Paper Published in Environmental Research Communications

Title: Projecting future changes in potato yield using machine learning techniques: a case study for Prince Edward Island, Canada

Journal: Environmental Research Communications

DOI: https://doi.org/10.1088/2515-7620/ad85c5

Abstract: Accurate prediction of potato yield is essential for informed agricultural decision-making, ensuring food security, and supporting farmers’ livelihoods. This is particularly critical in regions like Prince Edward Island (PEI), where potato production is not only a staple of local agriculture but also a cornerstone of the regional economy, accounting for a significant proportion of agricultural revenue and employment. Although machine learning algorithms have been extensively applied in agricultural yield prediction, previous studies have not fully leveraged the potential of capturing both short- and long-term dependencies. This research highlights the efficacy of integrating these temporal dependencies into machine learning models to enhance the accuracy of potato yield predictions. The methodology adopted in this research, including data collection, model selection, and scenario-based projections, can be applied to other regions and crops. Our projections for PEI toward the end of the century indicate a substantial decline in potato yields across different climate scenarios. Under the high-emission SSP5-8.5 scenario, our models predict a potential potato yield reduction of up to 70%. In contrast, the SSP1 and SSP2 scenarios suggest a more moderate decline in potato yield, ranging from 4% to 15%. These findings underscore the urgent need for reducing greenhouse gas emissions to mitigate the adverse impacts on potato production. Furthermore, they highlight the importance of implementing adaptive farming practices to sustain potato yield in the face of climate change.

Paper Published in Journal of Hydrology

Title: Wastewater flooding risk assessment for coastal Communities: Compound impacts of climate change and population growth

Journal: Journal of Hydrology

DOI: https://doi.org/10.1016/j.jhydrol.2024.132136

Abstract: The study introduces a wastewater modeling framework that evaluates the compound impacts of intense rainfall, groundwater infiltration, sewer aging based roughness and population growth on wastewater systems. It integrates property and city-level flooding risk assessment and wastewater treatment plant (WWTP) capacity analysis into a single methodological approach. The framework applied to the coastal city of Charlottetown, whose population increased from 30,887 in 1981 to 42,440 in 2023, but the wastewater system did not expand accordingly, resulting in frequent sewer backups, street and basement flooding, as witnessed during the extreme wet weather event of September 2, 2021. Using PCSWMM (Personal Computer Storm Water Management Model), the study assessed that the city-wide wastewater flooding risk in Charlottetown, based on 2023 population data and historical IDF curves, affects 13.31% of the network during a 2-year storm and 18.38% during a 100-year storm. These risks increase to 14.5% and 22.6% under future IDF scenarios, reaching 17.89% and 26.4% by 2060 with projected population growth. The WWTP capacity is exceeded by 27.8% during peak wet weather flows from a 2-year storm and by 86.3% during a 100-year storm, based on 2023 population and historic IDFs. Under future IDF scenarios for 2060 population, exceedances rise to 103.6% and 169.1% respectively, for a 2-year and 100-year storm. Basement flooding risk affects 13.35% of basements during a 2-year storm and 18.31% during a 100-year storm, for 2023 population and historic IDFs. Future IDF scenarios indicate risk increasing to 17.77% and 25.80% by 2060 for a 2-year and 100-year storm respectively. The hydraulic modeling results indicate that GWI is not currently impacting the study area, nor is it expected to in near future, because the groundwater table is over 10 m deep, while wastewater pipes are no deeper than 6 m. The framework and study have significant social implications and benefits, including protecting public health, enhancing the resilience of urban infrastructure, and safeguarding the environment, ultimately improving the quality of life for residents in coastal communities like Charlottetown.

Paper Accepted by Land

The following paper about the quantification of carbon flux patterns in ecosystems for PEI has been recently accepted for publication by Land.

Basheer, S., X. Wang, Q. V. Dau, M. Awais, P. Kinay, T. Pang, and M. Q. Mahmood. Quantification of Carbon Flux Patterns in Ecosystems: A Case Study of Prince Edward Island. Land, accepted on October 15, 2024.

More details will come soon once the paper is published.

Paper Accepted by Journal of Hydrology

The following review paper about the coastal urban flood risk management has been recently accepted for publication by Journal of Hydrology.

Aziz, F., X. Wang, M. Q. Mahmood, M. Awais, and B. Trenouth. Coastal Urban Flood Risk Management: Challenges and Opportunities – A Systematic Review. Journal of Hydrology, accepted on October 12, 2024.

More details will come soon once the paper is published.

Paper Accepted by Environmental Research Communications

The following paper about the projection of future changes in potato yield using machine learning techniques has been recently accepted for publication by Environmental Research Communications.

Tamayo-Vera, D., K. Liu, A. Bolufe-Rohler, and X. Wang. Projecting Future Changes in Potato Yield Using Machine Learning Techniques: A Case Study for Prince Edward Island, Canada. Environmental Research Communications, accepted on October 10, 2024.

More details will come soon once the paper is published.