DESCRIPTION OF DATASETS

All datasets used in the examples and sample problems in this text are provided for pedagogical purposes only. They are provided so that the reader can recreate the examples included in the text. Contributors have made data available to the readers of this text on this understanding and consequently, this is the only use for which they are provided.

In some cases, datasets have been modified since the initial publication of results from the study which generated the data. In many cases, only a subset of the original data (*ie* a subset of variables or a subset of observations) are included. Consequently, the reader should not expect to be able to duplicate results obtained in the original publication.

Some of the datasets described below do not feature in examples used in this edition of the book, but have either been used in the 1st edition or have been found to be very useful in courses covering material presented in this text.

In the descriptions that follow, unless otherwise specified, all variables coded 0 or 1 (0/1) have the following meaning:

0 = no, absent or negative

1 = yes, present or positive

All datasets can be downloaded from the Veterinary Epidemiologic Research website (http://www.upei.ca/ver).

The authors extend their sincere thanks and appreciation to the contributors of these datasets.

	•
a	p2

Contributor(s)	Study type	# records	Unit of record
Håkan Vigre	single cohort	1114	pig

Reference(s)

Vigre H, Dohoo IR, Stryhn H, Busch ME. Intra-unit correlations in seroconversion to *Actinobacillus pleuropneumoniae* and *Mycoplasma hyopneumoniae* at different levels in Danish multisite pig production facilities Prev Vet Med. 2004; 63: 9-28.

Brief description

Data were collected on 1,114 pigs from 35 batches produced on six farms that employed an 'allin, all-out' production process. Pigs were weighed and blood sampled at the time of transfer from the weaner barn to the finisher barn (approximately 70 days of age) and again 6 weeks later (shortly before slaughter). Blood samples were tested for antibodies to *Actinobacillus pleuropneumonia* (Type 2), *Mycoplasma hyopnueumonia*, the influenza virus and the porcine respiratory and reproductive syndrome virus (PRRS). Two of the objectives of the study were to determine when seroconversion to the various agents occurred and at which level of the population (*eg* pig, batch or herd) most of the variation in seroconversion occurred.

Variable	Description	Codes/units
farm_id	farm identification	
batch_id	batch identification number	
litt_id	litter identification number	
pig_id	pig identification	
parity	farrowing number of sow	
vacc_mp	batch vaccinated against M. hyopneumoniae	0/1
seas_fin	season pigs in finishing unit (0=summer, 1=winter)	0/1
age_t	pig age at transfer from weaning to finishing unit	days
w_age_t	weight at age_t	kg
age_t6	age plus approx. 6 weeks	days
w_age_t6	weight at age_t6	kg
dwg_fin	daily weight gain between age_t and age_t6	gm
ap2_t	serological reac. against A. pleuropneumoniae serotype 2 at age_t	0/1
mp_t	serological reac. against M. hyopneumoniae at age_t	0/1
infl_t	serological reac. against influenza virus at age_t	0/1
prrs_t	serological reac. against PRRS virus at age_t	0/1
ap2_t6	serological reac. against A. pleuropneumoniae serotype 2 at t6	0/1
mp_t6	serological reac. against M. hyopneumoniae at age_t6	0/1
infl_t6	serological reac. against influenza virus at age_t6	0/1
prrs_t6	serological reac. against PRRS virus at age 16	0/1
ap2 sc	seroconversion to ap2 during the finishing period	0/1

beef_ultra

Contributor(s)	Study type	# records	Unit of record
Greg Keefe	single cohort	487	animal

Reference(s)

Keefe G, Dohoo I, Valcour J, Milton R. Ultrasonic imaging of marbling at feedlot entry as a predictor of carcass quality grade Canadian Journal of Animal Science. 2004; 84: 165-70.

Brief description

Data were collected on 487 cattle at the time that they entered a feedlot for 'fattening' prior to slaughter. Data consisted of demographic information plus readings obtained from an ultrasonic evaluation of the animal. Ultrasound measurements of backfat thickness, loineye area and the percentage of intramuscular fat ('marbling') were obtained. The objective of the study was to determine if ultrasound examination of the animal at the time of entry into a feedlot was able to predict final carcass grade (AAA, AA or A). Carcass grade depends primarily on the amount of intramuscular fat in the carcass at the time of slaughter.

Variable	Description	Codes/units
farm	farm id	
id	animal id	
grade	carcass grade	1 = AAA 2 = AA 3 = A
breed	breed (known or estimated)	multiple
sex	gender	0 = female 1 = male
bckgrnd	animal backgrounded	0/1
implant	hormone implant used	0/1
backfat	backfat thickness	mm
ribeye	area of rib eye muscle	sq cm
imfat	intramuscular fat score	% of area
days	fattening period	days
carc_wt	carcass weight	kg

bst_mast, bst_milk

Contributor(s)	Study type	# records	Unit of record
Ian Dohoo	meta-analysis	29,28	group of cows

Reference(s)

Dohoo IR, DesCôteaux L, Leslie K, Fredeen A, Shewfelt W, Preston A, Dowling P. A metaanalysis review of the effects of recombinant bovine somatotropin. 2. Effects on animal health, reproductive performance, and culling Can J Vet Res. 2003a; 67: 252-64.

Dohoo IR, Leslie K, DesCôteaux L, Fredeen A, Dowling P, Preston A, Shewfelt W. A metaanalysis review of the effects of recombinant bovine somatotropin. 1. Methodology and effects on production Can J Vet Res. 2003b; 67: 241-51.

Brief description

On request from Health Canada, the Canadian Veterinary Medical Association established an expert panel to review the production and health effect of recombinant bovine somatotropin (rBST) in dairy cattle. The panel carried out a meta-analysis of all available literature and evaluated a wide range of production and health effects. The data in this file consist of risk ratios for clinical mastitis that were associated with the use of rBST. Data from 29 distinct groups of cows, from 20 separate studies are included. The precision of the point estimate is included in the form of 95% confidence limits.

Variable	Description	Codes/units
study	study number	
group	cow group number	
parity	parity group	1 = primiparous 2 = all ages combined 3 = multiparous
study_yr	year of study	
rr	risk ratio	
cilow	lower 95% confidence limit	
cihigh	upper 95% confidence limit	
dur	duration of treatment	days
dose_day	daily dosage	mg/day

Table of variables - bst_mast

Table of variables – bst_milk (same as above except for....)

Variable	Description	Codes/units
diff	difference in milk production	
se	standard error of difference	
ncows	number of cows in study	

bvd_test

Contributor(s)	Study type	# records	Unit of record
Ann Lindberg	single cohort	2,162	cow

Reference(s)

Lindberg A, Groenendaal H, Alenius S, Emanuelson U. Validation of a test for dams carrying foetuses persistently infected with bovine viral-diarrhoea virus based on determination of antibody levels in late pregnancy Prev Vet Med. 2001; 51: 199-214.

Brief description

Blood or milk samples were collected from 2,162 pregnant cows at various stages of lactation. Following the birth of their calf, the status of the calf with regard to persistent infection (PI) with the bovine viral diarrhea (BVD) virus was determined. The blood and milk samples were tested using an ELISA to determine levels of BVD virus antibodies in the cow. A variety of cutpoints were then examined to determine which gave the best combination of sensitivity and specificity for detecting PI+ calves. Logistic regression was used to evaluate the effects of other factors (particularly stage of lactation) on the estimated sensitivity and specificity of the test.

Variable	Description	Codes/units
cow_id	cow identification	
breed	breed	1 = red and white 2 = black and white 3 = beef 4 = other
parity	parity group	1 = primiparous 2 = all ages combined 3 = multiparous
pregmon	pregnancy month at test	
season	calving season	1 = winter 2 = spring 3 = summer 4 = autumn
spec	type of specimen	0 = milk 1 = blood
calfst	calf status	0/1
od	optical density	
co_5	test result dichotomised at 0.5	0/1
co_6	test result dichotomised at 0.6	0/1
co_15	test result dichotomised at 1.5	0/1
co_16	test result dichotomised at 1.6	0/1

calf

Contributor(s)	Study type	# records	Unit of record
Jeanne Lofstedt	retrospective cohort	254	calf

Reference(s)

Lofstedt J, Dohoo IR, Duizer G. Model to predict septicemia in diarrheic calves J Vet Intern Med. 1999; 13: 81-8.

Brief description

These data come from a retrospective analysis of the medical records from all diarrheic calves which were presented to Atlantic Veterinary College, PEI, Canada between 1989 and 1993. The ultimate objective of the study was to develop a logistic model which would predict whether or not the calf was septic at the time of admission (septic calves have a much poorer prognosis than non-septic calves and are not usually worth treating, given economic considerations).

There are 254 observations (records) and 14 variables in the dataset (calf). The original dataset had far more variables (including a lot of laboratory data) but this dataset contains only a subset of the demographic data and the physical examination data collected. All observations were determined on the day of admission, except for the outcome (sepsis) which was based on all data available at the time of death or discharge.

Variablo	Description	Codes/units
Variable		oodes/dilits
case	nospital case number	
age	age at admission	days
breed	breed	coded 1-9
sex	sex	0 = female 1 = male
attd	attitude of calf	0 = bright, alert 1 = depressed
		2 = unresponsive, comatose
dehy	% dehydration	
eye	uveitis/hypopyon clinically evident	0/1
jnts	swollen joints clinically evident	number of joints affected
post	posture of calf	0 = standing 1 = sternal
		2 = lateral
pulse	pulse rate	beats per minute
resp	respiratory rate	breaths per minute
temp	rectal temperature	оС
umb	swollen umbilicus clinically evident	0/1
sepsis	sepsis (outcome)	0/1

calf_pneu

Contributor(s)	Study type	# records	Unit of record
Iver Thysen	cohort	24	calf

Reference(s)

Thysen I. Application of event time analysis to replacement, health and reproduction data in dairy cattle research Preventive Veterinary Medicine. 1988; 5: 239-50.

Brief description

These published data were used in one of the early publications in the veterinary literature discussing the use of survival analysis techniques. The data consist of mortality records from 24 calves that were housed in one of two housing systems: continuous housing, or batch (*ie* all-in all-out) housing. The event of interest was the time to onset of clinical pneumonia. Calves were followed for up to 150 days.

Variable	Description	Codes/units
calf	calf id	
stock	stocking method	0 = batch 1 = continuous
days	time to onset of pneumonia or censoring	days
pn	pneumonia	0/1

clin_mast

Contributor(s)	Study type	# records	Unit of record
Richard Olde Riekerink	longitudinal	5338	case of mastitis or
			censoring event

Reference(s)

Olde Riekerink RG, Barkema HW, Kelton DF, Scholl DT. Incidence rate of clinical mastitis on Canadian dairy farms JDairy Sci. 2008; 91: 1366-77.

Brief description

Data were collected from 106 herds from 10 Canadian provinces over a period of approximately 1½ years. Producers collected milk samples from all cases of clinical mastitis and these samples were frozen and then collected (approximately monthly) and shipped to the Atlantic Veterinary college, UPEI for culturing. The outcome of interest for the subset of data used in this text was the time from calving (or previous case of mastitis) to each clinical case. Only cows with at least 100 days of follow-up have been included. A total of 743 cases were observed in 608 of the 4595 cows that were monitored during the study.

Variable	Description	Codes/units
cowid	cow number	
prov	province	categorical - 1-10
herd	herd number	
pr	parity (lactation number)	1 to 14
start	start period at risk	date
stop	end period at risk	date
par	period at risk	total time at risk
cases	number of mastitis cases	
d	days from calving to case or censoring	days
mast	mastitis case or censoring	0 = cesnored 1 = clinical mastitis

culling

Contributor(s)	Study type	# records	Unit of record
Ashwani Tiwari	longitudinal	721	cow

Reference(s)

Tiwari A, VanLeeuwen JA, Dohoo IR, Stryhn H, Keefe GP, Haddad JP. Effects of seropositivity for bovine leukemia virus, bovine viral diarrhoea virus, Mycobacterium avium subspecies paratuberculosis, and Neospora caninum on culling in dairy cattle in four Canadian provinces Vet Microbiol. 2005; 109: 147-58.

Brief description

These data were collected as part of a prevalence survey of 4 infectious agents in dairy herds in 5 Canadian provinces, but only data from one province are included in this dataset. Only the test results for *Mycobacterium avium* subspecies paratuberculosis (MAP or Johne's disease) is included in the dataset used in this text. Serum samples were collected from 30 cows within each herd (if available) and tested for MAP. Cows were followed for 4 years following testing and whether or not the cow was culled in that time period was recorded. Cows that were sold for dairy purposes were excluded from the analysis. Ultimately, records from 721 cows from 30 herds were available for analysis.

Variable	Description	Codes/units
herd	farm identification number	
cow	cow identification number	
dar	days after testing	days
lact_c3	lactation 1, 2, or 3+	
johnes	seropositive for Johne's	0/1
culled	culled within 3.5 yr. follow-up	0 = censored 1 = culled

dairy_dis

Contributor(s)	Study type	# records	Unit of record
John VanLeeuwen	survey (cross-sectional)	2454	cow

Reference(s)

VanLeeuwen J, Keefe G, Tremblay R, Power C, Wichtel J. Seroprevalence of infection with Mycobacterium avium subspecies paratuberculosis, bovine leukemia virus and bovine viral diarrhea virus in Maritime Canada dairy cattle Canadian Veterinary Journal. 2001; 42: 193-8.

Brief description

These data were collected as part of a prevalence survey of four infectious diseases of dairy cattle in eastern Canada. 30 herds in each of three provinces (Prince Edward Island, Nova Scotia and New Brunswick) were randomly selected from lists of all dairy herds participating on a milk-production monitoring program. Within each herd, approximately 30 animals were randomly selected and blood samples collected. These samples were tested for antibodies to: *Neospora caninum, Mycobacterium avium* (subsp. *paratuberculosis)* and enzootic bovine leukosis virus. In addition, a group of non-vaccinated heifers were bled and tested for bovine virus diarrhea virus, but these test results are not included in this dataset. Sampling weights were computed as the inverse of the product of the probability of a herd being selected and the probability of a cow being selected within a herd.

Variable	Description	Codes/units
prov	province	
herd	herd identification number	
COW	cow identification number	
lact	lactation number	
dim	days in milk	days
johnes	Johne's test result	0/1
leukosis	leukosis test result	0/1
neospora	neospora test results	0/1
tot_hrd	total herds in province	
prob_hrd	probability of herd being selected	
tot_cow	total cows in herd	
tot_smpl	total cows sampled in herd	
prob_cow	probability of cow being selected	
prob_smp	overall probability of a cow being selected	
weight	sampling weight	

daisy2

Contributor(s)	Study type	# records	Unit of record
John Morton	single cohort (longitudinal)	9383	lactation

Reference(s)

Several in preparation at time of writing

Brief description

These data are a subset of the data collected during a large prospective longitudinal study carried out in 9 regions of Australia. Within each region, a dairy practitioner was responsible for herd selection and overseeing the study. Both year-round and seasonal calving dairy herds were included in the study. All lactations starting in the follow-up period of 12-15 months were enrolled. Disease and insemination data were recorded by producers with data entry taking place at the veterinary clinics. Milk production data were collected electronically from milk recording agencies. The data in this subset consisted of 9,383 lactation records from 8,441 cows in 42 year-round calving herds from 4 geographic regions. For many of the analyses in this text, a subset of 7 herds with high rates of reproductive diseases was used.

Variable	Description	Codes/units
region	Region	georaphic region (coded 1-4)
herd	Herd Number	
cow	Cow number (unique)	
study_lact	Study lactation number	1 st or 2 nd lactation in the study period
herd_size	Herd size	
mwp	Minimum wait period for herd	days
parity	Lactation number	
milk120	Milk volume (I) in first 120 days of lactation	litres
calv_dt	Calving date	
cf	Calving to first service interval	days
fs	Conception at first service	0/1
сс	Calving to conception interval	days
wpc	Interval from wait period to conception	days
spc	Services to conception	
twin	Twins born	0/1
dyst	Dystocia at calving	0/1
rp	Retained placenta at calving	0/1
vag_disch	Vaginal discharge observed	0/1
h7	Indicator for 7 herd subset	

elisa_repeat

Contributor(s)	Study type	# records	Unit of record
Javier Sanchez	experimental	40	milk sample

Reference(s)

Sanchez J, Dohoo IR, Markham F, Leslie K, Conboy G. Evaluation of the repeatability of a crude adult indirect Ostertagia ostertagi ELISA and methods of expressing test results Vet Parasitol. 2002; 109: 75-90.

Brief description

Forty individual cow milk samples were repeatedly tested (six times) using a crude *Ostertagia* antigen indirect ELISA. Results were recorded both as raw optical density (OD) values and values adjusted based on the readings for the positive and negative controls in the plate.

Variable	Description	Codes/units
id	sample identification	
raw1	raw OD - sample #1	
raw2	raw OD - sample #2	
	etc	
raw6	raw OD - sample #6	
adj1	adjusted OD - sample #1	
adj2	adjusted OD - sample #2	
	etc	
adj6	adjusted OD - sample #6	

fec

Contributor(s)	Study type	# records	Unit of record
Ane Nødtvedt	single cohort	2,250	monthly fecal egg
			count

Reference(s)

Nødtvedt A, Dohoo I, Sanchez J, Conboy G, DesCôteaux L, Keefe G, Leslie K, Campbell J. The use of negative binomial modelling in a longitudinal study of gastrointestinal parasite burdens in Canadian dairy cows Can J Vet Res. 2002; 66: 249-57.

Brief description

Monthly (in some herds less frequently) fecal egg samples were collected from lactating age dairy cows (n=313) in 38 herds over a period of 1 year. The data were collected as part of a multifaceted study into parasitism in lactating dairy cows which included a longitudinal epidemiologic investigation and a controlled trial of the effects of deworming at calving with eprinomectin. The effects of factors at the sampling-day, cow and herd levels on fecal egg counts were evaluated.

Variable	Description	Codes/units
province	Canadian province	1 = PEI 2 = Quebec 3 = Ontario 4 = Saskatchewan
herd	herd identifier	
COW	unique cow identifier	
visit	visit number	
tx	eprinomectin treatment at calving	0/1
fec	fecal egg count	eggs/5 gm
lact	lactation	0 = primiparous 1 = multiparous
season	season	1 = oct-dec 99 2 = jan-mar 00 3 = apr-jun 00 4 = jul-sep 00
past_lact	lactating cows have access to pasture	0/1
man_heif	manure spread on heifer pasture	0/1
man_lact	manure spread on cow pasture	0/1

feedlot

Contributor(s)	Study type	# records	Unit of record
Wayne Martin	case-control	588	animal

Reference(s)

Martin SW, Nagy E, Armstrong D, Rosendal S. The associations of viral and mycoplasmal antibody titres with respiratory disease and weight gain in feedlot calves Can Vet J. 1999; 40: 560-7, 570.

Brief description

This dataset represents the combined data from a number of studies on the role of specific micro-organisms as causes of bovine respiratory disease (BRD). Typically these beef cattle enter feedlots in the fall of the year and approximately 30% will develop BRD. The general strategy for the studies was to bleed all of the animals on arrival at the feedlot and again 28 days later (since most of the occurrence of BRD occurs in that time period). For analyses, we used all of the samples from cases and an approximately equal number from controls. In some of the smaller groups we used all samples and hence in these the study design was essentially a single cohort. The studies were conducted at essentially the same feedlots in different years, but depending on their size, one feedlot could have numerous groups of calves on the study in any given year. The titres were recorded in a quantitative manner but have been dichotomised in this dataset. **Note** At the time these data were collected, one of the important bacteria was called Pasteurella hemolytica.

Variable	Description	Codes/units
group	group identification	
tag	eartag number	
province	province of feedlot	1 = Alberta 2 = Ontario
brd	clinical bovine respiratory disease (case-control)	0/1
brsvpos	arrival titre to brsv	0/1
brsvsc	seroconversion to brsv during study	0/1
bvdpos	arrival titre to bvd virus	0/1
bvdsc	seroconversion to bvd during study	0/1
ibrpos	arrival titre to ibr virus	0/1
ibrsc	seroconversion to ibr virus during study	0/1
pipos	arrival titre to pi3 virus	0/1
pisc	seroconversion to pi3 virus during study	0/1
phcypos	arrival titre to Mh cytotoxin	0/1
phcysc	seroconversion to Mh cytotoxin during study	0/1
phaggpos	arrival titre to Mh agglutinins	0/1
phaggsc	seroconversion to Mh during study	0/1
hspos	arrival titre to Hs	0/1
hssc	seroconversion to Hs during study	0/1
wt0	arrival weight	kg
wt28	28-day weight	kg

fish_trial

Contributor(s)	Study type	# records	Unit of record
Tim Burnley	randomised controlled trial	2000	fish

Reference(s)

Burnley T: Atlantic salmon vaccine performance and production characteristics evaluated through a multisite clinical field trial. *Unpublished PhD thesis*. Univ of PEI, Charlottetown, PEI Canada; 2009.

Brief description

These data are a small subset of a dataset collected in aquaculture clinical field trials in the Bay of Fundy, Canada, during the years 2004-2007. The objective of the research was to compare the performance of different vaccines on the growth and survival of Atlantic salmon under standard production conditions. The data here originate from a single cage of salmon that were individually tagged (by passive integrated transponder tags) in February 2005 and followed though to harvest in August 2007. Vaccines were randomly allocated to the fish and applied at day 0; thus, the different vaccine groups were held within the same cage throughout the production. Weight measurements were obtained on the fish at four sampling events (including the initial tagging) and at harvest. The data here consists of 100 fish from each of four vaccine groups, selected among fish with a full set of weight measurements to include all fish with jaw deformity and a random sample of the fish with no jaw deformity. As jaw deformities are formed at an early stage of growth and are not healed, detection of a jaw deformity at any sampling event (typically one of the earlier events) implied that the fish was labelled as having a jaw deformity throughout the entire growth period. The outcome of interest is the weight; as weights increase from means of 60 g at day 0 to 5,800 g at harvest, the analysis will be carried out on natural log scale.

Variable	Description	Codes/units
fish	fish id	
sample	sampling #	1-5
day	days since vaccination	
wt	sampling day weight	g
Inwt	natural log of weight	
wt_gain	weight gain since last sampling	g
adg	average daily gain	g/day
vaccine	vaccine group	1-4
jaw	jaw deformity	0/1

isa_day, isa_wk

Contributor(s)	Study type	# records	Unit of record
Larry Hammell, Ian Dohoo	retrospective cohort	isa_day 690	cage - day
		isa wk 101	cage - week

Reference(s)

Hammell KL, Dohoo IR. Mortality patterns in infectious salmon anaemia virus outbreaks in New Brunswick, Canada J Fish Dis. 2005a; 28: 639-50.

Hammell KL, Dohoo IR. Risk factors associated with mortalities attributed to infectious salmon anaemia virus in New Brunswick, Canada J Fish Dis. 2005b; 28: 651-61.

Brief description

Data for these studies were collected on the 1996 smolt year-class from 218 net-pens (seacages) from 14 sites, but only data from 9 cages at 1 site are included in this dataset. Mortality data for the spring – fall period of 1997 were recorded. The number of mortalities was recorded at each time they were collected from the cage by a diver. The total number of mortalities was then attributed equally on a daily basis over the interval since that last dive. Spikeplots of mortalities were generated and start, peak and end periods of outbreaks were subjectively identified from the observed pattern. Only data for the period of the outbreak are included in the dataset.

Variable	Description	Codes/units
site	Site ID	
cage	Cage ID	
int_st_dt	Interval start date	date
int_end_dt	Interval end date	date
mortint	Interval length	days
morts	# of mortalities during interval	
par	Population at Risk	
mort_d	Daily mortality	
dt	Date (day during the interval)	
stage	Stage of outbreak	1 – pre-peak 2 = post-peak

Table of variables—isa_day

The daily mortality data were subsequently compiled on a weekly basis and the outbreak pattern of each ISA outbreak was reconstructed based on the assumption that fish that died from ISA had been infectious for the previous 2 weeks and exposed the week before that. These data are in the file **isa_wk**.

DATASETS

Variable	Description	Codes/units
site	Site	
cage	Cage	
week	Week of outbreak	
stage	Stage of outbreak	1 – pre-peak 2 = post-peak
par	Population at risk	
С	# of cases (deaths)	
S	# susceptible	
E	# exposed	
la	<pre># infectious - week one</pre>	
lb	# infectious - week two	
I	# infectious (la + lb)	
R	# removed	
Ν	# in population	

Table of variables—isa_week

isa_lcm

Contributor(s)	Study type	# records	Unit of record
Pascale Nerette	longitudinal	403	fish

Reference(s)

Nerette P, Dohoo I, Hammell L. Estimation of specificity and sensitivity of three diagnostic tests for infectious salmon anaemia virus in the absence of a gold standard. J Fish Dis. 2005; 28: 89-99.

Brief description

Replicate tissue samples from 403 fish from 4 different populations of Atlantic salmon that were assumed to have very different prevalences of ISA were collected. Samples were distributed to various laboratories in a blind fashion so that the labs did not know which population the fish came from. Samples were tested using IFAT (1 lab), PCR (3 labs) and virus isolation (2 labs) and the results used to build latent class models to evaluate the performance of all tests.

Variable	Description	Codes/units
site	Site identification	
cage	Cage identification	
id	Unique fish identification	
рор	Population (prevalence)	
ifat	IFAT score	0-4
ifat_c2	IFAT 0/1	0/1
pcr_a	PCR from lab A	0/1
pcr_b	PCR from lab B	0/1
pcr_c	PCR from lab C	0/1
vi_a	VI from lab A	0/1
vi_b	VI from lab B	0/1

isa_risk

Contributor(s)	Study type	# records	Unit of record
Larry Hammell, Ian Dohoo	cross-sectional	182	sea cage

Reference(s)

Hammell KL, Dohoo IR. Mortality patterns in infectious salmon anaemia virus outbreaks in New Brunswick, Canada J Fish Dis. 2005a; 28: 639-50.

Hammell KL, Dohoo IR. Risk factors associated with mortalities attributed to infectious salmon anaemia virus in New Brunswick, Canada J Fish Dis. 2005b; 28: 651-61.

Brief description

Following the introduction of infectious salmon anemia virus to the Bay of Fundy (Canada), an epidemiological investigation of risk factors for the disease was initiated. At the time the study was started, the etiology of the mortalities was not known and cages were designated as 'outbreaks' or not, based on the pattern of mortalities observed in the cage. A large number of risk factors were evaluated and this dataset consists of the records for 182 cages which had complete data on a subset of those factors (see list below). While the factors listed below were all fixed factors (*ie* didn't change during the study period), the data were used to compute a time-varying factor: whether or not there had been another positive cage (net-pen) at the site. This was used in survival models of the time to the occurrence of an outbreak.

Variable	Description	Codes/units
sitepen	(1000*site)+cage identifier	
site	site identifier	
net-pen	cage identifier	
datestrt	date fish first put in cage	
apr01_97	April 1 1997	
date	date of outbreak OR censoring	
case	case (outbreak)	0/1
cummrt96	cum. mort. during 1996	
size	cage size	0 = <10,000
		1 = >10,000
par	initial population at risk in cage (number of fish)	
numcage	number of cages at site	

isa_test

Contributor(s)	Study type	# records	Unit of record
Carol McClure, Larry	cross-sectional	1,071	fish
Hammell			

Reference(s)

McClure CA, Hammell KL, Stryhn H, Dohoo IR, Hawkins LJ. Application of surveillance data in evaluation of diagnostic tests for infectious salmon anemia Dis Aquat Organ. 2005; 63: 119-27.

Brief description

Following the identification of the infectious salmon anemia virus in the Bay of Fundy (Canada), a lot of fish were tested using a variety of diagnostic tests. It was realised that tests often gave conflicting results and the available data were used to provide a preliminary evaluation of the operating characteristics of each test. Fish that were derived from sea cages (net-pens) that had a confirmed outbreak of ISA were considered to be 'gold standard positive.' Fish sampled from sites which did not have any outbreaks of ISA (in any cages) during the study period were considered 'gold standard negative.' Other fish sampled were not included in this study. Test results from a total of 1071 fish that had multiple tests performed and which could be classified as positive (n=264) or negative (n=807) were included in the dataset.

Variable	Description	Codes/units
id	case identification	
date	submission date	
site	site identification	
cage	cage identification	
subm	submission identification	
fish	fish number for each case	
dz	disease status (clinical)	
histo	histology	0 = negative 1 = suspicious 2 = positive
histo_np	histo neg/pos (pos=susp+pos)	0/1
ifat1	IFAT laboratory 1	0-4
ifat1_np	IFAT-lab1 neg/pos (pos is 1)	0/1
ifat2	IFAT - laboratory 2	0-4
ifat2_np	IFAT-lab2 neg/pos (pos is 2)	0/1
pcr	PCR	0/1
vi	virus isolation	0/1

ketosis

Contributor(s)	Study type	# records	Unit of record
na	single cohort (hypothetical)	617	cow
Reference(s)			
na			

Brief description

This is a hypothetical dataset for evaluating the condition of a cow at calving on the risk of clinical ketosis. Cows' body condition were evaluated at calving and cows were followed for 3 months to observe for clinical ketosis.

Variable	Description	Codes/units
bcs	body condition score	0 = normal (bcs<4) 1 = fat (bcs>=4)
ketosis	clinical ketosis	0/1

lympho and lympho_mo

Contributor(s)	Study type	# records	Unit of record
Ian Dohoo	clinical trial (hypothetical)	300	dog
Reference(s)			

na

Brief description

These data are from a fictional clinical trial of two treatments for lymphosarcoma in dogs. The study was (hypothetically) conducted as a multicentre (n=10 clinics) controlled trial. Dogs meeting the eligibility criteria for entry into the trial (n=2000) had the tumour surgically removed (only dogs with tumours which could be surgically removed were eligible) and then were randomly assigned to one of four treatment groups: no treatment, radiation only, chemotherapy only and both radiation and chemotherapy. Dogs were randomly assigned within each centre, so the total number of dogs on each treatment group are not exactly equal for all treatments. Each dog was followed from the time of treatment until it died from a relapse of the lymphosarcoma or was lost to follow-up (*eg* died of other causes, owner moved away from the study site) and the time to the occurrence of either of those was recorded.

Table of variables—lympho

Variable	Description	Codes/units
id	dog identification number	
clinic	clinic identification number	
age_dx	age at diagnosis (years)	yrs
rad	radiation therapy	0/1
chemo	chemotherapy	0/1
died	died from lympho or censored	0 = censored 1 = died
days	time from dx to death (or censoring)	days

The same variables are present in lympho_mo but in this data set the time variable is -months-instead of -days-.

meta_parasite

Contributor(s)	Study type	# records	Unit of record
Javier Sanchez	meta-analysis	75	groups of cows

Reference(s)

Sanchez J, Dohoo I, Carrier J, DesCôteaux L. A meta-analysis of the milk-production response after anthelmintic treatment in naturally infected adult dairy cows Prev Vet Med. 2004; 63: 237-56.

Brief description

A systematic review of the literature dealing with the effect of anthelmintic treatment on milk production in dairy cattle was carried out. Data on 75 trials were retrieved and these trials used a wide variety of measures of milk production. There was also considerable variablity in how the treatments were administered and other aspects of trial design.

Variable	Description	Codes/units
std_num	study number	
pubyear	publication year:	
study_lbl1 - 3	3 different ways of labelling the study for various graphs	
mlkmeas	milk production measure	12 categories
tx_n	sample size treated group	
tx_mean	treatment response	
tx_sd	S.D. treatment response	
ctrl_n	sample size placebo group	
ctrl_mean	placebo response	
ctrl_sd	S.D. placebo response	
md_n	sample size	
md	treatment effect	
md_se	SE (mean diff)	
md_lci	lower CI (mean diff)	
md_uci	upper CI (mean diff)	
rand	the clinical trial was randomized	0/1
trblind	treatment administration blinded	0/1
clrout	clearly defined outcome	0/1
critpar	eligibility criteria for participants	0/1
pubtype	publication type	1 = journal
		2 = abstract
		oroceedings
		4 = non-indexed
		journal
nbrhrd	number of farms	
drug	drug:	17 categories

Variable	Description	Codes/units
hrdtx	whole herd treatment	0/1
nbrtx	number of treatments	1-28
parity	parity:	0 = 1 st 1 = 2 nd 2 = all combined
tx_cat	treatment category	0 = dry-calving 1 = mid-lactn. 2 = strategic
endecto	endectocide treatment	0/1

nocardia

Contributor(s)	Study type	# records	Unit of record
Lynn Ferns, Ian Dohoo	case-control	108	herd

Reference(s)

Ferns L, Dohoo I, Donald A. A case-control study of *Nocardia* mastitis in Nova Scotia dairy herds Can Vet J. 1991; 32: 673-7.

Brief description

This dataset contains a subset of the data obtained from a case-control study of Nova Scotia dairy herds with and without *Nocardia* mastitis. There had been a dramatic increase in the incidence of *Nocardia* mastitis in Canada since 1987 and this study was carried out to identify risk factors associated with the occurrence this disease. A total of 54 case herds and 54 control herds were visited for data-collection purposes during the summer of 1989.

Variable	Description	Codes/units
id	herd identification number	
casecont	case/control status of herd	0 = control 1 = case
numcow	number of cows milked	
prod	average milk production for the herd	kg/cow/day
bscc	average bulk-tank SCC over the first 6 months of 1988	'000s of cells/ml
dbarn	type of barn dry cows kept in	1 = freestall 2 = tiestall 3 = other
dout	type of outdoor area used for dry cows	1 = pasture 2 = yard/drylot 3 = none 4 = other
dcprep	method of teat end preparation prior to dry cow therapy administration	 1 = no prep. 2 = washed only 3 = washed and disinfected 4 = dry cow therapy not used
dcpct	percent of dry cows treated with dry- cow therapy	%
dneo	dry-cow product containing neomycin used on farm in last year	0/1
dclox	dry cow product containing cloxacillin used on farm in last year	0/1
doth	Other dry cow products used (eg penicillin or novobiocin based) used on farm in last year	0/1

pgtrial

Contributor(s)	Study type	# records	Unit of record
Jeff Wichtel	clinical trial	319	cow
Reference(s)			
none			

Brief description

A clinical trial of the effect of prostaglandin administration at the start of the breeding period was carried out in three North Carolina dairy herds. On each of the three farms, the producer determined when he was ready to start breeding cows in his herd and at that time, cows were randomly assigned to receive a single injection of prostaglandin or a placebo. These cows were then followed (up to a maximum of 346 days) until they conceived (confirmed by rectal examination) or were culled. In addition to evaluating the effect of treatment on reproductive performance, three other factors were considered (parity, body condition score and herd).

Variable	Description	Codes/units
herd	herd identification number	
COW	Cow identification number	
tx	treatment	0/1
lact	lactation number	
thin	body condition	0 = normal 1 = thin
dar	days at risk	days
preg	pregnant or censored	0 = censored 1 = pregnant

pig_adg

Contributor(s)	Study type	# records	Unit of record
Theresa Bernardo	cross-sectional	341	pig

Reference(s)

Bernardo TM, Dohoo IR, Donald A. Effect of ascariasis and respiratory diseases on growth rates in swine Can J Vet Res. 1990; 54: 278-84.

Brief description

These are data on the growth performance and abattoir findings of pigs from a selection of Prince Edward Island, Canada farms. The data were collected to study the inter-relationships among respiratory diseases (atrophic rhinitis and enzootic pneumonia), ascarid levels and daily weight gain. Atrophic rhinitis score was determined by splitting the snout and measuring the space ventral to the turbinates. An adjustment to the score was made if the nasal septum was deviated. Lung scores were recorded on a scale of 0 to 3 (negative to severe pneumonia) and then converted to either the presence or absence of pneumonia. Parasite burdens were evaluated using fecal egg counts, counts of adult worms in the intestine and visual assessment of the liver for ascarid tracks. Production data were recorded by monitoring the pigs on the farms of origin from birth through to slaughter.

Variable	Description	Codes/units
farm	farm identification number	
pig	pig identification number	
sex	sex of the pig	0 = female
		1 = castrate
dtm	days to market (ie from birth to slaughter)	days
adg	average daily weight gain	gm
mm	measurement of snout space	mm
ar	atrophic rhinitis score	0-5
lu	lung score for enzootic pneumonia	0 = negative
		1 = mild
		2 = moderate
		3 = severe
pn	pneumonia (lu>0)	0/1
epg5	fecal gastrointestinal nematode egg count at time of slaughter	eggs/5 gm
worms	count of nematodes in small intestine at time of slaughter	
li	liver score (based on number of parasite induced	0 = negative
	'white spots')	1 = mild
		2 = severe
ar2	severe atrophic rhinitis (ar>4)	0/1

pig_farm

Contributor(s)	Study type	# records	Unit of record
Dan Hurnik	cross-sectional	69	farm

Reference(s)

Hurnik D, Dohoo I, Bate L. Types of farm management as risk factors for swine respiartory disease Prev Vet Med. 1994a; 20: 147-57.

Hurnik D, Dohoo I, Donald A, Robinson N. Factor analysis of swine farm management practices on Prince Edward Island Prev Vet Med. 1994b; 20: 135-46.

Brief description

A cross-sectional study of pig farms in Prince Edward Island (Canada) was carried out to investigate risk factors for respiratory diseases (enzootic pneumonia and pleuritis). The prevalence of each disease was determined at slaughter from routine evaluations of thoracic viscera. Data on risk factors were collected by the investigator during visits to each farm. Data on a wide variety of factors were collected and the challenge was to sort out relationships among these factors and between them and the respiratory diseases given a very limited sample size.

Variable	Description	Codes/units
farm_id	farm identification	
pneu	pneumonia prevalence	
pncode	pneumonia - categorical (3 levels)	0 < 10% 1 = 10-40% 2 > 40%
pleur	pleuritis prevalence	
plcode	pleuritis - categorical (3 levels)	0 = 0% 1 = 0-8% 2 > 8%
num	number of pigs examined at slaughter	
size	herd size	
growth	average daily gain	gm/day
cmpfd	pigs fed complete mixed feed	0/1
suppl	supplement added to feed	0/1
prmx	premix fed	0/1
strmed	starter ration medicated	0/1
selenium	selenium added to feed	0/1
dryfd	feed fed dry (vs wet)	0 = wet
		1 = dry
flrfd	pigs fed on floor	0/1
rooms	number of separate rooms in barn	
m3pig	air volume per pig	m ³
shipm2	density (pigs shipped per m2)	pigs/m²
exhaust	exhaust fan capacity (proportion of recommendation)	
inlet	air inlet size (proportion of recommendation)	

DATASETS

Variable	Description	Codes/units
maninIt	manual adjustment of air inlets	0/1
mixmnr	manure mixed between pens	0/1
straw	straw bedding used	0/1
washpns	frequency of pen washings (per yr)	
strdnst	floor space - starter hogs (sq m)	m ²
grwdnst	floor space - grower hogs (sq m)	m ²
fnrdnst	floor space - finishing hogs (sq m)	m ²
lqdmnr	manure handled as a liquid	0/1
floor	floor slatted	0/1
sldprtn	solid partitions between some pens	0/1
hlfsld	half-solid partitions between some pens	0/1
pigwtr	pigs per water nipple	
numpen	number of pens	
mixgrp	pigs from multiple groups mixed	0/1
hldbck	slow growing pigs held back from slaughter	0/1
dstfrm	distance (km) to nearest hog farm	km
hmrsd	all pigs home raised	0/1
nmbsrc	number of sources of pigs	
mnlds	only minimal disease pigs raised	0/1
vet	veterinary visits per year	
feedsls	feed salesman visits per year	
neighbr	neighbour visits per year	
pigprdc	pig producer visits per year	
trucker	trucker visits per year	
you	owner works in barn	0/1
family	family members work in barn	0/1
hrdhlp	hired help works in barn	0/1
exprnce	years of experience	yrs

prew_mort

Contributor(s)	Study type	# records	Unit of record
Jette Christensen	cross-sectional	6552	litter

Reference(s)

Christensen J, Svensmark B. Evaluation of producer-recorded causes of preweaning mortality in Danish sow herds Prev Vet Med. 1997; 32: 155-64.

Brief description

These data are a subset of 16 herds from a dataset collected by Jette Christensen in Denmark to study factors affecting preweaning mortality in pigs. These data have three levels in the hierarchy (litters (n=6552) within sows (n=3162) within farms (n=16)):

The key outcome of interest is preweaning mortality with a litter classified as having preweaning mortality or not if one or more piglets died before weaning.

Variable	Description	Codes/units
herd	unique herd id	
sowid	unique sow id	
litter	unique litter id	
Imort	prewmort in litter	0/1
herdtype	herd type	0 = production I = breeding herd
year		
month	month	jan = I dec = 12
quarter	quarter of year	l = jan-mar 2 = apr-jun 3 = jul-sept 4 = oct-dec
sow_parity	parity of sow	
sow_tx	sow required treatment (2d before to 7d after farrowing)	0/1
dead	number of dead piglets in litter	
lsize	litter size	
n	number at risk in litter	
stillb	number stillborn	

reu_cc

Contributor(s)	Study type	# records	Unit of record
Emmanuel Tillard,	single cohort	2509	lactation
Ian Dohoo	-		

Reference(s)

Dohoo IR, Tillard E, Stryhn H, Faye B. The use of multilevel models to evaluate sources of variation in reproductive performance in dairy cattle in Reunion Island Prev Vet Med. 2001; 50: 127-44.

Brief description

These data were collected as part of an ongoing research programme into dairy cattle fertility being carried out on Reunion Island (a French overseas department located in the Indian ocean) by researchers with CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement). Two separate datasets have been compiled. This one contains data about the calving to conception interval, while the second had data on the interval from calving to 1st service and the success of the 1st service. The data have a 4-level hierarchy (lactations (n=2509) within cows (n=1345) within herds (n=50) within geographic regions (n=5)).

Variable	Description	Codes/units
region	geographic region	
herd	herd number	
COW	unique cow number	
obs	unique observation number	
lact	lactation number	
СС	calving to conception interval	days
Incc	calving to conception interval - log transformed	
Incfs_ct	calving to first service interval - log transformed and centred	
heifer	age	0 = multiparous 1 = primiparous
ai	type of insemination at first service	0 = natural 1 = ai

reu_cfs

Contributor(s)	Study type	# records	Unit of record
Emmanuel Tillard,	single cohort	3027	lactation
Ian Dohoo	-		

Reference(s)

Dohoo IR, Tillard E, Stryhn H, Faye B. The use of multilevel models to evaluate sources of variation in reproductive performance in dairy cattle in Reunion Island Prev Vet Med. 2001; 50: 127-44.

Brief description

Same study as reu_cc except this dataset contains data on the interval from calving to first service and whether or not the first service resulted in conception. The data have a 4-level hierarchy lactations (n=3027) within cows (n=1575) within herds (n=50) within geographic regions (n=5)].

A second dataset containing only the first recorded lactation within each cow was saved as reu_cfs_llact.

Variable	Description	Codes/units
region	geographic region	
herd	herd number	
cow	unique cow number	
obs	unique observation number	
lact	lactation number	
cfs	calving to first service interval	days
Incfs	calving to first service interval - log transformed	
fscr	first service conception	0/1
heifer	age	0 = multiparous 1 = primiparous
ai	type of insemination at first service	0 = natural 1 = ai

sal_outbrk

Contributor(s)	Study type	# records	Unit of record
Tine Hald	matched case-control	112	individual (person)

Reference(s)

Molbak K, Hald D. An outbreak of *Salmonella typhimurium* in the county of Funen during late summer. A case-controlled study Ugeskr Laeger. 1997; 159: 36.

Brief description

The data are from an investigation of an outbreak of Salmonella in Funen County of Denmark in 1996. The data consisted of 39 cases of Salmonella typhimurium phage type 12 and 73 controls matched for age, sex and municipality of residence. Data on numerous food exposures were recorded and a small subset of those data are included in the dataset -sal outbrk-.

Variable	Description	Codes/units
match-grp	case-control pair identifier	
date	interview date	
age	age	yrs
gender	gender	0 = male 1 = female
casecontrol	case-control status	0/1
eatbeef	ate beef in previous 72 hours	0/1
eatpork	ate pork in previous 72 hours	0/1
eatveal	ate veal in previous 72 hours	0/1
eatlamb	ate lamb in previous 72 hours	0/1
eatpoul	ate poultry in previous 72 hours	0/1
eatcold	ate cold sliced meats in previous 72 hours	0/1
eatveg	ate vegetables in previous 72 hours	0/1
eatfruit	ate fruit in previous 72 hours	0/1
eateggs	ate eggs in previous 72 hours	0/1
slt_a	ate pork processed at slaughterhouse A	0/1
dlr_a	ate pork marketed by wholesaler A	0/1
dlr_b	ate pork marketed by wholesaler B	0/1

scc_40

Contributor(s)	Study type	# records	Unit of record
Jens Agger and Danish	longitudinal	14,357	test-day
Bartlett, Henrik Stryhn			observations

Reference(s)

Stryhn H, Andersen JS, Bartlett PC, Agger JFA. Milk production in cows studies by linear mixed models. Proc. of symposium in applied statistics, Copenhagen, January 2001. Proceedings (ed. Jensen NE. Linde P): 1-10.

Brief description

These data are a very small subset of a large mastitis dataset collected by Jens Agger and the Danish Cattle Organization. This dataset contains records from 14,357 test-day observations in 2,178 cows from 40 herds. Milk weights (production records) were collected approximately monthly, and only records from a single lactation for each cow were included in this dataset. Factors that may have affected the somatic cell count (SCC) were also recorded. The major objective of this study was to determine if the relationship between the somatic cell count and milk production varies for cows with different characteristics (age, breed, grazing or not *etc*).

A subset of these data called -scc40_2level- was created by only taking the first observation for each cow, thereby reducing the dataset to two levels (herds and cows).

Variable	Description	Codes/units
herdid	herd id	
cowid	cow id	
test h size	approximate month of lactation average herdsize	0 to 10
_ c_heifer	parity of the cow	1 = heifer 0 = multiparous
t_season	season of test day	l = jan-mar 2 = apr-jun 3 = jul-sep 4 = oct-dec
t_dim	days in milk on test-day	days
t_Inscc	log somatic cell count on test day	

scc_heifer

Contributor(s)	Study type	# records	Unit of record
Sarne de Vliegher	single cohort	10996	test-day

Reference(s)

De Vliegher S, Barkema HW, Stryhn H, Opsomer G, de Kruif A. Impact of early lactation somatic cell count in heifers on somatic cell counts over the first lactation J Dairy Sci. 2004; 87: 3672-82.

Brief description

These data are a small subset of a dataset on heifer collected in Belgian herds during the years 2000-2001. The objective of the research was to explore and quantify the predictive power of measuring an early lactation (days in milk 5-14) somatic cell count for milk yield and quality throughout the lactation. The heifers were followed by approximately monthly recordings until dry-off. This dataset however includes only a single record for each heifer obtained during 76-105 days in milk, for a total of 10,996 heifers in 3095 herds. The predictor of primary interest was thus the (natural) log SCC in early lactation (-Insccel-), and the outcome of interest was the measured log SCC (-Inscc-) within the time frame 76-105 days.

Variable	Description	Codes/units
herd	herd id	
cow	cow id	
Insccel	early lactation log somatic cell count (centred)	
Inscc	test day log somatic cell count (from the period 76 – 105 days)	

stdize, stdize_dir, stdize_ind

Contributor(s)	Study type	# records	Unit of record
Ian Dohoo	cross-scetional	4	frequency counts
	(hypothetical)		

Reference(s)

na

Brief description

These three small datasets are hypothetical data used to demonstrate direct and indirect standardisation of rates in Chapter 4.

Table of variables (stdize)

Variable	Description	Codes/units
region	region	
type	cattle type	
cases	# of herds found with tb	
hy	herd-years at risk	

tac_mca

Contributor(s)	Study type	# records	Unit of record
Ahmed ElMoselmany,	single cohort	69	herd
Greg Keefe			

Reference(s)

Elmoslemany AM, Keefe GP, Dohoo IR, Jayarao BM. Risk factors for bacteriological quality of bulk tank milk in Prince Edward Island dairy herds. Part 1: overall risk factors J Dairy Sci. 2009a; 92: 2634-43.

Elmoslemany AM, Keefe GP, Dohoo IR, Jayarao BM. Risk factors for bacteriological quality of bulk tank milk in Prince Edward Island dairy herds. Part 2: bacteria count-specific risk factors J Dairy Sci. 2009b; 92: 2644-52.

Brief description

Bulk tank raw milk quality was evaluated on all Prince Edward Island dairy herds (n = 235) over a 2-yr period (March 2005 to March 2007). Biweekly total aerobic bacterial counts (TAC) were conducted using a Petrifilm culture system. A herd was classified as a TAC case when the herd had at least 4 high TAC, counts out of the last 6 analyses for each test, respectively. Control herds had low counts in the last 6 analyses for each test in the corresponding case group. Case and control herds were visited by trained technicians and a wide range of herd level data relevant to udder health and milk quality was recorded. Only a select subset of variables (those significant in the original analysis) have been retained in this data set.

Variable	Description	Codes/units
tac	case or control based on total aerobic count	0 = control 1 = case
X1	predipping of teats (risk factor = not predipping)	0/1
X2	clipping udder hair (risk factor = not clipping)	0/1
Х3	washing vs dry-wiping of udders (risk factor = washing)	0/1
X4	teat end cleanliness (risk factor = dirty)	0/1
X5	cow (udder flank and leg) hygiene (risk factor = dirty)	0/1
X6	alkalinity of pipeline wash water (risk factor = high alkalinity)	0/1

Table of variables (stdize)

tb_real

Contributor(s)	Study type	# records	Unit of record
Ian Dohoo, Fonda Munroe	retrospective cohort	134	animal groups

Reference(s)

Munroe FA, Dohoo IR, McNab WB. Estimates of within-herd incidence rates of Mycobacterium bovis in Canadian cattle and cervids between 1985 and 1994 Prev Vet Med. 2000; 45: 247-56.

Munroe FA, Dohoo IR, McNab WB, Spangler L. Risk factors for the between-herd spread of Mycobacterium bovis in Canadian cattle and cervids between 1985 and 1994 Prev Vet Med. 1999; 41: 119-33.

Brief description

A retrospective evaluation of all (n=9) outbreaks of tuberculosis in domestic animals (dairy and beef cattle, cervids and bison) in Canada between the years of 1985 and 1994 was carried out to investigate risk factors for the spread of tuberculosis within and between herds. Detailed records from the epidemiologic investigation of all outbreaks (including records on all contact herds) were reviewed and a summary of each outbreak prepared. This dataset contains data only from herds in which tuberculosis was observed. In each herd, the most probably date on which the infection entered the herd was determined and the number of new cases arising within the herd determined from the herd testing results. The number of animals in each age, sex and type group was determined and the number of animal days at risk was computed. The effects of age (three groups), sex (two groups), and animal type (five groups) on the incidence rate of new infections was investigated. **Note** To meet confidentiality and regulatory concerns, these data have deliberately been falsified.

Variable	Description	Codes/units
obs	observation number	
farm_id	farm identification	
type	type of animal	1 = dairy cattle 2 = beef cattle 3 = cervid 4 = other
sex	sex	1 = female 2 = male
age	age category	1 = 0-12 mo 2 = 12-24 mo 3 = >24 mo
reactors	number of pos/reactors in the group	
par	animal days at risk in the group	

vietnam (various files)

Contributor(s)	Study type	# records	Unit of record
Dirk Pfeiffer	surveillance data	134	animal groups

Reference(s)

Pfeiffer DU, Minh PQ, Martin V, Epprecht M, Otte MJ. An analysis of the spatial and temporal patterns of highly pathogenic avian influenza occurrence in Vietnam using national surveillance data Vet J. 2007; 174: 302-9.

Brief description

Data were collected through regular surveillance for outbreaks of highly pathogenic avian influenza serotype H5N1 amongst domestic poultry in a region of northern Vietnam at the administrative level of commune between 2004 and 2006. A variety of files (some in Stata and some in R format) are provided in a zipped folder. An example of the contents of one file is shown below.

Variable Description Codes/units id commune ID X coordinate of commune centroid point location x_coord y coord Y coordinate of commune centroid point location infected commune infected with AI inf 2003 4 commune infected with AI in 2003/04 inf 2004 5 commune infected with AI in 2004/05 inf 2005 6 commune infected with AI in 2005/06

Table of variables - viet_commune_centroid

Some of the other data files include:

- viet_district_centroid This geographic data layer represents commune level data aggregated at district level.
- viet_district_poly This geographic data layer represents commune level data aggregated at district level.
- viet_region_poly This geographic data layer represents the boundary of the region in northern Vietnam for which the data was analysed.

DATASETS