fixed effects parameters were modelled by uniform
priors, and the 2 variances were given inverse Gamma priors. Details of the estimates obtained
using both Gibbs sampling and Metropolis-Hastings sampling are given in Example 24.5 to
illustrate the differences between the methods. 

One  aspect  of  MCMC  sampling  that  is  really  a  major  advantage  of  all  simulation-based
techniques,  is  the ability to derive posterior distributions and hence,  also point  and interval
estimates for other derived quantities in a model. In the figure below, we consider the variance
partition  coefficient (VPC);  this  term  was  introduced  by  Goldstein  et  al (2002) as  an
alternative to the ICC (Section 21.2.1) used generally in this text. Recall that the VPC (or ICC)
in a 2-level linear mixed model is defined as the proportion of variation present at the cluster
level, and computed by the formula:

VPC= h
2 / h

2 2=ICC Eq 24.6

When using REML estimation in Chapter 21, we obtained a point estimate for the  VPC by
simply substituting the point estimates for the 2 variances in the above formula. As MCMC is a
simulation-based method, we can go one step further and employ the above formula at each
iteration of the chain, thereby producing an entire new chain for the  VPC variable. Fig. 24.5
shows the diagnostics for the VPC variable based on the Gibbs sampling method in Example
24.5. We see that the posterior mean estimate (0.091) is close to the value obtained by simply
plugging the variance posterior means into the VPC formula (0.158/(0.158+1.559)=0.092). We
also see that the posterior distribution for this parameter is skewed, and can get a 95% credible
interval of (0.052,0.149).

24.5 EXTENSIONS OF BAYESIAN AND MCMC MODELLING

The examples in the last section demonstrated that good agreement between likelihood-based
and Bayesian estimation with non-informative priors can be achieved (without asserting this to
always be the case). One additional advantage of the Bayesian approach is that the models can
quite  easily  be  extended  to  include,  for  example,  non-normal  random  effects  and  further
structure  in  the  data.  In  this  section  we will  discuss  several  model  extensions that  can  be
handled using MCMC.
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24.5.1 Cross-classified and multiple membership models

In Chapter 20, we introduced the concept of a cross-classified data structure and contrasted it
with the hierarchical data structure predominantly encountered in the previous chapters. Here
we describe another complex data structure and demonstrate how a Bayesian MCMC approach
may help in estimating complex data structures. We follow in part the multiple membership
multiple classification (MMMC) framework of models described by Browne et al (2001a) and
borrow an example from this paper.

Recall  that  a  cross-classification  exists  when  each  observation  (observational  unit)  can  be
included under 2 (or more) classifications that are not nested (hierarchical) within each other
(Section 20.2). Crossed classifications are often seen in for example genetics examples where

Example 24.5 Bayesian MCMC analysis of somatic cell count data
data = scc40_2level

Two MCMC analyses were carried out using the 2-level somatic cell count dataset (the full dataset was
not used to avoid the complications of repeated measures correlation structures). One analysis used
Gibbs  sampling  (the  recommended  method  for  linear  mixed  models),  the  other  used  Metropolis-
Hastings sampling (for fixed parameters). In theory, both procedures are valid provided convergence of
the chains. In the table below, we restate for convenience also the linear mixed model estimates from
Example 21.2 (without centring the 2 continuous predictors).

Method Mixed model Bayesian mixed model and MCMC

Option REML estimation Gibbs Sampling Metropolis-Hastings

Variable β SE β* (SE #) ESS β* (SE #) ESS

hsize (in 100s) 0.408 0.377 0.404 (0.386) 1.9k 0.387 (0.383) 0.2k

heifer -0.737 0.055 -0.736 (0.056) 18.8k -0.737 (0.055) 12.3k

season=spring 0.161 0.091 0.161 (0.091) 16.5k 0.160 (0.091) 2.9k

season=summer 0.002 0.086 0.001 (0.087) 18.0k 0.000 (0.087) 3.0k

season=fall 0.001 0.092 0.002 (0.092) 18.6k 0.001 (0.093) 3.7k

dim 0.277 0.050 0.278 (0.050) 17.1k 0.278 (0.050) 7.0k

constant 4.641 0.197 4.642 (0.202) 2.5k 4.654 (0.202) 0.2k

herd variance 0.149 0.044 0.158 (0.048) 8.1k 0.158 (0.048) 38.9k

error variance 1.557 0.048 1.559 (0.048) 18.9k 1.559 (0.048) 93.5k
*mean of posterior distribution; #standard deviation of posterior distribution; ESS=Effective Sample Size (k=1000s)

The Gibbs-sampled chain converged more rapidly and showed less correlation, so only 20,000 samples
were used for estimation after a burn-in of 10,000 samples. The Metropolis-Hastings chain showed
high correlation for some of the fixed parameters and therefore, estimation was extended to 100,000
samples. Overall, the agreement between the 3 sets of estimates is very good. The only noteworthy
disagreements  are  in  the  herd-level  parameters.  The  Metropolis-Hastings  estimate  for  -hsize-  is
somewhat off the other 2 estimates, but the chain for this parameter was extremely highly correlated
and  thus,  the  posterior  distribution  not  estimated  well.  We  can  see  that  even  though  the  actual
Metropolis-Hastings runs are 5 times as long, the ESS for all fixed effects for these methods is less than
for Gibbs sampling. Also the posterior distributions for -hsize- and the constant show slightly higher
standard deviations than the SEs from REML estimation.
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we may have details of the sire and dam of each offspring animal. A cross-classified linear
mixed model for a continuous measure (such as growth or yield) would then take the form
shown in Eq 21.9. In a Bayesian framework, we would typically use standard inverse gamma
distributions as priors for the variance parameters. Cross-classified models can be more difficult
to fit in some classical statistical algorithms that rely on the block-diagonal matrix structures,
that  exist  in nested models,  for  speed.  However,  as MCMC algorithms consist  of updating
parameters in individual conditional steps, they are not affected in the same way by blocked
structures. 

The other model extension contained in MMMC models is the multiple membership model.
Here  we remove the restriction of  a  one-to-one  relationship between an observation and a
classification unit. These structures are useful for accounting for changing group membership.
For example, cows may be bought and sold over time and hence (historically) belong to several
herds each of which might influence their current response. The natural way to model this is to
give weightings to each clustering unit that influences the observation, with these weightings
summing to 1. Such models induce a complicated correlation structure that is difficult to fit by
classical procedures without relying on crude maximisation of the likelihood function (which
may be  numerically  ineffective).  We will  show in  Example  24.6  how to  include  multiple
memberships (and cross-classifications) in an example from Denmark on Salmonella incidence
in chickens.

Fig. 24.5 MLwiN diagnostic plot for variance partitioning coefficient parameter from 
Example 24.5
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To finish this section it should be noted that the MMMC modelling framework can also be used
for  modelling  spatial  effects  (Browne  (2009),  Chapter  15),  and  that  MCMC  methods  are
particularly useful for spatial modelling (Chapter 26).

24.5.2 Missing data

We supplement our brief discussion of missing data in Section 15.5 by outlining the Bayesian
approach to missing data. From an MCMC and Bayesian perspective, missing data are handled
in a modelling approach where the missing data are treated as additional  parameters  in the
model. For missing response variables, we already have a distribution for them and so they can
be simulated as an extra step in the model. For missing predictor variables an additional prior
distribution  is  required  for  the  missing  values.  The type  of  missing predictor  variable  will
influence  the  form  of  the  prior  distribution  and  care  has  to  be  taken  for  example  with
categorical predictors to ensure that the prior distribution is given for the original categorical
predictor  rather  than  the  dummy variables  that  are  actually  fitted  in  the  model.  Bayesian
approaches to missing data are dealt with in separate chapters  in both  Congdon (2007) and
Gelman et al (2004) which give more details on how this is achieved. There is, however, very

Example 24.6 Salmonella in Danish chicken

Browne et al (2001a) examined a dataset kindly provided by Mariann Chriel where the interest lies in
the causes and sources of variability in Salmonella outbreaks in poultry farms from 1995 to 1997. The
observation level in this situation is a flock of chickens (for meat), and over the 3 years 10,127 flocks
were  observed.  There  are  2  separate  levels  of  clustering  to  consider  in  the  modelling.  First,  the
production hierarchy in which the production flocks are nested within chicken houses (of which there
are 725), which again are nested within farms (304). Second, the breeding hierarchy, in which there are
200  breeding  (parent)  flocks  (in  Denmark  at  that  time)  which  produce  the  eggs  that  create  the
production flocks. The precise proportions of chickens that come from each parent flock (up to 6) to
make up the production flock are known.

Fig. 24.6 Classification diagram for Danish chicken salmonella

Our binary response variable indicates whether the flock had Salmonella isolated, and we also have 2
additional predictor variables, namely the year of the flock and the hatchery from which the flock are
hatched. The model for flock i can be written as follows:

pi=P Y i=1 , and logit  pi= X i ∑
j∈ p. flock i 

wij
2u j

2
uhouse i 

3
ufarm i 

4 ,

with u j
2~ N 0, u2

2
 ,uh

3 ~ N 0, u3
2

 ,u f
4 ~ N 0,u 4

2
 ,

where w ij
2

 is the proportion of chickens in flock i originating from parent flock j, and independence of
all random effects is still assumed. The associated classification diagram is shown in Fig. 24.6; here we
use a double arrow to represent a multiple membership relationship. 

(continued on next page)

Farm
Parent 
Flock

Flock

House



INTRODUCTION TO BAYESIAN ANALYSIS 655

little literature on using MCMC for missing data examples in veterinary epidemiology. 

24.5.3 Measurement errors and imperfect tests

Measurement error  modelling was discussed in Chapter 12 and several  classical  approaches
were mentioned there. In the Bayesian world, we would think of measurement error modelling
as a missing data problem, as the true values are missing and we instead observe a value that
contains errors. Browne et al (2001b) give an MCMC algorithm for adjusting for measurement
errors in continuous predictors in a multilevel modelling situation. Their example model for a
2-level  structure and a single continuous predictor  (X) is  given below in a simplified form
(omitting the random slope for X):

Y ij= 01 X iju j ij , with

u j~N 0, u
2
 , ij~N 0,2

 and X ij
o
~N  X ij ,m

2
 , X ij~N  ,2



Example 24.6 (continued)

Results  of  fitting  this  model  using  both  Metropolis-Hastings  sampling  in  MLwiN  and  adaptive
rejection sampling in WinBUGS are given in the following table:

MCMC sampling Adaptive rejection Metropolis-Hastings

Variable Estimate* (SE#) Estimate* (SE#)

constant -2.330 (0.208) -2.329 (0.216)

year=1996 -1.242 (0.164) -1.238 (0.165)

year=1997 -1.163 (0.193) -1.159 (0.194)

hatchery=2 -1.733 (0.255) -1.730 (0.259)

hatchery=3 -0.200 (0.252) -0.201 (0.247)

hatchery=4 -1.054 (0.380) -1.056 (0.381)

parent flock variance σ2
u(2) 0.890 (0.181) 0.884 (0.182)

house variance σ2
u(3) 0.202 (0.113) 0.199 (0.112)

farm variance σ2
u(4) 0.924 (0.193) 0.922 (0.203)

* mean of posterior distribution; # standard deviation of posterior distribution

Here  we  see  good  agreement  between  the  2  MCMC  methods  and  the  following  substantive
conclusions: that Salmonella was greater at the start of the study (1995) than in the 2 following years;
that hatcheries 1 and 3 gave a more significant increase in Salmonella than hatcheries 2 and 4. We also
see that there are large effects from the parent flocks used and the farm on which the chickens are
housed, but smaller effects for houses within farms.
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Here the multilevel model is defined in terms of the true (unobserved) predictor values Xij, with
a distribution given for the link between the observed values Xo

ij  and the true predictor values,
and  a prior  distribution for  the latter.  A simulation study showed that  if  the  magnitude  of
measurement  error  (σ2

m)  is  known,  then  the  correct  parameter  estimates  can  be  recovered.
Congdon (2007) gives several other examples of the use of MCMC estimation for accounting
for measurement errors.

When  measurement  errors  occur  in  categorical  variables  we  normally  call  them
misclassifications. These misclassifications are commonly studied in veterinary epidemiology
when we consider diagnostic tests, as effectively sensitivity and specificity are quantifiers of the
proportions of the 2 forms of misclassification possible in a binary outcome variable. The aim
of  including  misclassification  in  the  modelling  may  be  to  estimate  the  diagnostic  tests
characteristics (discussed in the next section) or to adjust a regression or mixed model for the
imperfect  test  characteristics.  McInturff  et  al (2004) reviewed  the  Bayesian  methodology
involved in a  multiple logistic  regression with misclassification and illustrated this  with an
example from human health with fairly strong priors for both misclassification rates. Kostoulas
et  al (2009) used  MCMC methods to  adjust  estimates  of  the  variance  partition  coefficient
(VPC)  when  faced  with  an  imperfect  test  for  disease.  Examples  discussed  include  the
association  between  sub-clinical  paratuberculosis  infection  and  fertility  in  sheep  and  goats,
critical  control  points  for  Salmonella cross-contamination  of  pig  carcasses  in  2  Greek
slaughterhouses, and factors associated with the serological prevalence of Salmonella enterica
in Greek finishing swine herds.

24.5.4 Latent class models for diagnostic test evaluation

In this section, we supplement the review of latent class models in Section 5.8 with a few
comments  on  the  Bayesian  approach  and  add  the  Bayesian  equivalent  of  the  maximum
likelihood analysis in Example 5.12. Bayesian methods for imperfect tests were introduced in
the early 1990s when MCMC methods were still in their infancy (Johnson & Gastwirth (1991);
Joseph et al (1995)), and have since become the standard analytical approach within the field.
As  already  mentioned  in  Chapter  5,  the  reason  for  the  success  of  Bayesian  methods  lies
primarily  in  their  ability  to  both  include  prior  information  and  tackle  complex  estimation
problems. Test sensitivity and specificity are prime examples of parameters where one would
often have access to substantial prior information from previous work within the same or a
similar population or from the published literature in general. Unless one was indeed faced with
a new and untested diagnostic procedure, a truly Bayesian approach would not use the uniform
prior distribution (from Example 24.1) for sensitivity and specificity. It is customary to specify
the prior as a beta distribution, and tools exist to determine its 2 parameters (a,b) from more
intuitive characteristics of the distribution. The BetaBuster software is downloadable from the
diagnostic  tests  from  the  Bayesian  Epidemiologic  Screening  Techniques  (BEST)  website
referenced at the end of this section, and allows specification by the mode and a percentile. An
algebraic formula can give the values of (a,b) from the distribution’s mean (μ=a/(a+b))  and
variance  (σ2=μ(1-μ)/(a+b+1)),  but  these  are  less  intuitive  to  specify  than  the  mode  and  a
percentile. A restricted form of the beta distribution, determined only from its mode, minimum
and maximum (if these differ from 0 and 1, respectively) is often used in risk analysis, and in
this context bears the name Pert distribution (eg Vose (2008)). Uniform prior distributions are
sometimes  justified  by  referring  to  the  ‘correspondence’ between  frequentist  and  Bayesian
analyses  (with  uniform  priors),  although  devoted  Bayesians  will  turn  this  around  as  an
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argument against a frequentist approach when prior information is available.

In the context of latent class models, the ability of Bayesian methods to tackle more complex
estimation  problems  relaxes  the  requirement  for  separate  ‘populations’ with  different
prevalence (Section 5.8.1), which is unnatural unless built into the sampling design, and allows
for inclusion of conditional dependence between tests (Section 5.8.7). Three explanations can
be offered of this increase in scope by MCMC estimation in a Bayesian framework; the most
obvious  one  is  that  genuine  prior  distributions  provide  extra  information  on  which  the
estimation can be based. More technically, the estimation avoids searching for the maximum of
a  potentially  very  difficult  function  to  maximize  (eg the  likelihood  function  may  be
multimodal),  and  a  non-uniform prior  distribution usually  exerts  a  smoothing  of  the  target
function (the posterior density) which simplifies the estimation. One word of caution: also in
Bayesian analysis it is required that model parameters are identifiable, so it is not true that any
model  (extension)  leads  to  a  meaningful  analysis  by  MCMC  methods.  Loosely  stated,
identifiability means that the likelihood function or posterior distribution contains the necessary
information to determine the parameters of the model without ambiguity.  We would usually
expect  identifiable  ‘frequentist’  models  to  lead  to  identifiable  parameters  in  a  Bayesian
posterior  distribution  based  on  the  same  likelihood,  while  the  reverse  is  not  true.  Non-
identifiability may be difficult to diagnose directly from the simulated Markov chains, and only
recently has progress been made towards a better theoretical understanding of the necessary and
sufficient conditions for identifiability (Jones et al (2009)).

We illustrate this short discussion of Bayesian latent class models by reanalysing the ISA data
of Example 5.12 with both uniform and informative prior distributions in Example 24.7. We
also  restate  (from  Chapter  5)  the  reference  to  the  BEST  website  at  University  of  Davis,
California,  which  contains  a  wealth  of  information  (papers  and  software)  on  Bayesian
approaches to diagnostic testing problems which are beyond the scope of the present text; the
web address is http://www.epi.ucdavis.edu/diagnostictests/. 

24.5.5 Further examples of informative priors and expert opinion

In this section, we give a few extra examples of the use of informative priors in veterinary
science.  Green  et  al (2009) considered  the use of what is  known as  a  community of prior
distributions  that  represent  a  spectrum of  clinical  prior  beliefs  that  incorporate  scepticism,
enthusiasm and uncertainty of veterinarians to the effectiveness of a specified mastitis control
plan.  They  then  combined  these  differing  prior  opinions  with  the  observed  results  of  the
interventions prescribed in the control plan to discover via the posterior distribution how the
various possible veterinary opinions would change in light of the data. They included projected
financial  benefits  into the  plan  and  found that  a  severely  sceptical  prior  would result  in  a
posterior belief of greater than 0.5 that the financial return would be less than £5 per cow. An
enthusiast would conversely have a posterior belief of greater than 0.5 that the financial return
would be greater  than £20 per  cow based on the data.  They also considered the impact  of
increasing  the  size  of  the  dataset  on  the  posterior  and  found that  with  more  evidence  the
sceptics become more convinced of the efficacy of the plan. 

Informative prior distributions were also used extensively by Jewell (2009); Jewell et al (2009)
in  his  work  on  using  MCMC  to  predict  the  progress  of  infectious  disease  epidemics  in
livestock. In his thesis Jewell considered modelling both a potential avian influenza epidemic in
the UK and the small UK foot-and-mouth epidemic in 2007. He used data from the 2001 foot-
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and-mouth epidemic to give strong prior distributions for parameters in the model of the 2007
epidemic.  The area  of  epidemic  modelling  is  an  exciting  and  important  one  for  veterinary
epidemiologists (see also Chapter 27), and Bayesian statistical modelling is likely to play a vital
role here.

Example 24.7 Bayesian latent class model estimation of Se and Sp
data = isa_lcm

In  continuation  of  Example  5.12,  we  show estimates  from a Bayesian  analysis  of  the  conditional
independence latent class model for 3 tests and 3 populations (see Chapter 5 for details of the study, a
full data listing and maximum likelihood estimates of the parameters). Two versions of the Bayesian
model were run: (A) with all prior distributions taken as uniform on the interval (0,1), and (B) with
informative priors for the specificity parameters for IFAT and VI tests. Based on previous studies on
these tests for detection of ISA virus in the same population (see  Nerette  et al (2008) for details),
informative beta prior distributions were constructed with the aid of BetaBuster software. The  Sp of
IFAT was given a beta(128.43,6.31) prior distribution, corresponding to the specification of a mode at
0.96 and a 5% percentile at 0.92. Similarly, a beta(458.21,1) distribution was used for the Sp of VI, for
a mode at 1 and 1% percentile at 0.99. Both analyses were carried out using WinBUGS version 1.4.2
software with 5,000 burn-in samples and an estimation chain of 50,000 samples. The chains showed
only little autocorrelation, and all MCMC diagnostics were satisfactory.

Median estimates (and 95% credible intervals (CrI)) for Model (A) with all priors uniform on (0,1):

Model (A) Prevalence IFAT PCR VI

Low Med High Se Sp Se Sp Se Sp

Estimate 0.024 0.296 0.828 0.693 0.980 0.994 0.726 0.963 0.980

Lower CrI 0.004 0.212 0.735 0.599 0.952 0.968 0.657 0.886 0.974

Upper CrI 0.068 0.390 0.910 0.778 0.994 1.000 0.792 0.996 1.000

The estimates generally agree well with the MLE (Example 5.12). No Bayesian estimates are on the
boundary of the interval, and even those estimates close to the boundary have moved inwards. Credible
intervals are available for all parameters (note that the upper CrI endpoints equal to 1.000 are still
strictly less than 1 but listed as 1.000 after rounding off to 3 decimals).

Medians (with 95% CrI) for Model (B) with informative priors for IFAT and VI specificity:

Model (B) Prevalence IFAT PCR VI

Low Med High Se Sp Se Sp Se Sp

Estimate 0.026 0.297 0.828 0.691 0.971 0.994 0.728 0.963 0.999

Lower CrI 0.006 0.213 0.736 0.597 0.949 0.968 0.659 0.885 0.994

Upper CrI 0.070 0.393 0.911 0.775 0.986 1.000 0.794 0.996 1.000

In comparison with model (A) it is seen that the  Sp for IFAT dropped slightly,  and the  Sp for VI
increased slightly. These changes were expected as the prior distributions were centred slightly below
and above, respectively,  the posterior distributions based on the data alone. In addition, the CrI for
these  parameters  were  shrunk,  due  to  the  added  information.  All  other  parameters  were  virtually
unaffected by the informative priors for the 2 Sp parameters.
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24.5.6 Improving MCMC algorithms

In this chapter, we have shown how MCMC methods have revolutionised the estimation of
Bayesian statistical models. We have also seen that the MCMC modelling framework is very
flexible and that we can create lots of different MCMC algorithms for the same model. Browne
et  al (2009) show how, by changing the parameterisation of a  model,  we can improve the
performance  in  terms  of  speed  and  chain  autocorrelation,  including  an  application of  such
techniques to a model for mastitis incidence in dairy cattle. We will (Example 24.8) illustrate
here one such technique, hierarchical centring, to refit the model in Example 24.5. 

Example 24.8 Hierarchical centring of somatic cell count data
data = scc40_2level

Hierarchical centring simply means rewriting a random effects model so that the random effects are
centred around any cluster level predictors in the model.  So for the somatic cell data we write the
model as

Y ij=2 X 2ij3 X 3ij6 X 6iju j
*
e ij , u j

*
~N 01 X 1 j ,u

2
 , e ij~N 0, 2



Here we have centred the random effect in herd j around the intercept β0 and the herd size effect β1X1j.
The centred random effects u j

* are not the same as the original uncentred random effects uj; however,
by  subtracting  their  mean  we  can  easily  move  between  parameterisations.  The  above  centred
parameterisation can be fitted using Gibbs sampling and will potentially give less correlated chains as
there should be less correlation between the centred random effects and the fixed effects. In the table
below we compare results for the centred and uncentred (from Example 24.5) parameterisations. 

Parameterisation Uncentred Centred

Variable Estimate* (SE#) ESS Estimate* (SE#) ESS

hsize (in 100s) 0.404 (0.386) 1.9k 0.407 (0.385) 17.1k

heifer -0.736 (0.056) 18.8k -0.736 (0.055) 18.9k

season = spring 0.161 (0.091) 16.5k 0.160 (0.091) 17.6k

season = summer 0.001 (0.087) 18.0k 0.002 (0.087) 18.3k

season = fall 0.002 (0.092) 18.6k 0.000 (0.093) 18.4k

dim 0.278 (0.050) 17.1k 0.278 (0.050) 18.2k

constant 4.642 (0.202)  2.5k 4.642 (0.201) 17.5k

herd variance 0.158 (0.048)  8.1k 0.157 (0.048)  8.8k

error variance 1.559 (0.048) 18.9k 1.560 (0.048) 19.8k
*mean of posterior distribution; #standard deviation of posterior distribution; ESS=Effective Sample Size (k=1000s)

In the table above, we see good agreement between parameterisations and how the hierarchical centring
has improved  performance  in  terms  of  ESS for  the intercept  and herd size  parameters.  The other
parameters are little changed in terms of ESS.
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