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CONCEPTS OF INFECTIOUS 
DISEASE EPIDEMIOLOGY
Chapter contributed by Ian Dohoo and Graham Medley

OBJECTIVES

After reading this chapter, you should be able to:

 1. Understand why infectious disease data are fundamentally different from other forms of data
previously dealt with in this text.

 2. Know the terms used to describe infection and disease processes and understand the basic
principles of disease transmission.

 3. Understand the principles of modelling infectious disease transmission including SIR and
SEIR models

 4. Understand the concepts of effective contact rate and R0.

 5. Be able to estimate  R0 from epidemiologic data using a variety of approaches including
regression and mathematical modelling.
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27.1 INTRODUCTION

In previous chapters, we have examined methods for analysing data in which we assumed the
observations were independent (Chapters 14-19), or had some dependency (Chapters 20-26).
This  dependency  may  have  arisen  as  a  function  of  the  observations  sharing  a  common
environment,  being  repeated  measures  on  the  same  individual  or  being  spatially  related.
Infectious diseases are different in that the dependency among individuals is related to the state
of other individuals in the population. A new infection can only arise if the agent is present in
one or more other individuals in the population (or is present in the environment as a result of
shedding by other individuals). Thus, the probability that a susceptible individual will become
infected in a given time period depends on the number of other individuals in the population
shedding the agent.

Infectious diseases have a number of other unique features which must be considered when
analysing these data.

• The system is dynamic. The probability of new infections occurring changes over time as
the  mixture  of  infectious  and  susceptible  individuals  in  the  population  changes.
Additionally, the dynamics of the infection process are non-linear. In practical terms, this
means  that  the  system  does  not  respond  in  proportion  to  changes.  For  example,
vaccinating 50% of a population with an effective vaccine will reduce the incidence of
new infections by more than 50%.

• There  is  heterogeneity  among  populations  due  to  the  stochastic  nature  of  infection
transmission. Two populations with exactly the same starting conditions (ie population
structure  and  environment,  number  of  infectious  individuals  etc)  could  have  very
different  disease  outbreaks  due  to  the  fact  that  transmission  of  the  agent  among
individuals is a stochastic process. The probability of transmission depends on the rate of
contact between individuals and the probability of transmission occurring if contact is
made.  However,  for  any given  probability,  a  range  of  possible  outbreak  scenarios  is
possible. (The impact of this is shown in Section 27.4.4.)

• Threshold effects are present. If one infected individual passes the infection (on average)
to less than one other individual, the infection will die out. The number of new infections
arising  from  one  individual  in  a  fully  susceptible  population  is  called  the  basic
reproductive number (R0) and this is discussed in more detail in Section 27.4.

• In susceptible populations, the increase in the number of infected individuals is often
exponential (ie has a constant doubling time) until a substantial portion of the population
has been exposed and developed some immunity.

• Infectious  agents  are  continually  evolving.  For  example,  pathogenicity  of  an  agent,
susceptibility to drugs, etc will change over time. Given the relatively short life cycle for
many agents, this evolution may take place quite rapidly.

As a consequence of these features, interventions (eg vaccination, medication) can dramatically
affect the disease process in a population. In particular, interventions targeted at a proportion of
a population will have an effect on those individuals not targeted.

It  is  also  important  to  distinguish  between  microparasitic and  macroparasitic infections.
Microparasites are essentially those infectious agents that are too small to count individually, so
that  modelling  the  parasite  population  explicitly  is  not  practically  possible.  Thus,  when
modelling such  infections,  it  is  necessary  to  consider  the state  of  the host  (eg susceptible,
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infected, immune) leading to compartmental models. Macroparasites are those infections for
which there is sufficient information and reason to consider modelling the parasite population
explicitly using intensity models where the principal outcome is a measure of the number of
parasites (eg parasite burden, tick count). 

At a modelling level, the distinction between microparasite  and macroparasite  is essentially
pragmatic. Some infectious agents (eg Theileria sp.) may be treated as either largely depending
on  the  data  available  and  the  problem  being  addressed.  This  chapter  will  focus  on
compartmental models for microparasitic infectious diseases. For information on macroparasitic
infections, the reader is referred to Anderson & May (1991); Cox (1993).

Microparasite infections tend to be associated with the following biological characteristics.
• The  agents  are  generally  small  and  (relatively)  antigenically  simple  (eg viruses  and

bacteria).
• The agents generally multiply rapidly within the host resulting in either death of the host

or the production of immunity.  Pathogenicity tends to be high. Immunity tends to be
strong and long lasting. The duration of infection (ie before death or immunity) can be
short.

• Sexual reproduction (recombination) is relatively rare and not obligatory; strain variation,
for example, in pathogenicity is often considerable.

• If the duration of infection is short, the prevalence of infection is low, and persistence of
infection within a population requires continual supply of susceptible hosts (eg through
births or antigenic change).

In contrast, macroparasitic infections tend to have the following characteristics.
• The agents are large and (relatively) antigenically complex (eg nematodes, lice, ticks).
• The agents have complex life cycles involving multiple hosts or free-living stages, and

multiply at different rates within the different life-cycle stages.
• The agents have the capacity (and often requirement) for sexual reproduction, and may

additionally have asexual multiplication stages.
• Immunity to the agents is often relatively ineffective.
• The agents often have apparent low pathogenicity individually,  but the disease impact

increases with the numbers (burden) within a host (eg gastro-intestinal parasites). The
burden of infection is key to the impact that these agents have on the host.

• At the population level, macroparasitic infections are characterised by high prevalence of
infections  with  the  number  of  agents  present  within  the  host  dependent  on  external
factors that affect the life cycle of the agent (eg weather).

These are biological characteristics or general tendencies rather than fixed rules. Examples of
archetypal  microparasite  and  macroparasite  are  rinderpest  and  Ascaris, respectively.  Many
bacterial and protozoan infections sit somewhere between the 2. For example, bacteria causing
bovine intramammary infections may have low pathogenicity (rarely kill  the host), generate
little immunity in the host and may be prevalent at quite high levels. Nevertheless, they are
modelled using compartmental models because it is not possible (or necessary) to quantify the
number of bacteria present.)
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27.2 INFECTION VS DISEASE

Infection and  disease must not be confused. While infection is necessary for disease, not all
infected animals will become diseased (ie develop clinical signs). (Note The fact that infection
is a necessary cause for disease is a function of the fact that we name diseases etiologically—eg
Salmonella sp is a necessary cause of salmonellosis. If diseases were named according to their
manifestation, specific agents are no longer necessary causes—Salmonella sp is not a necessary
cause of diarrhoea.). The time courses of infection and disease are shown in Fig. 27.1.

The  states  of  infection  are  as  follows.  A  susceptible individual  becomes  infected  by
transmission (see Section 27.3) of the agent from an infectious individual. The individual then
enters a latent period when the infectious agent is present but the individual is not capable of
transmitting the infection. This latent period may be very short (eg approximately one day for
avian  influenza  or  very  long  (eg many  years  for  Mycobacterium  avium  subspecies
paratuberculosis—or MAP for short). (Note for non-infectious diseases, the term ‘latent period’
refers  to  the  time  from the  onset  of  detectable  changes  (eg lesions  present  or  changes  in
biochemical parameters evident) to the onset of clinical signs. This is also referred to as the
asymptomatic disease period). The latent period is followed by an  infectious period during
which the host is capable of transmitting the agent. Again, this may be short (eg approximately
2 weeks for the infectious salmon anemia virus) or long (years for MAP). The lengths of the
latent  and  infectious  periods  cannot  be  observed  directly  and  are  usually  estimated  from
experimental  infections.  The  infectious  period  ends  when  the  host  is  removed  from  the
population (eg dies,  culled  or  sold)  or  becomes  non-infectious  through  an intervention  (eg
treatment) or the development of immunity which either eliminates the agent from the host or
sufficiently  suppresses  replication  to  effectively  prevent  transmission.  For  some  infections,
immunity may be long lasting (eg canine distemper) while for others the individual may quickly
return to a susceptible state (eg intramammary infections).

The states of disease are as follows. Once a susceptible individual becomes infected, it enters

Fig. 27.1 Time courses of infection and disease processes
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the incubation period and remains there until signs of disease develop or immunity develops
(in which case the individual may never be symptomatic). The length of the incubation period
cannot be observed directly unless the timing of infection is known. Methods for estimating the
incubation period from outbreak data have recently been reviewed (Cowling et al, 2007). The
symptomatic period ends when the host is removed (eg dies or culled) or recovers (with or
without treatment). 

The relationship between the  latent period and the  incubation period is  important  from a
disease control perspective. If the latent period is shorter than the incubation period (eg foot-
and-mouth disease), there will be asymptomatic individuals which are shedding the agent and
this complicates disease control (it is not adequate to focus solely on symptomatic animals). If,
on the other hand, the latent period is longer than the incubation period (eg canine heartworm)
prompt treatment or removal of animals as soon as they develop signs can reduce/prevent the
spread of disease. Individual animals vary considerably in their time course of infection and
disease. This variation may be related to environmental factors (eg nutrition), host genetics (eg
breed), agent genetics (eg strain), dose of infection etc.

27.3 TRANSMISSION

From the  viewpoint  of  the  agent,  it  must  transmit  in  order  to  survive  because  no  host  is
immortal. There are a number of routes whereby transmission of an agent from an infectious
individual to a susceptible one can occur.

• vertical  transmission—transplacental  or  perinatal  transmission from a mother to  her
offspring (eg Neospora caninum in cows)

• horizontal transmission
• indirect transmission

• vector borne—often by insect vectors but may also be by contaminated needles or
other  fomite  (eg mosquito  transmission  of  West  Nile  virus,  transmission  of
Staphylococcus aureus by milking machine).

• reservoir  species—transmission  of  an  agent  by  another  species  (eg rabies
transmission from an infected bat to cattle).

• direct transmission
• close  contact—transmission  requires  close  contact  between  2  individuals  (eg

bovine tuberculosis).
• casual  contact—less  intimate  contact  is  required  for  transmission  (eg agents

associated with respiratory disease complex in feedlot calves).
• sexual transmission—requires sexual contact (or spread by artificial insemination)

(eg Trichimonas fetus in cattle).
• air/water borne transmission—can occur over long distances by the agent being

carried by wind or water movement (eg foot-and-mouth disease).
• contaminative transmission—the agent can survive for prolonged periods of time

in the environment and exposure of susceptibles is from environmental exposure
(eg anthrax).

The rest of this chapter will focus primarily on diseases with direct transmission, particularly
those spread through close or casual contact or sexual transmission. 

The  probability  of  direct  transmission  taking  place  depends  on  the  frequency  of  contacts
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among individuals in the population and the probability of transmission occurring given that
contact is made. Contacts are defined as those encounters between individuals that could (but
not necessarily would) result in the transmission of the agent if one individual was infectious
and the other susceptible. For  Trichimonas fetus, this requires the mating of a cow by a bull.
The  contact rate (c) is defined as the number of contacts that an animal makes with other
animals  in  one  time  period.  Table  27.1  presents  a  list  of  parameters  and  definitions  used
throughout this chapter,  along with a simple set of calculations,  based on the first day of a
hypothetical outbreak, showing their relationships.

Table 27.1 Infectious disease parameters

Parameter Description Assumption/Calculation

S, I, R, N the numbers of susceptible, infectious, removed and 
total number of animals in the population (respectively)

S=996, I=4, N=1000

c rate of contacts an animal makes with other animals in 
one time period

10/fish/day

p probability of transmission of the infection if one animal
is infectious and one is susceptible

0.15

cp rate of ‘effective’ contacts 1.5/fish/day

I/N proportion of population that is infectious 4/1000=0.004

λ=cp(I/N) rate at which susceptible animals becomes infectious
- this is equivalent to our usual definition of I—
(incidence rate) (see Section 27.1)
- this is also called the ‘force of infection’ or 
‘transmission rate per susceptible’

1.5x0.004=0.006 new inf. 
per fish per day 
(or 0.006 per fish-day)

i=λS Incidence=rate at which new infections are occurring in
the population 
- this is the population incidence rate (designated i to 
differentiate it from I used elsewhere in this book)

0.006x996≈6 new inf per day

d Duration=duration of the infectious period 5 days

cpd rate of effective contacts per infectious period 1.5x5=7.5/fish/period

s=S/N proportion of the population that is susceptible
Note In a completely susceptible population S0=N so 
s0=1

996/1000≈1

R0=cpd R0=basic reproductive number=# of new cases that 
arise from an infectious individual in a completely 
susceptible population.

R0=1.5x5=7.5

Rt=cpdst Rt=effective reproduction number=# of new cases 
arising from each infectious individual at time t.
Note st=St/N
Note at t=0, s=1, so R0=cpd

Note The calculations in this table pertain to the first day of the hypothetical outbreak. On the second day,
there will be 10 (6+4) infected fish so λ becomes 1.5*0.01=0.015 and i increases to 0.015*990=14.85.
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In  animal  populations,  the  nature  and  frequency  of  contacts  is  heavily  determined  by  the
structure and management of the population. Many domestic animals are kept in situations of
high density, resulting in high contact rates (as a result of casual contacts). How the animals are
managed will also affect  contact patterns. Cows kept in a closed herd and bred by artificial
insemination will not contact  T. fetus. On the other hand, cows kept on a community pasture
with multiple bulls may have many potential contacts. Mixing is considered  homogeneous if
all  animals  have  an  equal  chance  of  contacting  all  other  animals.  Mixing  is  considered
heterogeneous if, for reasons such as behaviour, management  etc, animals are more likely to
contact other animals with certain characteristics than individuals randomly chosen from the
population (eg contact between cattle varies with stage of the oestrus cycle).

The  probability of transmission (p) is defined as the proportion of contacts which result in
transmission if one of the individuals is infectious and the other susceptible. The probability of
transmission depends on the characteristics of the agent, the nature of the contact and the degree
of infectiousness  of the infected animal.  The product of  the contact  rate  and probability of
transmission (cp) is called the effective contact rate.

27.4 MATHEMATICAL MODELLING OF INFECTIOUS DISEASE TRANSMISSION

Terminology/Acronyms
Throughout this chapter, the term I is used to denote the number of infectious
individuals in a population. (It  does not represent  an incidence rate  as used
elsewhere in the book). The term R is used to denote the number of ‘removed’
individuals. R is also used for the reproductive number, but in this case it will
always have a subscript R0 or Rt.

Mathematical models of disease transmission may be developed and used for 3 reasons (Green
& Medley, 2002).

• Conceptual  models  may be  used  to  better  understand  the  effects  of  interventions  in
disease control processes. For example  Medley  et al (2008) used conceptual models to
evaluate the effects of control programs based on active surveillance.

• Conceptual models may be combined with data derived from experimental research to
develop  predictive  models  of  disease  transmission  within  populations  having  set
characteristics.  These  can  then  be  used  to  estimate  the  effects  of  disease  control
interventions. For example see Tildesley et al (2006).

• Conceptual models may be combined with observed data (eg from naturally occurring
outbreaks) to gain insights into the epidemiology of the disease in those populations and
to estimate parameters such as  R0.  This chapter focuses on this application of disease
models.

Generally,  disease models may be  deterministic or  stochastic. The former produce a single
outcome for a given set of parameters. The latter incorporate the chance nature of events (such
as transmission) and produce  a probability distribution of  possible outcomes  (Ball  & Neal,
2002; MacKenzie & Bishop, 2001). The mean of the stochastic model is not always the same as
the  deterministic  model,  and  might  show that  the  outcome has  a  bimodal  distribution;  for
example  when  a  highly  infectious  individual  is  introduced  into  a  susceptible  population,
deterministically the early outcome is an exponentially increasing epidemic, but the stochastic
outcome is bimodal with a peak of probability at no epidemic (if the initial invasion happens to
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fade out by chance) and a peak of probability at an epidemic level. In this case, the mean of the
stochastic process is equal to the deterministic model.

The simplest model is the  Susceptible-Infectious-Recovered (SIR) model as shown in Fig.
27.2.  In  an  SIR  model,  susceptible  animals  (S)  are  assumed  to  become  infected  (and
immediately infectious) at a defined rate (λ). Infected animals (I) are assumed to recover (and
be immune) at a defined rate (γ). Recovered animals (R) are assumed to remain in that state.
The total population size is N=S+I+R. 

An SIR model  can be used to  define the key parameters  required  for  modelling infectious
diseases. These are all listed in Table 27.1, along with a simple example of their calculation.
This  example  assumes  that  an  infectious  agent  is  introduced  into  a  net  pen  of  completely
susceptible Atlantic salmon with the following specific assumptions used in the calculations.

• There are 1,000 fish in a net pen and they mix homogeneously (N=1000).
• The contact rate among fish is 10 contacts per fish per day (ie each fish has 10 contacts

with other fish on a daily basis) and is homogeneous within the pen.
• A new infectious agent is introduced into the pen and it initially infects 4 fish.
• The probability of transmitting the disease during any one contact is 15% (0.15).
• Fish  are  infectious  for  5  days,  at  which  point  they  recover  and  develop  sufficient

immunity to protect from further infection.

27.4.1 Incidence rates

There are 2 incidence rates presented in Table 27.1. λ corresponds to the usual incidence rate (I)
described  in  Chapter  2.  In  the  example  population of  1,000 fish,  there  are  1,500 effective
contacts happening each day, but only 0.4% of them involve infectious fish, so the chance of an
individual susceptible fish becoming infected on this first day is only 0.006 (equating to 6 fish
becoming infected on that day). From the perspective of a susceptible fish,  λ represents their
chance of getting infected in a small time period. This is sometimes referred to as the force of
infection.

As previously noted, the incidence rate (i) in Table 27.1 is different from the use of the term I
elsewhere in the book. It is the population incidence rate and represents that rate at which new
infections are occurring in the whole population. As the proportion of the population that is
susceptible declines, i will fall, even though λ might remain high.

27.4.2 Basic reproductive number (R0)

As noted  in  Table  27.1,  the  basic  reproductive  number  (R0) represents  the number  of  new
infections which arise, on average, from one infected individual when the entire population is
susceptible (ie at the beginning of an epidemic). 

Fig. 27.2 A simple SIR model with two transmission rates
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R0=cpd Eq 27.1

R0 is a product of the rate of effective contacts (cp) and the duration of the infectious period (d).
It  is  a  key parameter  for  understanding  infectious  diseases.  If  R0 >1,  then  the  infection  is
expected to spread because each infected individual generates, on average, more than one new
infection.  If  R0 <1,  then  the  infection  is  expected  to  die  out.  However,  as  noted  above,
transmission is a stochastic process and there is no guarantee that disease will spread if R0 >1,
or that there will not be additional cases with R0 <1. In addition, R0 is an average value for a
population and there may very well be clusters of individuals within a population in which the
R0 could be much higher or lower than the average (heterogeneous contact).

As the  infection  spreads  in  the population and some individuals  move from susceptible  to
infectious  and  then  to  recovered,  the  population  is  no  longer  completely  susceptible.  The
effective reproduction number at time t (Rt) can be computed as:

Rt=cpds t=R0 s t Eq 27.2

where st=S/N (the proportion of the population that is susceptible at time t). This chapter will
focus on R0 as a measure of transmissibility of infection among animals within a population (eg
pen, herd)  but it  can also be used at  the herd level  to quantify transmission between herds
(Medley et al, 2008; Stegeman et al, 1999; Van Nes et al, 1998).

27.4.3 R0 and vaccination

Vaccines are often used to prevent transmission of infection and/or the development of disease
in populations. If a vaccine only prevents the development of disease and has no impact on the
spread of the infection (eg tetanus toxoid), it will have no effect on the dynamics of the agent in
the  population.  We  will  focus  on  the  situation  in  which  a  vaccine  has  an  effect  on  the
transmission of the agent. If a vaccine is 100% effective at preventing infection and is applied
to all individuals in the population, then no new infections will occur. However, vaccines are
rarely 100% effective and it is often not possible to vaccinate all individuals in a population.

If a proportion (f) of a population is vaccinated with a vaccine which is fully protective, the
effective reproductive number (R*) is:

R *=R01− f  Eq 27.3

R* will be less than one when f  > 1-1/R0, so in this case, the infection will be expected to die
out. If  you have an estimate of the expected  R0 for an agent in a given population, you can
estimate the vaccine coverage that you will need to prevent the spread of infection (sometimes
called the critical percentage (denoted fcp)). For example, if R0 is 5, then fcp=1-1/5 = 0.8 or 80%
of the population needs to be vaccinated with a 100% effective vaccine to prevent the spread of
infection.  Coleman & Dye (1996) estimated the critical percentage for rabies in dogs (using
data from outbreaks in both rural and urban domesticated dogs in 4 countries) to be between
39% and 57%.  This is the principle which underlies the concept of  herd immunity,  which
states that you do not need to vaccinate every individual in a population in order to prevent an
epidemic.

If a vaccine only protects a proportion of individuals (h) (but fully protects those individuals),
then R*=R0(1-hf) so the proportion of individuals which needs to be vaccinated becomes:
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f cp=
1−1 /R0

h Eq 27.4

If a vaccine is only partially protective, it may reduce the susceptibility of an individual and
hence, reduce the probability of transmission by a factor (designated  z1) from p to z1p. It may
also reduce either the duration of the infectious period by a factor (z2) and/or the infectiousness
of an infected individual by a factor (z3). If a vaccine has all of these effects, R* becomes:

R *=R0 z1 z2 z3 and f cp=1−1 /R * Eq 27.5

For example, the effects of vaccination on transmission parameters for highly pathogenic avian
influenza have been investigated (van der Goot et al, 2005). These concepts are important not
only  for  modelling  the  effect  of  vaccination,  but  also  in  planning  of  field  trials  to  assess
effectiveness of vaccination (see Section 11.10).

27.4.4 Limitations of R0 

As noted  above,  if  R0 >1,  you  expect  the  infection  to  spread  in  a  susceptible  population.
However,  disease transmission is a stochastic process (there is an element of ‘chance’ as to
whether  or  not  transmission  will  occur).  If  an  infection  is  introduced  into  a  homogeneous
susceptible population, the probability of an outbreak (transmission of the infection past the
initial time period) is:

p outbreak =1−1 / R0
I 0 (assuming R01) Eq 27.6

where  I0 is  the  number  of  infectious  individuals  introduced  into  the  population  (at  t=0)
(Keeling, 2005)  . Thus, with  R0=7.5 and a single infection introduced, the probability of an
outbreak is 87%; but if 4 infections are introduced, this rises to >99%.

However,  even if the infection does spread from the initial infectious animals, the size and
timing of the resultant epidemics can vary greatly. Similarly, if R0 <1, there is no guarantee that
additional cases will not be observed in the population. Fig. 27.3 shows a range of possible
epidemic curves for values of  R0 ranging from 0.5 to 2.0. For each value of  R0, 20 outbreaks
were simulated and 5 selected to represent the range of possible outcomes. Each outbreak was
based on a population of 100 susceptible individuals with one infectious individual being added
and duration (d) is 1 day. The solid line represents the expected course of action (deterministic
simulation). Even at R0=0.5, some limited outbreaks occur. At R0=2.0, some outbreaks die out
quite quickly while in others, most of the population becomes infected.

The  consequence  of  these  patterns  for  estimation  of  R0 is  that  a  single  outbreak  provides
relatively little information. (Note From a modelling perspective,  an outbreak means  R0 >1.
From an observed data perspective, an outbreak means that there are more cases of a disease
than expected and this can happen with R0 <1—see panel (a) of Fig 27.3).
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27.5 ESTIMATING R0 AND OTHER INFECTIOUS DISEASE PARAMETERS

27.5.1 Estimating the Probability of Transmission

Estimation of the contact rate (c) and the probability of transmission (p) is difficult. In outbreak
situations, the  secondary attack rate (SAR) is a measure of the probability of transmission.
(Note SAR is actually a risk not a rate.) The SAR is defined as the probability that a susceptible
animal will become infected from the first (primary) case in a population. It is the number of
secondary  cases  (infections  derived  from  the  primary  case)  divided  by  the  number  of
susceptible animals exposed.

SAR=
number of secondary cases

number of exposed individuals Eq 27.7

SARs are usually calculated from data from small scale outbreaks (eg an outbreak in a single
pen of cattle) in situations in which the time at which the index case arose is clear. The problem
in computing the SAR is deciding which cases are secondary. This requires knowledge about
the expected (and minimum and maximum) incubation period of the disease and the latent
period of the infection. The time of infection of the primary case (t0) is estimated based on the
expected incubation period and the latent  period. Secondary cases  are defined as those that
occur between  t0 plus the minimum incubation period and  t0 plus the maximum incubation
period. This is shown graphically in Fig. 27.4.

An alternative approach to estimating  p is to use a  binomial model of disease transmission.

Fig. 27.3 Examples of 6 simulated outbreaks based on R0 values of 0.5 , 1.0, 1.5 
and 2.0 in panels (a) to (d), respectively.
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Rather than basing the probability of transmission on the number of exposed individuals, a
binomial model relates the number of new cases to the total number of contacts with infectious
individuals.  Consequently,  it  may  be  appropriate  when  susceptible  animals  have  multiple
contacts with potentially infectious individuals. The probability of transmission during any one
contact is p so the probability of avoiding transmission is q=(1-p). The probability of avoiding
infection from n potentially infectious contacts is qn so the probability of becoming infected is
1-qn=1-(1-p)n.  These  models  can  be  extended  over  time  by  assuming  that  the  binomial
transmission probability is applicable in discrete time units. These are called  chain binomial
models and include the Reed-Frost model and Greenwood model. The former assumes that
exposure to 2 or more infectious individuals in the same time period are independent events
whereas  the  Greenwood  model  treats  them  as  a  single  exposure.  Although  conceptually
appealing for understanding disease transmission, binomial models have not been applied to
estimating p.

27.5.2 Estimating R0

As noted above,  R0 is specific for a given agent in a specified population at a point in time.
Nevertheless,  estimates of  R0 from some populations can provide some insight into what to
expect in new situations. However,  given the range of possible outbreaks scenarios that are
consistent with a single value of R0, estimation of R0 from a single outbreak will be of limited
value.

There  are a number of approaches  to estimating  R0 and some of  the more commonly used
approaches will be discussed here. See Anderson & May (1991); Becker (1989); Diekmann &
Heesterbeek (2000); Dietz (1993) for more complete coverage of these methods.

Fig. 27.4 Estimation of a secondary attack rate based on knowledge about 
expected latent and incubation periods
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B → D = minimum incubation period

B → E = maximum incubation period

Secondary Cases

D - E = period of secondary cases

time

A = estimated time of infection of primary case

B = expected time that primary case  became infectious

A → C = average incubation period

C = primary case first detected

B → C = average latent period
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27.5.3 Estimating R0 from the exponential phase of an outbreak

During the early stages of an outbreak, the number of new cases occurring is not limited by the
availability of susceptibles. This phase is referred to as the exponential phase and the doubling
time (td=time it takes for the number of new cases to double) is related to R0 as follows:

t d=ln2 d /R0−1≈0.7 d / R0−1 Eq 27.8

where  d is the duration of the infectious period. (This assumes that the outbreak is growing
exponentially,  which  in  turn  depends  on  the  number  of  susceptibles  not  being  depleted
(Keeling, 2005) . From this, if an estimate of td can be derived from the data and an estimate of
d is available from experimental research, then:

R0=0.7d / t d1 Eq 27.9

One approach to estimating td is to fit an exponential regression model, with time as the only 
predictor, to the data from the exponential phase of an outbreak and:

t d=ln 2 / and R0=d1 Eq 27.10

where  β is  the slope from the  regression.  If  the  infection  process  involves  both latent  and
infectious periods, d is replaced by the generation interval which is the sum of the infectious
and latent periods. Estimates of  td (or  R0) using this approach are sensitive to the choice of
distribution  for  the  duration  of  the  generation  interval  (Wallinga  &  Lipsitch,  2007).  This
approach was used to estimate R0 from a subset of 9 cages from infectious salmon anemia (ISA)
outbreaks in eastern Canada (Hammell & Dohoo, 2005) (Example 27.1).

27.5.4 Estimating R0 from the peak of an outbreak

At the peak of an outbreak, where the epidemic curve switches from increasing to decreasing
(ie the number of new infections in a time period switches from rising to declining) then Rt=1
(ie one new infection per existing infection. Because Rt=R0*st=1, then:

R0=1/ st Eq 27.11

where  st is  the proportion of the population susceptible at  the time of the peak (called the
critical proportion susceptible).

27.5.5 Estimating R0 for endemic diseases

So far, we have considered the situation where an infection is introduced into a population and
gives rise to an outbreak or epidemic. However, most infections are endemic (ie they survive
continuously in a population).  Even if there are fluctuations in the incidence over time, the
continual existence of the infection means that each infection produces, on a long term average,
one other infection (ie Rt=1 and therefore st=1/R0). Note that this is the same situation as at the
peak of an epidemic. For a disease to remain endemic, there must be a supply of susceptible
individuals—the reason that the epidemics in Fig. 27.3 (c) and (d) became extinct was that there
were no susceptibles left in the population. The 2 principle sources of susceptible animals are
birth and loss of immunity. (The endemic state is actually at a dynamic equilibrium created by
the tension between supply and loss (through infection) of susceptibles.)
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At  endemic equilibrium, the average  age  at  which individuals become infected  (A) and the
average  lifespan  of  individuals  (L)  can  be  used  to  estimate  λ (the  incidence  rate  of  new
infections), as well as R0 and s* (the proportion of the population susceptible in that steady state
situation).

=1/ A R0=L / A s *=A/ L Eq 27.12

This approach only works when L is a threshold (ie all animals hit age  L and then die). This
would be true for some animals (eg those that are slaughtered at a predictable age) but not

Example 27.1 Estimation of R0 from the exponential phase of an outbreak
data = isa_day

These data are a subset (9 cages from one site, but only data from 4 cages are shown in Fig 27.5) of the
mortality data that were collected during the initial outbreaks of infectious salmon anemia (ISA) in
eastern Canada. As such the population was assumed to be completely susceptible. Dead fish were
collected by divers on a periodic basis and the daily mortality was computed as the number of dead fish
divided by the interval since the last dive (eg if 15 dead fish and the last dive was 3 days ago, it was
assumed that the daily mortality was 5 per day). Cages had initial populations at risk of approximately
8,000 to 10,000 fish. The generation interval was estimated to be approximately 21 days and consisted
of a seven day latent period and a 14 day infectious period (Mikalsen et al, 2001; Moneke et al, 2005).

The above graphs are spike plots of daily mortalities with the predicted values from an exponential
regression overlaid (for 4 of the 9 cages).

The individual estimates of  β,  td, and R0 for these 4 cages are shown below.  The values of  R0 for all
cages (n=9) from this single site ranged from 1.65 to 2.60 with an average of 2.27.

cage 77 78 79 80 81 82 83 84 86 Avg.

β 0.076 0.076 0.070 0.031 0.045 0.068 0.063 0.070 0.045 0.060

td (days) 9.17 9.12 9.97 22.53 15.26 10.18 11.05 9.91 15.50 12.52

R0 2.59 2.60 2.46 1.65 1.95 2.43 2.32 2.47 1.94 2.27

Fig. 27.5 Spikeplots of daily mortalities observed in 
four cages
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generally  true  (eg a  dairy herd).  The estimate of  R0 is  an overall  estimate representing an
average level of transmission within different age groups and between age groups. Knowledge
about contact rates is required to come up with estimates of age-specific estimates of R0. These
assumptions limit the applicability of this procedure for estimating R0 for endemic diseases but
it has been used successfully in situations in which animals are maintained as a distinct group
for a considerable portion of their lifespan (Laegreid & Keen, 2004).

The  average age of infection can be determined from serologic profiles (eg Dietz, 1993), or
clinical case data provided most infections produce clinical disease and there is a good system
for recording those data. Using serologic data assumes that animals are sampled sufficiently
frequently to determine when infection occurred. A related approach for using limited serologic
data is based on the final size of the infected (recovered) population (Becker, 1993).

If  data  about  the  age-serologic  profile  of  an
infection  within  a  population  are  available,  it  is
possible  to  derive  an  estimate  of  i (population
incidence  rate).  The  proportion  remaining
susceptible at age=a (denoted sa) can be determined
from a survival curve plot (eg Fig. 27.6). The slope
of this curve at  age=a is  related to the incidence
rate  of  infections  (i)  according  to  the  following
relationship:

slopea=ds/da=−i sa Eq 27.13

The  approach  avoids  the  assumption  that  the
incidence  rate  of  new infections  is  constant  with
age and i can be estimated for different age groups.
Note If only a single age profile at one point in time is available, then time-dependent and age-
dependent changes in i are indistinguishable.

For endemic diseases with a stable prevalence, and for which estimates of both the incidence
and prevalence  are  available,  the effective contact  rate  can be estimated.  From Table 27.1,
i=λS=cp(I/N)S, where i is the incidence rate of new infections in the population and I/N is the
prevalence of infection. Consequently, cp=λ(N/I).

27.5.6 Regression modelling of outbreak data

If data are available from one or more outbreaks, the count of new infections within defined
time periods can be modelled using Poisson or negative binomial modelling regressions (see
Chapter  18).  Given  that  infectious  data  usually  have  extra-Poisson  variation  (ie are  more
variable than would be predicted by a Poisson process), it is usual to model these data using a
negative binomial model.

Fitting a regression model requires ‘recreating’ the epidemic by ‘back calculating’ the time at
which infections occurred from the observed data. This is shown in Example 27.2 for the ISA
data. This example uses point estimates for the duration of the latent and infectious periods but
more complex models may assume a distribution for these values (Bos et al, 2007).

In order to account for the dependency between the number of new infections at time t and the

Fig. 27.6 The slope of a survival curve 
can be used to estimate i at any 
particular age
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state  of  the  population  at  an  earlier  time  period  (in  terms  of  numbers  of  susceptible  and
infectious individuals), an offset is included in the model. The offset represents the state of the
population at the time point when the new infections arose (which may be more than one time
period before if the agent has a latent period). Calculation of the offset required an assumption
about the nature of the contact pattern within the population. If it is assumed that the offset
depends on the proportion of the population that is infectious (I/N) then a density independent
estimate is computed (SI/N). This situation is applicable when contact is driven by behaviour
(eg schooling of  fish)  and does not  depend on the size of  the population.  With this offset
R0=cpd.  On the other  hand,  if  contact  is  assumed to be totally random (completely chance
encounters) then a  density dependent estimate (computed as  SI) is more appropriate. This is
more common for infections for which transmission requires  close contact.  In  this situation
R0=cpdN. For a more detailed discussion of this issue, see Begon et al (2002); McCallum et al
(2001).

Once an estimate of β0 is obtained, R0 can be computed as follows.

R0=e 0 d Eq 27.14

where β0 is the regression intercept and d is the assumed duration of the infectious period.

The  analysis  presented  in  Example
27.2  assumes  that  all  infected  fish
died. However,  this assumption was
unrealistic  because,  in  outbreaks
which  were  left  to  run  their  course
(eg Cage 83—Fig. 27.7), the median
mortality  was  only  6.6%  (Hammell
&  Dohoo,  2005).  The  fact  that  the
outbreak died out after such a small
proportion  of  the  fish  had  died
suggested that many fish had become
immune and not died.

Given the difficulties associated with
measuring  immunity  in  fish,  it  is
impossible  to  determine  what
proportion  of  infected  fish  die  and
what proportion develop immunity. In this case, the only option was to make an assumption
about  the  proportion  of  infected  fish  that  die.  A  sensitivity  analysis  of  this  assumption  is
presented in Example 27.3.

27.5.7 Differential equation models

A very simple  SIR model was presented in Fig. 27.2. More complex models can account for
more  complex  interactions  between  an  agent  and  a  host.  For  example,  a  newly  infected
individual may go through a latent period before becoming infectious. This gives rise to an
SEIR (Susceptible—Exposed—Infectious—Recovered)  model.  Similarly,  individuals  may
either die or recover (with immunity) after the infectious period, giving rise to the model shown
in Fig. 27.8 (Chowell et al, 2007; Keeling & Rohani, 2007; Medley et al, 1993). In this model,

Fig. 27.7 Spike plot of daily mortalities in cage 83
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there are only 3 rate parameters (λ γ δ) but there is an additional probability (probability of
death) which needs to be estimated. Much more complex models can be found in the veterinary
literature, but are beyond the scope of this text. For example, contribution of infections from

Example 27.2 Regression modelling of outbreak data
data = isa_wk

The data are the same as those used in Example 27.1 except that the mortalities were recorded on a
weekly basis and it was assumed that infected fish had a latent period of one week followed by an
infectious period (d) of 2 weeks (Mikalsen et al (2001);Moneke et al (2005)). Data from 9 cages at one
site were used in the analysis.

The outcome of interest for this analysis was the number of new infections (E) in a particular week. It
was assumed that a single infected fish was added to the population at week -3. This individual fish
ultimately generated eight new latent infections in week -2 (E) and these fish in turn became infectious
fish in weeks -1 and 0 (Ia and Ib). Ultimately these eight fish died and were the first cases observed (R)
(week 1). These eight deaths (in week 1) corresponded to new infections in week -2, so the offset for
these new infections was computed from the values of S, I and N from the week before (week -3). For
the analysis  of these data a density independent offset  (SI/N)  was used.  Because  N was  large and
relatively constant for the duration of these outbreaks, use of a density dependent offset would have
produced very similar results. Only records starting from week 0 were used in the regression analysis
because  this  was  the  first  week  for  which  complete  information  about  the  number  of  infectious
individuals was available.

cage Week
Pop. at

risk S E Ia Ib1 R N

81 -3 8120 8119 0 1 0 0 8120

81 -2 8112 8112 8 0 1 0 8120

81 -1 8097 8097 15 8 0 1 8119

81 0 8085 8085 12 15 8 0 8119

81 1 8070 8070 15 12 15 8 8111

81 2 8062 8062 8 15 12 15 8096

81 3 7982 7982 80 8 15 12 8084

81 4 etc

1 infectious weeks 1(Ia) and 2(Ib), I=Ia+Ib

Initially, negative binomial models were fit to each outbreak separately. 

cage 77 78 79 80 81 82 83 84 86 Avg.

β0 0.68 0.56 0.90 -0.05 0.05 0.71 0.42 0.72 0.20 0.48

R0 3.93 3.51 4.92 1.90 2.11 4.07 3.04 4.11 2.44 3.34

The range of values for β0 was -0.05 to 0.90, which corresponded to values of R0 of 1.90 to 4.92 with an
average value of 3.3 (alternatively, the average β0 can be converted to R0 to obtain an average of 3.0).

The data were then compiled into a single dataset and a random effects negative binomial model was fit
to the combined data. The overall estimate of β0 was 0.57 which corresponded to an R0 of 3.54.
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environmental sources has been added for scrapie outbreaks in sheep  (Hagenaars  et al, 2003)
and  Salmonella dublin infections in calves  (Nielsen  et  al,  2007).  Other  factors  such as age
effects  on  susceptibility  and  reproductive  status  on  transmission  can  be  incorporated  into
complex models (Cherry et al, 1998; Hagenaars et al, 2003).

Based on the model for the disease of interest,  it  is possible to derive estimates of the rate

Fig. 27.8 SEIR model that allows for animals to either recover or die
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Example 27.3 Sensitivity analysis
data = isa_wk

The data from each outbreak were adjusted to allow for only a proportion of the infected fish dying. In
the following table, it has been assumed that for every fish that died, there were 4 others which were
infected but recovered and became immune. Now the numbers of exposed (E) and infectious (Ia and
Ib) fish at each time point was 5 times what it was in Example 27.2.

cage_id week par S E Ia 2 Ib 2 R N

81 -3 8133 8132 0 1 0 0 8133

81 -2 8131 8122 10 0 1 0 8133

81 -1 8127 8102 20 10 0 1 8132

81 0 8125 8092 10 20 10 0 8132

81 1 8121 8072 20 10 20 10 8130

81 2 8113 8032 40 20 10 20 8126

81 3 8098 7957 75 40 20 10 8124

81 4 etc

The outcome of interest is the number of new (latent) infections so, as in Example 2, the offset is based
on the total number of infectious fish in the previous week. Random effects negative binomial models
were fit to the data. Five models were fit based on the assumption that the ratio of fish infected to fish
dying ranged from 1 to 5. These models are summarised in the following table.

infected:dying ratio 1 2 3 4 5

β0 0.571 0.602 0.633 0.667 0.706

R0 3.54 3.65 3.77 3.90 4.05

Although there  is  a  general  upward  trend,  the estimates  of  R0 are not particularly sensitive  to  the
assumption  about the infected:dying  ratio.  This is  because,  although the estimated number  of new
infections goes up substantially as the ratio is increased, so too does the number of infectious fish
which generate those infections.
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parameters for the model by solving a set of differential equations. For the model shown in Fig.
27.8 (SEI(RD)) model, the equations to be solved are:

dS
dt

=− S
dE
dt

=S− E
dI
dt

= E− I

dR
dt

=1− I
dD
dt

= I

where α is the probability of an infected fish dying (vs recovering and becoming immune).

These equations define the rates of change in the numbers of fish in each compartment. For
example, the change in the number of infectious fish (ie dI/dt) is the difference between the rate
at which exposed fish become infectious (γE) and the rate at which infectious fish die (δI). The
number of recovered fish increased at a rate (1-α)δI, and the number of dead fish increases at a
rate αδI. Table 27.1 spells out the dependency between λ and I, so that the differential equations
for S, E, and I could be written as:

dS
dt

=−cp
SI
N

dE
dt

=cp
SI
N

− E
dI
dt

= E− I

This  indicates  more  clearly  that  the  rates  of  change  of  numbers  in  each  compartment  are
dependent  on  the  numbers  in  each  compartment—the  source  of  the  non-linear  nature  of
epidemics.

The differential equations provide rates of change for each compartment, given the state of each
compartment.  In  order  to  solve  them,  we  require  ‘initial  conditions’  or  a  starting  point.
Generally it is impossible to derive an analytical solution for such equations, (ie equations of
the form St = S0 e-λt) because  depends on I which depends on S. Consequently, these equations
must be solved numerically. This process follows on from what is presented in Table 27.1—
taking  a  small  step  in  time,  one  can  calculate  the  new  numbers  of  susceptible,  exposed,
infected,  removed  and  dead  fish,  and  then  repeat  this  process.  To  solve  these  equations
accurately requires a small step size (one day is probably too long), so that this only becomes
feasible using computer packages,  and there are many available for solving such systems of
ordinary differential equations (eg MatLab, Berkeley Madonna, Mathematica, Maple). 

This class of problem is known as an ‘initial value problem’—given the model assumptions,
parameter values and initial conditions for S, E, I, R, and D at t=0, what are values of S, E, I, R,
at t >0? A particularly strong, implicit assumption is that the rates of progress through the E and
I compartments is constant. This is equivalent to a constant hazard rate in survival analysis so,
in the ISA example, the assumed duration of stay in classes E and I is exponentially distributed
with means of 7 and 14 days, respectively.

There  are  a  number  of  ways  in  which  these  equations  can  be  fit  to  the  data.  The  most
straightforward is to use non-linear regression to find the values of cp and α that minimise the
sum of squared differences between the model and the data (lines and points).  R0 can then be
computed as R0=cpd. This approach was applied to the 9 ISA outbreaks analysed in Examples
27.2 and 27.3 and the results are in Example 27.4. The only known quantity was the number of
deaths in each time period and the initial population at risk (at t=0).

As  shown  in  Fig.  27.3,  epidemics  are  stochastic  by  nature:  an  individual  outbreak  rarely
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conforms to the expected average. Thus, the  cp estimated from a single outbreak (as in Fig.
27.9) will not capture the possible values of cp that might have created these data. If data from
multiple  outbreaks  are  available,  the  range  of  estimates  will  provide  more  insight  into  the
dynamics of the infectious process. An alternative is to use stochastic models which provide
insight into the range of possible values for parameters such as R0 which are compatible with
the  single  outbreak  data.  These  are  beyond  the  scope  of  this  book,  but  examples  include
Bjørnstad et al (2002); Ferrari et al (2005); Gibson & Renshaw (1998).

Example 27.4 Differential equation models of ISA outbreaks
data = solutions2.dta

Numerical  solutions  of  the  ordinary
differential equations arising from the
SEI(RD) model were calculated using
a standard MatLab function (ode45) to
solve  the set  of  equations.  Durations
in  the  E and  I compartments  were
assumed  to  have  exponential
distributions  with  means  7  and  14
days, respectively. Initial conditions at
t=0  (S,  E,  I,  R,  D)  were  set  to
(9969,0,1,0,0).  The process was  used
to generate the estimates of  cp and  α
which  generate  the  epidemic  curve
that best fit the observed data.

Four  combinations  of  cp and  α that
generate poorly fitting curves (dashed
lines)  were  plotted  along  with  the
observed data (points) and the best fit
solution  (cp=0.3115  and  α=1)  (solid
line). Clearly,  the values of  cp and α
(and therefore R0) have a large influence on the shape of the epidemic.

When applied to all 9 cages from this site, the estimates of cp, R0 and α were as shown below.

cage 77 78 79 80 81 82 83 84 86 Avg.

cp 0.38 0.43 0.60 0.21 0.35 0.40 0.31 0.46 0.29 0.38

R0 5.34 6.01 8.46 2.89 4.96 5.59 4.36 6.44 4.00 5.34

α 0.23 0.06 0.52 0.25 0.10 1.00 1.00 0.24 0.18 0.40

The estimates of  R0 are somewhat  larger  than those derived from the negative binomial  regression
approach. This is not surprising for 2 reasons. First, the mathematical modelling approach assumes that
the  latent  and  infectious  periods  had  exponential  distributions  (with  means  of  7  and  14  days,
respectively) while the regression approach assumed that all fish had periods of exactly 7 and 14 days.
Second, the mathematical modelling approach estimates instantaneous rates compared to weekly rates
estimated by the regression approach. Given the differences in procedures it is not surprising that the 2
approaches give different results. However, in the long run (with lots of high quality data observed on
short time intervals), one would expect the 2 sets of estimates to converge.

An advantage of the mathematical modelling approach is that it allows for  α (proportion of infected
fish that die) to be freely estimated rather than assuming a fixed value as in the regression approach.

Fig. 27.9 Four poorly fitting curves (see text for 
legend). Data from cage 83
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