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SYSTEMATIC REVIEWS AND META-ANALYSIS

OBJECTIVES

After reading this chapter, you should be able to:

 1. Carry out a systematic review.

 2. Complete the data-extraction process to provide data suitable for meta-analysis.

 3. Calculate summary estimates  of  effect,  evaluate  the level  of  heterogeneity among study
results and choose between using fixed- and random-effects models in your analysis.

 4. Present the results of your meta-analyses graphically.

 5. Evaluate potential causes of heterogeneity in effect estimates across studies.

 6. Evaluate the potential impact of publication bias on your study results.

 7. Determine if your results have been influenced by an individual study.

 8. Deal with a variety of situations related to the types of data presented in, (or missing from)
relevant studies.

 9. Understand the important issues when carrying out a meta-analysis of observational studies.
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28.1 INTRODUCTION

When making decisions about  animal health  interventions,  we would like to use all  of  the
information  available  in  order  to  make  the  most  informed  decision.  Unfortunately,  the
information in the literature is often inconclusive and conflicting. For example, the introduction
of the use of recombinant bovine somatotropin (rBST) in the United States in 1994 initiated a
substantial  discussion of  the potential  effects  of  the use of  the drug on the risk of  clinical
mastitis in dairy cows. If, in 1998, you carried out a review of all randomised clinical trials of
rBST which  reported  risk  ratios  (or  the  data  required  to  calculate  a  risk  ratio)  for  clinical
mastitis,  you  would have found 20 studies  (representing 29 groups of cows)  (Dohoo et  al,
2003a).  The point  estimates  of  the  risk ratio  (RR)  in  those studies  ranged  from 0.67 (ie a
reduction in risk)  to 4.87 (a substantial  increase in risk) (see  Example 28.1).  However,  the
effect was not statistically significant in 28 of the 29 groups studied. This might have led you to
conclude that there was no effect of rBST on the risk of mastitis. Nonetheless, you might be left
wondering if the variation in results was more than would be expected due to chance variation
and what the power of each study to detect an effect was. 

Similarly, if you carried out an evaluation of the effects of rBST on milk production (measured
as 3.5% fat-corrected milk), you would have found data on 28 groups of cows in 19 different
studies (Dohoo et al, 2003b). The point estimates ranged from a loss of 0.7 kg/day to a gain of
10.6 kg/day. Although there was a wide range of point estimates, the vast majority were over 3
kg/day  and  23  of  the  28  groups  had  statistically  significant  increases  in  production.
Consequently, while it was clear that there was an effect, you might be interested in what the
average effect was and why it varied from study to study.

If you wanted to carry out a more formal review of the available data on the effect of rBST on
mastitis risk, there are 2 fundamental approaches which you could take: a narrative review or a
systematic review (which might include a meta-analysis).

28.2 NARRATIVE REVIEWS

In situations in which there are very few studies (or the reviewer has chosen to only review a
few studies), a review may take the form of a study-by-study report. In this case, each study is
considered individually in order to subjectively take into account the unique circumstances of
each study, and little effort is made to present an overall summary assessment of effect. If this
was done thoroughly for the rBST data, it would identify the fact that each of the individual
studies had very limited power to detect a moderate effect of rBST and the precision of each
estimate of the RR was low. It is also likely that, with so much data available, you would like
some form of summary estimate of the effect derived from all of the studies and a study-by-
study report would not provide this.

A second approach would be to carry out a traditional narrative review in which studies are
qualitatively assessed and the results subjectively combined into an overall conclusion. Some
characteristics of traditional narrative reviews that make them less desirable than systematic
reviews follow (Sargeant et al, 2006).

• They tend to be carried out by subject experts who may bring preconceived opinions to
the process resulting in a biased review. 

• They  often  do  not  have  a  structured  methodology  for  identifying  and  assessing  the
relevant studies, leading to the possibility of selective inclusion of studies in support of
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the reviewer’s opinion. 
• Small but well-designed studies may be omitted if they lack statistical power to produce

statistically significant results.
• Inclusion criteria for studies are often not described in adequate detail for the reader to

assess the thoroughness of the literature search.
• In deriving an overall estimate of effect, there is also a tendency to weight all studies

equally, and as will be seen later, they should not all receive equal weight

As a consequence of the above limitations, narrative reviews should only be used to provide an
overview of literature on a specific topic, not to guide treatment or prophylactic decisions. 

28.3 SYSTEMATIC REVIEWS

A recently published review outlines the steps involved in carrying out a systematic review
(Sargeant et al, 2006). These are:

1. Specify the question to be answered
2. Lay out the review protocol
3. Find all of the studies
4. Determine which studies are relevant (requires inclusion and exclusion criteria)
5. Evaluate study quality
6. Extract the relevant data from each study
7. Summarise and synthesise the results (may include performing a meta-analysis)

Each of these is discussed below.

Example 28.1 Individual point estimates of risk ratio for effect of rBST on clinical 
mastitis
data = bst_mast

Twenty studies, containing data from 29 separate groups of cows had sufficient  data to be able to
calculate the risk ratio of the effect of rBST on clinical mastitis. The individual point estimates from
each of the 29 groups were:

study group RR study group RR study group RR

1 1 0.83 6 11 1.00 15 21 1.19

1 2 0.91 7 12 0.96 15 22 1.26

2 3 1.08 8 13 0.95 16 23 1.40

3 4 1.30 8 14 1.31 16 24 0.67

3 5 0.90 9 15 1.45 16 25 1.11

4 6 1.75 10 16 1.02 17 26 4.87

4 7 1.45 11 17 1.40 18 27 2.60

4 8 0.83 12 18 1.80 19 28 4.00

4 9 1.35 13 19 1.73 20 29 1.37

5 10 2.50 14 20 1.91



742 SYSTEMATIC REVIEWS AND META-ANALYSIS

28.3.1 Specify the question

When specifying the question to be answered, you need to keep in mind what is most important
from a clinical or animal-health policy objective, rather than letting data availability drive the
study objective.  It  is  often  more  desirable  to  address  a  more  general  question,  which  will
broaden the eligibility characteristics for studies to be included in the review, rather than to
address a very specific,  but restrictive,  question. For example,  a review of the ability of  β-
blockers to reduce the short-term risk of myocardial infarction was based on studies in which
12 different  drugs had been used  (Freemantle  et  al,  1999) rather  than focusing on a single
specific drug. This enhanced the generalisability of the results.

Specifying the question, in addition to clarifying the intervention(s) to be considered will also
involve specifying the specific outcome(s) considered, the comparisons to be evaluated (eg new
treatment vs standard treatment or vs no treatment) and study designs to be included in the
review.

28.3.2 Lay out the protocol

A systematic review should be both as objective as possible and sufficiently transparent so that
a reader of the review should be able to duplicate it if they desired. This requires that a written
protocol for the review be developed. This protocol corresponds to the ‘Materials and Methods’
section of a primary study and covers all of the steps (described below) in carrying out the
review. Having a clear protocol will minimise the number of subjective decisions made during
the review process. 

28.3.3 Find the studies

The literature  review on  which  a  meta-analysis  is  based  must  be  both  complete  and well-
documented.  The most  commonly used approach  to  ensuring  that  all  published  studies  are
found is to carry out computer-based literature searches of the major electronic databases (eg
Medline, Agricola, Index Veterinarius and the Veterinary Bulletin) and to follow this with a
review of the reference lists in all of the papers identified through the computer-based search.
Robinson and Dickersin  (2002) give an example of an effective search strategy for searching
for randomised controlled trials in Medline. The search process, including the names and date
ranges of all databases searched along with the search strategy (eg keywords used) must be
documented.

Finding articles published in conference proceedings and other forms (eg theses, non-indexed
portions  of  journals)  is  more  difficult  than  finding  articles  in  the  peer-reviewed  published
literature but necessary  (Hopewell  et al, 2002). While some databases of these resources are
available,  it  is  often  necessary  to  identify  conferences  which  were  likely  to  have  relevant
publications in their proceedings and carry out a manual search of all proceedings for the time
frame of interest.

One of the difficult issues to address is whether or not the review should include data from
unpublished studies. The potential effects of publication bias are discussed in Section 28.8, but
identifying and obtaining results from unpublished studies is a difficult task. In  some cases,
databases  of  funded  research  projects  could  be  used  to  identify  studies  that  have  been
conducted, but not published. Alternatively, personal contact with investigators working in the
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field might identify unpublished studies.

28.3.4 Determine if studies are relevant

The process of deciding whether or not studies are relevant involves specifying the inclusion
and exclusion criteria for the review. Inclusion criteria include: the intervention(s) of interest,
the populations(s) in which the studies can be carried out, the outcome(s) of interest, and the
types of study to be included (many systematic reviews only consider randomised controlled
trials,  but  this  is  not  always  applicable).  Exclusion  criteria  may  include  factors  such  as
publication in a language not accessible to the review team, publication prior to a specified date
etc. The relevance of studies can usually be determined from the title and abstract and should be
assessed independently by 2 or more members of the review team. 

28.3.5 Evaluate study quality

The internal and external validity of each relevant study needs to be evaluated (with emphasis
on internal validity). While inclusion criteria (described above) will play a role in ensuring the
validity  of  studies  considered  (eg a  meta-analysis  might  be  based  only  on  randomised
controlled  trials),  other  issues  of  study design  (eg blinding,  formal  method of  randomising
treatment allocation, clear criteria for eligibility of subjects in the trial) must also be evaluated.
A variety of scales and checklists have been developed (Jüni et al, 2001) and the list used will
depend on the type of studies being evaluated (eg observational studies have different criteria
than  randomised  controlled  trials).  The  Cochrane  Collaboration  has  developed  a  tool  for
assessing the risk of bias in studies which covers 6 domains: sequence generation, allocation
concealment,  blinding,  incomplete  data,  selective  reporting  and  other  sources  of  bias.  (See
Cochrane Handbook for Systematic  Reviews of Interventions for details  (Higgins  & Green,
2008).

Results of this quality assessment may be used in 1 of 3 ways. First, if a study does not meet all
(or a subset) of the quality criteria,  you  might decide to exclude it  from the meta-analysis.
However, if very stringent criteria are set, you might end up excluding most studies.

The second approach is to evaluate study design issues and assign a quality score to the study.
This quality score can be used to eliminate studies from consideration or to weight the studies
in the meta-analysis (ie poor quality studies receive less weight when estimating the summary
effect). The use of a quality scale introduces a degree of subjectivity to the meta-analysis and is
not generally recommended (Greenland, 1994; Herbison et al, 2006; Higgins & Green, 2008).

The third approach is to record the key elements of the quality assessment and evaluate them as
a source of heterogeneity (see Section 28.7) between studies. The quality assessment can also
be used in a  form of sensitivity analysis  in which overall  results  are  compared  with those
obtained from studies with defined subsets of quality characteristics.

28.3.6 Extract the relevant data

The  layout  and  presentation  of  results  in  epidemiologic  studies  is  highly  variable.  This  is
particularly true for observational studies, but it is even an issue when reviewing randomised
controlled trials. The 2 fundamental pieces of information that you need from each study are the
point estimate of the outcome(s) of interest and a measure of the precision of that estimate (SE
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or CI). In some cases, these are not presented directly, but sufficient data are available to allow
you to compute the required information. For example, in the rBST studies referred to above,
the primary outcome for most studies was a measure of productivity, but the number of cows in
each study group which had one or more clinical cases of mastitis was also reported. From
these data,  the risk ratio  for  mastitis  and its  CI could be computed  and used in  the meta-
analysis.

For outcomes measured  on a binary scale  (eg occurrence  of clinical  mastitis),  you  need  to
decide if you will extract and record a relative measure of effect  (eg risk ratio—RR) or an
absolute measure (eg risk difference—RD).  It  is  generally more meaningful  to  use relative
measures  for  summarising  effects.  The  summary  estimate  can  then  be  applied  to  specific
populations in which the overall risk of disease is known (or can be estimated) to compute an
absolute effect of the intervention. Regardless of which measure of effect is used, you should
record the frequency of  disease  (eg risk)  in the control  group as this might  be a source of
heterogeneity  of  study results  (see  Section 28.7.4).  In  addition  to  data  on  the  outcome of
interest,  bibliographic  information  and  information  on  study  characteristics  (eg population,
specifics of the intervention, length of follow-up etc) should be recorded.

Before starting the data-extraction process, you need to develop a template on which to record
all of the fundamental information about the study, including any information required in the
evaluation of the quality of the study or to evaluate as a possible cause of heterogeneity among
study results.  Given  that  data  extraction  is  a  complex  process,  it  is  desirable  to  carry  out
duplicate data extraction (ie data extracted independently by 2 investigators)  followed by a
comparison of the 2 datasets to identify and resolve any differences  (Buscemi  et al,  2006).
When carrying out the data extraction, it is also important to watch for duplicate reporting of
results. In some cases, data from an individual study might be published in multiple locations
(eg a company report and a peer-reviewed journal publication) but must only be included in the
meta-analysis once. Example 28.2 describes the literature review and data-extraction process
for the meta-analysis of rBST. These data are used for all subsequent examples in this chapter.

Example 28.2 Literature review and data extraction for meta-analysis

The meta-analysis of the effects of rBST on dairy cattle productivity and health was carried out by an
expert panel of the Canadian Veterinary Medical Association at the request of Health Canada. The data
for the meta-analyses were obtained through the following process. A literature review of 3 electronic
databases covering the period 1984 to 1998 identified a total of 1,777 references related to rBST. A
review of  the  titles  identified  242  manuscripts  that  potentially  contained  results  from randomised
clinical trials or were relevant reviews of the subject. These were all reviewed by the panel members
and 60 identified as useful for the review. These were combined with 26 unpublished study reports
provided as part of the company’s submission in support of the request for registration of the drug.
From all of these reports (n=86), 53 studies (representing 94 distinct groups of cows) were found to
contain original data from randomised controlled trials. Estimates of effect on the various outcomes of
interest were obtained and used in the meta-analyses.  

Only data relating to milk production (3.5% fat-corrected milk) and the risk of clinical mastitis are
presented in this chapter. A more detailed description of the methods used and estimates of effects on
other parameters have been published (Dohoo et al., 2003a; Dohoo et al., 2003b)
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28.3.7 Summarise and synthesise the results

Extracted data can be summarised and synthesised using qualitative or quantitative methods. A
qualitative summary may involve tabular and/or graphical display of the key outcomes along
with a narrative description of the studies. In situations in which there are few studies and/or the
results from the studies are highly variable, a qualitative summary may be all that is warranted.
In other situations, it is often desirable to compute an overall estimate of the outcome of interest
and  to  quantitatively  investigate  why  estimates  of  the  outcome  vary  across  studies.  This
quantitative assessment is called a meta-analysis and is the subject of the rest of this chapter.

28.4 META-ANALYSIS—INTRODUCTION

A meta-analysis has been defined as: “The statistical analysis of a large collection of analysis
results from individual studies for the purpose of integrating the findings” (cited in Dickersin &
Berlin, 1992). It is a formal process for combining results from a number of studies that is being
used increasingly in human medicine and, to a more limited extent, in veterinary medicine.
Meta-analyses have been used most commonly to combine results from a series of controlled
trials and this chapter will focus on that application. However, they can also be used to combine
results from a series of observational studies (see Section 28.11) as was done in a meta-analysis
of the effects of disease on reproductive performance in dairy cows (Fourichon et al, 2000). A
more complete description of meta-analyses can be found in texts such as Egger et al (2001) or
the  online  text  published  by  the  Cochrane  Collaboration  (Higgins  &  Green,  2008).  The
Cochrane Collaboration is an international organisation set up to help healthcare professionals
make informed decisions through the use of systematic reviews of health research. A review of
recent advances in meta-analysis methodologies has been published recently (Sutton & Higgins,
2008).

The objectives of a meta-analysis are to provide an overall estimate of an association or effect
based on data from a number of scientific studies and to explore reasons for variation in the
observed effect across studies. It accomplishes this by imposing a systematic methodology on
the review process. Because it combines data from multiple studies, there is a gain in statistical
power for detecting effects. When computing an overall estimate of effect, it takes into account
both the individual study estimates and the precision of those estimates (standard errors) so that
the results from each study are weighted appropriately. 

Meta-analyses can be used to review existing evidence prior to making clinical or animal-health
policy decisions, or as a precursor  to further  research by better quantifying what is already
known, and identifying gaps in the scientific literature.  A meta-analysis might be combined
with a traditional narrative review and hence, should be thought of as complementary to that
review process.

28.4.1 Meta-analysis—types of data

There are 3 types of data which can be used in a meta-analysis: summary estimate data, group
data  and  individual  patient  (subject)  data  (IPD)  (Table  28.1).  Summary  data  are  the  most
commonly used and consist of a point estimate of the effect of interest and some measure of its
precision. For example, a set of studies might all report a risk ratio and its confidence interval
for an effect of a treatment. If only summary data are available, the meta-analysis is restricted to
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using the measure(s) of effect  reported. Group data consist of outcome data for each of the
intervention groups (eg risk of ‘cure’ in the treatment group and the control group separately).
For  studies  with  binary  interventions  (treatment)  and  outcomes,  it  is  usually  possible  to
reconstruct the 2X2 table from which a variety of measures of effect can be computed. IPD are
least  frequently  available  and  consist  of  the  original  data  for  each  individual  in  the  study.
Summary estimate data can only evaluate the effects of study level variables (eg was the study
blinded or not) as sources of heterogeneity. Group data can also include group-level covariates ,
although these  are  not  usually  important  if  study subjects  have been  randomly assigned  to
groups. IPD allow for the evaluation of study-, group- and individual-level variables (eg. age of
study subjects) as a source of heterogeneity (see Section 28.7).

Table 28.1 Types of data used in meta-analyses

Data Type Binary outcome Continuous outcome

Summary 
estimate

Point estimate: RR, OR, RD, IR
Estimate of precision: SE or CI

Point estimate: mean difference (MD)
Estimate of precision: SE or CI

Group Cell values for treated and control groups 
(from which various effects measures and
their precision can be calculated)

Number, mean and standard deviation
in each group from which the MD and 
its SE can be computed.

Individual 
patient data

Raw data—outcome value (0 or 1) and 
individual characteristics for each study 
subject

Raw data—outcome value 
(continuous) and individual 
characteristics for each study subject

Formulae  for  common  measures  of  effect  (eg RR,  OR etc)  and  their  standard  errors  and
confidence intervals are presented in Chapter 6. If  IPD are available, all of the data can be
pooled into a  single dataset  and reanalysed,  taking into account  the clustered  nature of  the
observations (within study) using methods outlined in Chapters 20-23. This is the most flexible
approach to the analysis but these data are rarely available so it will not be considered further in
this chapter. 

28.4.2 Meta-analysis—process

There are multiple steps involved in carrying out a meta-analysis of results from a systematic 
review. These include:

• deciding whether to base the analysis on a fixed- or random-effects model
• computing a summary estimate of effect (if appropriate)
• presenting the data (usually graphically)
• evaluating possible reasons for heterogeneity of study results (ie why different studies

produce different estimates)
• searching for evidence of publication bias and evaluating the influence that individual

studies have on the outcome.

Each of these will be discussed in subsequent sections

28.5 FIXED- AND RANDOM-EFFECTS MODELS

A fundamental decision to be made in any meta-analysis is whether to use a fixed- or random-
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effects model. A fixed-effects model is based on the assumption that the effect of the factor
being investigated is constant across studies and that any variation among studies is due only to
random variation. On the other hand, a random-effects model assumes that the true study effect
does vary across studies and the observed study effects reflect both this variation and random
variation. Graphically, the studies can be represented as shown in Fig. 28.1.

28.5.1 Fixed-effects model

A fixed-effects model can be written as: 

T i=i Eq 28.1

where Ti is the effect measure (eg lnRR) from study i. (Note Ti is used to designate the study
outcome instead of Yi, which is generally used throughout this book for outcome variables, in
order to distinguish between the measure of effect (Ti) and the outcome measured on individual
study subjects Yi). 

θ is the overall treatment effect and εi is the error term for study i which is distributed as:

i~N 0, V i
Eq 28.2

where Vi is the within-study variance for study i (Vi=[SE(Ti)]2  ). This is assumed to be known
and uncertainty about Vi is not part of the modelling process. Combining Eq 28.1 and Eq 28.2
shows that the distribution of the Ti is:

T i~N  ,V i
Eq 28.3

Computing a summary estimate of effect
In order to compute a summary estimate of the overall effect, the individual study results must
be weighted based on the precision of the estimates. The most commonly used procedure is
inverse  variance  weighting where  weights  are  computed  as  Wi=1/Vi  This  procedure  is
applicable  for  pooling  results  from models  of  continuous  (linear  regression,  ANOVA)  and
discrete (logistic, Poisson regression) data. However, inverse variance methods might not work
well when study sizes are small. 

For  binary  data,  alternative  approaches  based  on  the  Mantel-Haenszel procedure  or  an
approach  attributable  to  Peto are  available  (Egger  et  al,  2001;  Sweeting  et  al,  2004).  The
former is often preferable to the inverse variance approach when the data are sparse ( ie where
the outcome is a relatively rare event). The Peto method does not work well when treatment
effects are large or when the intervention groups are seriously unbalanced (unequal sample
sizes); however, the method has been extended for use with time-to-event data.

For continuous data there are 2 possible measures of effect size: the mean difference and the
standardised mean difference.  The mean difference  is  used when all  studies  measure the
outcome on the same scale (which simplifies pooling the results) and the used weights are the
inverse variance weights.  Methods based on standardised mean differences are discussed in
Section 28.10.2.
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28.5.2 Random-effects model

A random-effects model assumes that a distribution (heterogeneity)  of true treatment effects
across studies exists, resulting in additional variability among study results. It is most common
to  assume  that  the  study  effects  have  a  normal  distribution  so  the  random-effects  model
becomes:

T i=uii Eq 28.4

with: ui~N 0,2
 and i~N 0,V i  Eq 28.5

where ui is the random-effect for study i, and τ2 is the between-study variance (heterogeneity).
Combining Eq 28.4 and Eq 28.5 shows that the distribution of the Ti is:

T i~N  , V i
2
 Eq 28.6

Random-effects models generally produce a point estimate of the summary effect that is similar
to that obtained from fixed-effects models, but which has a wider confidence interval than a
fixed-effects model (because the variance of the estimate is larger).

The simplest (and classical) analysis of a random-effects model estimates  τ2 by a method of
moments  (MM)  and  computes  a  summary  estimate  from  the  weights  Wi=1/(Vi+τ2)
(DerSimonian & Kacker, 2007; DerSimonian & Laird, 1986). Recent alternative approaches,
derived from statistical inference for mixed models (Chapter 21), include maximum likelihood
(ML), restricted maximum likelihood (REML) and empirical Bayes (EB) methods. The MM,
ML and REML estimate may be biased unless τ2 is small while the EB estimate has been found
to generally be accurate  (Sidik & Jonkman,  2007).  If  IPD are available,  mixed models  (as
described  in Chapters  20-23) can be used for  meta-analyses.  In  this  case,  a  random slopes
model which allows for the estimate of the treatment effect to vary across studies is used (see
Chapter 21 for a discussion of random slopes models).

The advantages of a fixed-effects model are that it does not require the estimation of τ2 nor are
there any distributional assumptions about  ui

 . However, the assumption of a constant treatment

Fig. 28.1 Graphical representation of fixed and random-effects models
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effect across all studies is often not tenable, and ignoring between-study variation may lead to
Type I errors (for the statistical significance of  θ) and confidence intervals too narrow for  θ.
Consequently, random-effects models are now more commonly used. Results from fitting both
fixed-  and  random-effects  models  of  the  effect  of  rBST on milk  production  are  shown in
Example 28.3.

28.6 PRESENTATION OF RESULTS

One of the most important outputs from a meta-analysis is a graphic presentation of the results
with the most commonly used format referred  to as a  forest  plot which displays  the point
estimate and confidence interval of the effect observed in each study along with the summary
estimate and its confidence interval. Fig. 28.2 shows a forest plot for the effects of rBST on the
risk of clinical mastitis and the elements of the plot are described in Example 28.4.

In some cases, it might be desirable to order the individual studies according to some criteria
such as year of completion (to see if there is a trend over time) or quality score (to see if study
quality affects the observed effects).

Example 28.3 Fixed- vs random-effects models
data = bst_milk, bst_mast

Both fixed- and random-effects models were fit to both the milk production data and mastitis data from
the meta-analysis of the effects of rBST on dairy cow productivity and health. In all models, the inverse
variance approach (Section 28.5) was used to assign weights to the study results.

Milk production (28 studies)

Method
Pooled estimate

(kg/day) Z P
95% Cl

Lower Upper

Fixed 4.465 28.078 0.000 4.153 4.777

Random 4.434 14.911 0.000 3.851 5.016

The Q statistic (Section 28.7) for heterogeneity was 79.9 with 27 degrees of freedom (P=0.000) giving
strong evidence of heterogeneity among study results. Potential reasons for this heterogeneity will be
explored in Examples 28.5 and 28.6. As expected, the point estimates for the summary effect were
quite similar, but the random-effects model produced wider confidence intervals. 

Based  on  the  random-effects  model,  the  estimate  of  the  between-study  variance  was
1.42(SD=√1.42=1.2) suggesting that 95% of the effects  of rBST should lie between  4.4-2*1.2=2.0
kg/day and 4.4+2*1.2=6.8 kg/day. Higgins I2 (Section 28.7.2) was 66.2%.

Mastitis (29 studies)

Method
Pooled estimate

(RR) Z P
95% Cl

Lower Upper

Fixed 1.271 4.016 0.000 1.131 1.429

Random 1.271 4.016 0.000 1.131 1.429

The Q statistic for heterogeneity was 16.4 with 28 degrees of freedom (P=0.096) giving no indication
of heterogeneity among study results.  Note Because  Q <df, the estimated between-study variance is
zero and the results from the fixed- and random-effects models are identical.
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28.7 HETEROGENEITY

Heterogeneity  refers  to  variability  among study results  (beyond  random variation)  and  this
should always be evaluated in a meta-analysis.  Unfortunately,  this is not always done—in a
review of 34 meta-analyses carried out between 1999 and 2001, only 23 had any evaluation of
heterogeneity (Petitti, 2001). 

Example 28.4 Forest plot
data = bst_mast

Fig. 28.2 shows a forest plot of the risk ratios for the effect of rBST on the risk of clinical mastitis.

In these plots, each horizontal line represents the results from a single study (or distinct group of cows
within a study). Each line is labelled with a unique label (the group number). The length of the line
represents the 95% confidence interval for the parameter estimate from the study.  Note Some lines
have been truncated at 10 or 0.25. The centre of the shaded box on each line marks the point estimate
of the parameter from that study, and the area of the box is proportional to the weight assigned to the
study in the meta-analysis. Studies with large boxes have had a strong influence on the overall estimate.
The dashed vertical line marks the overall estimate of the effect. The <> at the bottom of the dashed
line shows the confidence interval for the estimate of the overall effect. The solid vertical line marks
the value where rBST would have no effect (ie RR=1).

As you can see, there was considerable variability among the individual study point estimates of the RR
and only one of them was statistically significant (CI excludes 1). However, as seen in Example 28.3,
this variability was not greater than what would be expected due to chance (given the generally small
size of most of the studies). Study 22 had the largest influence on the summary result ( ie  greatest %
weight).

Fig. 28.2 Forest plot of studies of effects of rBST on risk of clinical mastitis in 
dairy cattle
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28.7.1 Real vs artifactual heterogeneity

Heterogeneity  may  be  real  or  artifactual.  Real  heterogeneity  arises  when  there  are  true
differences  in  treatment  effects  across  studies.  Artifactual  heterogeneity  arises  when  the
difference  is  only  due  to  study design  issues,  not  to  variation  in  the  real  treatment  effect
(Glasziou  & Sanders,  2002).  Study design  issues,  which  might  result  in  variation  between
observed effects across studies, include factors such as: duration of follow-up, reliability of the
outcome measure (ie possibility for misclassification of the outcome), lack of blinding and/or
compliance.

The choice of summary measure of treatment effect can also induce artifactual heterogeneity.
For example, Table 28.2 shows some hypothetical data from 3 studies of a treatment. If the
effect of the treatment is assessed using a risk ratio (RR), then all 3 studies show exactly the
same treatment effect (2.0). However, if odds ratios (OR) or risk differences (RD) were used as
a measure of effect,  there would be substantial  heterogeneity.  In  general,  ratio measures  of
effect are considered more stable across studies than difference measures (Schmid et al, 1998).

Table 28.2 Hypothetical data from 3 studies showing that the choice of effect measure 
can influence whether or not there is heterogeneity among study results

Controla Txa RR OR RD

0.1 0.2 2.0 2.3 0.1

0.2 0.4 2.0 2.7 0.2

0.4 0.8 2.0 6.0 0.4
a data are the proportion in each group with the outcome of interest

28.7.2 Clinical vs statistical heterogeneity

Another  important  distinction  is  between  clinical  and  statistical  heterogeneity.  Clinical
heterogeneity means that differences between populations studied (eg study selection criteria,
disease severity,  specifics  of interventions)  mean that  ‘real’ differences are expected in the
response (Egger et al, 2001). Statistical heterogeneity means that the variation between studies
in the observed outcome (response to treatment) was more than would have been expected due
to chance alone. If clinical heterogeneity is always expected, 2 important questions arise. First,
is  statistical  assessment  of  heterogeneity  warranted  or  should  the  focus  be  solely  on
quantification of the degree  of  heterogeneity?  Second,  is  it  reasonable  to compute a  single
summary effect estimate given that the derived value is an average effect and may not apply to
any  specific  population?  Certainly,  any  summary  effect  measure  must  be  interpreted  with
caution.

Despite  the  questions  raised  above,  it  is  common  to  assess  the  statistical  significance  of
heterogeneity and the most commonly used method is Cochran’s Q statistic. The formula is:

Q=∑
1

k

wi T i−2

Eq 28.7

where wi are the applied weights and θ is the pooled estimate (assuming a fixed effect). The null
hypothesis tested is ‘no heterogeneity’ (ie τ2=0 in Eq 28.5) and under this assumption it has a χ2

distribution with k-1 df (where k is the number of studies). This test has relatively low power
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for detecting heterogeneity when the number of studies is small (Higgins & Thompson, 2002)
or if the total number of study subjects is small or the study SEs vary considerably (Baujat et al,
2002). Consequently, the possibility of heterogeneity of effects should not be ruled out simply
because the test yields a non-significant P-value. You might want to relax the P-value required
for  ‘significant  heterogeneity’ (eg 0.1  instead  of  0.05).  Alternatively,  you  might  want  to
evaluate the power of the test to detect heterogeneity among the studies you are evaluating
(Hedges & Pigott, 2001; Jackson, 2006). If  there is any evidence of heterogeneity,  potential
causes of that variability should be investigated (see Section 28.7.3). 

The  level  of  heterogeneity  in  a  meta-analysis  can  be  quantified  using  Higgins  I2 which
computes the proportion of variance between studies that is due to heterogeneity as opposed to
chance (Higgins & Thompson, 2002; Higgins et al, 2003). 

I 2
=[Q−k −1 ] /Q ∗ 100% Eq 28.8

The adjectives: low, medium and high were originally assigned to values of I2 of 25%, 50% and
75%,  respectively  (Higgins  et  al,  2003),  although  an  evaluation  of  possible  causes  of
heterogeneity should be undertaken whenever the I2 is greater than 25%.

28.7.3 Evaluation of heterogeneity

There are several possible approaches to evaluating heterogeneity and these include:
• subgroup analyses
• stratified analyses
• graphical assessment
• meta-regression.

Each of these will be discussed below.

Subgroup analysis
It  may be possible to identify a specific  subgroup of studies  defined by a characteristic  of
interest  and to focus attention on that  subgroup.  However,  results from a specific  subgroup
should be interpreted with caution. As a hypothetical example, consider a meta-analysis of 11
studies of oral calcium supplementation at the time of calving for the prevention of milk fever.
An overall beneficial effect (RR=0.6) was observed but significant heterogeneity was present
and breed of cow appeared to be a contributing factor. If most studies (n=10) were carried out
in Holsteins but the single study carried out in Jerseys found no significant beneficial effect
(RR=1.0),  what  advice  would  you  provide  to  a  Jersey  herd  owner?  Provided  there  is  no
biological basis for expecting a substantial difference in the treatment effect between Jerseys
and  Holsteins,  the  best  estimation  of  effect  in  any  particular  subgroup  is  provided  by
considering all of the evidence rather than just looking at the data from that  subgroup (this is
referred to as Stein’s paradox (Egger et al, 2001). Consequently, the advice to the Jersey herd
owner  should  probably  be  that  the  therapy  is  effective.  In  general,  results  from  specific
subgroups should only be considered if the intent to evaluate that subgroup was clearly spelled
out in the systematic review protocol (Section 28.3.2) (Higgins et al, 2002).

Stratified analysis
In a stratified analysis, the data are stratified according to a factor (which should be specified in
the  study protocol)  thought  to  influence  the  treatment  effect,  and  a  separate  meta-analysis
carried out in each of the strata. The disadvantage to this approach is that individual strata might
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contain relatively few studies. The statistical significance of the difference between 2 strata can
be computed using a standard Z test statistic:

Z=
1−2

SE1
2
SE 2

2
Eq 28.9

where  θ1 and  θ2 are  the  effects  estimates  in  the  2  strata.  (Note the  problem  of  multiple
comparisons  must  be  avoided).  Based  on  a  fixed-effects  assumption  within  each  stratum,
Cochran's  Q  statistic  can  be  used  to  compute  a  test  for  homogeneity  across  strata  (null
hypothesis is that there are no strata effects). 

Q B=QT−∑ Q s Eq 28.10

where QT, and QS, are Cochran’s Q statistics for the full data and stratum s, respectively. QB can
be compared to a χ2 distribution with S-1 df where S is the number of strata. However, this test
statistic is only valid if there is no significant residual heterogeneity within any of the strata.
Example 28.5 presents a stratified (by parity group) meta-analysis of the effects of rBST on
milk production.

Graphical assessment of heterogeneity
Several  types  of  plot  can  be  used  to  evaluate  the  level  of  heterogeneity  and  the  possible
contribution of specific factors to the observed heterogeneity.  A  Galbraith plot plots the  Z
statistic (Zi=Ti  /SE(Ti)) from each study against the inverse of its SE (1/SE). The slope of the
resulting line is  the overall  (fixed-effect)  estimate,  and lines  +2 units from this line should
encompass 95% of observations if there is no significant heterogeneity. The plot can also be
used to identify outlying points contributing substantially to the Q statistic. Fig 28.3 shows a
Galbraith  plot  for  the  rBST—milk  production data  (8 of  28  (29%) of  the  observations  lie
outside the + 2 unit lines).

Simple scatter plots of the effect size vs a factor suspected of contributing to heterogeneity can
be useful for evaluating that relationship. If the effect measure is a ratio measure (eg RR or OR),
then the log of the effect  should be plotted. Fig.  28.4 shows a scatter plot of the log  RR of
clinical mastitis vs the daily dose of rBST with the size of the plotted points proportional to
their weights and points labelled with study identifiers to help identify outlying observations.
There is very slight evidence of a trend in effect (log RR) with increasing daily dose.

28.7.4 Meta-regression

The most flexible approach to evaluating causes of heterogeneity is meta-regression. A meta-
regression  is  a  weighted  regression  of  the  observed  treatment  effects  against  study-level
predictors  (with  inverse  variance  weights  used  most  commonly  for  the  weightings).  If  the
number  of  studies  is  limited,  factors  might  be  investigated  one  at  a  time,  or  if  there  are
sufficient data, a multivariable regression model could be built. 

As  with  meta-analyses,  both  fixed-  and  random-effects  models  are  possible  (Higgins  &
Thompson,  2004).  A fixed-effects  model assumes that  the factors  in the model completely
explain  the  between-trial  variance  (ie the  predictors  completely  explain  the  between-study
variance).  This  is  usually  an  unjustifiable  assumption  and  often  leads  to  Type  I  errors.
Consequently, fixed-effects models should not be used.
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Fig. 28.3 Galbraith plot for assessing heterogeneity in the effect of rBST on 
milk production
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Fig. 28.4 Scatterplot of the log RR of clinical mastitis vs daily dose of rBST with
a linear fit line. Diameter of circles are proportional to the weight assigned to 
each study in a fixed-effects meta-analysis
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A  random-effects  meta-regression  model  extends  the  random-effects  model  (Eq  28.4)  by
adding predictors; eg a model with a single predictor can be written as:

T i=ui 1 X 1i i Eq 28.11

with: ui~N 0,2
 and  i~N 0,V i Eq 28.12

where ui are the random-effects for each study and τ2 is the between-study variance. Estimation
of τ2 can be be based on the same methods as for Eq 28.4 (ie method of moments, ML, REML
and EB).  ML estimates may be biased downward because the ML estimation procedure does
not take into account  the degrees  of freedom used in estimating the fixed effects  (Sidik &
Jonkman,  2007).  Example  28.6  shows  a  meta-regression  of  the  effects  of  rBST  on  milk
production on parity group, company and daily drug dosage.

There  are a number of issues to be considered when carrying  out meta-regression analyses
(Thompson & Higgins, 2002). First, it must be recognised that meta-regression analyses are
observational  studies,  even  if  the  individual  studies  in  the  meta-analysis  were  randomised
controlled trials. Consequently,  the role of confounding and intervening factors  needs to be
considered. For example, daily dose was one factor examined in Example 28.6. If the breed of
cow in the study influenced what dose of rBST they were given and also affected the milk
production response to treatment, then breed will be a confounding variable that needs to be
controlled. 

Second, the significance of individual predictors needs to be carefully considered. Knapp and
Hartung  (2003) introduced a variance estimator that  produced CI with better  coverage than
standard estimates. However, when there are few studies, even this approach is too conservative
and  a  non-parametric  permutation  approach  may be  preferred  (Harbord  & Higgins,  2008).

Example 28.5 Stratified meta-analysis
data = bst_milk

Separate meta-analyses of the effect of rBST on milk production (kg milk/day) were carried out for
each of the 3 parity groups: (primiparous, multiparous and no separation by parity) ( ie studies which
did not stratify on the basis of age).

Parity 
group

Number
of studies Estimate

Confidence 
Interval

Heterogeneity
P

Higgin's
I2

No separation by parity 15 4.916 4.505 5.327 <0.001 69.6 %

Multiparous 7 4.361 3.700 5.022 0.68 0 %

Primiparous 6 3.300 2.608 3.992 <0.01 64.9 %

All data together 28 4.465 4.153 4.777 <0.001 66.2%

Parity seems to account for some of the heterogeneity among studies (cows in different age groups
respond differently to rBST), but the results are not clear cut. Within the groups of multiparous cows,
there was no longer any evidence of heterogeneity. However, there was still heterogeneity among the
studies based solely on primiparous cows.  You might have expected groups in which data from all
parities were combined to have an effect intermediate to the other 2 groups, but this was not the case.
However, the number of studies within each group was quite small, so the summary effects must be
interpreted with caution. Because of the heterogeneity in some of the groups, the QB should not be used
to compare strata.
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There is also the issue of multiple comparisons. Meta-regressions may evaluate a large number
of predictors,  perhaps based on a fairly small  sample of  studies.  This greatly increases  the
probability of finding one or more significant  associations due to chance alone  (Higgins  &
Thompson, 2004). Some adjustment (eg Bonferroni or an adjustment based on a permutation
approach to computing P-values (Harbord & Higgins, 2008)) for the number of predictors being
evaluated may be necessary. 

Finally,  the  potential  for  ecological  fallacies  must  be  considered  (see  also  Chapter  29).
Predictors  in  a  meta-regression  are  study-level  values  and  these  may represent  study-level
averages for individual study subject-level characteristics (eg average age of cows in the study).
A relationship observed at the study level may not be true at the study subject level. Meta-
analyses  based on IPD are much better  suited for  evaluating the effects  of  individual-level
characteristics.

28.7.5 Underlying risk as a cause of heterogeneity

If the outcome of interest is binary, one potential cause of heterogeneity that deserves special
consideration is the  underlying risk, as measured by the risk in the control group.  In each
study, the risk of disease in the control group is a reflection of the overall risk in the population
being studied. It is important to address the question—is the treatment more or less effective
when disease is rare vs common? This issue can be examined graphically using a L’Abbé plot

Example 28.6 Meta-regression for evaluating causes of heterogeneity
data = bst_milk

A meta-regression was carried out to evaluate the effects of parity group, company (manufacturer of
the product) and daily dosage on the effects of rBST on milk production.

REML estimate of between-study variance       Number of obs = 28
     tau2 = 1.376

Higgins I^2  = 64.29%
Model F(6,21) = 1.47

Prob > F =  0.2351

Coef SE t P>t 95% CI

par - multip -0.754 0.816 -0.920 0.366 -2.451 0.944

par - primip -2.034 0.884 -2.300 0.032 -3.872 -0.195

company=2 -0.832 2.312 -0.360 0.723 -5.640 3.976

company=3 0.238 1.058 0.220 0.824 -1.963 2.438

company=4 1.874 1.347 1.390 0.179 -0.928 4.676

daily dose 0.028 0.061 0.450 0.654 -0.099 0.155

constant 3.922 1.657 2.370 0.028 0.476 7.367

The overall model was not significant (P=0.235). Parity group was borderline significant (P=0.094).
Compared with studies with all age groups combined (the baseline category)  studies in multiparous
cows  had  similar  effects  but  a  smaller  effect  was  seen  in  studies  of  first  parity  animals  only
(primiparous). The parity effect was similar to those seen in the stratified analysis (Example 28.5). The
other 2 factors were not significant predictors. The τ2

 
value (1.38) is the estimate of the between-study

variance after adjustment for the predictors in the meta-regression.
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which plots the risk in the treated group vs the risk in the control group (Song, 1999). If there is
little heterogeneity, the points will cluster around a line corresponding to the pooled treatment
effect. Fig. 28.5 shows a L’Abbé plot for the rBST—clinical mastitis data with the size of the
points proportional to the sample size of the study and studies labelled to help identify outliers.
The graph shows no evidence that the treatment effect varies with the underlying risk.

Underlying risk seems like an ideal candidate to consider in a meta-regression. Unfortunately,
there is a structural dependence between the underlying risk (risk in the control group) and the
risk ratio because the latter includes the former in its calculation. Studies with a low risk in the
control group are more likely to have higher risks in the treatment group (or vice versa) due to
random variation. As a result of this structural dependence, standard meta-regression methods
are not a good option for evaluation of the effect of underlying risk. A recent study (Dohoo et
al,  2007) compared 3 methods (both Bayesian and frequentist) for evaluating the effects of
underlying risk. The overall conclusions were:

• if  underlying  risk  does  contribute  to  heterogeneity,  the  estimate  of  the  intervention
(treatment) effect from an ordinary random-effects meta-analysis will be biased , but the
bias is not generally large,

• one  of  the  3  models  was  generally  recommended  (because  it  required  fewer
assumptions),

• Bayesian  methods were  very flexible and provided direct  estimates  of  the SE of  the
predictors

• frequentist methods worked better if there were few studies.
The overall  conclusion  was  that  it  was  probably reasonable  to  start  with  a  standard  meta-
regression and use one of these more complex methods as a final step if there was evidence that
underlying risk explained any of the heterogeneity.

Fig. 28.5 L'Abbé plot for the rBST – clinical mastitis data 
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28.8 PUBLICATION BIAS

When carrying out a meta-analysis,  you need to consider  whether  it  is likely that  there are
studies that have been completed, but for which the results have not been published. Study
results that are not statistically significant or which are unfavourable to the sponsor of the study
might  be  less  likely  to  be  published  than  significant,  favourable  results  (Dickersin,  1997).
Consequently, published studies may represent a biased subset of the total body of work on the
subject  (Hopewell et al, 2007). Unfortunately,  it is often very difficult to obtain unpublished
study  results.  However,  if  you  have  any  indication  that  unpublished  results  constitute  a
substantial portion of data available, then you should make an effort to obtain them. On the
other hand, one argument against including unpublished results in a meta-analysis is that those
results  have  not  been  peer  reviewed  and thus,  do  not  have  one  of  the  key  components  in
assuring data quality.

There are 3 general approaches to dealing with the problem of publication bias. The first, as
described above is to contact investigators directly to obtain unpublished results, or to at least
determine how many unpublished results there are. A second approach is to estimate how many
studies with ‘null’ results (ie no observed effect) would have to exist before a summary effect
from your meta-analysis would become non-significant.  This approach is less recommended
because it focuses on hypothesis testing (is there an effect or not?) rather than on estimating the
magnitude of the overall effect.

The third approach is based on an evaluation of the relationship between study results and their
precision. A funnel plot displays each study’s estimated effect plotted against either its SE or
its inverse (1/SE). If publication bias is a problem, there will likely be a number of studies with
large effects and large SEs but an absence or shortage of studies with large standard errors and
small or no effects. For example, Fig. 28.6 in Example 28.7 shows a funnel plot from a meta-
analysis of the effects of anthelmintic treatment on milk production in dairy cows (Sanchez et
al, 2004). There appears to be many more studies with large SE and positive treatment effects
than comparable studies with negative or null treatment effects. This suggests that publication
bias may be a problem. 

There are a number of statistical tests based on the principle of the funnel plot. These evaluate
the relationship between study results and their SEs using a rank correlation (Begg’s test: Begg
& Mazumdar, 1994) or a linear regression approach (Egger’s test: Egger et al, 1997). Both tests
standardise the observed effect sizes prior to evaluation of the association with the SE.  Neither
test is very sensitive if the number of studies is small (eg <20) (Sterne et al, 2000) although, in
general, Egger’s test is more powerful at detecting publication bias. (This does not appear to be
the case in Example 28.7.) Both tests may also produce false positive results in situations in
which there are large treatment effects, few events per trial or all trials are of similar size. If
either test is significant, publication bias might be influencing your results. However, the tests
are only appropriate when you expect either a positive or negative effect from the intervention
(not both). If either positive or negative effects are of equal interest, any publication bias would
produce a  ‘gap’ in the ‘middle’ of the funnel (studies with null effects are less likely to be
published) which would not likely be detected.

A  ‘trim  and  fill’ method  (Duval  &  Tweedie,  2000) of  assessing  the  effect  of  possible
publication bias is based on the following steps.

• ‘Trim’—Produce a funnel plot and then sequentially omit studies until it is considered
symmetrical
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• Determine  the  centre  of  this  new  ‘symmetrical’ plot  (ie  a  new  estimate  of  the
treatment effect)

• ‘Fill’—Replace the omitted studies along with their  ‘counterparts’ (hypothetical studies
of the same SE but on the other side of the centre line
• Redo the meta-analysis using the original data plus the new hypothetical studies

This  provides  an  estimate  of  what  the  treatment  effect  would  be  if  all  studies  had  been
published.  Example  28.8  shows  a  “trimmed  and  filled”  funnel  plot  and  shows  how  the
estimated treatment effect is substantially reduced by the addition of the hypothetical studies. 

Methods of evaluating publication bias are an active area of research and some recent areas of
investigation  are  described  in  (Sutton  &  Higgins,  2008).  However,  we  caution  that  the
assessment of funnel plots is subjective and asymmetry is not easy to detect (Terrin et al, 2005).
In  addition,  factors  other  than  publication  bias  can  produce  asymmetry,  so  overly  strong
interpretation of funnel plots and tests of publication bias should be avoided.

Example 28.7 Funnel plot for evaluation of publication bias
data = meta_parasite

A meta-analysis of the effects of anthelmintic treatment on milk production in dairy cows was carried
out using data from 79 study groups from 55 studies. This evaluation of publication bias was limited to
studies (n=18) which measured the treatment effect on 305 day actual milk production (excluding 2
very small studies with very large SE).

Fig. 28.6 shows a funnel plot in which it appears that there is a shortage of studies with a null or
negative treatment effect and a large SE.

Begg’s test of publication bias has a P-value of 0.068 while Egger’s has a P-value of 0.342. The large
discrepancy in the significance of the 2 tests is probably due to the small sample size included in this
evaluation.

Fig. 28.6 Funnel plot
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28.9 INFLUENTIAL STUDIES

As in most regression-based models, it is important to determine if individual studies are having
a profound influence on the summary estimate derived from a meta-analysis. If they are, you
need to determine whether or not this is warranted. It might well be that one study was much
larger than the others and consequently provides a much more precise estimate of the effect. In
this situation, you need to evaluate that study to determine if it was of sufficiently high quality
that you can accept the results.

One way to evaluate the effects of individual studies is to sequentially delete the studies from
the meta-analysis  and determine how the estimate of the summary effect  changes (Example
28.9). The revised point estimates can all be plotted in an influence plot (see Fig. 28.8).

28.10 OUTCOME SCALES AND DATA ISSUES

Published manuscripts vary substantially in how much data they provide and how they present 
them. This gives rise to a number of data related issues which include:

• methods for computing standard errors (SE),
• dealing with continuous outcomes that may be measured on different scales,
• combining data from studies that use continuous and dichotomous outcomes,
• imputing missing variance estimates,

Example 28.8 ‘Trim and fill’ evaluation of publication bias
data = meta_parasite

Duval and Tweedie’s ‘trim and fill’ method suggests that 2 additional studies (identified as points with
boxes around them) need to be added to bring the funnel plot back to symmetry (Fig. 28.7). However,
if these 2 studies are added the estimated treatment effect (random-effects model) drops from 0.252
(P=0.024) to 0.123 (P=0.316)

Fig. 28.7 Trim and fill evaluation of publication bias
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• imputing 2X2 table cell frequencies, and
• dealing with sparse data.

All of these will be dealt with below. However, regardless of the method(s) actually used, it is
of  paramount  importance  to  ensure  that  any data  modifications  undertaken  are  biologically
sensible.  For  example,  if  data from different  scales  are  combined,  it  is  necessary that  they
measure the same effect. Similarly, if data values are imputed, one should always check that the
resulting values are reasonable and do not end up as influential values in the analysis.

28.10.1 Methods of computing standard errors 

If a study reports a confidence interval but not a SE, the SE can be estimated as

SE=
UL−LL

2Z1−/ 2 Eq 28.13

where  UL and  LL  are  the  upper  and  lower  limits  of  the  CI  respectively.  For  a  95% CI,

Example 28.9 Influential studies 
data = bst_mast

An influence plot was generated to determine the effect of removing individual studies from the meta-
analysis of rBST on the risk of clinical mastitis.

No individual study (group of cows) had an undue influence on the summary effect estimate. Omitting
study 5 had the largest effect and in this case the ln(RR) rose from 0.24 to 0.27 (equivalent to a rise in
RR from 1.27 to 1.31). This is a relatively small  change, indicating that no individual study had a
particularly large influence on the summary RR estimate.

Fig. 28.8 Influence plot
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Z1-α/2=1.96. (Note for small sample sizes a t statistic should be used instead of a Z statistic). For
ratio measures (eg θ=RR or OR), the SE must be determined for ln(θ) and it is estimated from
the CI for ln(θ).

Occasionally,  a study reports grouped data or raw values, and it is necessary to compute the
effect  measure of interest and its SE. For dichotomous outcomes, formulae for measures of
association (RR,  OR,  RD) and their SE are presented in Chapter 6. For continuous outcomes,
the main measures which you may need to compute follows.

MD i=m1 i−m2 i
Eq 28.14

where m1i and m2i are the mean values in groups 1 and 2, respectively, in study i.

SE MDi= SD1 i
2

n1 i


SD2i

2

n1i Eq 28.15

where the SDs and ns are the group specific standard deviations and sample sizes for study i.
For some computations (see Section 28.10.2) it is necessary to compute a pooled SD (si).

si= n1 i−1 ∗SD1 i
2
n2 i−1 ∗SD2 i

2

n1in2 i−2 Eq 28.16

28.10.2 Continuous outcomes measured on different scales

You sometimes encounter studies which have evaluated comparable outcomes, but which have
used different scales to do so. For example, when carrying out a meta-analysis of studies into
the effects of monensin in dairy cattle, Duffield et al (2008) needed to be able to include studies
which  measured  metabolites  on  different  scales  from  which  there  was  no  mathematical
conversion possible. The solution to this problem is to compute standardised mean differences
which, for each trial, expresses the treatment effect relative to the variability observed in the
outcome in the trial. The resulting measure is often referred to as an effect size (ES) and there
are 3 common methods of computing it.

Cohen’s d relates the mean difference to the pooled SD of the 2 groups.

d i=
m1i−m2 i

si  
SE d i= N i

n1 i n2 i


d i

2

2 n1in 2i−2  Eq 28.17

where si is the pooled SD (Eq 28.16).

Hedges’ adjusted g is a similar measure but includes a small sample adjustment.

gi=
m1i−m2 i

si 1−
3

4 n1 in2 i−9  
SE gi= N i

n1 i n2 i


g i

2

2 n1in2 i−3.94 Eq 28.18

Glass’s Δ scales the difference by the SD in the control group. It is the preferred measure if the
intervention affects both the mean value of the outcome and its variability.

 i=
m1 i−m2 i

SD2 i  
SE  i= N i

n1 i n2 i


 i

2

2 n2 i−1  Eq 28.19
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Methods of combining results when studies report outcomes using a mixture of raw and log-
transformed scales have recently been published (Higgins et al, 2008).

28.10.3 Combining continuous and dichotomous outcomes

In some situations, it may be necessary to combine outcomes measured on a continuous scale in
some studies and a dichotomous scale in others. One approach to this problem is to compute an
effect size from the 2x2 tables in the studies with a dichotomous outcome (ie convert the RD,
RR or  OR into an ES). Seven approaches to this computation have been evaluated (Sánchez-
Meca  et al,  2003) with the most widely applicable being one attributed to Cox in which a
ln(OR)  is  converted  to  an  effect  size  (dCox=ln(OR)/1.65)  with  its  associated
SE=SE(ln(OR))/1.65.

An alternative approach is to dichotomise the results from the studies based on a continuous
outcome based on a selected cutpoint. The disadvantages of this approach are that it only works
if all studies with continuous outcomes used the same scale (or you need to select a cutpoint for
each scale used) and any dichotomisation involves a loss of information.

28.10.4 Imputing missing variance estimates

If studies with continuous outcomes fail to report either the SE of the mean difference, or the
SDs for the study groups, you need to come up with an estimate of the precision of the mean
difference if the study is to be included in the meta-analysis. There are multiple approaches to
dealing with this problem (Thiessen Philbrook  et al, 2007; Wiebe  et al, 2006). If either a P-
value or a test statistic for the difference between the 2 groups is given, the SE can be computed
from standard statistical formulae. If only a range was reported for the P-value (eg P<0.05), you
can take a conservative approach and use the largest possible P-value.

An alternative approach is to ‘borrow’ a SE estimate from other studies. This can be done by
choosing the largest SE reported (conservative), using the mean SE from all other studies or
imputing the SE based on study characteristics (usually done using a linear regression model).
Using a  ‘borrowed’ SE has been found to perform acceptably  (Furukawa  et al, 2006) and is
preferable to omitting studies with missing SEs from the meta-analysis.

28.10.5 Imputing 2x2 table cell frequencies

Some meta-analysis procedures for dichotomous outcomes require 2x2 table cell frequencies,
not just an effect measure (eg ln(OR)) and its SE. For example, without cell frequencies, the
only weighting method which can be used is the inverse variance approach and it has some
limitations (see Section 28.5.1). Algebraic methods of imputing cell frequencies from an effect
measure (RD, RR or  OR), their CI (or variance) and their sample size have been reported (Di
Pietrantonj,  2006).  The accuracy  of  the  estimation  depends  on the  precision  of  the  CI (or
variance) reported and the width of the CI (wider CI leads to better imputation). It also depends
on the number of significant digits to which the CI is reported, but is generally adequate if
reported to 2 decimal places.
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28.10.6 Dealing with sparse data

You may encounter situations in which there are zero events in one or both of the intervention
groups (eg if adverse reactions are one of the outcomes assessed in a meta-analysis of RCTs). If
there  are  zero  events  in  both  groups,  the  study  can  be  ignored  because  it  contains  no
information. If there is a zero in one group, the impact will depend on the method of pooling. If
inverse variance weights are used, the lnOR or lnRR are undefined. Mantel-Haenszel weighting
may not be possible but the Peto method is not affected. Sweeting  et al (2004) review and
evaluate different continuity adjustments that can be used to deal with the problem of sparse
data (details beyond the scope of this text) and Rücker et al (2009) propose the use of arcsine
differences as an alternative.

28.11 META-ANALYSIS OF OBSERVATIONAL STUDIES

While meta-analyses have more commonly been used for combining results from RCTs, meta-
analyses  of  observational  studies  are  becoming  more  common  and  are  equally  important
(Dickersin,  2002;  Egger  et  al,  2001).  One notable example is  the 1964 Surgeon  General’s
Report on Smoking and Health (Surgeon General,  1964) in which the effect of smoking on
cancer risks from 7 cohort studies were evaluated. There are a number of reasons why the use
of meta-analysis lags behind that of RCTs (Dickersin, 2002). 

• There  has  been  less  research  into  meta-analysis  methods  applicable  to  observational
studies. 

• There  is  not  yet  a  register  of  observational  studies  being  conducted  (in  veterinary
medicine there is no register of RCTs either).

• Efforts to standardise methods of reporting of observational  studies (eg the STROBE
Statement (von Elm et al, 2007)) are very new.

• Causal criteria need to be considered (see  Section 1.10). A meta-analysis may enhance
the  statistical  evidence  and  an  evaluation  of  heterogeneity  gives  insight  into  the
consistency of results, but other criteria also need careful consideration.

Observational studies are prone to a wide range of biases and there is a risk that a meta-analysis
may lend spurious precision to questionable results (Egger et al, 1998). Consequently, the focus
of  a  meta-analysis  of  observational  studies  should  be  an  evaluation  of  heterogeneity  and
developing an understanding of why results vary across studies. Study characteristics such as
study type (cohort vs case-control), study quality characteristics (eg compliance, blinding etc)
and population restrictions (eg RR for diet as a cause of gastric dilation and volvulus may differ
according to the breeds included in a study) should be considered as sources of heterogeneity.

Despite the limitations noted above, methods used in the meta-analysis of RCTs are generally
applicable to meta-analyses  of observational  studies.  However,  before embarking on such a
review, it is important to think about the important ways in which observational studies differ
from RCTs and how these will affect a meta-analysis.

28.11.1 Observational studies vs RCTs—bias

As has been noted throughout this text, observational studies are more prone to a variety of
biases than RCTs. Consequently, it is particularly important that a meta-analysis not provide a
sense of statistical certainty when the contributing studies suffer from serious biases.
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In theory, confounding is not possible in a RCT provided that random allocation has been done
properly, there is good compliance and the sample size is large (residual confounding from an
uneven distribution of a factor across the intervention groups may remain, in small trials). Large
sample size in an observational study provides no such guarantee that confounding does not
occur. A common confounder may affect all studies being evaluated.

Similarly, RCTs have little opportunity for selection bias because both the treatment and control
groups should be representative of the target population provided random allocation has been
carried out. The same is not true for observational studies (see Chapter 12).

In RCTs, there should not be any misclassification of exposure (ie intervention) although there
may be substantial misclassification of the outcome. However, assuming equal follow-up of the
2  study groups,  this  latter  misclassification  should  be  non-differential  (see  Section 12.6.1)
meaning any bias will be toward the null. On the other hand, observational studies may have
misclassification of both exposure and outcome and it may be differential or non-differential.

28.11.2 Observational studies vs RCTs—exposure

While the intervention (exposure) may vary across a set of RCTs in some important aspects (eg
dose, duration of administration), exposure factors are likely to be much more variable across
observational studies in which the exposure is not under investigator control. While most RCTs
evaluate a single exposure, this limitation does not affect longitudinal and case-control studies
which may evaluate a number of possible exposures. While exposure in RCTs is usually known
with certainty, exposure level in observational studies is often only recorded in broad categories
(eg frequency of stall cleaning: daily, more than once a week, weekly etc) and these categories
may  vary  across  studies.  Given  that  exposure  may  vary  across  a  wide  range,  it  may  be
necessary to consider methods for evaluating dose-response evaluations (Dumouchel, 1995).

28.11.3 Observational studies vs RCTs—outcome

In RCTs, the outcome is not as likely to be a rare event (see  Section 28.10.6) as it is in an
observational  study.  Consequently,  specific  methods  for  dealing  with  sparse  data  may  be
required in a meta-analysis of observational data (Austin et al, 1997) (but are beyond the scope
of this text).

Because confounding is not likely to be a serious problem in RCTs, it is often not necessary to
compute estimates of effect  adjusted for potential confounders.  In  a meta-analysis based on
observational studies, this is often very important. If  only unadjusted estimates of effect  are
available, it may be important to adjust these using some form of external adjustment factor.

RRa=RRu /U  U =RRu/ RRa Eq 28.20

where  RRa=adjusted  RR,  RRu=unadjusted  RR, and  U=measure of confounding bias.  U can be
estimated from studies which report both the RRa and the RRu.. (For models on a log scale (eg
logistic model), U=βu-βa). For further details, see Chapter 33 of (Rothman et al, 2008).
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28.12 META-ANALYSIS OF DIAGNOSTIC TESTS

Meta-analysis of studies evaluating diagnostic tests is currently an area of considerable research
interest  and  requires  some  special  considerations.  A  few  of  the  important  issues  will  be
identified here, but the reader is referred to other sources for a more detailed coverage of this
topic (Egger et al, 2001) (Chapter 14) (Devillé et al, 2002; Harbord et al, 2007; Whiting et al,
2003; Whiting et al, 2006; Zamora et al, 2006).

First, it is important to note that there are many aspects of diagnostic test performance which
might be summarised in a meta-analysis. In addition to sensitivity (Se) and specificity (Sp), one
might  include  likelihood  ratios,  repeatability,  reproducibility,  or  other  measures  of  test
performance  (see  Chapter  5).  Second,  most  meta-analysis  procedures  for  diagnostic  test
evaluation studies require that group data (2x2 table cell frequencies) be available in addition to
point estimates and SEs (eg of Se and Sp).

In  general, if estimates of  Se and  Sp are reasonably homogeneous across studies, it  may be
possible  to  use  standard  meta-analysis  techniques  to  compute  summary  estimates  of  test
performance. For this to be possible, 2 criteria will probably need to be met. First, the test being
evaluated should be consistently compared with a good reference test. If studies use a variety of
reference tests, it is very likely that there will be considerable variation in the Se and Sp of the
test being evaluated. Second, if the test result is measured on a continuous (or ordinal) scale, a
consistent cutpoint needs to be used across all studies. If different cutpoints are used, then there
will almost certainly be considerable variation in the Se and Sp estimates. Note Satisfying these
2 criteria certainly does not ensure that study results will be homogeneous.

Given  the  inverse  relationship  between  Se and  Sp,  a  summary  measure  of  diagnostic  test
performance  that  combines  information  about  both  Se and  Sp would  be  useful.  One  such
measure is the diagnostic odds ratio (DOR) (Glas et al, 2003). It can be computed as:

DOR=
TP∗TN
FP∗FN

=
 Se

1−Se 
 1−Sp

Sp 
=

LR +
LR -

Eq 28.21

where TP, TN, FP and FN are the number of true positives, true negatives, false positives and
false negatives in a study and LR+ and LR- are the likelihood ratios of positive and negative test
results. It is often necessary to add a small quantity (often 0.5) to each of the 4 values to avoid
computational difficulties. The larger the  DOR, the stronger the diagnostic evidence provided
by the test (a value of 1 indicates no diagnostic ability at all).  DORs are sometimes pooled in
meta-analyses to provide an overall evaluation of the test’s capabilities. While the DOR has the
advantage of combining the Se and Sp into a single measure, it must be remembered that it does
not distinguish between tests with high Se and low Sp versus low Se and high Sp.

28.13 USE OF META-ANALYSIS

As indicated, the most common use of meta-analysis is for summarising data from a series of
controlled trials.  They have been used less in veterinary medicine than in human medicine
because  we  seldom  have  multiple  trials  of  a  single  product  (or  closely  related  group  of
products)  on  which  to  base  a  meta-analysis.  However,  with  the  increasing  desire  of  the
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profession to have reliable field-based evidence of the efficacy of products used, the availability
of clinical-trial data will increase.

Meta-analysis can also be used in research programmes. They might either serve as a ‘definitive
study’ by combining the results from many previous studies or they can be used to help design
future studies by providing the best estimate of effect for use in sample-size calculations. If a
series of studies is being conducted, the results of a meta-analysis can also provide a ‘stopping
rule’  by identifying when sufficient  evidence of the efficacy of a product exists to warrant
halting research on it. In this situation, a cumulative meta-analysis is a useful tool. It shows how
the pooled estimate changed as each new study was added. A meta-analysis might also identify
factors that strongly influence study results (ie  contribute to heterogeneity)  and guide future
research into those effects.

Meta-analysis can also be used to help guide policy decisions. For example, the meta-analysis
of  the  effects  of  rBST  on  dairy  cattle  health  and  production  was  one  of  the  pieces  of
information used by Health Canada when making a decision regarding the registration of the
drug for use in Canada (in this case the decision was to not register the drug).
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