Paper Published in Journal of Hydrology

Title: Coastal urban flood risk management: Challenges and opportunities − A systematic review

Journal: Journal of Hydrology

DOI: https://doi.org/10.1016/j.jhydrol.2024.132271

Abstract: Generational mechanisms and spatio-temporal evolution patterns of coastal urban flood risk involve complex interactions between climate change, sea level rise and human-induced factors, necessitating integrated adaptive flood management strategies to mitigate evolving vulnerabilities. This systematic review offers a thorough assessment of the challenges and strategic opportunities for sustainable adaptation in managing flood risk in coastal urban areas. It integrates emerging innovative technologies and financial solutions to identify promising approaches to implement mitigation strategies and improve coastal urban flood resilience. Enhancing governance and policy frameworks is crucial for the successful implementation of coastal urban flood risk management (CUFRM) plans. An innovative participatory planning framework is developed to promote flood management practices which are socially inclusive and equitable. Funding for green infrastructure and nature-based solutions and the strategic use of public-private partnerships are effective methods for advancing sustainable flood risk management (FRM). The advancements in emerging technologies, such as artificial intelligence (AI), machine learning (ML), deep learning (DL), social media and digital twin technologies, provide dynamic and collaborative platforms for simulating flood scenarios and have potential to significantly improve CUFRM practices. In the end, a cross-country comparison of current practices in Australia, China, the Netherlands, the UK and the USA reveals a diverse range of approaches and valuable insights derived from regional experiences. The review provides a comprehensive analysis for researchers, policymakers and practitioners aiming to improve flood resilience in coastal metropolitan regions by learning from effective UFRM approaches that enhance governance structures, infrastructure resilience and funding mechanisms.

Paper Accepted by Agricultural Water Management

The following paper about the crop soil moisture estimation has been recently accepted for publication by Agricultural Water Management.

Imtiaz, F., A. A. Farooque, G. S. Randhawa, X. Wang, T. Esau, B. Acharya, and S. E. Hashemi. An Inclusive Approach to Crop Soil Moisture Estimation: Leveraging Satellite Thermal Infrared Bands and Vegetation Indices on Google Earth Engine. Agricultural Water Management, accepted on November 11, 2024.

More details will come soon once the paper is published.

Paper Published in Energy

Title: Evaluating wind and solar complementarity in China: considering climate change and source-load matching dynamics

Journal: Energy

DOI: https://doi.org/10.1016/j.energy.2024.133485

Abstract: Changes in wind and solar energy due to climate change may reduce their complementarity, thus affecting the stable power supply of the power system. This paper investigates the wind and solar complementarity in China under climate change from the perspective of source-load matching. First, the ability of the PRECIS model to simulate the wind and solar complementarity characteristics at different time scales (hourly, daily, and monthly scales) over China is verified. At the hourly scale, the complementarity shows an increasing trend from east to west, with Qinghai, Yunnan and Xinjiang exhibiting the most pronounced complementarity. The southeastern region exhibits smaller net load peak-to-valley differences and volatility, signifying a diminished requirement for system flexibility in this area, while northern and northwestern China exhibit a higher demand for system flexibility. Then, the changes of wind and solar energy complementarity and net load fluctuation are predicted in the 2030s and 2060s under the SSP2-4.5 and SSP5-8.5 scenarios. Overall, climate change is anticipated to have a negative impact on the future complementarity of wind and solar energy. In the 2060s, on an hourly scale, the complementary characteristic () shows a downward trend in most regions, particularly notable in eastern and central China, where it decreased by about 0.05 and 0.04. Furthermore, there is an escalation in the peak-valley difference and fluctuation of net load in most areas of China, particularly under the SSP5-8.5 scenario. The peak-valley difference of net load in the central and southwest regions projects a marked increase of 22.4% and 18.7% in the 2060s, suggesting that climate change is anticipated to augment the demand for power system flexibility, necessitating increased investments in flexible and adjustable resources such as energy storage.

Paper Published in Environmental Research Communications

Title: Projecting future changes in potato yield using machine learning techniques: a case study for Prince Edward Island, Canada

Journal: Environmental Research Communications

DOI: https://doi.org/10.1088/2515-7620/ad85c5

Abstract: Accurate prediction of potato yield is essential for informed agricultural decision-making, ensuring food security, and supporting farmers’ livelihoods. This is particularly critical in regions like Prince Edward Island (PEI), where potato production is not only a staple of local agriculture but also a cornerstone of the regional economy, accounting for a significant proportion of agricultural revenue and employment. Although machine learning algorithms have been extensively applied in agricultural yield prediction, previous studies have not fully leveraged the potential of capturing both short- and long-term dependencies. This research highlights the efficacy of integrating these temporal dependencies into machine learning models to enhance the accuracy of potato yield predictions. The methodology adopted in this research, including data collection, model selection, and scenario-based projections, can be applied to other regions and crops. Our projections for PEI toward the end of the century indicate a substantial decline in potato yields across different climate scenarios. Under the high-emission SSP5-8.5 scenario, our models predict a potential potato yield reduction of up to 70%. In contrast, the SSP1 and SSP2 scenarios suggest a more moderate decline in potato yield, ranging from 4% to 15%. These findings underscore the urgent need for reducing greenhouse gas emissions to mitigate the adverse impacts on potato production. Furthermore, they highlight the importance of implementing adaptive farming practices to sustain potato yield in the face of climate change.

Paper Published in Journal of Hydrology

Title: Wastewater flooding risk assessment for coastal Communities: Compound impacts of climate change and population growth

Journal: Journal of Hydrology

DOI: https://doi.org/10.1016/j.jhydrol.2024.132136

Abstract: The study introduces a wastewater modeling framework that evaluates the compound impacts of intense rainfall, groundwater infiltration, sewer aging based roughness and population growth on wastewater systems. It integrates property and city-level flooding risk assessment and wastewater treatment plant (WWTP) capacity analysis into a single methodological approach. The framework applied to the coastal city of Charlottetown, whose population increased from 30,887 in 1981 to 42,440 in 2023, but the wastewater system did not expand accordingly, resulting in frequent sewer backups, street and basement flooding, as witnessed during the extreme wet weather event of September 2, 2021. Using PCSWMM (Personal Computer Storm Water Management Model), the study assessed that the city-wide wastewater flooding risk in Charlottetown, based on 2023 population data and historical IDF curves, affects 13.31% of the network during a 2-year storm and 18.38% during a 100-year storm. These risks increase to 14.5% and 22.6% under future IDF scenarios, reaching 17.89% and 26.4% by 2060 with projected population growth. The WWTP capacity is exceeded by 27.8% during peak wet weather flows from a 2-year storm and by 86.3% during a 100-year storm, based on 2023 population and historic IDFs. Under future IDF scenarios for 2060 population, exceedances rise to 103.6% and 169.1% respectively, for a 2-year and 100-year storm. Basement flooding risk affects 13.35% of basements during a 2-year storm and 18.31% during a 100-year storm, for 2023 population and historic IDFs. Future IDF scenarios indicate risk increasing to 17.77% and 25.80% by 2060 for a 2-year and 100-year storm respectively. The hydraulic modeling results indicate that GWI is not currently impacting the study area, nor is it expected to in near future, because the groundwater table is over 10 m deep, while wastewater pipes are no deeper than 6 m. The framework and study have significant social implications and benefits, including protecting public health, enhancing the resilience of urban infrastructure, and safeguarding the environment, ultimately improving the quality of life for residents in coastal communities like Charlottetown.