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ANALYSIS OF SPATIAL DATA
Chapter contributed by Dirk Pfeiffer

OBJECTIVES

After reading this chapter, you will be able to:

 1. Describe the specific characteristics of spatial data.

 2. Generate maps expressing spatial variation in disease risk from point and area data.

 3. Investigate spatial dependence and clustering for different data types, including space–time
association.

 4. Conduct regression analyses for describing spatial patterns and identifying risk factors in
data that may be spatially dependent.
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26.1 INTRODUCTION

Most disease events, risk factors,  and other relevant attributes can be characterised by their
geographical position. Epidemiological studies may then be aimed at investigating the spatial
relationships, for example by assessing whether disease events express some level of spatial
similarity between each other or whether disease occurrence is associated with potential risk
factors that are in spatial proximity to the disease event. However, if there is spatial dependence
in  the  attribute  values  of  an  epidemiological  dataset,  this  will  violate  the  assumption  of
independence  between  observations  in  a  statistical  analysis.  In  such  instances,  appropriate
statistical  algorithms will have to be used even if the analysis  is not aimed at  investigating
spatial relationships.

Spatial analysis includes visualisation, exploration and modelling of spatial data. Chapter 25
describes visualisation, and the current chapter focuses on methods which involve statistical
inference; namely, descriptive risk mapping, exploratory analysis and modelling of spatial data.

The objective of this chapter is to provide an introduction to the methods that can be applied in
spatial  analyses  of  epidemiological  data.  More  detailed  information  is  provided  in  various
specialist textbooks such as:  Bailey & Gatrell, (1995); Bivand et al, (2008); Haining, (2003);
Lawson  (2009); Pfeiffer et al, (2008); Waller & Gotway, (2004). 

26.2 ISSUES SPECIFIC TO STATISTICAL ANALYSIS OF SPATIAL DATA

26.2.1 Spatial effects

A key characteristic of geo-referenced data is that it  may be subject to 2 particular  effects,
spatial dependence and  spatial heterogeneity.  Spatial dependence means that  observations
closer to each other are more likely to be similar.  For example, for diseases transmitted by
direct or indirect means (such as avian influenza or foot and mouth disease), incidence levels on
neighbouring  farms  are  likely  to  be  more  similar  compared  with  those  further  away.  It  is
therefore a local process. On the other hand, spatial heterogeneity refers to patterns of variation
across a larger geographical area, and a process is spatially heterogeneous if there is variation in
mean values, and their variability, across the study area.

In statistical terms, 2 types of spatial relationships can be defined: first and second-order spatial
effects. First-order spatial effects (global or large-scale trends) relate to variation in the mean
value of a spatial process (eg the average density of the poultry population in northern Vietnam
increases  closer  to  the  major  population  centre  (Hanoi),  resulting in  spatial  heterogeneity).
Second-order (local or small-scale) spatial effects refer to the local dependence in data values
(also  called  spatial  autocorrelation),  including effects  such  as  overdispersion  (see  Section
16.12.4 for a general discussion of overdispersion). Second order effects may arise as a result of
clustering of cases of an infectious disease or local environmental conditions such as levels of
nitrate in soil as a consequence of level of fertilizer application. Chapter 20-24 describe how
these variance effects can be included in regression models as random effects.  It  should be
noted  that  many  spatial  variables  will  be  subject  to  both  effects.  If  positive  spatial
autocorrelation is ignored in statistical analysis,  the strength of the evidence in the data for
rejecting the null hypothesis will generally be exaggerated. This means that the true statistical
power  of  a  given  number  of  correlated  observations  is  lower  than  if  they  were  from



ANALYSIS OF SPATIAL DATA 681

uncorrelated  ones.  It  is  therefore  often  stated  that  autocorrelation  results  in  a  ‘loss  of
information’. If both, first- and second-order spatial effects are affecting a variable, unbiased
estimation of either effect  requires removal of, or controlling for, the other.  In this context,
when modelling a second-order spatial effect, it is assumed to be stationary (or homogenous -
ie there  is  no  first  order  effect  or  spatial  heterogeneity),  which  means  that  the  statistical
properties  of  the  variable  of  interest  such  as  its  mean  and  variance  do  not  vary  between
locations. This also implies that the absolute geographic locations are not important to describe
the characteristics of the spatial variable. As an example, the spatial distribution of the density
of  an  insect  vector  species  over  a  study area  could  be  estimated  using  a  number  of  traps
distributed across the area. In this example, second-order stationarity makes the assumption that
the mean vector density is constant across the study area (there should be no first-order effect or
spatial trend), and that the covariance between insect species counts from any pair of random
sampling  locations  only  depends  on  the  distance  between  sampling  locations  or  relative
location, but not on absolute location. In this case, using the points in Fig. 26.1, the covariance
between sampling points P1 and P2 should be similar to the one between sampling points P3 and
P4, but not necessarily similar to the one between P5 and P6. A second-order effect is isotropic if
the covariance between pairs of sampling point measurements only depends on distance but not
on direction. This means that in Fig. 26.1, the covariance between the measurements taken at
sampling points P1 and P2 is the same as between P5 and P6, as well as between P3 and P4. As an
example, wind-borne spread of the foot and mouth disease virus is unlikely to be  isotropic
since it depends on the wind direction.

Edge  effects result  from  observations  near  the  edge  of  the  study  area  having  fewer
neighbouring measurements than those deep within the study area. An irregular shape of the
study  area  will  further  compound  this  effect.  Edge  effects  are  relevant  if  there  is  spatial
autocorrelation in the data, since observations near the edge will be correlated with unmeasured
observations outside the study area, and therefore any effect estimates generated using only the
available data are likely to be biased. Even if point data are uncorrelated, but smooth surface
representations of point densities need to be produced, density estimates for locations near the
edge will be derived using fewer points than there really are (censored observations), and these
therefore may have higher variability than in the centre of the study area.

Fig. 26.1 Examples of point locations where those being equidistant are linked 
by lines
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The modifiable areal unit problem (MAUP) is a manifestation of the ecological fallacy that can
affect the results from spatial analyses (Waller & Gotway, 2004). It refers to conclusions from
an analysis potentially being different, if the data are aggregated using different methods of
aggregation. Two issues are usually considered: the level of aggregation (scale effect) and the
selection of boundaries to be used in the aggregation process (zoning). As an example of the
effect of level of aggregation, one may receive different analysis results if, in the multivariable
analysis, the incidence of tuberculosis among cattle herds is aggregated at province rather than
county level. An example of the zoning effect has been presented by Monmonier and de Blij
(1996) using John Snow’s data from the 1854 cholera epidemic in London. They showed that
by aggregating the original point data using different geographic sub-divisions while keeping to
the same scale (same size of areas), the cluster around the Broad Street pump could be made to
visually appear or disappear. This is an example of a zoning effect and it is different from an
aggregation effect which usually has a hierarchical structure. Both will influence any statistical
inference.  Waller  and  Gotway  (2004) recommend  that  data  should  be  collected  at  the
‘resolution’ at  which it  is to be analysed,  so that  the MAUP can be avoided. As a general
principle, it is important to remember that any relationships detected in an analysis relate to the
particular  units  of  aggregation  used  for  the  analysis,  but  not  necessarily  for  other  units  of
aggregation even in the same study area.

26.2.2 Description of spatial arrangement

If spatial effects are to be taken into account in statistical analyses, the spatial arrangement of
observations can be expressed using a spatial weights or proximity matrix. The interpretation
of such a matrix depends on whether it describes spatially continuous fields or discrete spatial
objects. Continuous fields can be defined by measurements taken at point sample locations or
across a regular grid of pixels. In the case of point data, the matrix can represent the distances
between all pairs of points. It  can be simplified by representing actual interpoint distance as
distance bands, and direction could be specified by defining segments within distance bands
representing particular direction groupings.  If  data consist of pixels, raster or grid cells, the
criterion can be whether or not pairs of pixels have common boundaries (first lag or first-order
neighbours).  This  can  be  extended  using  the  number  of  pixel  boundaries  that  need  to  be
crossed. For example, if 2 pixel boundaries have to be crossed, this would reflect a lag 2 or
second-order  neighbour.  The  arrangement  of  discrete  spatial  objects  such  as  farm  or
administrative polygon areas  is more complex to represent since closeness  could mean that
these share a common boundary of a given length or that object centroids are within a certain
distance. A binary  spatial connectivity matrix is the simplest neighbourhood representation
and can also be used for area-type data. In the latter case, a symmetric weights matrix is used
storing values of 1 where pairs of areas share a boundary, and 0 if they do not. An example of
such  a  matrix  is  presented  in  Fig.  26.2  where  the  neighbourhood  relationships  between
Australian states are represented as a binary connectivity matrix. A more detailed discussion of
this topic is available in (Haining, 2003). Spatial weights matrices can be generated by various
software  packages  such  as  GeoDA  (http://geodacenter.asu.edu/software/downloads),  R
(http://www.r-project.org) and WinBUGS/GeoBUGS (http://www.mrc-bsu.cam.ac.uk/bugs/).

26.3 EXPLORATORY SPATIAL ANALYSIS

Exploratory spatial analysis is aimed at improving our understanding of the data, typically
involving use of statistical methods to identify departure from complete spatial randomness. It

http://www.r-project.org/
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is applied to disease outcome data as well as potential risk factors. Exploratory analysis can be
used to develop hypotheses in relation to causal relationships which are then tested formally
using modelling approaches. Together with visualisation, exploratory analysis has the potential
to  become a standard  component  of  disease  surveillance  systems.  The types  of  data  to  be
examined using exploratory analysis can be grouped into point and area data, and continuous
spatial fields. The point patterns are either represented as actual point locations or aggregated at
some administrative area level (see Fig. 26.3). The locations of the points are assumed to be
generated by a process that has a random component. With continuous fields, the locations of
the measurements  are  fixed  and  known in  space.  They represent  sampling locations  of  an
underlying  spatially  continuous  process  (continuous  field)  which  means  that,  between  the
locations of any 2 sampling points, an infinite number of potential sampling locations exists at
which values could be observed (see Fig. 26.4). The continuity is associated with the spatial
aspect  of such as a process,  whereas  the measurement values can be continuous or discrete
(Schabenberger & Gotway, 2005).

Risk or probability maps can be produced for descriptive purposes to show spatial variation in
disease occurrence, or explanatory variables can be considered to produce predictive risk maps

WA NT QLD SA NSW VIC ACT TAS

WA 0 1 0 1 0 0 0 0

NT 1 0 1 1 0 0 0 0

QLD 0 1 0 1 1 0 0 0

SA 1 1 1 0 1 1 0 0

NSW 0 0 1 1 0 1 1 0

VIC 0 0 0 1 1 0 0 1

ACT 0 0 0 0 1 0 0 0

TAS 0 0 0 0 0 1 0 0

a) Binary spatial connectivity matrix

 

b) Map of states/territories in Australia

Fig. 26.2 Example of binary connectivity matrix

a) Point locations of farms

District boundaries

Farm locations

2 - 22

23 - 32

33 - 43

44 - 56

57 - 86

b) Choropleth map of counts of farms by district

Fig. 26.3 Farm locations represented as maps of point locations and aggregated by 
area
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(the latter will be further discussed in this chapter). 

26.3.1 Descriptive risk mapping of point data

Disease  data recorded  as  point  locations can be shown as  such,  if  the number of points  is
limited and locations of individual points can be visually differentiated. If  there are a large
number of points, they can either be aggregated as area count data as discussed in the next
section or converted into a point density surface using smoothing methods. They can then also
be presented as a risk by relating them to a denominator.

The most commonly used smoothing method for point data is non-parametric kernel density
estimation.  It  applies  a  bivariate  probability  density  function  to  the  point  data  to  produce
estimates of the intensity of a spatial point process  (Bailey & Gatrell, 1995). The associated
mathematical equation is as follows:

  s=
1

 s∑i=1

n 1


2 k s−s i

 
Eq 26.1

where k() represents the chosen bivariate probability density function, τ > 0 is the bandwidth, s
is the point on which a disc of radius τ is centred, si are the points within the disc’s area and δ
represents an edge correction factor. 

The resulting values can be presented as a raster map with one density value for each grid cell.
The most influential parameters in this calculation are the bandwidth τ and the size of the grid
cells, whereas the choice of density function is less critical. The principle behind the process is
that for each grid cell, the point density is calculated based on a distance-weighted average with
the weights being determined by the bandwidth (width of kernel function) and the shape of the
probability function. The larger the bandwidth, the smoother the resulting surface will be, and
vice versa (see Example 26.1). The selection of bandwidth τ can be based on mathematical
calculations or by subjective choice. It is important to apply an appropriate balance between the
perceived objectivity of mathematical approaches and the option of subjective choice based on
bandwidths  that  are  able  to  reveal  relevant  underlying  biological  processes.  It  is  therefore
usually recommended to explore the effect of different bandwidths on the resulting smoothed

Fig. 26.4 Sampling points together 
with the underlying continuous 
field
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surface.  Diggle  (2000) recommends  that  a  plot  of  the  mean  square  error  of  the  intensity
estimator against different values of τ should be used to inform the choice of bandwidth, rather
than an automatic procedure. With this method, the bandwidth value associated with the lowest
mean squared error (MSE) could be a starting value for smoothing, but other values should also
be experimented with. Diggle et al (2007) indicate that the MSE method often results in very
small bandwidth values due to it having difficulty coping with substantial variation in intensity,
and  therefore  recommend  to  only  use  it  to  guide  decision-making.  They  suggest,  for  an
infectious disease process, to use a bandwidth that is larger than the distance at which direct
transmission can occur.  Adaptive bandwidth selection methods can be used where the local
bandwidth  is  varied  during  the  estimation  process  to  ensure  that  a  minimum  number  of
observations is included (Bailey & Gatrell, 1995). Further details and discussions in relation to
bandwidth selection methods can be found in (Scott, 1992; Wand & Jones, 1995). Edge effects
(also called spatial  censoring) are likely to bias  kernel  estimation for  locations towards the
boundary of the study area  (Lawson et al, 1999). Adjustments are then necessary where, for
example, the area used in the calculation process is adjusted according to the overlap of the
circular area defined by the bandwidth and the study region  (Diggle,  2000). Kernel  density
estimation  algorithms  applied  by  commercial  GIS  software  products  such  as  ArcGIS
(http://www.esri.com) will typically use the bivariate Gaussian kernel and a default algorithm
to calculate the bandwidth and not apply corrections for edge effects.  More flexible  kernel
smoothing can be conducted using the statistical functions developed for the “R programming
language  and  software  environment  for  statistical  computing  and  graphics”
(http://www.esri.com).

The choice of appropriate  grid cell sizes should be guided by presentational, biological and
numerical issues. The cells should not be too large,  since the resulting map would not look
smooth and may hide relevant patterns.  They should not be smaller than what is a sensible
resolution for the biological process being studied, for example the cells should not cover areas
that are smaller than a typical farm, if farms are the unit of analysis.  GIS software will use
default  algorithms  for  defining  grid  cell  size,  and  it  is  sensible  to  review  the  results  and
experiment with different settings. 

An  assessment  of  the  spatial  heterogeneity  of  the  density  of  cases  of  disease  is  not  very
meaningful if it is not considered in the context of the population at risk. If no data are available
on the population at risk, it would be possible to use the spatial distribution of another disease,
assuming it has a different etiology and there is no differential reporting bias (Lawson, 2001).
The ratio between the intensity of cases and the population at risk becomes the log disease risk,
whereas, if the denominator represents the intensity of controls (=non-cases), it is interpreted as
a log relative risk (Kelsall & Diggle, 1995) (see Example 26.1 and Fig 26.5). To avoid division
by zero in these calculations, a kernel function with a non-zero tail (eg Gaussian) should be
used. Bandwidths may have to be used which are different from the ones for generating the
separate case  and population at  risk surfaces.  There are no clear  guidelines  with respect  to
whether  the  numerator  and  denominator  surfaces  should  be  generated  using  the  same  or
different bandwidths (Bailey & Gatrell, 1995; Bithell, 1990; Diggle, 2000). Schabenberger and
Gotway (2005) suggest the use of a visual exploratory approach for choosing the appropriate
bandwidth and grid cell size, where the resolution and stability of the estimates is balanced in
the context of their biological interpretation. Monte Carlo methods can be used to determine the
statistical precision of the kernel estimates (Kelsall & Diggle, 1995).
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26.3.2 Descriptive risk mapping of area data

If the disease and population at risk data are available and aggregated by individual areas within
a study region, crude risks or risk ratios can be calculated for each area. The disadvantage of
such an approach is that it will not adequately reflect the uncertainty associated with individual
areas and its variability between areas. For this reason, empirical or fully Bayesian approaches
can be used which will smooth local risk values toward either a global or a local average value.
This is done by calculating a weighted average combining the local estimate with a global or
local  estimate.  The calculation of the local  average  value makes use of the spatial  weights
matrix described above. The relative weight  (ie the shrinkage factor)  attributed to the local
values and the neighbourhood or global values is calculated for each local value, and depends
on the variance associated with the local value and the neighbourhood values. If the variance of
the local value is high, then the neighbourhood or global value will be given more weight ( ie
the local value will be shrunk toward the neighbourhood or global mean), and vice versa. The
global  or  neighbourhood  values  are  considered  to  represent  the  Bayesian  prior  and  the
distribution  of  the  observed  data  influences  the  likelihood.  The  combination  of  prior  and
likelihood results in the posterior value θ which is to be mapped. Following Bailey and Gatrell
(1995), the observed local rate is calculated as: 

r i=
yi

ni Eq 26.2

where  yi represents the number of diseased animals and  ni the associated denominator for a
particular area i.

In empirical Bayesian analysis, the mean of the prior γi and its variance i are calculated from
the observed  data which  is  described  in  more  detail  in  Bailey and Gatrell  (1995).  In  fully
Bayesian  analysis,  variables  are  considered  to  be  random  variables  with  their  own  prior
distributions, called hyperpriors (Waller & Gotway, 2004).

The weighting or shrinkage factor wi is calculated as:
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Fig. 26.5 Kernel smoothing for generating a relative risk surface of AI outbreak density
in northern Vietnam, based on commune-level disease presence/absence information
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w i=
i

ii/ni  Eq 26.3

where i  is the variance of the prior in area i.

The posterior value for local rate θi is calculated as:

i=wi r i1−wi  i Eq 26.4

where the weighting factor  wi determines how the local rate value and the prior  γi are to be
summed.

While these methods provide a statistically more reliable representation of the underlying data,
it is to be noted that the smoothed values will be different from the crude values, which could
result in more difficult interpretation, and may hide some important local patterns. Nonetheless,
in general, this smoothing method will allow for a more meaningful assessment of large-scale
spatial patterns, as there will be less noise caused by local small sample sizes. (See Example
26.2 and Fig 26.6.)

26.3.3 Spatial cluster analysis

The spatial arrangement of infected herds or animals can be used to investigate hypotheses in
relation to causal risk factors.  If  spatial proximity has no influence on the risk of infection,
infection should be spatially randomly distributed. A clustered spatial arrangement suggests the
presence of a contagious process or that there is a localized risk factor. The objective of spatial
cluster analysis  is  therefore to test  the null hypothesis  of complete randomness of a spatial
process.  In  the  case  of  point  locations,  a  random spatial  process  would  follow a  Poisson
distribution. Since the occurrence of infectious diseases depends on the presence of susceptible
herds/animals which usually are not randomly distributed in space, their spatial arrangement
needs to be taken into account.  Fig.  26.7 illustrates some of the key issues associated with

Example 26.1 Kernel smoothing to help visualise spatial heterogeneity of AI outbreaks 
in northern Vietnam 
data = Vietnam

In this example, data in relation to avian influenza (AI) outbreaks between 2004 and 2006 in a northern
region of Vietnam was extracted from a larger dataset for the whole country (Pfeiffer et al, 2007). The
data consists of communes’ centroid point locations and a dichotomous variable indicating whether at
least one AI outbreak had occurred during the above time period. The objective of the analysis was to
provide a more easily interpretable map of the spatial heterogeneity of AI outbreaks in this part of
Vietnam. The calculations were performed using the R software with the splancs package.

The kernel smoothing method based on a quartic kernel with edge correction was used and the choice
of bandwidth was informed by the MSE method mentioned above (Fig. 26.5a). While the lowest MSE
was 8km for the outbreak locations, 3 times the value of that was used, as it became apparent on visual
inspection of the resulting smoothed maps that it more appropriately reflected the large scale patterns.
The same bandwidth was used for both, the outbreak and the non-outbreak locations. The ratio of both
kernel smoothed maps is presented in Fig. 26.5b. It shows the increased risk in a relatively large part of
the south and in an area to the north of this region. On the basis of this visual assessment, it can be
concluded that the risk of outbreak occurrence is not uniform in this part of Vietnam. It seems to be
highest toward the southern and north western border of the region. 
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Example 26.2 Empirical and fully Bayesian smoothing to visualise spatial heterogeneity
of AI outbreaks northern of Vietnam
data = Vietnam

The same data as described above was used for this example. But for this analysis, commune-level
avian influenza outbreak occurrence was aggregated at district level as number of communes with and
without outbreaks. The objective of this analysis is to describe the spatial pattern of disease risk in the
area.  This analysis  was  conducted using the R software  with the spdep package and the statistical
software WinBugs (http://www.mrc-bsu.cam.ac.uk/bugs/) for the fully Bayesian modelling.
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Fig. 26.6 Different approaches to presenting AI disease risk using choropleth maps, 
based on commune data aggregated at district-level
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identification of spatial clustering. A spatial distribution as presented in Fig. 26.7a is easy to
identify, but occurs only rarely. More often the spatial distribution may be more like Fig. 26.7b,
where some of the herds affected by a disease are located outside the obvious clusters, and it is
therefore difficult to determine whether there is clustering. In reality, the affected herds will be
a subset from a larger population at risk which in itself potentially occurs in a clustered fashion,
as shown in Fig. 26.7c. And, in addition to that, there may be non-spatial risk factors, such as
farm  type,  which  influence  the  likelihood  of  a  herd  becoming  infected  (Fig.  26.7d).  The
methods described in this section will assist in addressing the problems presented in Fig. 26.7 b
and c.

Statistical  significance testing usually involves  comparing an observed  test  statistic  with a
theoretical  null  hypothesis  probability  distribution  of  that  test  statistic  representing  all  test
values  possible  under  randomness.  The  use  of  such  theoretical  distributions  requires  that
specific  assumptions are  met,  including for  example a rectangular  shape of  the study area,
independence  of  observations  and  a  very  high  number  of  observations.  Because  in  spatial
analysis  these  are  often  difficult  to  achieve,  randomisation  or  Monte  Carlo  simulation
methods  where  the  null  hypothesis  distribution  will  be  generated  from  simulated  data  are
usually applied. Note that the number of iterations specified in Monte Carlo simulation will
define what the smallest detectable P-value will be. If 999 iterations are used, this means that a
total of 1,000 values (999 for simulated plus 1 for observed data) for the test statistic will be
available for generating the null  hypothesis  distribution of the test  statistic.  If  the observed
value is the most extreme value it has a chance not higher than 1/1000 to occur (P <= 0.001).

Methods used for  spatial  cluster  analysis  can be  broadly categorised  into global,  local  and
focused statistics.  Global statistics indicate whether there is clustering somewhere in a study
area, local statistics will identify the location(s) of the clusters, and focussed statistics will test
the presence of clustering around pre-specified spatial locations. In addition, it is possible to
assess the presence of time-space clustering. 

The null and alternative hypotheses tested by these methods vary, as outlined by Waller and
Gotway  (2004).  The  methods  vary  in  their  statistical  power,  and  particularly  when  using
aggregated data and when there is spatial heterogeneity in the population at risk. Within a study
area, clusters are more likely to be detected in areas with large population sizes than where the

Example 26.2 Empirical and fully Bayesian smoothing (continued)

The map in Fig. 26.6a showing the crude risk estimates indicates significant variation between local
estimates with higher risks toward the southern and the northern part of the area, whereas low risk in
between. The globally smoothed empirical risk estimator based on the average risk across all districts
and its variance as the prior is shown in Fig. 26.6b. It removes the extremely low and high values, and
in particular the areas with zero risk. The locally smoothed map in Fig. 26.6c is based on including the
values  from  the  4  nearest  neighbouring  districts  into  the  prior,  but  the  observed  pattern  is  only
marginally different from the one in Fig. 26.6b. A fully Bayesian approach was applied to the data in
Fig. 26.6d, based on conditional autoregression allowing for a spatial and a non-spatial random effect
(further details will be discussed in the spatial regression section below). In summary, in this instance
the broad similarity of the patterns obtained from using the crude and the smoothed values suggests that
the crude estimates are relatively stable due to high sample sizes (ie  number of communes) in most
districts. The results suggest the presence of disease clustering in the southern and northern part of the
area, and this will be more formally investigated using the cluster investigation methods described in
the next section.
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population at risk is sparse, which means that statistical power can be spatially heterogeneous.

Investigations of spatial clustering can be initiated as a result of suspicion or detected as part of
routine surveillance. Such perceived clusters could then be subjected to a statistical analysis
which, if they indicate a non-random distribution of disease, may justify more detailed causal
epidemiological investigations. Centers for Disease Control (CDC) devised a formal framework
for such investigations (Anon, 1990). As is the case with other epidemiological investigations,
this approach is affected by data quality problems, bias, diagnostic sensitivity/specificity and
statistical power. For this reason but mainly because perceived clusters are not necessarily real,
it  has  been  reported  that  only  a  very  small  percentage  of  ‘cluster  alarms’  ever  leads  to
identification of a causal factor (Wakefield et al, 2000). 

26.4 GLOBAL SPATIAL CLUSTERING

The  analysis  of  clustering  may  be  based  on  point  locations  or  on  data  presented  in  an
aggregated fashion, such as counts of disease per district. For both data types,  the observed
pattern  is  to  be  compared  with  a  spatial  distribution  that  would  be  found if  there  was  no
clustering (ie  null hypothesis distribution of a particular summary statistic). The term spatial
autocorrelation is used when quantitative measures such as counts, risks or rates are being
assessed. When interpreting the results of global spatial autocorrelation analyses, it needs to be
recalled that they can be significantly biased by the presence of first-order effects in the data.
Furthermore, these approaches are aimed at detecting effects averaged over the whole study

a) Clustered pattern of herds affected by a 
disease

b) Clusters of affected herds with noise 
(affected herds between clusters)

c) Spatial pattern of affected herds (full 
circles) together with the one for 
unaffected herds (clear circles)

d) Affected and unaffected herds, and 
among both are some which are dairy or
beef herds (thick grey outline or not)

Fig. 26.7 Examples of spatial patterns
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area which means that they may lack statistical  power to detect  single clusters within large
study areas.

26.4.1 Methods for point data

There are 2 groups of methods included here. One assesses clustering in relation to the spatial
distribution of a disease where each point represents, for example, the location of an affected
herd. The other assesses clustering in relation to an attribute value, such as incidence of affected
animals per herd.

Cuzick and Edwards test
If point locations of cases and controls are available, the Cuzick and Edwards test will assess
the null hypothesis that the nearest neighbour to a randomly selected case is just as likely to be
a control as another case (Cuzick & Edwards, 1990). The associated test statistic is the sum of
all  cases  which  have  another  case  as  nearest  neighbour  (see  Example  26.3).  The  nearest
neighbour criterion can be modified, in that higher orders of nearest neighbourhood (eg second,
third  or  more nearest  neighbour)  can be  used,  so that  different  scales  of  clustering  can  be
detected.  Statistical  significance  is  tested  using  an  asymptotic  test  based  on  the  Gaussian
distribution. Alternatively, the null hypothesis distribution of the test statistic can be generated
using  Monte  Carlo  simulation  involving  random  allocation  of  case/control  status  to  each
location, and repeating this many times, while recalculating the test statistic each time. 

K-function
The number of events of the same type occurring within a certain distance can be expressed
using the K-function. It assumes stationarity and isotropy, and reflects second-order effects of a
spatial process. The associated mathematical function for the K-function using the notation in
Bailey and Gatrell (1995) is:

K h =
1

2 R
∑
i=1

n

∑
j=1

n

I hd ij 
Eq 26.5

where h stands for distance, λ represents the intensity of the spatial process for a given area R, d
is the distance between events i and j within R and Ih is an indicator which is 1 for dij <h and 0
otherwise (see Example 26.4 and Figs. 26.8 and 26.9). 

Algorithms are available which take account of edge effects, such as through a proportional
weighting process (Ripley, 1987). When calculating the K-function, a distance scale needs to be
defined.  Up to one  third of  the linear  extent  of  the area  should be used,  since  K-function
estimates become inefficient for larger distances.  The result can be visualised by plotting  K
against  h, where under complete spatial randomness the function should have the shape of a
parabola. To facilitate the interpretation, transformations of K have been recommended, so that
a comparison with a straight line, reflecting randomness, can be used instead (Bailey & Gatrell,
1995). The K-function as such describes the spatial distribution of a population, but it does not
take into account the likely spatial heterogeneity of other populations, such as a population at
risk. This can be achieved by comparing the K-functions for the spatial distribution of case and
control events through calculating a difference function D(h) as shown below. 

D h=K casesh −K controls h Eq 26.6

The difference function D(h) expresses the scaled expected number of excess cases occurring at
a given distance from a random reference case. The significance of the difference function can
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be tested by using Monte Carlo simulation, where all events are randomly labelled as given
numbers  of  case  and  control  events.  If  this  is  done  many  times,  the  resulting  difference
functions  can  be  used  to  define  simulation  envelopes  with  which  the  observed  difference
function D could be compared. The use of a Monte Carlo simulation approach allows statistical
inference  for  D(h) in  the  presence  of  non-stationarity  (Diggle,  2000).  If  the  latter  extends
beyond the simulation envelope, it can be concluded that the observed pattern of case events
may represent clustering.  Diggle (2000) emphasizes that the difference function can also be
used to estimate the size of clustering, but the spatial scale at which clustering occurs needs to
be small relative to the full extent of the study area. The Diggle-Chetwynd test statistic can be
used to obtain an estimate of statistical significance of the departure of the observed pattern
from randomness (Diggle & Chetwynd, 1991). Diggle et al (2007) extended the K-function to
allow the assessment of clustering,  for an inhomogeneous Poisson process,  by including an
estimate  of  the  spatially  varying  intensity  into  Eq  26.5.  The  kernel  smoothed  intensity
parameter  is  estimated  using  a  logistic  regression  conditioning  on  locations  of  cases  and
controls and allowing for inclusion of confounding factors and true risk factors. 

The K-functions presented in Fig. 26.9a show the values, obtained using Eq 26.5, for increasing
distances between points. A visual comparison of the curve patterns for affected and unaffected
commune centroid locations suggests that there is a slight difference in the expected number of
observations at distances of up to 0.7 decimal degrees.  The difference function  D(h) in Fig.
26.9b supports this observation since the function based on the observed data extends beyond

Example 26.3 Cuzik and Edwards test of clustering of AI outbreaks in Vietnam
data = Vietnam

This analysis is aimed at determining whether cases are more likely to have other cases as their nearest
neighbours, and this is done here for between 1 and 5 nearest neighbours. The analysis was performed
using the commercial spatial analysis software ClusterSeer Version 2.2.8.1 (www.terraseer.com).

The statistical significance was tested using Monte Carlo simulation based on random shuffling of
case-control status for 999 times (ie smallest detectable P–value P = 0.001). The analysis included 446
case locations and 1,851 controls. 

Upper-tail Monte Carlo

 k T[k] E[T] Var[T] z P-value+ P-value

1 165    86.442   96.765  7.986 0.000 0.001

2 340 172.883 205.284 11.664 0.000 0.001

3 518 259.325 313.150 14.618 0.000 0.001

4 673 345.767 424.901 15.875 0.000 0.001

5 811 432.208 534.973 16.377 0.000 0.001

Combined P-value for Monte Carlo Randomization:  Bonferroni P-value: 0.005

The  above  results  indicate  that  there  was  clustering  at  all  neighbourhood  distances  specified.  In
addition, the overall combined P-value (corrected for multiple testing using the Bonferroni method)
was also significant. Therefore, communes affected by an AI outbreak are more likely to have another
outbreak  commune  as  nearest  neighbour  than  an  unaffected  one.  Since  it  is  a  global  statistic,  no
information is generated about the number and location of any clusters.
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the simulation envelope generated by random labelling of the observations (n=99) as affected or
unaffected  by  AI,  and  recalculating  the  resulting  difference  functions  which  are  then
summarised by the simulation envelope. The conclusion is therefore that,  in this region, AI
outbreaks  were  clustered.  Note this  analysis  did  not  correct  for  edge  effects.  The  Diggle-
Chetwynd statistic D is 41.7, and is associated with a P-value lower than 0.0001 obtained using
Monte  Carlo sampling,  also suggesting that  the  observed  pattern is  clustered  in  space  (see
Figure  26.9c). The non-homogeneous  K-function based on a bandwidth value of 0.7 decimal
degrees is shown in Fig. 26.9d. It mirrors the pattern shown for the difference function. The P-
value is 0.01, confirming that the observed pattern is statistically significant.

26.4.2 Methods for aggregated data

Moran’s I, Geary’s c and Getis-Ord G statistic can be used for assessing spatial autocorrelation
of attribute data  measured  at  an  ordinal  or  continuous scale.  All  are  variations of  a  cross-
product statistic which produces a similarity index weighted by proximity (Haining, 2003).

Moran’s I
If  data are available in an aggregated format,  such as counts of diseased cases  per district,
global spatial autocorrelation can be estimated using the Moran’s I index which is similar to the

Example 26.4 K-functions to detect spatial clustering of AI outbreaks in Vietnam
data = Vietnam

In this  example,  the same data  (as  above)  on avian  influenza outbreaks  in  the northern region  of
Vietnam was used (Pfeiffer et al, 2007). The objective of this analysis is to determine whether there is
spatial clustering of avian influenza outbreaks at commune level. A rectangular area was selected to
avoid complex edge effects in the analysis resulting from the uneven border of the complete region.
This analysis was conducted using the R software with the splancs and spatialkernel packages. The R
code for the inhomogeneous approach was based on Bivand et al (2008).

Fig. 26.8 Locations of communes in northern 
Vietnam affected (filled circles) or unaffected (empty 
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global spatial autocorrelation can be estimated using the Moran’s I index which is similar to the
Pearson’s product moment correlation coefficient, as shown below (Bailey & Gatrell, 1995):

I=
n∑

i=1

n

∑
j=1

n

w ij  y i−y y j−y

∑
i=1

n

 y i− y
2
∑

i=1

n

∑
j=1

n

w ij
Eq 26.7

where n is the observation number, yi and yj are the respective values, y is the global mean and
wij is the spatial proximity matrix.

Moran’s I expresses the similarity between local values of continuous-scale measurements and
their neighbours, based on their deviation from a global mean value (see Example 26.5 and Fig
26.10). A proximity matrix is required in order to express the spatial arrangement, and in this

Example 26.4 K-functions (continued)
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Fig. 26.9 K-function analysis of 2004-06 AI outbreaks for a northern region in Vietnam
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case  it  is  usually  based  on the  neighbourhood  or  distance  between  locations.  It  is  used  to
attribute weights to pairs of values which are then compared with respect to their similarity.
When neighbouring values tend to be similar, I will be positive. If they tend to be different,  I
will  be  negative.  Statistical  significance  can  be  tested  by  Monte  Carlo  simulation  through
random allocation of observed data values to locations available in the dataset. If the observed
value of I is located in the tail of the simulated distribution, it is an indication of the presence of
autocorrelation. The results from such analyses if conducted using disease count data will not
take account of potential underlying heterogeneity of the population at risk. It will then be more
useful  to  assess  the  data  as  disease  proportions or  rates.  Since  the  denominators  for  these
individual values will usually be different, the assumption of constant variance will be violated.
In this case, adaptations of Moran’s I can be used, such as Oden’s method (Oden, 1995). Waller
and  Gotway  (2004) recommend  the  method  described  by  Walter  (1992) which  compares
observed counts with expected counts under the constant risk hypothesis. The resulting statistic
becomes a weighted cross-product of the difference between observed and expected counts. Its
statistical significance can be tested using Monte Carlo simulation. Assunção and Reis (1999)
proposed an empirical Bayes approach to adjust for differences in population sizes. It is also
important to be aware that first-order or spatial-trend effects in the data may result in biased
autocorrelation estimates.

Geary’s c
In contrast to Moran’s I which assesses the similarity in relation to deviations from the global
mean, Geary’s contiguity ratio (or Geary’s c) is based on the average difference between pairs
weighted as specified by the proximity matrix. The calculation is as follows (Waller & Gotway,
2004):

c=
n−1

2∑
i=1

n

 y i− y
2

∗
∑
i=1

n

∑
j=1

n

wij  yi− y j

∑
i=1

n

∑
j=1

n

w ij
Eq 26.8

where n is the observation number, yi and yj are the respective values, y  is the global mean and
wij is the spatial proximity matrix (see Example 26.6).

Values of 0 and 2 reflect perfect positive and negative autocorrelation, respectively. The closer
the value is to 1, the more homogenous the spatial distribution of values will be. As in the case
for Moran’s  I, heterogeneous distribution of the population at risk will  adversely affect  the
validity of the analysis.

Spatial correlogram
Moran’s I and Geary’s c can be calculated for different distances (or spatial lags), and presented
as a correlogram by plotting the resulting values against the corresponding lag (de Smith et al,
2007) (see Example 26.7 and Fig.  26.11). The information presented by plotting Geary’s c
values in a correlogram is similar to what is shown in a semi-variogram. Bailey and Gatrell
(1995) point  out  that  neighbouring  values  in  such  plots  are  highly  correlated,  and  that
correlations at larger lags are partly a function of correlation at smaller lags. Therefore, if there
are any peaks at low lag values, further peaks at higher lags need to be interpreted with some
caution. Furthermore, this analysis assumes that the spatial process is isotropic, and that first-
order spatial effects are eliminated, since they will otherwise bias the plot.
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Example 26.5 Moran’s I to assess spatial correlation of AI outbreaks in Vietnam
data = Vietnam

The same dataset on avian influenza outbreak occurrence in a region of northern Vietnam (described
above) was used to assess for the presence of spatial autocorrelation. The commune-level point data
were aggregated at district level to represent the number of affected communes per district, as well as
the number of communes at risk. This analysis was conducted using the R software with the spdep
package.
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Fig. 26.10 Choropleth maps showing number of communes affected per district by AI 
outbreaks between 2004 and 2006, (total number of communes, percentage of 
communes with outbreaks as well as log transformed percentage for each district in a 
northern region of Vietnam).

A spatial weights matrix was generated based on the 4 closest neighbouring districts. This was then
used  to  calculate  Moran’s  I under  randomization,  resulting  in  I=0.33  (P<0.0001),  indicating  the
presence of positive autocorrelation between districts in the number of communes with AI outbreaks.
Since the number of communes  at  risk varies  between districts,  the data was reanalysed  using the
empirical Bayes adjustment of the Moran’s I. The resulting Moran’s I value was 0.28 with a P-value of
0.001 based on 999 Monte Carlo simulations, indicating that even after taking account of heterogeneity
in the number of communes per district, there is statistically significant positive autocorrelation. Using
incidence proportion  as  the  outcome variable,  resulted in  a  Moran’s  I  of  0.23  (P<0.0001)  for  the
untransformed and in 0.30 (P<0.0001) for the log transformed incidence values. Of these 4 analyses,
the empirical Bayes correction and the one based on the log transformed incidence values provide the
statistically most robust estimates.
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26.5 LOCALISED SPATIAL CLUSTER DETECTION

Global indices of spatial association provide inference in relation to the whole study area. The
presence of global positive autocorrelation needs to be interpreted cautiously,  since it  could
have arisen from spatial trends (first-order effects) or local clustering (second-order effects). It
is therefore important to reduce the influence of trends and variance heterogeneity on the index.
But even then, a global  index will  not  allow specifying clusters and may have insufficient
statistical  power for  detecting single clusters  (Waller  & Gotway,  2004).  As a consequence,
various  local  indicators  of  spatial  association  have  been  developed  which  have  particular
relevance in hypothesis-driven epidemiological investigations as well as in disease surveillance.

26.5.1 Methods for point data

Spatial scan statistic
One of the most commonly used exploratory spatial analysis methods is the spatial scan statistic
(Kulldorff et al, 1997). It is based on comparing the risk of disease within a circular window to

Example 26.6 Geary’s c to assess spatial correlation of AI outbreaks in Vietnam
data = Vietnam

Geary’s c was also calculated using a Monte Carlo simulation approach for the AI outbreak data as in
the Moran’s I example, resulting in c=0.64 (P<0.001) for the number of outbreaks and 0.77 (P< 0.001)
for the incidence proportion. Since these values are less than 1, they indicate positive autocorrelation.
This analysis was conducted using the R software with the spdep package.

Example 26.7 Correlogram
showing correlation of AI
outbreaks at different distances
in Vietnam
data = Vietnam

Moran’s  I  values for different spatial
lags  were  generated  for  the  log
transformed AI incidence per  district
in  northern  Vietnam.  The  results
indicate  that  Moran’s  I  is  significant
up  to  a  lag  of  2  neighbours,  since
beyond  that  the  standard  deviation
bars  include  the  value  zero.  This
analysis  was  conducted  using  the  R
software with the spdep package.

Fig. 26.11 Correlogram for Moran's I 
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that outside. The algorithm varies the radius of the windows up to a user-defined upper bound,
and moves them around the study area. The centre of these windows can be either defined by a
regular  grid,  or  is  based on the  locations of  the  observed  data,  where  the  latter  will  more
appropriately  represent  any  possible  spatial  heterogeneity  of  the  data.  A  local  likelihood
function is calculated from the product of the individual Bernoulli probabilities for each of the
windows. The resulting likelihood ratio statistic is the maximum of these local functions under
the alternative hypothesis (risk higher inside than outside the window) divided by its maximum
value under the null hypothesis (risk inside equals risk outside) (see Example 26.8 and Fig.
26.12). As described by Waller and Gotway (2004) the overall test statistic T is proportional to:

T scan=max 
cin

nin


c in


c out

nout


cout

I
c in

nin


cout

nout


Eq 26.9

where cin and cout represents the number of cases inside and outside the window, and nin and nout

the corresponding denominator. I is the indicator function with I=1 if the condition is met.

The window with the maximum of the local likelihood ratio functions indicates the location of
the most likely cluster. Its statistical significance is determined using Monte Carlo simulation
resulting in a single P-value and thereby avoiding multiple testing problems. The method also
identifies secondary clusters for which adjusted statistical inference can now be obtained. The
maximum population size to be included in any given window needs to be pre-defined, and
there is no objective guideline on how to do this. The method can also be used to identify
clusters of low risk, adjust for covariates, and it can search for overlapping or non-overlapping
clusters. It  can be used for Poisson counts (ie  aggregated data) and to investigate time-space
clustering. It has more recently been extended to allow use of ordinal, normal and exponential
(=survival) type outcome data. The method also can now assess non-circular shaped windows.
It is available as the public-domain software SaTScan (www.satscan.org).

With  ordinal  data,  each  case  can  belong  to  one  of  several  outcome  categories,  and  with
exponential or survival data each case is defined by a censoring variable (1=event, 0=no event)
and a continuous-scale variable expressing time to event or censoring.

26.5.2 Methods for aggregated data

This group of methods includes the local indicators of spatial association or LISAs. Anselin
(1995) defined  these  local  measures  of  similarity  between  neighbouring  regions  values.
Mapping these values allows identification of areas of high and low local spatial association.
This means that they indicate areas with similar data values, be they low, moderate or high.
Anselin requires LISAs to link to a global indicator of spatial association, of which Moran’s I is
the most popular. An advantage of a local measure is that they are less affected by first-order
effects than the associated global indicator. Low spatial association can also be used to identify
outliers,  which  may  be  an  indication  of  data  errors.  The  statistical  testing  of  these  local
indicators,  even  if  using  Monte  Carlo  simulation,  is  affected  by  several  issues,  including
multiple  testing  (Waller  &  Gotway,  2004).  Therefore  testing  should  only  be  used  for
exploratory purposes. The spatial scan statistic can also be used for this type of data, although
this method does not belong to the group of LISAs. In this case, the likelihood is based on the
product of independent Poisson distributions. The centroid coordinate locations for each area,
for each of which the number of cases and the population at risk will have to be specified, are
used in this analysis.
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Local Moran test
The global Moran’s  I  statistic can be disaggregated into a series of local Moran’s  I  values of
spatial autocorrelation for each area included in the study region, as shown below (Bivand et al,
2008):

I i=

 y i−y∑
j=1

n

wij  y j−y

∑
j=1

n

 y i− y2

n Eq 26.10

where  n is the observation number,  yi and  yj are the respective local values, y is the global
mean and wij is the spatial proximity matrix.

The  mean  and  variance  for  each  resulting  local  Moran’s  I  value  can  be  obtained  using

Example 26.8 Spatial scan statistic to detect clusters of AI outbreaks in Vietnam
data = Vietnam

The data on AI outbreaks in northern Vietnam was used for this analysis, including 2,296 locations,
446 of which had outbreaks. The spatial scan statistic was used to determine the locations and size of
potential spatial clusters. The analysis was conducted using the Bernoulli model for case-control point
data, for 999 iterations, testing for high-risk clusters allowing for cluster sizes including a maximum of
50% of the population. The analysis was conducted allowing for circular as well as elliptic clusters, and
was conducted using the SaTScan software version 8.0 (www.satscan.org).

The analysis identified two circular clusters (see Pfeiffer et al, 2007), one statistically significant, most
likely cluster (RR=2.9; p<0.001) with a radius of 82 km and one statistically significant  secondary
cluster  (RR=5.2;  P=0.045)  with  a  radius  of  5.6 km.  These results  also illustrate  the problem with
circular clusters, since more than half of the area covered by the most likely cluster is outside the study
area. No elliptic-shaped clusters were identified.

Fig. 26.12 Location of statistically significant clusters for AI 
outbreak occurrence between 2004 and 2006

(Map of districts in a northern region of Vietnam: large circle = 
most likely cluster; small circle = secondary cluster; black dots = 
communes with AI outbreak; grey dots = communes without AI)
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randomization. Standardization can be applied and, as a consequence of using different weights,
may produce different numeric values when aggregated to the global  Moran  I.  The  Moran
scatter plot provides an effective means of presenting the data (Anselin, 1995). The X-axis on
the plot represents the standardized local value, and the Y-axis the weighted average of the
standardized  neighbouring  values  with  neighbourhood  defined  by  the  weights  matrix.
Clustering is represented by data points in the lower-left (low-low) and upper-right (high-high)
quadrants of the scatter plot. Values located in the remaining quadrants (high-low and low-
high)  are  dissimilar  from  their  neighbours,  and  could  be  spatial  outliers.  The  slope  of  a
regression line fitted to this data represents the global Moran’s I statistic (see Example 26.9 and
Figs 26.13 and 26.14).

26.5.3 Focused spatial cluster detection

Often  in spatial  cluster  analysis,  the research  hypothesis  may be that  the risk of  disease  is
increased in the proximity of pre-defined foci which may be particular geographical point, line
or area feature, such as power lines or nuclear power plants. With testing such hypotheses, it is
important to be aware of the pre-selection bias resulting from applying the ‘Texas sharpshooter’
principle, where one shoots the shed first and then places the bull’s eye around the bullet hole.
Potential foci associated with clusters should be defined based on causal hypotheses before any
data analyses.

The  Lawson-Waller  local  score  test is  a  goodness-of-fit  test,  calculated  by  summing the
deviation  of  observed  from  expected  case  numbers  across  areas  weighted  by  exposure.
Exposure levels can be specified in different ways, including inverse distance from the foci.
Statistical significance can be tested using exact methods or Monte Carlo simulation. Morris
and Wakefield (2000) provide an in-depth discussion of this topic.

26.6 SPACE-TIME ASSOCIATION

Methods investigating space-time association of disease occurrence can be broadly categorized
into  those  which  focus  on  detection  of  clusters  and  those  aimed at  space-time interaction.
Space-time clusters are present if disease occurrence is not only clustered in absolute space,
but also in time. The procedure usually requires data on cases as well as non-cases. If a disease
process  is  infectious,  proximity of  cases  in  both space  and  time is  likely to  occur.  In  this
situation, only case data are required, and the presence of space-time interaction can be tested.
Such a process may actually move spatially, as long as, at any time, new cases occur in spatial
proximity to other cases occurring at the same time (not those occurring at other times).

26.6.1 Space-time interaction tests

All these tests require data about the time and location for cases of disease, but not data on the
population  at  risk  and  its  geographical  distribution.  Therefore  they  are  not  sensitive  to  a
heterogeneous  distribution  of  the  population  risk,  but  bias  will  occur  if  the  density  of  the
population  changes  spatially  at  different  rates  (Kulldorff,  1998).  Knox  (1964) developed  a
simple space-time test which required categorising all pairs of cases into whether they occurred
close or far apart in space and time, thereby producing a 2X2 table. The criteria for specifying
closeness in either the temporal or spatial dimension are subjective,  and the method is only
appropriate for diseases with short incubation or latency period. The statistical hypothesis of
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independence in space and time is tested using a Poisson distribution of the counts in the 2X2
table. Norström et al (2000) used the Knox test to examine the pattern of an outbreak of acute
respiratory disease in cattle in Norway, and it allowed them to test the hypothesis of potential
airborne  transmission  mechanism  for  this  infectious  disease.  As  an  alternative  analytical
method for this type of data, the Mantel test or regression uses the numeric distance in space
and time between all pairs of cases (Mantel, 1967). The statistical hypothesis of independence
in space-time is assessed using permutation or Monte Carlo tests. Constant values can be added
to the space-time distance measures to bring them on the same scale, or they can be transformed

Example 26.9 Local Moran test of AI outbreaks in Vietnam
data = Vietnam

Using the AI outbreak data, the local Moran I can be calculated for log transformed AI incidence data.
The objective of this analysis is to identify potential clusters and outliers. The analysis was performed
using the spdep package of the R software.

The Moran scatter plot in Fig. 26.13 indicates that some observations in this dataset potentially are
outliers  (mainly  those  in  the  top-left  and  bottom-right  quadrant).  The  points  in  the  top-right  and
bottom-left quadrant of the plot reflect districts which are autocorrelated with their neighbourhood. The
map in Fig.  26.14 shows the districts for which the local Moran statistic is statistically significant,
indicating local clustering of outbreaks in the corresponding districts. It is notable that the pattern is
very different from what was identified using the spatial scan statistic, but that is partly due to the fact
that it also identifies areas where low values are surrounded by low values. It needs to be recognized
that the spatial scan statistic compares risks between inside and outside circular or elliptically shaped
areas. In contrast, local Moran I examines local spatial autocorrelation between values within an area
and the average of the neighbourhood; hence, it focuses on similarity of values rather than actual risk
comparison. 

(continued on next page)

Fig. 26.13 Moran scatterplot for log transformed AI 
outbreak incidence data
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to reduce the influence of outlying values. The results of the analysis will be influenced by such
somewhat arbitrary decisions. The Mantel test can be used for assessing association between
any pair of distance matrices, including space-genetic distances. It is also possible to generate a
partial  Mantel  test  where  a  third distance  matrix  can be taken into account  in the analysis
(Goldberg et al, 2000). The Jacquez k-nearest neighbour test expresses proximity at k nearest
neighbours rather than absolute distance, and will therefore be less affected by spatial variation
in the density of  the population at  risk than the methods above  (Jacquez,  1996).  It  can be
calculated  for  a  single  k value  or  using  a  series  of  such  values  for  producing  a  summary
statistic. Kulldorff (1998) notes that the above methods all assume that the spatial distribution
of  the  population  at  risk  does  not  change  differently  in  space  over  time.  It  needs  to  be
emphasized that if these statistics are not significant,  it may still be that temporal or spatial
clustering is present. Ward and Carpenter (2000) provide a detailed discussion with examples of
the Knox, Mantel and k-nearest neighbour tests.

The bivariate space-time K-function K(h,t) expresses the expected number of events occurring
within  a  given  spatial  (h)  and  temporal  (t)  distance  from  a  random  event,  relative  to  the
intensity of events per unit, space and time. This could be visualised as a space-time cylinder
centred  on the  random event  (Diggle et  al,  1995).  The function  can be  corrected  for  edge
effects. If there is no space-time interaction then K(h,t) should be the product between K(h) and
K(t). An appropriate statistical test would be to calculate the difference  D(h,t) between K(h,t)
and the product term K(h) * K(t). The resulting values can be presented as a three-dimensional
plot of  D(h,t) against spatial and temporal distance values. High  D(h,t) values indicate space-

Example 26.9 Local Moran test (continued)

Fig. 26.14 Choropleth map indicating districts in northern Vietnam with 
statistically significant local Moran I values for log transformed AI incidence
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time interaction. Monte Carlo methods are used to generate the null-hypothesis distribution for
this statistic. The sum of all observed  D(h,t) is then compared with this generated empirical
distribution. The test is robust to non-stationarity of the underlying process. Diggle (1995) notes
that the space-time K-function only provides useful information at values for h and t which are
small relative to the total study area. Porphyre et al (2007) applied the space-time K-function to
investigate factors influencing the occurrence of TB outbreaks in a specific geographical area in
New Zealand. The use of this method assisted them in concluding that farm-to-farm spread was
less important than other potential sources of infection.

26.6.2 Space-time cluster detection

The spatial  scan  statistic  described  above  can  be  extended to  include  time,  with  the basic
principle being that a cylinder instead of circle or ellipse is used to calculate likelihood ratios
(Kulldorff, 1998). This technique will search for clusters where more cases than expected under
randomness occurred within a particular area and time interval. The method can be used for
retrospective as well as for prospective data analysis (Kulldorff, 2001). If no population at risk
data are available,  such as could be be the case with a surveillance system, the space-time
permutation statistic is used purely with case-reporting data (Kulldorff et al, 2005). The basic
principle is the same as for the space-time scan statistic, except that the permutations are based
on randomly shuffling the spatial and temporal attributes of the cases. It  controls for purely
temporal  and purely spatial  clusters.  The space-time permutation method will  be biased by
spatially heterogeneous changes in population density over time. The method is sensitive to
missing data, and should only be used to replace the space-time scan statistic if no, or only poor
quality,  population-at-risk data  are  available.  Abatih  et  al (2009) used the  space-time scan
statistic  to  identify  clustering  of  ampicillin  resistant  Escherichia  coli within  3  islands  of
Denmark.

26.6.3 Continuous spatial fields

The methods presented above can only be used for discretely defined spatial features. If  the
spatial variation in a factor is continuous, the focus of the analysis becomes the similarity of
measurements depending on their distance from each other. The assumption is being made that
the measurements  or attribute values are collected at  randomly selected point  locations.  An
empirical  semi-variogram summarises  covariation  in  attribute  values  between  point
observations at different distances apart, by calculating half (therefore semi-variogram) of the
average of the squared difference between paired values (semi-variance) within each distance
range.  Before  the  empirical  semi-variogram  is  determined,  a  variogram  cloud  can  be
constructed which shows the actual semi-variance for all pairs of values. The empirical semi-
variogram graphically summarises the spatial dependence for the spatial process as a scatter
plot where distance (spatial lag) is presented on the X axis and semi-variance on the Y axis. It is
calculated as follows:

h=
1

2∣N h∣
∑
N h 

[Z s i−Z  s j]
2

Eq 26.11

where N(h) are the set of distinct pairs of values separated by distance h,│N(h)│is the number
of distinct pairs in N(h).

An important assumption is that the underlying process is stationary. If the dependence varies
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between different directions and the spatial process is therefore anisotropic, it will be necessary
to  produce  separate  semi-variograms  for  different  directions.  The  typical  shape  of  a  semi-
variogram for a spatially autocorrelated process has low values for small lag values (see Fig.
26.15), indicating small differences between attribute values. The value at which the function
crosses the y-axis is named the nugget. The function increases to a value on the y-axis called
the sill which it reaches at a distance denoted as the range. If the function does not reach a sill,
this suggests the presence of non-stationarity. If there is no spatial autocorrelation, the semi-
variogram plot should be a horizontal line. The empirical semi-variogram can be used to define
a theoretical semi-variogram which represents the observed dependence relationship through a
theoretical  mathematical  function.  This  theoretical  function  can  then  be  used  for  kriging
interpolation.  Co-variograms  and  correlograms  present  similar  information  to  the  semi-
variogram, but the latter is used most commonly (see Example 26.10 and Fig 26.16).

Semi-variograms are often used to assess whether there is spatial dependence in the residuals
from  a  regression  model.  It  should  be  noted  that  the  resulting  semi-variogram  should  be
interpreted cautiously, when based on an analysis of raw residuals generated using ordinary or
generalized least squares regression models (Schabenberger & Gotway, 2005).

26.7 MODELLING

Models for spatial data can be used for the purpose of describing spatial variability in a single
variable or for explaining variability in an outcome variable with exposure variables which may
be subject to spatial effects. 

26.7.1 Modeling to describe spatial variation

Models that describe spatial variation in a variable are used to interpolate or predict attribute
values  at  unmeasured  locations.  The  data  type  and  the  type  of  spatial  effect  present  will
influence which method is to be used. For example,  trend surface regression can be used to
describe first-order  (or large-scale)  spatial  effects  in a continuous-scale variable based on a
linear combination of polynomial functions of coordinate locations. This method can be applied
to continuous spatial fields as well as area data (Haining, 2003). Second-order (or small-scale)
spatial effects for stationary continuous spatial fields are commonly modelled using inverse-
distance  weighted  interpolation  or  kriging.  The  advantage  of  kriging  is  that  it  allows
interpolation  including  uncertainty  estimates  of  the  predicted  values.  With  this  method,  a
system of kriging equations is  developed which derive their  distance weights  from a semi-
variogram (discussed above). For each location value to be interpolated, neighbouring known
values are used to estimate the local value including its variance. Different types of kriging
technique are now available, including probability kriging which is used for binary data. These
methods are covered in some detail in Waller and Gotway(2004). Berke (2004) used kriging to
generate a smooth disease risk surface from tape worm infection data in foxes which were
surveyed in Lower Saxony, Germany, between 1991 and 1997, aggregated at the level of 43
administrative regions. The spatial dependence captured in a kriging model can also be used to
model the covariance structure in a random effects model, such as described below. Clements
et al (2007) present an example of such an application in Bayesian regression modelling.

Continuous-scale data for areas can be modelled using  conditional (CAR) or  simultaneous
autoregressive (SAR) methods. If the area data are discrete values, auto-logistic , binomial or
Poisson models can be used, and the basic principle of the modelling approach is that the local
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value is conditional on the values in the neighbourhood. This means that the models include
fixed effect parameter estimates for local as well as neighbourhood effects. The parameters can
represent  directional  or  trend  effects  and  potential  interactions.  Haining  (2003) provides  a
detailed discussion of the approaches for continuous- and discrete-scale area data.

While  the  methods  described  above  are  used  to  generate  parameters  describing  the  spatial
effects for area data, hierarchical modelling aims at obtaining more precise local estimates of
spatially  varying  parameters  such  as  disease  risk  by  making  use  of  the  information  in
neighbouring areas.  In  this case,  spatially structured random effects are used. Examples are
presented above under empirical and fully Bayesian smoothing.

26.7.2 Modelling to explain variability (spatial and non-spatial)

In principle, the models described above become explanatory regression models when exposure
variables are included (see Example 26.11 and Fig. 26.17). The methodology for the relevant
approaches  used  to  deal  with  different  types  of  dependent  and  independent  variable  are
described in Chapters 14-24. The key assumptions for these approaches are the independence of
the observations which constitute the data that are used to derive the regression relationship and
an  unchanging  relationship  between  exposure  and  response  variables  across  space.  The
presence  of  spatial  autocorrelation  in  the  residuals  from a  model  is  an  indication  that  the
assumptions have been violated. Spatial dependence may occur in the response variable, in the
exposure variables or in both.

Linear regression will produce unbiased effect estimates with correct confidence intervals, if
any spatial dependence in the response variable is completely explained by the spatial pattern in
the exposure variables (ie there is no unmeasured factor which is spatially correlated). If there is
still  residual  spatial  dependence,  it  will  often  be  reflected  in  spatial  autocorrelation  in  the
regression residuals. It should be noted that response variables related to infectious diseases are

Fig. 26.15 Example of an empirical (circles) and theoretical (curve)
semi-variogram
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Example 26.10 Variogram analysis of AI outbreaks in northern Vietnam
data = Vietnam

For the region in the north of Vietnam, height above sea level was measured at a single location within
each district.  The current analysis  is aimed at  summarising the spatial  dependence between height
measurements at locations different distances apart using semi-variogram analysis, and was conducted
using the gstat package of the R software.

The semi-variance values of all pairs of observations are shown in Fig. 26.16a. It suggests that there
may be some outliers for smaller distances. Fig. 26.16b presents the semi-variogram for the data. It
shows that there is spatial dependence since semi-variance increases with distance between pairs of
point observations. As the values do not seem to level out at a particular semi-variance value, it is
likely that the data are subject to non-stationarity. Fig. 26.16c represents the results after detrending the
values (ie removing a possible longer distance trend). The resulting pattern seems more likely to reach
an upper maximum value or sill, but the theoretical variogram function does not level out. Fig. 26.16d
shows a set of 4 directional variograms based on the detrended values. While the patterns vary slightly,
it cannot be concluded that there is strong directionality. But there is a difference in the variability of
semi-variance estimates which are lowest for the 135 degree angle.
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often subject to inherent spatial dependence which is unlikely to ever be completely explained
by  exposure  factors.  First-order  (or  large-scale)  spatial  effects  could  be  modelled  using
coordinate  locations  as  covariates,  and  second-order  (or  small-scale  effects)  using  the
covariance  structure.  A  spatial  covariance  structure  can  be  parameterised  using  parametric
functions  of  distance  which  are  informed  by  kriging  models  (also  called  geostatistical
approach).  If  the  data  relate  to  areas  (aggregated  at  centroid  locations  for  each  area),  this
approach would inappropriately assume that observations have been made at locations between
neighbouring area centroids.  In  this case,  spatially autoregressive models are more suitable,
which reflect the similarity in response values in the covariance structure. This is done through
SAR or CAR autoregression models. The dependence can be expressed using spatial moving
average  or  spatial  lag models  (the latter  might  be lagged on response or  specific  exposure
variables).  Both,  Waller  &  Gotway  (2004) and  Schabenberger  &  Gotway  (2005) provide
examples of applications of linear regression modelling techniques for spatially autocorrelated
data. In linear mixed modelling, the observed exposure factors are represented as fixed effects
and the unobserved ones as random effects. The latter means that instead of aggregating all
unexplained variation into the general error term, a random effect is used to separate out any
structured error component. In the presence of spatial variation which cannot be captured by
fixed effect exposure factors, the random effect can have a spatial covariance structure. The
associated estimates are obtained using restricted maximum likelihood estimation. A detailed
discussion of the approach is provided in Littell R et al (2006) and Schabenberger & Gotway
(2005).

With binary,  binomial  or count response variables,  the generalised  linear  modelling (GLM)
approach is used, and second-order (or small-scale) spatial variation can be modelled through
the covariance structure implemented as a random effect in a generalised linear mixed models
(GLMM).  The  estimation  algorithms  which  need  to  be  used  include  quasi-  and  pseudo-
likelihood, as well as Bayesian methods. Within a Bayesian analysis framework,  Besag  et al
(1991) recommended the use of a spatial trend term, a spatially correlated heterogeneity term
and  an  uncorrelated  term  (together  called  convolution  prior).  A  detailed  description  of
developing various types of fully Bayesian spatial regression model using R and WinBUGS is
provided  in  (Lawson,  2009).  Among  the  non-Bayesian  approaches,  generalised  additive
mixed models (GAM) and geographically weighted regression (GWR) methods can also be
applied to take account of spatial dependence. The principle of GWR is that data are weighted
according to distance from any point in the dataset by using a spatial kernel (Fotheringham et
al, 2002). It could be considered a disadvantage of this method that the mathematical form for
the kernel and its bandwidth need to be specified, and particularly the latter will have strong
influence on the model’s coefficient estimates. GAM apply non-linear functions to the predictor
variables, and they can also include random effects  (Wood, 2006). As with GWR, somewhat
subjective  choices  have  to  be made in  relation  to  the  mathematical  form of the non-linear
relationships which will then often strongly influence the analysis result.

The choice for a particular model is informed by a variety of methods, including assessment of
the residuals and likelihood-based information criteria such as Akaike’s information criterion
(AIC)  or  Bayes’  information criterion (BIC).  These are calculated on the basis of  both the
deviance  and  the  number  of  variables  in  the  model  and  usually  the  smaller  the  value,  the
‘better’  the  model  fit.  Schabenberger  and Gotway  (2005) describe  various scenarios  where
these values need to be used cautiously when comparing different models — in particular when
applied to multilevel models. Neither of them is appropriate for comparing Bayesian models,
and the deviance information criterion (DIC) should be applied instead (Banerjee et al, 2004).
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The statistical significance of the coefficients is assessed using the Wald test or likelihood ratio
tests.  The  residuals  need  to  be  examined  for  the  presence  of  spatial  variation.  Such  an
assessment  can  be  performed  by  visual  examination  of  mapped  residuals.  A  quantitative
analysis is usually done by calculating Moran’s  I  or generating an empirical semi-variogram
from the residuals. The results should be interpreted cautiously, as it is not possible to clearly
determine whether the particular result was caused by the underlying spatial process or is an
artifact resulting from the regression estimation process (Schabenberger & Gotway, 2005). 

Example 26.11 Spatial regression modeling of AI outbreaks in northern Vietnam
data = Vietnam

The same data on AI outbreaks in a northern region of Vietnam was used for the current analysis. The
response variable is the proportion of communes that experienced AI outbreaks between 2004 and 2006
for each district within the study region. Based on the descriptive risk maps presented in Pfeiffer et al,
(2007) it appears that disease risk is not randomly distributed which was later confirmed s tatistically by
applying various spatial cluster analysis methods, including the spatial scan statistic and Moran’s I. The
objective now is to identify factors  that might  be associated with AI outbreak risk and potentially
explain the spatial heterogeneity of disease risk. The factor considered in this analysis is the density of
ducks at district level. The analyses were conducted using the packages nlme, lme4 in the R software,
and the statistical  software WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs/)  for  the fully Bayesian
modelling.

(continued on next page)
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Example 26.11 (continued)
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Fig. 26.17 Spatial regression modelling of the relationship between the proportion of 
communes with AI outbreaks and duck density at district level within a northern region
of Vietnam (continued on next page)
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Example 26.11 (continued)

The relationship between the two variables AI outbreak proportion and duck density is presented in the
scatter plot in Fig. 26.17a. As a first step, a generalized linear model analysis with a binomial link
function  was  conducted.  The linearity of  the relationship between the two variables  was  tested as
follows. The continuous-scale duck-density variable was re-expressed as a new variable recoded into 4
equal-interval groups which were then included in separate models as a continuous and as a factor
variable and model fit was compared with the likelihood ratio statistic. Including duck density as a
factor variable did not improve the model fit and it was therefore concluded that it could be modelled
as a linear effect, using the original continuous-scale variable. 

The  results  of  this  analysis  indicate  that  duck  density  is  positively  associated  with  AI  proportion
(Model 1: β=0.0021, P<0.001). Controlling for overdispersion resulted in only a slight change of the P-
value for the coefficient of the fixed effect variable duck density. The residuals of this model appear to
be clustered in space as shown in Fig. 26.17b. The visual impression is confirmed by applying Moran’s
I to the residuals (I=0.25, p<0.001). Inclusion of province as a random effect in the model results in a
coefficient for duck density of 0.0018 (Model 2: p<0.001). The random effect was then further adapted
to the data by using a spatial covariance structure which was estimated using the penalized quasi-
likelihood method.  A Gaussian distance weighted  covariance structure was  used,  and the resulting
coefficient for duck density was 0.002 (Model 3: p<0.001). 

The residuals for  this model  are clustered by province as shown in the trellis plot in Fig.  26.17c.
Finally, a fully Bayesian approach resulted in the risk map presented in Fig. 26.17d. In this analysis, a
convolution prior involving a spatial  and a non-spatial  random effect  was applied as described by
Besag  et al (1991). A nearest neighbour matrix was used to represent the spatial dependence in the
data, and the regression effect for duck density became 0.0022 (Model 4: Bayesian 95% CI 0.0005-
0.004). 

The simulation was based on two simulation chains, each consisting of 20,000 iterations in addition to
a burn-in phase of  5,000 iterations.  The potential  scale  reduction factor  Rhat  (indicating potential
further reduction in the confidence interval given an infinite number of iterations) was between 1 and
1.1 for all parameters indicating good mixing and convergence of the chains, with only one parameter
having an effective sample size of less than 100 (Gelman A & Hill J, 2007). The residuals are presented
in Fig. 26.7e, and show clustering of high values along the northern and southern borders of the study
area.  Comparing  the  results  from  these  4  models  indicates  that  duck  density  at  district  level  is
associated with an increased risk of communes within districts experiencing AI outbreaks,  and that
given the similarity of the coefficients and their significance levels both the effect  estimate and its
variance are unaffected by spatial dependence. 
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